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1. Introduction
The boundary element method is a well known technique to solve parabolic boundary value problems which has
generated considerable interest in engineering [1-3] as well as in the mathematics literature [4-7]. Time dependence is

reflected in the fact that parabolic layer potential operators involve integrals over time in addition to the boundary surface.
For instance, the single layer potential of the heat equation with the density g(-) on a boundary surface I" is

t 1 _ vl2
ve o= [ - exp (— v _yl)>g(y, ) ds(y)de. (1)
0 (471(t — ‘1:))j

To accommodate more general parabolic equations and potentials we assume the kernel has the form

1
Gxy,t—1)= —K(p.X,y), (2)
(t—1)2
where
__X-Yy
L ®)

Here, n is a positive integer that reflects the singularity of the Green'’s function. Specific examples will be discussed in Section
6. Because of the causality of parabolic boundary operators we have G = 0 whenevert < .

We make the following assumptions about K. Later, we will show that they are satisfied for the potentials of the heat
equation and transient Stokes flow.
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Assumption 1. The function K is C* in all variables. Further, there is an integer M such that the function
1 P
(,LL, P, X, y) - 7MK (77 X, Y)
13 122

isC® forpu € [0, 1], p #0andx,y € R>.

Note that for M sufficiently large, the kernel G is singular only if (y, 7) = (X, t). There are several options for the discretization
of parabolic boundary equations, they are surveyed in [8]. Here we focus on the Galerkin method, because of its effectiveness
for non-smooth and time dependent geometries. These advantages come at a price, as the calculation of the influence
coefficients of the discretized layer potentials involve complicated and possibly singular space-time integrals. To motivate
the ensuing discussion, consider a time-dependent surface I" = I'(t) which has been subdivided into a conforming
triangulation with patches I';,(t), p = 1, ..., P. To keep things manageable we assume that I"(t) and its triangulation are
isomorphic to the initial surface and triangulation. Further, the time interval I = [0, T] has been subdivided into equal
subintervals I; = [ih;, (i + 1)h;] where h; is the time step size. The test- and ansatz spaces consist of piecewise polynomials
on this space-time subdivision.
To realize the Galerkin discretization integrals of the form

o= [ [ [ ey - ool e0 w00 dsyie s (4)
i I Ji Sy

must be computed, where ¢!, ¢', ¢”, ¢' are polynomial shape functions.

When the surface is stationary one can rearrange the order of integration such that the time variables appear inside of the
space variables. For the heat kernel and the transient Stokeslet these time integrals can be expressed in closed form using
incomplete gamma functions [9,10]. The result is a space-dependent kernel Gj(X, y), that is smooth if the time intervals I;
and I; are well-separated. Otherwise, if j = i orj = i — 1 the functions or derivatives of Gj(-) are singular for X = y. In
these cases, the singularity removing transformations for elliptic boundary operators [11,12] are applicable to compute the
integrals (4) by numerical quadrature, see [13,14].

Unfortunately, this trick is limited to stationary surfaces whereas in many applications of interest the geometry is time
dependent. For instance, melting and solidification problems are governed by the heat equation and the objective is to
determine the time dependent interface between the solid- and liquid phase, see e.g., [15,16]. Also problems governed
by Stokes flow often involve moving surfaces, such as in Mems devices [ 17], micro-swimmers [ 18] and sedimentation [19].

The technical difficulty of moving geometries is that all variables in (4) must be handled by numerical quadrature. Because
of the singularity new transformations in space-time must be derived, this is the goal of this work. One should note here that
the papers [20,21] also deal with singularity removing transformation that can be seen as an extension of the construction
in[11,12] to higher dimensions. However, the mentioned papers address elliptic operators. Because of the space-time scaling
expressed by the variable p in the kernel of (2), the parabolic case is different and we did not see an obvious way to apply
the earlier work to the case considered here.

The outline of the remainder of this paper is as follows. In Section 2 we will state some minimal assumptions on the
geometry which ensure that the transformed integrals have indeed smooth integrands. Our construction has three stages,
we first apply a transformation for the spatial variable (Section 3), followed by a transformation in time (Section 4). Since
these two transformations still result in singular integrands we will then apply the Duffy transform in Section 5 to obtain
a regular integrand. Note that Section 3 follows closely the discussion in [12] where a set of suitable transformations for
elliptic boundary integral operators are derived. However, we felt that it was necessary to include this here at the expense
of some repetition, in order to set the stage for the new contributions and to improve self consistency and readability of this
work. We conclude in Section 7 with an illustration of the Galerkin BEM for parabolic moving boundary problems.

