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Abstract

A direct boundary integral equation method for the heat equation based on Nyström

discretization is proposed and analyzed. For problems with moving geometries,

a weakly and strongly singular Green’s integral equation is formulated. Here the

hypersingular integral operator, i.e., the normal trace of the double-layer potential,

must be understood as a Hadamard finite part integral. The thermal layer potentials

are regarded as generalized Abel integral operators in time and discretized with a

singularity-corrected trapezoidal rule. The spatial discretization is a standard quadra-

ture rule for smooth surface integrals. The discretized systems lead to an explicit time

stepping scheme and is effective for solving the Dirichlet and Neumann boundary

value problems based on both the weakly and/or strongly singular integral equations.

Keywords Moving boundary problem · Boundary integral equation ·
Heat equation · Nyström method · Finite part integral

Mathematics Subject Classification (2010) 58J35 · 35K05 · 65N38 65R20

1 Introduction

Solving time-dependent partial differential equations with boundary integral equa-

tion methods has been a topic of several recent investigations; they are surveyed

in [5]. Integral operators for time-dependent problems involve integrals over the

space-time boundary which demands the development of suitable discretization and

fast evaluation methods.

For the heat equation, several options for the fast evaluation of layer potentials are

available, which are either based on spectral expansions of the heat kernel [7, 8, 14],
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a space-time version of the fast multipole method [17], sparse grids [9], or on parallel

implementations [6].

In addition, one can choose between several discretization methods, such as con-

volution quadrature, Galerkin, collocation, and Nyström methods [11, 13, 15]. Varia-

tional methods are better understood from a theoretical viewpoint and are applicable

to a wider range of operator equations [1, 4]. However, they require the calculation

of complicated surface integrals and lead to implicit time stepping methods [12].

The Nyström method on the other hand is explicit and involves much simpler quadra-

ture rules. It is well known that the numerical analysis is limited to the classical case of

second-kind integral equations on smooth surfaces (see, e.g., [2, 5, 10]). Even though

much less is known about the stability of Nyström methods in more general cases, we

will also present numerical results below for first-kind and hypersingular equations.

The approach taken in the present paper is based on the earlier work in [18]. There

the thermal layer potentials are treated as generalized Abel integral operators in time

where the space dependence is expressed in terms of smooth surface potentials. The

time discretization is a singularity-corrected trapezoidal rule, and the spatial dis-

cretization is a standard quadrature rule for smooth surface integrals. The goal of the

present article is to extend this work to handle moving geometries and hypersingular

integral operators.

We are primarily interested in the direct integral formulation based on weakly and

strongly singular Green’s formula. The two integral formulations present options to

solve both the Dirichlet and Neumann problems as an integral equation of either

the first or the second kind. More on this and the connection with indirect integral

formulations can be found in [5].

A moving surface implies that an additional term appears in Green’s representa-

tion formula that involves the normal velocity. In addition, a moving surface changes

the nature of the singularity of the double-layer operator. We will show that by intro-

ducing a space-time version of the normal trace, this complication can be avoided.

In the context of Galerkin methods, the hypersingular operator can be expressed

as a weakly singular potential of the surface curl of the ansatz and test function [4].

Since this trick is not available for the Nyström method, we will show that the normal

trace of the double-layer potential can be interpreted in the sense of a Hadamard

finite part integral in time. We then derive a singularity-corrected quadrature rule to

evaluate the finite part integral with a high order of convergence.

We conclude with numerical results solving the Dirichlet and Neumann problems

with the weakly and strongly singular integral formulation. The results obtained are

consistent with the convergence rate of the quadrature rules used.

2 Integral formulation for moving domain problems

We consider the heat equation in a domain �(t) of R3 with boundary Ŵ(t) = ∂�(t)

that may change in the time interval 0 ≤ t ≤ T . Here

Q = {(�(t), t), 0 ≤ t ≤ T } ,

∂Q = � ∪
(
�̄(0) × {0}

)
∪

(
�̄(T ) × {T }

)
,
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denotes the space-time domain and the space-time boundary, and � is the lateral

boundary

� = {(Ŵ(t), t), 0 < t < T } .

