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Abstract

A direct boundary integral equation method for the heat equation based on Nystrom
discretization is proposed and analyzed. For problems with moving geometries,
a weakly and strongly singular Green’s integral equation is formulated. Here the
hypersingular integral operator, i.e., the normal trace of the double-layer potential,
must be understood as a Hadamard finite part integral. The thermal layer potentials
are regarded as generalized Abel integral operators in time and discretized with a
singularity-corrected trapezoidal rule. The spatial discretization is a standard quadra-
ture rule for smooth surface integrals. The discretized systems lead to an explicit time
stepping scheme and is effective for solving the Dirichlet and Neumann boundary
value problems based on both the weakly and/or strongly singular integral equations.

Keywords Moving boundary problem - Boundary integral equation -
Heat equation - Nystrom method - Finite part integral
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1 Introduction

Solving time-dependent partial differential equations with boundary integral equa-
tion methods has been a topic of several recent investigations; they are surveyed
in [5]. Integral operators for time-dependent problems involve integrals over the
space-time boundary which demands the development of suitable discretization and
fast evaluation methods.

For the heat equation, several options for the fast evaluation of layer potentials are
available, which are either based on spectral expansions of the heat kernel [7, 8, 14],

Communicated by: Leslie Greengard

>4 Johannes Tausch
tausch@smu.edu

I Southern Methodist University, Dallas, TX 75275, USA

@ Springer



2954 J. Tausch

a space-time version of the fast multipole method [17], sparse grids [9], or on parallel
implementations [6].

In addition, one can choose between several discretization methods, such as con-
volution quadrature, Galerkin, collocation, and Nystrom methods [11, 13, 15]. Varia-
tional methods are better understood from a theoretical viewpoint and are applicable
to a wider range of operator equations [1, 4]. However, they require the calculation
of complicated surface integrals and lead to implicit time stepping methods [12].

The Nystrom method on the other hand is explicit and involves much simpler quadra-
ture rules. It is well known that the numerical analysis is limited to the classical case of
second-kind integral equations on smooth surfaces (see, e.g., [2, 5, 10]). Even though
much less is known about the stability of Nystrom methods in more general cases, we
will also present numerical results below for first-kind and hypersingular equations.

The approach taken in the present paper is based on the earlier work in [18]. There
the thermal layer potentials are treated as generalized Abel integral operators in time
where the space dependence is expressed in terms of smooth surface potentials. The
time discretization is a singularity-corrected trapezoidal rule, and the spatial dis-
cretization is a standard quadrature rule for smooth surface integrals. The goal of the
present article is to extend this work to handle moving geometries and hypersingular
integral operators.

We are primarily interested in the direct integral formulation based on weakly and
strongly singular Green’s formula. The two integral formulations present options to
solve both the Dirichlet and Neumann problems as an integral equation of either
the first or the second kind. More on this and the connection with indirect integral
formulations can be found in [5].

A moving surface implies that an additional term appears in Green’s representa-
tion formula that involves the normal velocity. In addition, a moving surface changes
the nature of the singularity of the double-layer operator. We will show that by intro-
ducing a space-time version of the normal trace, this complication can be avoided.

In the context of Galerkin methods, the hypersingular operator can be expressed
as a weakly singular potential of the surface curl of the ansatz and test function [4].
Since this trick is not available for the Nystrom method, we will show that the normal
trace of the double-layer potential can be interpreted in the sense of a Hadamard
finite part integral in time. We then derive a singularity-corrected quadrature rule to
evaluate the finite part integral with a high order of convergence.

We conclude with numerical results solving the Dirichlet and Neumann problems
with the weakly and strongly singular integral formulation. The results obtained are
consistent with the convergence rate of the quadrature rules used.