2. The setting

We consider the boundary surface of a time-dependent finite domain I"(t) = 09$2(t) in three dimensions which is
subdivided into a triangulation

P
rey=Jn. (5)
p=1
where each I,(t) is a parametric image of the unit triangle,

O’(Z)={)A(ER2 : 05&25&]51},

Iy(t) = {xp(%, 1), x € a@}.

The parametric images of the points (0, 0), (0, 1) and (1, 1) are the vertices of the triangulation and the parametric images
of the line segments (&, 0), (1, £) and (&, &), & € [0, 1] are the edges.
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When considering a pair of patches I3,(t) and I'y(t) with a common vertex, then without loss of generality the common
vertex can be assumed to be the parametric image of the origin (0,0) € o®. Otherwise, we can take the affine
transformations S, and S, of o? that map the common vertex into the origin and consider the parameterizations x, oS, and
X4 0 Sq. With such a transformation it is also possible to parameterize a common edge by the line segment (£, 0), £ € [0, 1].

We make the following assumptions on the triangulation and the parameterizations.

Assumption 2.

1. The triangulation is time conforming in the sense that for all t € I the intersection of two different triangular patches
Ip(t) N Ig(t) is either empty, a common vertex or a common edge. Moreover, if two patches intersect for some t € I,
they intersect for all t € I in the same vertex or edge. The vertices and edges may, of course, move in time.

2. X, € C®(0® x I) and there are constants C, ¢ > 0 such that

’xp(ﬁa t) - xp(97 t)’ Z Ch$|f( - 9 )
[xp(X, £) — %,(§, 7)| < C (hs|X — 9| + It — <1).

Here h; is the maximal diameter of I}(t).

3. If I')(t) and Iy(t) intersect in a common vertex or edge, then they satisfy the cone condition stated below in
Definition 1.

4. If I';(t) and I'y(t) intersect in a common edge, then x,(&, 0, t) = X4(£,0,t), & € [0, 1].

Definition 1.

1. If I',(t) and I(t) have one common vertex vy, then they satisfy the cone condition if thereisa y € (0, 1) such that for
allx e I';andy € I;andt €

(X — Vo) - (¥ — Vo) = (1 —y)IX— Volly — Vol

holds.

2. If I, and I'; have a common edge then for X = X,(X, t) € I, the point vy = X,(X1, 0, t) is the projection of X on the
common edge. Further, the two panels satisfy the cone condition if thereisa y > 0 such thatforallx € I},,y € I}
andt €l

(X =) (Y= Vo) = (1 = )X — vi||y — vy
holds.

The first cone condition states that for every x € I, there is a cone with vertex vy and axis in direction of X — vy such that
Iy intersects with this cone only in vo. Similarly, the second condition states that there is a cone with vertex v, and axis in
direction of X — v, such that I'; intersects with this cone only in v,. Since p and g are interchangeable, a similar condition
holds fory, v, and I7,.
Ifx € I,y € I, and v is either vq or v, or vy in either cone condition, then the computation
Xx—yP=x—v’+ly—v>—2(x—v) (y—v)
> X =V + |y —vI* = 2(1 = y)lx — v|ly - v|
> X—vP+ly—vP = (1—p)(Ix—v’+ly—v)
=y(x—v>+ly—vP)
implies the inequality
X -yl > a(x—v|+|y—vl) (6)

witho = /y/2.

There are many practical situations where Assumption 2 can be satisfied. This includes rigid motions or geometries that
grow or shrink without the need of mesh refinements. To illustrate these ideas, consider a time conforming triangulation
where all patches are flat. If the vertices of I', are v, vy, v, then an obvious parameterization is

Xp(X, t) = Vo(t) + R1a1(t) + Roax(t)

where a;(t) = vq(t) — vo(t), ax(t) = vo(t) — vy(t) are two of the three edges.

If all interior angles are positive, then Assumption 2. 2. is obviously satisfied. Further, if the angle between adjacent panels
remains positive for all times, then the cone conditions are also satisfied. Note that for a flat triangle, the vector X — vy is
parallel to a,, see Fig. 1.
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Fig. 1. A pair of triangles with a common edge and the projection v, of a point x.