The goal is to solve the heat equation

∂tu(x, t) − �u(x, t) = 0, (x, t) ∈ Q, (1)

with suitable boundary conditions on � and initial conditions on �(0). To moti-

vate the following discussion, we briefly review the derivation of the representation

formula with particular attention to a moving geometry.

We will use the arrow notation to denote a vector in space-time and a boldface

character to denote a vector in space. Thus, �∇ = [∇, ∂t ] is the space-time gradient

and �∇ · �F = ∇ · Fs + ∂tFt is the space-time divergence of a space-time vector field
�F = [Fs, Ft ]. In these notations, the divergence theorem is

∫

Q

�∇· �F dQ =
∫

�

�F·�n d� +
∫

�(T )

Ft dx −
∫

�(0)

Ft dx,

where �n = [ns, nt ] ∈ R
4 is the space-time normal of �. Suppose now that u and v

are scalar functions in Q that vanish in �(0) × {0} and �(T ) × {T }, respectively;

then the choice of �F = [u∇v − v∇u, uv] gives the second Green’s identity
∫

Q

(�v + ∂tv) u − (�u − ∂tu) v dQ =
∫

�

∂v

∂ns

u − ∂u

∂ns

v + uvnt d�.

Specializing the above result to a solution u of (1) with homogeneous initial

conditions and v, Green’s function of the heat equation

G(x, y, t, τ ) =





1

(4π(t−τ))
3
2

exp
(
− |x−y|2

4(t−τ)

)
, if τ < t,

0, if τ ≥ t,

results in the representation formula

u(̃x, t) =
∫

�

G(̃x, y, t, τ )
∂u

∂ns

(y, τ ) d�y,τ

−
∫

�

∂G

∂nsy

(̃x, y, t, τ )u(y, τ ) d�y,τ

−
∫

�

G(̃x, y, t, τ )nτ (y, τ )u(y, τ ) d�y,τ , (2)

where (̃x, t) ∈ Q. The third term is specific for a moving surface. We will see

in Eq. 13 that the nt -component of the space-time normal corresponds to the nor-

mal velocity of Ŵ(t). This form of the representation formula has appeared without

derivation earlier [3].

We define the normal traces of a function ϕ in Q as

γ ±
1 ϕ := ∂ϕ

∂ns

± 1

2
ntϕ. (3)
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To motivate the additional ntϕ term, let �x = [x, t] ∈ � and �y = [y, τ ] ∈ �, then

γ +
1,(y,τ )

G(x, y, t, τ ) = G(x, y, t, τ )
(�x − �y)·�n
2(t − τ)

.

If � is smooth, it follows from the orthogonality of the space-time normal to � that

(�x − �y)·�n = O
(
|x − y|2 + (t − τ)2

)
. (4)

Note that in the case of a moving surface, the usual (x − y)·ns = O(|x − y|2) holds

only if x and y have the same time coordinates. In general, we get

(x − y)·ns = O
(
|x − y|2 + (t − τ)

)
. (5)

For a function ϕ on �, we define the single- and double-layer potentials as

Ṽϕ(̃x, t) =
∫

�

G(̃x, y, t, τ )ϕ(y, τ ) d�y,τ ,

K̃ϕ(̃x, t) =
∫

�

γ +
1,(y,τ )

G(̃x, y, t, τ )ϕ(y, τ ) d�y,τ .

Then the representation formula (2) appears in the familiar form with a single- and

double-layer potential

u(̃x, t) = Ṽγ −
1 u(̃x, t) − K̃u(̃x, t), (̃x, t) ∈ Q. (6)

Note that the third term of (2) is incorporated in equal parts in the single- and double-

layer terms.

The four boundary integral operators for moving surfaces are obtained by taking

the interior trace γ0 and the normal trace as defined above.