2 Integral formulation for moving domain problems

We consider the heat equation in a domain 2 () of R3? with boundary I'(¢) = 92 (¢)
that may change in the time interval 0 < ¢ < T'. Here

Q0 ={(Q@.,n, 0=t =T},
30 = T U(Q(0) x {0}) U (QT) x {T}),
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Nystrdm method for BEM of the heat equation with moving boundaries 2955

denotes the space-time domain and the space-time boundary, and X is the lateral
boundary

2={T@,t), 0<t<T}.
The goal is to solve the heat equation

qux,t) — Au(x,t) =0, (x,t)e€ 0, 1)

with suitable boundary conditions on ¥ and initial conditions on €2(0). To moti-
vate the following discussion, we briefly review the derivation of the representation
formula with particular attention to a moving geometry.

We will use the arrow notation to denote a vector in space-time and a boldface
charzicteg to denote a vector in space. Thus, V = [V, ;] is the space-time gradient
and V- F = V . F; + 0 F; is the space-time divergence of a space-time vector field
F= [Fy, F;]. In these notations, the divergence theorem is

/%-FdQ - /F.ﬁdz + / F, dx — / F, dx,
o = Q(T) Q(0)
where n = [ny, n;] € R* is the space-time normal of X. Suppose now that  and v
are scalar functions in Q that vanish in €2(0) x {0} and Q(T) x {T}, respectively;
then the choice of F = [uVv — vVu, uv] gives the second Green’s identity
/(Av +0v)u — (Au—du)vdQ = /
0 P

ou
ong

av
u— v+uvn,dx.

ony

Specializing the above result to a solution u of (1) with homogeneous initial

conditions and v, Green’s function of the heat equation

;3 exp (—J:El:yf)) ,ift <,
G(X,y,1,T) =1 @n@t-1)2
0, ift>1t,

results in the representation formula

0
uX,t) = /G(i, y, t, r)—u(y, 71)d%, ¢
ong
>

G
- (i’ Ya t’ T)M(y’ 'C) dEy,-[

ongy,

- / G(iv yv t’ r)nt(y’ T)M(Y7 T) dzy,rv (2)
z

where (X,t) € Q. The third term is specific for a moving surface. We will see
in Eq. 13 that the n;-component of the space-time normal corresponds to the nor-
mal velocity of I'(¢). This form of the representation formula has appeared without
derivation earlier [3].

We define the normal traces of a function ¢ in Q as
ap 1

S 3)

+
e:= ony, 2
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To motivate the additional n;¢ term, letX = [x,¢] € £ andy = [y, t] € I, then

G—9)i
yl:F(y,T)G(X’ y. t, ‘L') = G(X, y. ¢, T)m

If ¥ is smooth, it follows from the orthogonality of the space-time normal to ¥ that
G=$i=0(x—yP+0-0?). )

Note that in the case of a moving surface, the usual (x —y)-ny, = O(|x — y|2) holds
only if x and y have the same time coordinates. In general, we get

x=ym =0 (Ix—yP+ (- 1). s)

For a function ¢ on X, we define the single- and double-layer potentials as

VoR, 1) = fG(i, Y. 1, Doy, 1) dXy ¢
P

IZ(p(iv t) = / )/1—j_(y’-[)G(iv Ya ta T)‘p(Ya T) dzy,‘[ .
z

Then the representation formula (2) appears in the familiar form with a single- and
double-layer potential

u® 1) =Vy u® - Ku® 1), &1)eQ. (6)

Note that the third term of (2) is incorporated in equal parts in the single- and double-
layer terms.

The four boundary integral operators for moving surfaces are obtained by taking
the interior trace yg and the normal trace as defined above.

Vo(x. 1) = nVe(x, t)=/ GX,y, 1, 0)¢(y, 1)dZy ¢, (7N
p)
~ 1
IC()D(Xv t) = VO’C(p(Xv t) :_Eq)(xv t) + / yl—j—(y’-[)G(Xv Yy, t, T)w(y: T) dz:y,l’v (8)
x
_~ 1 _
Kox, 1) =y Vox, )= Eq)(x, 1)+ / N O& Y. 1, Dy, 1) dEy ., (9)
z
Do(x,1) = )/1_1690(& 1) :/ Vl_,(x,;)yl_,'—();,f)G(X» Y. 1, D)y, 1)dZy ¢, (10)
z

where (x,¢) € X. It is not difficult to verify that the jump relations of the thermal
double-layer potentials hold for both fixed as well as moving geometries. The hyper-
singular integral operator D requires more care because it has a strong singularity.
We will see below that the Hadamard finite part of this integral is the normal trace of
the double-layer potential.
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Nystrdm method for BEM of the heat equation with moving boundaries 2957