Below, we will frequently use the following fact which follows from standard calculus of multivariate functions.

Lemma 1. IfD c RY is convex and f is a smooth and possibly vector valued function in D, then there are smooth functions a
such that forz, w € D

d
f(z) — f(w) = ) ai(z, w)(z — wy)
k=1

holds.

We make the following observations about patches with nonempty intersections in a time dependent triangulation that
satisfies Assumption 2.

Self panel, p = q.

Assumption 2. 2. states that
|Xp(§(7t)_xp(§’y t)| = Ch5|f(—9|. (7)

Further, by setting z = (X,t), w = (¥, 7) and f = X, it follows from Lemma 1 that there are smooth functions a; =
a(X,y,t,7),a = ax(X,y,t, r)and v = v(X, y, t, T) such that

Xp(X, t) — Xp(¥, T) = a1(X1 — J1) + ax(Ry — §2) + v(t — 7) (8)
To make our notations less cluttered we omit the dependence of the vectors a;, a, and v on the variables X, y, t and .

Common edge.

If I'; and I have a common edge then it follows from applying (6) two times, that
|Xp($(, t) — xq(i’, t)|
> a([xp(X, £) — Xp(R1, 0, £)] + [Xp(R1, 0, 1) — Xq(¥, 1)|)
> a2(|xp(’,\(a t) - Xp(;<1a 0» t)| + |xp(7?1s O, t) - xq(j/h O, t)| + }xq(j’la 07 t) - xq(i’v t)|)
and thus it follows from Assumption 2. 4. and estimate (7) that there is a constant ¢ > 0 such that

|Xp(ﬁ,t)_xq(9vt)| > chg (|7A<1 —571| + X +73). 9
If, in Lemma 1, we letz = (X, §,t,7), W = (J1,0,¥1,0, 7, 7) and f(z) = X,(X, t) — X4(y, ) then f(w) = x,(J1,0,7) —
xq(f/l, 0, 7) = 0 and thus there are smooth functions a1, . . ., a3 and v, such that

Xp(X, t) — Xq(¥, T) = a1(X1 — J1) + ax%s + asPr + v(t — 7). (10)

Common vertex.

If I'; and I, have exactly one common vertex then

Xp(X, t) — Xg(§. £)] = ch (R1 + R + 31+ 52) - (11)

which can be derived from the cone condition using similar arguments as before.
Ifweletz = (X,¥,t,7),w = (0,0, 7, t)and f(z) = X,(X, t) — X4(¥, ) then f(w) = x,(0, ) — X4(0, ) = 0 and thus it
follows from Lemma 1 that there are smooth functions ai, ..., a4 and v, such that

Xp(X, t) — Xg(¥, T) = a1X1 + %y + asP1 +asd, + (t — T)v. (12)

3. Spatial transformations

It will become apparent in Section 5 that space and time can be treated separately when designing singularity removing
transformations. In this section we begin with suitable transformations for the spatial variables X and y in (4). They are
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Fig. 2. Domain of z-integration for the self panel case.

designed to handle singularities of the integrand when x =y, which can happen when I', and I5, are either the same patch,
or patches with a common edge or vertex. This parallels the construction for elliptic integral operators. We recall this here
for completeness, following the discussion in [12] closely.

Self panel, p = q.

Since the integrand is singular when X = y, we introduce the transformation

71 =91 — X X =wn
Zy =y, — X Nn=w
2 )Afz 2 Az 2 (13)
wy = X1 Yi=z1+w;
wy = Xa J2=2z+ws
For X, § in o) it is easy to see that the z = (z;, z,)-variables must be in the union of six triangles
[Z‘] €D;U---UDg,
/%)
see Fig. 2. Each triangle D, can be mapped on the unit square with the Duffy transform. Thus
z=¢r(n), zeDy (£ m)el0, 1% (14)

fork € {1, ..., 6}. The domain of integration of the w = (w1, w,)-variables depends on z. From (13) it follows that
Wi(z) = 0@ 1 (=2 + o)
Since Wy(z) is the intersection of o®) with a shifted version of (% it is an axiparallel isosceles right triangle with side length

1 — &. Thus the transformation that maps the unit square to Wy(z) is

W= Vg + (1 - 5) |:’7)277273} s (nZa 773) € [07 1]2

where vy is the lower left corner. For the six subdomains we thus obtain

k=1: 1= _—n]]:| Vi = g]
k=2: 1= —_7)11:| vy = ;71:|
k=3: m= 1—_177171] V= g]
:1 - (15)
masn=[50] = [i]
:1 :0
k = 5 . 1'5 = _}’]1] VS = _0]
k=6: 1= 7711] Ve = 5(18771)1|

In all cases the Jacobian of the transformation is ] = &£(1 — &)?5.
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Fig. 3. Domain of z-integration for the case of a common edge.