Vϕ(x, t) = γ0Ṽϕ(x, t)=
∫

�

G(x, y, t, τ )ϕ(y, τ ) d�y,τ , (7)

Kϕ(x, t) = γ0K̃ϕ(x, t)=−1

2
ϕ(x, t) +

∫

�

γ +
1,(y,τ )

G(x, y, t, τ )ϕ(y, τ ) d�y,τ , (8)

K
′ϕ(x, t) = γ −

1 Ṽϕ(x, t)= 1

2
ϕ(x, t) +

∫

�

γ −
1,(x,t)G(x, y, t, τ )ϕ(y, τ ) d�y,τ , (9)

Dϕ(x, t) = γ −
1 K̃ϕ(x, t)=

∫

�

γ −
1,(x,t)γ

+
1,(y,τ )G(x, y, t, τ )ϕ(y, τ ) d�y,τ , (10)

where (x, t) ∈ �. It is not difficult to verify that the jump relations of the thermal

double-layer potentials hold for both fixed as well as moving geometries. The hyper-

singular integral operator D requires more care because it has a strong singularity.

We will see below that the Hadamard finite part of this integral is the normal trace of

the double-layer potential.
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Taking traces in (6) results in the weakly and strongly singular Green’s integral

formulations

1

2
u(x, t) = Vγ −

1 u(x, t) − Ku(x, t), (11)

1

2
γ −

1 u(x, t) = K
′γ −

1 u(x, t) − Du(x, t), (12)

where (x, t) ∈ �. Thanks to the extra term in the space-time normal trace, these

integrals have the same form as in the well-known case of a fixed geometry.

3 Thermal layer potentials in Abel integral form

We now consider surfaces that are the image of a time-dependent parameterization

x(·, t) : X ⊂ R
2 → Ŵ(t) where the Jacobian |∂1x(ξ , t) × ∂2x(ξ , t)| is a smooth func-

tion and bounded away from zero. Note that this assumption is somewhat restrictive

as it excludes topology changes of Ŵ(t). The parameterization of � is

� =
{
�x(ξ , t) :=

[
x(ξ , t)

t

]
: (ξ , t) ∈ X × [0, T ]

}
.

The normal and normal velocity of Ŵ(t) are given by

n = ∂1x × ∂2x

|∂1x × ∂2x| and vn = ∂tx·n, (13)

where ∂1 and ∂2 denote differentiation with respect to the variables ξ1 and ξ2. In a

slight change from terminology introduced in the previous section, we call the vector

�n =
[

n

−vn

]

the space-time normal. This vector is, up to the normalization factor
√

1 + v2
n, the

normal of �, because it is R
4-orthogonal to all partial derivatives of �x(ξ , t). The

surface measure on � is

d� =
√

1 + v2
n |∂1x × ∂2x| dξdt =

√
1 + v2

n dŴdt,

where dŴ is the surface measure on Ŵ(t). We will write

γ ±
1 ϕ := ∂ϕ

∂n
∓ 1

2
vnϕ

for the normal trace. This is, up to the factor
√

1 + v2
n, the normal trace of Section 2.
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The integral operators (7)–(10) can be written in the form

Vϕ(x, t) = 1√
4π

t∫

0

1√
t − τ

V ϕ(x, t, τ ) dτ, (14)

Kϕ(x, t) = 1√
4π

t∫

0

1√
t − τ

Kϕ(x, t, τ ) dτ, (15)

K
′ϕ(x, t) = 1√

4π

t∫

0

1√
t − τ

K ′ϕ(x, t, τ ) dτ, (16)

Dϕ(x, t) = 1√
4π

pf

t∫

0

1

(t − τ)
3
2

Dϕ(x, t, τ ) dτ, (17)

where

V ϕ(x, t, τ ) =
∫

Ŵ(τ)

1

4π(t − τ)
exp

(
− |x − y|2

4(t − τ)

)
ϕ(y, τ ) dŴy , (18)

Kϕ(x, t, τ ) =
∫

Ŵ(τ)

1

4π(t − τ)
exp

(
− |x − y|2

4(t − τ)