Taking traces in (6) results in the weakly and strongly singular Green’s integral
formulations

%u(x, 1) = Vyyu(x, t) — Ku(x, 1), (11

1 o
Eylfu(x, 1) = Ky ux,t) —Dux,1), (12)

where (Xx,7) € X. Thanks to the extra term in the space-time normal trace, these
integrals have the same form as in the well-known case of a fixed geometry.

3 Thermal layer potentials in Abel integral form

We now consider surfaces that are the image of a time-dependent parameterization
x(-, 1) : X € R? — I'(r) where the Jacobian |9;x(&, ) x 9,x(&, )| is a smooth func-

tion and bounded away from zero. Note that this assumption is somewhat restrictive
as it excludes topology changes of I'(#). The parameterization of X is

Y = {ﬁ(g,t) - [X(i’ t)] (&) e X %0, T]}.

The normal and normal velocity of I'(¢) are given by

J1X X drX
n=—— and v, =0Xx-n, (13)
[01x X 07X|

where 9 and 9, denote differentiation with respect to the variables &; and &,. In a
slight change from terminology introduced in the previous section, we call the vector

=[]

the space-time normal. This vector is, up to the normalization factor /1 + v,2l, the
normal of X, because it is R4-orthogonal to all partial derivatives of X(&, 7). The
surface measure on X is

d¥ = /14 v2 191X x 02x|d€dt = /1 +v2dTds,

where dT is the surface measure on I' (7). We will write

dp 1
F s Un@

+
V1¢~—a_n 3

for the normal trace. This is, up to the factor /1 + v,2l, the normal trace of Section 2.

@ Springer
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The integral operators (7)—(10) can be written in the form

1 1
Vox,t) = Z/EWp(x,t,t)dr, (14)
1 t 1
Kox,t) = Z/mwa, t,t)dr, (15)
0
1 t 1
Kox,t) = Z./ml( o, t,7)dr, (16)
0
. t
Do(x,t) = f Do(x,t,1)dT, 17
o (x mpo(t_r)% ox, 1, 1)dt
where
1 x—y|?
V(p(X, t, 'L') = / m exp _4(1‘ 7:) (p(y, ‘C) dFy . (18)
I'(t)
1 —y2\ ®-¥)n,
Ko(x,1,7) = / e (—Et _yl)> (’;(t i);)” oy, 7)dTy, (19)
I'(r)
1 —y?\ ®—¥)ny
K'ox, t,1)= / prrra— exp <_4|1):t _’1)) ();(t z);)l @(y, 1)drl'y, (20)
I'(r)
B x —y|?
DQO(X, t, 'L') = m exXp _4(1‘ — 7:) . (21)
I'(r)
n,-my X —y)-n, X — ?)ﬁy
[ 2 2—1) 20-—1) ]‘p(y’ RESE

The kernel in the above time-dependent surface potentials is Green’s function of the
two-dimensional heat equation. Thus, they may be regarded as Poisson-Weierstrass
integrals defined on a surface instead of the usual plane. As in the planar case,
these integrals are smooth functions in all variables. The limiting behavior of these
functions as T — ¢ is

Vox,t, 1) = p(x,t) + O(t — 1),
Ko, t,7) = HX, He(x,t)+ O — 1),
Kox, t,t) = HX, Do(x,t) + Ot — 1),

1
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Nystrdm method for BEM of the heat equation with moving boundaries 2959

where H(x,t) is the mean curvature of the surface I'(z). The derivation of this
expansion for the single- and double-layer potentials with a fixed surface can be
found in [18]. The modifications for the other layer potentials and for a time-
dependent surface are not significant, and hence, we only state the final result here.
For boundary curves, expansions of a similar nature can also be found in [20].