In this case we introduce the transformation

z1=91—%
=¥
z3="%
U)]=52]

5<1=w1
5(2=Z3
yi=z1+w
Va=2

(16)

For X, § in o it is easy to see that the z = (z;, z,, z3)-variables must be in the union of four polyhedra D; U D, U D3 U Dy,
which have one vertex in the origin and are characterized by the opposite face, see Fig. 3.

Thus we write

z=¢&ndm.m). z€Dp, (. m.m)€ (0,17, (17)
fork € {1,..., 4}, where ry(n1, n2) parameterizes the opposite face. Moreover, it follows from (16) that w; must be in the
intersection wy € [—z1, 1 — 1] N[0, 1].

M —m ,
k=1: r=|1-m wr =&+ (1—-8)m3 Ji=(1-§)%
L 72
[ —mmn
k=2: rp=|0=-n)n| w=+1-E)mn; L =(1-§E&n
1
- (18
]—771 )
k=3: m3=| m wi=1—n)E+(1—&ns  J3=(1-§&)%E>
L T
M mn 5
k=4: ry= 1 w1 =&§1—mm)+(1—=8&m3 Ja=(1-8)E"nm
L(1—n1)n

Common vertex.

In this case the transformation is simply

21 :)21
V) :)A(z
Z3 =Y2

74 =91
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The z-domain can be split into two regions 0 @ ¢ = D; U D,, where

0<z=<z =<1 0<z=<z =<1
D=3z : 0<z4<z3<1;,andD,=1{z : 0<z4<z3<1;.

3 =79 21223
Thus
z=¢&r(ni, m.n3), z€Dy, & 1,1 €0, 17, (19)
where
1 n2
ri=| " |andr,=|""]. (20)
n2 1
1n213 m

In both cases the Jacobian is | = &37,.

4. Temporal transformations

We now single out the time integration in the integrals of the type (4). To that end, we start with a transformation for a
singular time integral

fit1 (t,
Ip = / f 2 drdt
g L (t - T)Z
where f is a smooth function. The transformation
¢ =/t —1)/h, t=h(¢* + )+t 21)
o= (t —t;)/h, T =ho+t,

has Jacobian ] = 2hf§. This transformation maps the triangular (¢, 7 )-integration domainto {(¢,w): 0 <w <1—2¢2, 0 <
¢ < 1}.In the second step we transform the w-variable

w=(1-=2¢")n,

which gives a unit square in the (¢, n4)-plane. Thus

a1l opl -
" 7/ / ¢(8, na) dedna,
0 0

wherefis a smooth function that incorporates the Jacobian from the n4-transformation. The integrand is smooth as long as
n<1.

In the case j = i — 1 the singularity occurs only at one point t = t = t;, thus we split the integral into two triangular
regions

i1 pli tiy1  pt=he tiyq
I _/ Jieo) / / Jto) dtdt—i—/ / LU dede.
G tiq t—r)z i (t—r1)2 t—he ( l'—‘L'

l

The first integral can be treated by standard means and the second integral (denoted by Ifr ) contains the singularity. To derive
the transformation for the second integral consider the transformation

¢ =/t —1)/h, t =h(? — o)+t 22)

o = (t — t)/he, T=t—ho,

which has Jacobian ] = 2h:h.¢. This transformation maps the triangle in the (t, t) plane to the domain {({,®) : 0 < w <
£%, 0 < ¢ < 1}.In the second step we transform the w-variable

o=
which gives a unit square in the (¢, n4)-plane. Thus
1 1
21 o~
I =2h; ? f f ¢>7"f(¢. na)dCdny
0 0

has a smooth integrand as long as n < 3.
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5. Combining space and time transformations

We now turn to the type of integrals that have to be computed in the implementation of the Galerkin boundary element
method of parabolic problems. In the parameterization of Section 2 the integral (4) appears as

liy1 Gi+1
b _/ / f f )3 ———K(p.x,y) DR §. t, 7) PR d*Ydrdt. (23)
(2) (2) t — ‘[

where p, X and y are now considered functions of X and y and the smooth function @ incorporates all shape functions and
Jacobians of surface parameterizations.