)
(�x − �y)·�ny

2(t − τ)
ϕ(y, τ ) dŴy , (19)

K ′ϕ(x, t, τ ) =
∫

Ŵ(τ)

1

4π(t − τ)
exp

(
− |x − y|2

4(t − τ)

)
(�x − �y)·�nx

2(t − τ)
ϕ(y, τ ) dŴy , (20)

Dϕ(x, t, τ ) =
∫

Ŵ(τ)

1

4π(t − τ)
exp

(
− |x − y|2

4(t − τ)

)
· (21)

[
nx ·ny

2
− (�x − �y)·�nx

2(t − τ)

(�x − �y)·�ny

2(t − τ)

]
ϕ(y, τ ) dŴy .

The kernel in the above time-dependent surface potentials is Green’s function of the

two-dimensional heat equation. Thus, they may be regarded as Poisson-Weierstrass

integrals defined on a surface instead of the usual plane. As in the planar case,

these integrals are smooth functions in all variables. The limiting behavior of these

functions as τ → t is

V ϕ(x, t, τ ) = ϕ(x, t) + O(t − τ),

Kϕ(x, t, τ ) = H(x, t)ϕ(x, t) + O(t − τ),

K ′ϕ(x, t, τ ) = H(x, t)ϕ(x, t) + O(t − τ),

Dϕ(x, t, τ ) = 1

2
ϕ(x, t) + O(t − τ),
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where H(x, t) is the mean curvature of the surface Ŵ(t). The derivation of this

expansion for the single- and double-layer potentials with a fixed surface can be

found in [18]. The modifications for the other layer potentials and for a time-

dependent surface are not significant, and hence, we only state the final result here.

For boundary curves, expansions of a similar nature can also be found in [20].

4 Hypersingular Operator

In this section, we show that the hypersingular operator can be understood as a

strongly singular integral in the Hadamard finite part sense. We briefly recall the

definition. A smooth function f can be decomposed as

f (t, τ ) = f (t, t) + (t − τ)f1(t, τ ),

where f1 is another smooth function. Thus, for ǫ > 0, we can calculate

t−ǫ∫

0

1

(t − τ)
3
2

f (t, τ ) dτ = f (t, t)

t−ǫ∫

0

1

(t − τ)
3
2

dτ +
t−ǫ∫

0

1

(t − τ)
1
2

f1(t, τ ) dτ

= 2√
ǫ
f (t, t) − 2√

t
f (t, t) +

t−ǫ∫

0

1

(t − τ)
1
2

f1(t, τ ) dτ

The finite part integral is the convergent part of this expression. Since the integral on

the right hand side is weakly singular, we get

pf

t∫

0

1

(t − τ)
3
2

f (t, τ ) dτ = − 2√
t
f (t, t) +

t∫

0

1

(t − τ)
3
2

(
f (t, τ ) − f (t, t)

)
dτ . (22)

Since Dϕ(·) is a smooth function in t and τ , the integral (17) can be understood as

a Hadamard finite part integral in time. What remains to verify is that the normal

trace of the double-layer potential is indeed given by (17). This is the statement of

the following:

Theorem 4.1 For a smooth function ϕ on �

γ −
1 Kϕ(x, t) = Dϕ(x, t)

holds.

Before we give the proof of this result, we note that a point x̃ in a sufficiently small

neighborhood of Ŵ(t) has a unique nearest point x ∈ Ŵ(t) such that x̃ = x + λnx .

Here nx is the normal at x and λ is the Euclidean distance of x̃ to the surface.