4 Hypersingular Operator

In this section, we show that the hypersingular operator can be understood as a
strongly singular integral in the Hadamard finite part sense. We briefly recall the
definition. A smooth function f can be decomposed as

fe. =70+ ¢—-1)N1@¢ 1),
where f7 is another smooth function. Thus, for € > 0, we can calculate

r—e € t—e

-
[ rend = san [ ars [ pena
(t—1)2 o =12 5 (1—=1)2

0

t—e

2 2 1
—f@, ) ——ft,n+ / — N, v)dr
0

Je

Vi (t—1)2

The finite part integral is the convergent part of this expression. Since the integral on
the right hand side is weakly singular, we get

t t

pf/;gf(m)df —— 2t +/;(f(t, 1) — f(t,0))d7. (22)
(-1 Vi D)

3
2

Since Dg(-) is a smooth function in ¢ and 7, the integral (17) can be understood as
a Hadamard finite part integral in time. What remains to verify is that the normal
trace of the double-layer potential is indeed given by (17). This is the statement of
the following:

Theorem 4.1 For a smooth function ¢ on &

]/l_IC(p(X, t) = D‘/’(X, t)
holds.

Before we give the proof of this result, we note that a point X in a sufficiently small
neighborhood of I'(z) has a unique nearest point X € I'(¢) such that X = x + An,.
Here n, is the normal at x and A is the Euclidean distance of X to the surface.

For some A > 0, let

wx, 1, 1) =y K& 1) =n,-V; KX, 1) + U’%IC()Z 1).
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2960 J. Tausch

If the limit A — O exists, then w(Xx, t, 0) is the normal trace of the double-layer
potential, that is, the left-hand side in Theorem 4.1. For the right-hand side, simple
differentiation shows the explicit form of this function is

t =4 -
w(w’k):// _|§_y|z) |:nx-ny (g_y).ﬁy(;_y).ﬁx}

1
exp
(478)3 ( 48
0 I'(r)

xo(y, 1) dl'ydt (23)

282 268 26

where § := ¢ — T and X = [X, ¢]. Mind that the first term in the angle bracket is an
R3-inner product, while the second term consists of R*-inner products. Expanding
X = X + An, gives

K-y) _ 22 x—y) x — ¥l
exp < 1 = exp 5 exp XT exp 15 (24)

and analogous expressions can be found for the inner products with the space-time
normals. Thus, the function w can be expanded into three parts w = wi + Awy + w3,
where

t
1 1 A\ /1 A2
wi(x, 1, A) = —/.—3 exp (— —) (— — —) O(x,t, 1, dr,
«/471’0 83 45 2 48

and

1 x —yl? (x—y)-n
Oi(x, 1, T, M) = P exp (— o exp —ATX n,-ny oy, v)drl’y.
I'(r)

That is, wi contains the first and the A2-term in the angle bracket of (23). Moreover,

!
1 X—yP\ G-y iy — X—y)-fy i,
wz(x,t,k):/f ~exp _|X4Y| (x—Yy)-n, (X2 y)-nyn,-n,
(4md)2 3 45
0 T'()

x@(y, t)dl'ydt

contains the linear terms in A and

t
1 X -yl \ &=¥)-B, X—Y)-n,
A= — ,1)dIld
w3 (X, 1, A) //(Maﬁew( r; 152 @y, 1)dlydt

0 I'(r)

contains the remainder. The following lemmas examine the properties of these three
functions.