This integral is singular only if j = i or j = i — 1 and if the panels are identical or have a common edge or vertex. Together
with the temporal transforms (21) or (22) we obtain from (23) either six, four or two integrals of the type

1_/ / / — 1K(p,X,y)5(‘§,{,n)d4nd$d§, (24)
0,14 ¢

where €™, m € {1, 2, 3} comes from the Jacobian in the spatial transformations, @ is the function @ in the transformed
coordinates and also contains Jacobians and p, X, y are functions of the new variables.

Integral (24) is still singular. To regularize it split the unit square in the (&, ¢ )-plane into two triangles and apply the Duffy
transforms

E]:km and E]:A[ﬁ‘] (25)

The Jacobians contribute an extra factor of A. This results in two integrals I = I, + I, where

)\2+m n
b= [ [ ] K k@0t dran (26)
[0,1]

Iy = / / / K (p, X, V)00, m)n e (27)
[0,1]

In the remainder of this section we show that I, and I, are regular integrals and therefore standard rules can be used for their
quadrature. In all singular cases, it follows from (8), (10), (12), and the discussion in Section 3 that

X—y=EAr+ (t —T)Vv. (28)
where A = A(%, 5, t, T) € R®*? is a matrix, and r = r(5) is the vector defined in (14),(17) and (19), respectively.
Lemma 2. There are constants ¢ > 0, 7o > 0 such that for (t, ) € o with t > t — 1y the estimate

\Ar| > %hs (29)
holds.

Proof. First consider the case t = . It follows from (7), (9), (11) and going through the transformations in Section 3 that
|x —y| > chs|z| = ch&|r|. (30)

Recall that in all singular cases (15) (18) and (20) r = r(»n) parameterizes a side of the z-domain that is opposite to the origin.
Hence the vector r is always non-zero, in fact, it can be found that |r| > 1/ V2. Moreover, because of t = t Eq. (28) simplifies
to

X —y = £Ar. (31)
Combining (30) and (31) gives
c
|Ar| > —=h 32
V2 (32)

which holds for A = A(§, », t, t). By continuity of A, we can conclude that for some 7; > 0 and a smaller constant on the
right hand side, the above inequality also holds for t when t — 79 < t < t. This is the assertion.

Theorem 1. If2+m —n > 0andn < M + 1 then the integrands of I, and I, are C* in all variables.

Proof. First consider p in the transformed variables. We have

p= xX—y :é Ar +§@V:§7j
4t —1) ¢ /4h, 2 "
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where p is a smooth function of £, ¢ and . In the second transform of (25) we have £ /¢ = u and therefore p is a smooth
function of (u, A, #) and so is the integrand of I;,.

In the first transform of (25) we have £ /¢ = 1/u so the limit & — 0 must be considered more carefully. Since © = 0
corresponds to t = t it follows from Lemma 2 that for small values of 1

|~|_ Ar +é‘ h[v > ¢ hs

AV I RV

is uniformly bounded away from zero. Therefore Assumption 1 implies that the integrand in (26) is smooth for the given
range of n and the proof is complete.

6. Examples of kernels

In this section we verify that Assumption 1 of Theorem 1 is indeed satisfied for the typical layer potentials of the Heat
equation and transient Stokes flow.

Single layer heat kernel

The function K in (2) that corresponds to the single layer operator of the heat equation is

K(p» X, y) = exp (_|p|2)

with n = 3. Assumption 1 is satisfied for any positive integer M and thus the transformations discussed in the previous
sections will lead to a regular integral.

Double layer heat kernel

For the double layer operator we have to consider the quantity (x — y) - ny. From standard calculus of surface
parameterizations, it can be concluded that there is a matrix B = B(X, ¥, t),avectorb = b(X, ¥, t)and ascalar 8 = B(y, t, 7)
such thatforx € I'; andy € I

()A(—iI)TB()A(—iI)—i-/S(t—‘C) ifFp:[‘qy
(x—y)-ny=
b'(X —y)+ B(t — 1) I, I'y have a common vertex or edge.