For some λ > 0, let

w(x, t, λ) := γ −
1,xK(̃x, t) = nx ·∇xK(̃x, t) + vnx

2
K(̃x, t).
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If the limit λ → 0 exists, then w(x, t, 0) is the normal trace of the double-layer

potential, that is, the left-hand side in Theorem 4.1. For the right-hand side, simple

differentiation shows the explicit form of this function is

w(x, t, λ) =
t∫

0

∫

Ŵ(τ)

1

(4πδ)
3
2

exp

(
−|̃x − y|2

4δ

)[
nx ·ny

2δ2
− (�̃x − �y)·�ny

2δ

(�̃x − �y)·�nx

2δ

]

×ϕ(y, τ ) dŴydτ (23)

where δ := t − τ and �̃x = [̃x, t]. Mind that the first term in the angle bracket is an

R
3-inner product, while the second term consists of R4-inner products. Expanding

x̃ = x + λnx gives

exp

(
−|̃x − y|2

4δ

)
= exp

(
− λ2

4δ

)
exp

(
− λ

(x − y)·nx

2δ

)
exp

(
− |x − y|2

4δ

)
(24)

and analogous expressions can be found for the inner products with the space-time

normals. Thus, the function w can be expanded into three parts w = w1 +λw2 +w3,

where

w1(x, t, λ) = 1√
4π

t∫

0

1

δ
3
2

exp

(
− λ2

4δ

)(
1

2
− λ2

4δ

)
�1(x, t, τ, λ) dτ,

and

�1(x, t, τ, λ)=
∫

Ŵ(τ)

1

4πδ
exp

(
− |x − y|2

4δ

)
exp

(
−λ

(x − y)·nx

2δ

)
nx ·ny ϕ(y, τ ) dŴy .

That is, w1 contains the first and the λ2-term in the angle bracket of (23). Moreover,

w2(x, t, λ) =
t∫

0

∫

Ŵ(τ)

1

(4πδ)
3
2

exp

(
− |̃x − y|2

4δ

)
(�x − �y)·�ny − (�x − �y)·�ny �nx ·�ny

4δ2

×ϕ(y, τ ) dŴydτ

contains the linear terms in λ and

w3(x, t, λ)=
t∫

0

∫

Ŵ(τ)

1

(4πδ)
3
2

exp

(
− |̃x − y|2

4δ

)
(�x−�y)·�ny (�x−�y)·�nx

4δ2
ϕ(y, τ ) dŴydτ

contains the remainder. The following lemmas examine the properties of these three

functions.

Lemma 4.2 There is a constant C > 0 such that

|w2(x, t, λ)| ≤ C‖ϕ‖C∞(�).
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Proof If λ is small enough, then the middle term in (24) can be estimated by

exp

(
− λ

(x − y)·nx

2δ

)
≤ c1 exp

(
c2λ

|x − y|2
2δ

)
≤ c1 exp

(
|x − y|2

8δ

)
,

where the first step follows from (5). Moreover, it follows from (4) that

(�x − �y)·�ny − (�x − �y)·�ny �nx ·�ny

δ2
≤ C

(
|x − y|2

δ2
+ 1

)
.

The rest of the argument relies on the estimate

e−z ≤ cµz−µ, z > 0, µ > 0 (25)

(see [10, Eq. 9.15]). Thus,

|w2(x, t, λ)|

≤ c

t∫

0

1

δ
3
2

exp

(
− λ2

4δ

) ∫

Ŵ(τ)

exp

(
− |x − y|2

8δ

)(
|x − y|2

δ2
+ 1

)
dŴydτ ‖ϕ‖C∞(�)

≤ c

t∫

0

1

δ
3
2

exp

(
− λ2

4δ

) ∫

Ŵ(τ)

δµ−2

|x − y|2µ−2
+ δµ

|x − y|2µ
dŴydτ ‖ϕ‖C∞(�).

For λ �= 0, this integral is weakly singular if the exponent of |x − y| is less than

two or µ < 2. In addition, the τ integral should be bounded independently of µ

which is the case when the combined exponent of δ is less than unity. This can be

accomplished by setting µ = 7/4 for the first term and by setting µ = 3/4 for the

second term. Then

|w2(x, t, λ)| ≤ c

∫

Ŵ(τ)

(
1

δ
7
4

+ 1

δ
3
4

)
exp

(
− λ2

4δ

)
dτ‖ϕ‖C∞(�) ≤ c‖ϕ‖C∞(�).