Lemma 4.2 There is a constant C > 0 such that

lwa(x, 1, M)| < Cllgllco(s).
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Proof If A is small enough, then the middle term in (24) can be estimated by

). _ vl? )
exp <_ A%) < ciexp (czk X 23y| ) < c1 exp <|X 85y| ) s

where the first step follows from (5). Moreover, it follows from (4) that

&= 9) By — G—§) By ity (|x—y|2 N 1)

82 82

The rest of the argument relies on the estimate

et <cuz M, z>0, u>0 (25)
(see [10, Eq. 9.15]). Thus,
lwa(x, 2, 1)]
t
< /1 2 f X=¥P) (=¥ ) ara lol
— €X - — X — atT 00
=c 8% p 15 p 35 52 y PlCc>(E)
0 I'(v)

t 1 )\2 5,11—2 SH
TP\ 45 + dTyd7 [[¢llcoecs).
/53 p( 48) / x—y2i 2 g lollcee(s)
0 (1)

For A # 0, this integral is weakly singular if the exponent of |x — y| is less than
two or 4 < 2. In addition, the t integral should be bounded independently of u
which is the case when the combined exponent of § is less than unity. This can be
accomplished by setting u = 7/4 for the first term and by setting © = 3/4 for the
second term. Then

1 1 22
lwa(x, ¢, )| <c / <8_7 + 87) exp <— ﬁ) dt|ellcecs) < cllollex(s).
I'(7) ! ! O]

IA

Lemma 4.3 The function w3 is a continuous function of \. In particular,

t
1 —vi2\ R — ) B — )0
lim w3(x,t, 1) = / f exp (- x—-yl\ x—y)n, (2x y)-n,
A0 (478)? 46 45

0 TI'(r)
x@(y, t)dl'ydT.

Proof We first show that the integral w3 (x, ¢, 0) is weakly singular. From (4) and
(25), it follows that

; 1 SH* |x—y|4 2 )
w3 (X, t,0) SCf f ] e 5 +|x—y|*+8°) dI'ydr.
3 x—
9 I'ie) (4mé)2 y

Similar to the proof in the previous lemma, the choices u = 11/4, 7/4, and 3/4
show that both the space and time integrals are weakly singular. The rest is a standard
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argument: If w3, is defined as w3 but with time integration from t = 0 to  — a, then
the reminder is O (y/a) because the integrand is O (1/+/8) in time. Then

}%IH}) [w3(X, t, )\') - w3(X7 t, 0)] = }IH}) [wSa(Xa z, )\') - w3a(xa z, 0)] + 0(\/5)

The first limit vanishes because the integrand is a smooth function. This implies that
the limit on the left-hand side also vanishes because a can be arbitrarily small. [

Lemma 4.4

|-

o (x,t,7,0)dr.

S

Iim wi(x,t, 1) =
r—0

t
1
pfofﬁé

[0}

Proof We first note that the function ®; is a smooth function in all variables. This
follows in a similar manner as the smoothness of the surface potentials in (18)—(21).
To get some insight into the properties of wy, consider first the case ®; = 1 where a
closed-form analytic expression can be found

1
1 / 1 A2\ (1 A2 J —1 22 26)
— | wexp|l——= )|z ——=)dr=——exp|—— ).
Vir) 3P T w) 2w am P\ %
0
Thus, the integral is not defined for A = 0 but has an analytic extension. Since P

is smooth, we have ®(x, ¢, 7, A) = ®(x, ¢, 7, 0) + O (L), and hence, it follows that
for fixed ¢ > O,

[ 22\ /1 A2
tA) = — | — — ) z=-=)ox,1,7,0)dT + O(L). (27
wi (X, 1.1) «/HO/(S%GXP( 45> (2 45) 1x,1,7,00dt + 0(0). (27)

Since @1 is a smooth function in the t-variable,
Di(x,1,7,0) = P1(x,1,1,0) + ¥ (x, 1, T), (28)

where ¥ (X, ¢, T) is another smooth function. From (26), the contribution of the first
term to (27) is

t
! /1 ( A2)<1 Az)d ®(x,1,1,0) — 1 Di(x,1,1,0)+00)
— — X - e A o T Xy L] = —F— X9 L]
N TNV ACITY A Jamt !