Lemma 4.3 The function w3 is a continuous function of λ. In particular,

lim
λ→0

w3(x, t, λ) =
t∫

0

∫

Ŵ(τ)

1

(4πδ)
3
2

exp

(
− |x − y|2

4δ

)
(�x − �y)·�ny (�x − �y)·�nx

4δ2

×ϕ(y, τ ) dŴydτ .

Proof We first show that the integral w3(x, t, 0) is weakly singular. From (4) and

(25), it follows that

w3(x, t, 0) ≤ c

t∫

0

∫

Ŵ(τ)

1

(4πδ)
3
2

δµ

|x − y|2µ

(
|x − y|4

δ2
+ |x − y|2 + δ2

)
dŴydτ .

Similar to the proof in the previous lemma, the choices µ = 11/4, 7/4, and 3/4

show that both the space and time integrals are weakly singular. The rest is a standard
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argument: If w3a is defined as w3 but with time integration from τ = 0 to t − a, then

the reminder is O(
√

a) because the integrand is O(1/
√

δ) in time. Then

lim
λ→0

[w3(x, t, λ) − w3(x, t, 0)] = lim
λ→0

[w3a(x, t, λ) − w3a(x, t, 0)] + O(
√

a).

The first limit vanishes because the integrand is a smooth function. This implies that

the limit on the left-hand side also vanishes because a can be arbitrarily small.

Lemma 4.4

lim
λ→0

w1(x, t, λ) = 1

2
pf

t∫

0

1√
4π

1

δ
3
2

�1(x, t, τ, 0) dτ .

Proof We first note that the function �1 is a smooth function in all variables. This

follows in a similar manner as the smoothness of the surface potentials in (18)–(21).

To get some insight into the properties of w1, consider first the case �1 = 1 where a

closed-form analytic expression can be found

1√
4π

t∫

0

1

δ
3
2

exp

(
− λ2

4δ

)(
1

2
− λ2

4δ

)
dτ = −1√

4πt
exp

(
− λ2

4t

)
. (26)

Thus, the integral is not defined for λ = 0 but has an analytic extension. Since �1

is smooth, we have �1(x, t, τ, λ) = �1(x, t, τ, 0) + O(λ), and hence, it follows that

for fixed t > 0,

w1(x, t .λ) = 1√
4π

t∫

0

1

δ
3
2

exp

(
− λ2

4δ

)(
1

2
− λ2

4δ

)
�1(x, t, τ, 0) dτ + O(λ). (27)

Since �1 is a smooth function in the τ -variable,

�1(x, t, τ, 0) = �1(x, t, t, 0) + δΨ (x, t, τ ), (28)

where Ψ (x, t, τ ) is another smooth function. From (26), the contribution of the first

term to (27) is

1√
4π

t∫

0

1

δ
3
2

exp

(
− λ2

4δ

)(
1

2
− λ2

4δ

)
dτ �1(x, t, t, 0) = − 1√

4πt
�1(x, t, t, 0)+O(λ)

(29)

The Ψ -term in (28) cancels one power of δ, and thus, its contribution to (27) is

t∫

0

1√
4πδ

exp

(
− λ2

4δ

)(
1

2
− λ2

4δ

)
Ψ (x, t, τ ) dτ

= 1

2

t∫

0

1√
4πδ

exp

(
− λ2

4δ

)
Ψ (x, t, τ ) dτ + O


λ2

t∫

0

1

δ
3
2

exp

(
−λ2

4δ

)
dτ


 .
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Analytic integration shows that the last integral is O
(
λ−1

)
; hence, the last term sim-

plifies to O(λ). Moreover, since the first integral is weakly singular when λ = 0, we

see that its limiting value can be simply obtained by substituting λ = 0. Combining

this result with (27), (28), and (29) shows that

lim
λ→0

w1(x, t, λ) = − 1√
4πt

�1(x, t, τ, 0) + 1

2

t∫

0

1√
4π

1

δ
3
2

×
(
�1(x, t, τ, 0) − �1(x, t, t, 0)

)
dτ .

The assertion follows from (22).

Proof of Theorem 4.1 Since the w2-term is multiplied by λ, it does not contribute to

the limit; thus, it follows from the previous lemmas and the definitions of �1 and w3

that

lim
λ→0

w(x, t, λ) = 1

2
pf

t∫

0

1√
4π

1

δ
3
2

�1(x, t, τ, 0) dτ + w3(x, t, 0)

= pf

t∫

0

∫

Ŵ(τ)

1

(4πδ)
3
2

exp

(
−|x − y|2

4δ

)

×
[

nx ·ny

2δ2
− (�x − �y)·�ny

2δ

(�x − �y)·�nx

2δ

]
dŴydτ,

which is the assertion of Theorem 4.1.

5 Discretization

In [18], a quadrature rule is obtained for weakly singular integrals by singularity

subtraction as follows:

tn∫

0

1√
tn − τ

f (t, τ ) dτ

= 2
√

tnf (tn, tn) +
tn∫

0

1√
tn − τ

(
f (tn, τ ) − f (tn, tn)

)
dτ

= 2
√

tnf (tn, tn) +
n−1∑

j=0

′ ht√
tn − tj

(
f (tn, tj ) − f (tn, tn)

)
+ O

(
h

3
2
t

)

= µnf (tn, tn) +
n−1∑

j=0

′ ht√
t − τ

f (tn, tj ) + O

(
h

3
2
t

)
, (30)
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where ht is the time step size, tn = nht , and
∑′ indicates that the first term in the

sum is multiplied by the factor 1
2
. Further,

µn = 2
√

tn − ht

n−1∑

j=0

′ 1√
tn − tj

.

The second integral in the above calculation is order
√

t − τ which implies that the

quadrature error of the trapezoidal rule is order h
3
2
t . Higher order versions of this rule

can be obtained by subtracting more terms. Moreover, a stability analysis for the case

that the quadrature rule is applied to solve Abel integral equations of the first and

second kind can be found in [19] and in [16].

This rule can be modified to approximate the weakly singular integral in the finite

part integral. Using the notations of Section 4

pf

tn∫

0

1

(tn − τ)
3
2

f (tn, τ ) dτ = − 2√
tn

f (tn, tn) +
tn∫

0

1

(tn − τ)
1
2

f1(t, τ ) dτ

= − 2√
tn

f (tn, tn) + µnf1(tn, tn) +
n−1∑

j=0

′ ht√
t − τ

f1(tn, tj ) + O

(
h

3
2
t

)
.

Replacing f1(tn, tn) = ∂τf (tn, tn) by a forward difference adds another O(h
3
2
t ) to

the error because of the first-order approximation multiplied by µn = O(h
1
2
t ). Thus,

pf

tn∫

0

1

(tn − τ)
3
2

f (tn, τ ) dτ = µ(0)
n f (tn, tn) + µ(1)

n f (tn, tn−1)

+
n−2∑

j=0

′ ht

(tn − tj )
3
2

f (tn, tj ) + O

(
h

3
2
t

)
, (31)

where

µ(0)
n = µn

ht

− 2√
tn

−
n−2∑

j=0

′ ht

(tn − tj )
3
2

µ(1)
n = −µn

ht

+ 1√
ht

.

When the quadrature rules (30) and (31) are applied to the integrals in (14)–(17),

then the function values f (tn, tn) are replaced by the asymptotic values τ → t of

the Poisson-type integrals (18)–(21). On the other hand, the evaluation of f (tn, tj ),

j < n in the temporal quadrature involves surface integrals. Since the surface integral
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operators in (18)–(21) have smooth kernels, standard surface quadrature rules can be

applied, which have the form
∫

Ŵ(tj )

ϕ(y) dŴy ≈
∑

k∈Nj

ϕ(xk)w
j

k ,

where x
j

k , k ∈ Nj are nodes on Ŵ(tj ) and w
j

k are the weights. Here we use rules

based on a triangulation of Ŵ(tj ) that integrates piecewise polynomials of a given

degree exactly. The construction of such rules is described, for instance, in Atkinson

[2, Sec 5.3].