(29)
The ¥-term in (28) cancels one power of §, and thus, its contribution to (27) is

t
/ 1 A2\ /1 A2 ot 0)d
——expl——=||z—-—= x,t,7)dt
Jins P ")\ 27 %
0
t

t
1/1 Azurf(t)dJron/I Azd
= — exp| — — X, 1, 7)dt —exp| —— T
2) Vaxs P\7 2 53 P\

0
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Nystrdm method for BEM of the heat equation with moving boundaries 2963

Analytic integration shows that the last integral is O (X‘l); hence, the last term sim-
plifies to O (A). Moreover, since the first integral is weakly singular when A = 0, we
see that its limiting value can be simply obtained by substituting A = 0. Combining
this result with (27), (28), and (29) shows that

—1 1
%in})wl(x,t,)») = ——d1(x,1,7,0) + =

Jart 20/\/4713_3
x(P1(x,1,7,0) — P1(x,1,1,0))dT.

The assertion follows from (22). ]

Proof of Theorem 4.1 Since the wy-term is multiplied by A, it does not contribute to
the limit; thus, it follows from the previous lemmas and the definitions of | and w3
that

t

1
)}L%W(X,t,)\,) = _pf/J___% 1(X,t, T,O)dt+w3(x,t,0)

/ [ & @)l <_|X;<SY|2>

0 I'(v)
ny,-n, (ﬁ_i)'ﬁy (i_g’)ﬁx
5= = dl'ydr,
28 28 28
which is the assertion of Theorem 4.1. O]

5 Discretization

In [18], a quadrature rule is obtained for weakly singular integrals by singularity
subtraction as follows:

1
mf(t, T)dt

T) - f(tn, tn)) dt

n 1
= 20 f (tns 1) + \/tan(

n—1

= 2\/af(tnvtn)+2 f(tn:tj f(tnstn))‘i‘O(h;)

\/_

1)+ 0 (h?) (30)

— . ht
= pn f(tns tn) +§m
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where &, is the time step size, tn = nh;, and ) indicates that the first term in the
sum is multiplied by the factor . Further,

n—1

n = 2/tn — htz __t

The second integral in the above calculation is order /¢ — T which implies that the

3
quadrature error of the trapezoidal rule is order /2. Higher order versions of this rule
can be obtained by subtracting more terms. Moreover, a stability analysis for the case
that the quadrature rule is applied to solve Abel integral equations of the first and
second kind can be found in [19] and in [16].
This rule can be modified to approximate the weakly singular integral in the finite
part integral. Using the notations of Section 4

In In

1 1
f] ————f(ty, 1) dt = —— f(tn, tn +/— t,7)d
P/(tn_ﬂgf( 7)dt ﬁf( ) J (tn—t)%fl( T)dt

n—1
h ;
ffun, tn) + tn f1(tn, 1) + Zw’__Tmn, t)+ 0 <h ) :

3

Replacing fi(t,, ty) = 0; f (ty, ty) by a forward difference adds another O (h}) to
1

the error because of the first-order approximation multiplied by u,, = O (h}). Thus,

In

Pf/ ﬁf(fn»r)df = 1 fns 1) + i £ tn 1)
th—1)2

S

3
j= O(In_ )2

3
f(tn,t])+0( )7 (31)
where

n—2
©) _ Mn 2 hy
e B Y
h \/E :O(Z‘n_l‘])2

1 _ _Hn ]

= — + .
Fon he ' iy

When the quadrature rules (30) and (31) are applied to the integrals in (14)-(17),
then the function values f(t,, t,) are replaced by the asymptotic values T — ¢t of
the Poisson-type integrals (18)—(21). On the other hand, the evaluation of f(#,, t;),
J < ninthe temporal quadrature involves surface integrals. Since the surface integral
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Nystrdm method for BEM of the heat equation with moving boundaries 2965

operators in (18)—(21) have smooth kernels, standard surface quadrature rules can be
applied, which have the form

/ p(y)dly ~ Y pxwy ,
;) keN;

where x,j{, k € N; are nodes on I'(¢;) and w,ﬁ are the weights. Here we use rules
based on a triangulation of I'(#;) that integrates piecewise polynomials of a given
degree exactly. The construction of such rules is described, for instance, in Atkinson
[2, Sec 5.3].

Since the heat kernel becomes increasingly peaked when ¢; approaches 1, the
mesh width of the surface triangulation must be decreased as the mesh is refined. In
[18], it is shown that if the relation of the spatial mesh width 4, to the time step size is

h

— — 0 ash, — 0, 32
NG ' (32)

3
then the convergence rate of the fully discrete formula is still O (h}). Thus, the fully
discrete approximation for the single-layer potential is

n—l . . . 3
Vo(X,,, th) = tn@(X, ty) + Iy Z Z G(x”m,xi,tn, tj)@(Xi,tj)'wI{ + 0<ht2>,
Jj=0 keN;

where m € N,. The other operators are similar.

6 Numerical Example

Both the weakly and strongly singular integral formulas can be used to solve the
Dirichlet or Neumann problem of the heat equation. This gives a total of four different
integral formulations:

P1. The Dirichlet problem using the weakly singular equation. Solving (11) for
y, u results in an integral equation of the first kind.

P2. The Neumann problem using the weakly singular equation. Solving (11) for u
results in an integral equation of the second kind.

P3. The Neumann problem using the strongly singular equation. Solving (12) for
u results in a hypersingular integral equation of the first kind.

Table 1 Mesh parameters

Mesh number hy Points
Ml 0.02 288
M2 0.01 1152
M3 0.005 4608
M4 0.0025 18432
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Problem P1 Problem P2
102F m=a 102
/ \\\\\\~\ —_———
| ———_ - T ——
| \\—ﬁ\\ﬂﬁ / T T e ]
| /
1072 M
107 - ) ’ - : ’ : -
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
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Fig. 1 L, (I")-norms of the solution (dashed line) and the errors (solid lines) for the four meshes versus
time

P4. The Dirichlet problem using the strongly singular equation. Solving (12) for
y, u results in an integral equation of the second kind.

In the Nystrom method, the integral operators are replaced by their fully discrete
counter part. This leads to a time stepping method where in the nth step the approx-
imate solution is computed at the quadrature nodes. Because of the special form of
the fully discrete operators, this is an explicit scheme.

For second-kind formulations, the classical convergence theory of Nystrdom meth-
ods applies as was performed in the context of fixed geometries in [18]. The

Table 2 Convergence rates for
the four problems at two Time Mesh P1 P2 P3 P4

selected times

M1-2 2.2885 1.8368 2.4148 2.3285
0.1 M2-3 1.9037 1.4419 1.5111 1.9629
M3-4 1.3740 1.4261 1.4301 1.4740
MI-2 2.0230 2.5955 1.6498 1.9753
0.4 M2-3 2.3005 2.0781 2.2324 2.1053
M3-4 0.6523 1.4829 1.6880 1.5545
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modifications for moving geometries are not presented here as they do not require
essential modifications of the argument. We are not aware of a stability analysis for
the first-kind formulations, but our experimentations suggest that the discretization
methods described are at least conditionally stable.

To illustrate the behavior of the discretization scheme for the four different
formulations, we solve a problem in the outside of the ellipse

X \2 y\2 7 \2 |
(1.2) + (O.S) + (0.7) B
that rotates about the z-axis. The rate of rotation is such that one revolution is
completed in the time interval ¢ € [0, 2].

The boundary condition is such that the solution is given by u(x, t) = G(x—xo, t),
where xo = [0.1,0.2, — 0.05] is slightly off centered to avoid symmetries in the
solution. The spatial quadrature rule in this experiment is chosen to have degree of
precision p = 2. In order to satisfy (32), we keep the ratio of the spatial and temporal
mesh constant. We have computed four refinements; their parameters are listed in
Table 1.

Figure 1 displays the Ly (I")-norm of the solution together with the errors for the
different meshes as functions of time. Table 2 displays the convergence rate of two
consecutive meshes log, (|lex |1/ llem+11]) at times ¢ = 0.1 and # = 0.4 (m is the mesh
number). With the exception of P1, the convergence rates of the finer meshes are in
good agreement with the theoretical rate of 1.5. For P1, the initial convergence is
rapid but deteriorates for the finest mesh.

Funding information This material is based upon the work supported by the National Science Founda-
tion under grant DMS-1115931.
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