Since the heat kernel becomes increasingly peaked when tj approaches tn, the

mesh width of the surface triangulation must be decreased as the mesh is refined. In

[18], it is shown that if the relation of the spatial mesh width hs to the time step size is

hs√
ht

→ 0 as ht → 0, (32)

then the convergence rate of the fully discrete formula is still O(h
3
2
t ). Thus, the fully

discrete approximation for the single-layer potential is

Vϕ(xn
m, tn) = µnϕ(x, tn) + ht

n−1∑

j=0

′ ∑

k∈Nj

G
(

xn
m, x

j

k , tn, tj

)
ϕ
(

x
j

k , tj

)
w

j

k + O
(
h

3
2
t

)
,

where m ∈ Nn. The other operators are similar.

6 Numerical Example

Both the weakly and strongly singular integral formulas can be used to solve the

Dirichlet or Neumann problem of the heat equation. This gives a total of four different

integral formulations:

P1. The Dirichlet problem using the weakly singular equation. Solving (11) for

γ −
1 u results in an integral equation of the first kind.

P2. The Neumann problem using the weakly singular equation. Solving (11) for u

results in an integral equation of the second kind.

P3. The Neumann problem using the strongly singular equation. Solving (12) for

u results in a hypersingular integral equation of the first kind.

Table 1 Mesh parameters
Mesh number ht Points

M1 0.02 288

M2 0.01 1152

M3 0.005 4608

M4 0.0025 18432
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Fig. 1 L2(Ŵ)-norms of the solution (dashed line) and the errors (solid lines) for the four meshes versus

time

P4. The Dirichlet problem using the strongly singular equation. Solving (12) for

γ −
1 u results in an integral equation of the second kind.

In the Nyström method, the integral operators are replaced by their fully discrete

counter part. This leads to a time stepping method where in the nth step the approx-

imate solution is computed at the quadrature nodes. Because of the special form of

the fully discrete operators, this is an explicit scheme.

For second-kind formulations, the classical convergence theory of Nyström meth-

ods applies as was performed in the context of fixed geometries in [18]. The

Table 2 Convergence rates for

the four problems at two

selected times

Time Mesh P1 P2 P3 P4

M1-2 2.2885 1.8368 2.4148 2.3285

0.1 M2-3 1.9037 1.4419 1.5111 1.9629

M3-4 1.3740 1.4261 1.4301 1.4740

M1-2 2.0230 2.5955 1.6498 1.9753

0.4 M2-3 2.3005 2.0781 2.2324 2.1053

M3-4 0.6523 1.4829 1.6880 1.5545
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modifications for moving geometries are not presented here as they do not require

essential modifications of the argument. We are not aware of a stability analysis for

the first-kind formulations, but our experimentations suggest that the discretization

methods described are at least conditionally stable.

To illustrate the behavior of the discretization scheme for the four different

formulations, we solve a problem in the outside of the ellipse

( x

1.2

)2

+
( y

0.8

)2

+
( z

0.7

)2

= 1

that rotates about the z-axis. The rate of rotation is such that one revolution is

completed in the time interval t ∈ [0, 2].
The boundary condition is such that the solution is given by u(x, t) = G(x−x0, t),

where x0 = [0.1, 0.2, − 0.05] is slightly off centered to avoid symmetries in the

solution. The spatial quadrature rule in this experiment is chosen to have degree of

precision p = 2. In order to satisfy (32), we keep the ratio of the spatial and temporal

mesh constant. We have computed four refinements; their parameters are listed in

Table 1.

Figure 1 displays the L2(Ŵ)-norm of the solution together with the errors for the

different meshes as functions of time. Table 2 displays the convergence rate of two

consecutive meshes log2(‖em‖/‖em+1‖) at times t = 0.1 and t = 0.4 (m is the mesh

number). With the exception of P1, the convergence rates of the finer meshes are in

good agreement with the theoretical rate of 1.5. For P1, the initial convergence is

rapid but deteriorates for the finest mesh.
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