With the transformations of Sections 3 to 5 it follows that there are scalar functions b = E(S, Z,n)and E = ,E(S, £, ) such
that

2
A
(x—y)-ny (5)B+F it =1

2(t—1) ~ ~
f—z b+ p8 I, I'; have a common vertex or edge.

The double layer kernel of the heat equation is the product of this term with the single layer kernel. The effect of the additional
factor is that the leading term in integral (24) is £3/¢* in the cases of the self panel and a common edge and £4/¢4 in the
case of a common vertex. Thus the Duffy transform (25) will result in regular integrals.

Stokeslet
We use the form of the time dependent Stokeslet which can be found in [9]

1
Gu(r, s) = — [8uv1 (1o1) + por vz (1o ]
s2
wherer =x—y,s =t — 7, pisdefined in (3), k, | € {1, 2, 3} and the functions v, ¥, are given by

S(r Gy Go),

S = ]

N
=

Here y(«, z) is the incomplete gamma function

y(a,z)zf (e idr, a0,
0
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see e.g. [22]. For our purposes we need the following properties, which follow immediately from this definition,

y(a,2) =2y (e, 2),
y(a,z) ~ '), z — oo.

Here y*(w, z) is an entire function in z and I"(«) is the Euler gamma function. From these properties it follows that the
Y¥-functions are smooth and that the Stokeslet satisfies Assumption 1 withn = M = 3. Therefore the transformations in the
previous sections will result in regular integrals.

Stresslet

We now turn to the stresslet of the transient Stokes flow. It is given by

1
Tij(r, s) = 57[(8jl<pi + 8ikoy) Y3 (1p1) + Sijorvra (10)) + pipioxtrs (|P|)] (33)

where the functions 3, ¥4 and 5 are defined by

11
vs(p) = — — (v 3. 0") —2v (5. 0%)).
72 P
2 1
valp) = ——5 v (3. 9. (34)
x2 P
4 1
Us(p) = —5—=v (5. 0°).
72 P

see [9]. The double layer kernel is
1 n
Ki(r, s) = Tip(r, S)“j(Y)+ < |3nk( y)a(s), (35)

where the Einstein summation convention is used. The delta function implies that the double layer potential involves an
additional surface integral.

The Stresslet and double layer kernel satisfy Assumption 1 withn = 4 and M = 4. Hence Theorem 1 can only be applied
for m > 2. In the case of identical time intervals and identical panels the integrals I, and I, in (26) and (27) are still singular.
Likewise, for the surface integral due to the second term in (35) the spatial transformations of Section 3 will give smooth
integrands only when m > 2.

That this case creates difficulties is not a surprise because the singularity in the double layer kernel must be understood
as Cauchy principal value, see [9]. In this paper it is shown that for a stationary surface the Galerkin influence coefficients
become weakly singular in space after time integration. This follows from the explicit form of the antiderivatives of the
functions

-1 2 |l'|2 ~ 2
o'y (o, 1p?) = - T(e = ) + £ 7, |pl),

where the time dependence is in p and
Vi, 1oP) = y(a, o) = IplPy(a = 1, 10%).

Then the time integrated stresslet is

s 1 Tk 3 e 1
Ti(r, s)ds = ——8;j— + — L5 4 “TW(r s), 36
fo (. s) T g T (36)

where
Tii(r, s) = [(3jk,0i + Sikpy) U3 (1pl) + 8iipkWra (101) + pipioitrs (|,0|)]~

The functions 1?3, 1;4 and {;5 are defined just as in (34) but with y(a, p?) replaced by y(a, p?). The first term on the right
hand side in (36) cancels the second term in (35). The other term in (36) is the stresslet of the steady Stokes and is weakly
singular in space. The third term, T;’,V(( s)/s, is weakly singular in space-time and satisfies the assumptions of Theorem 1
withn =2and M = 3.

Consider now the strongly singular integral for the double layer potential. That is, an integral of the form (4) where the
function G is now Kj, of (35) and p = g and j = i. We split this integral into two pieces

ht
Iw / / / f Klk X—-Yy, t— T)¢(X t y, ) K,k(x — y t — [)¢)(x t y’ )dded‘L'dt
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Fig. 4. Cubature errors versus order for I; = I;, top left to bottom right: Self panel, common edge, common vertex and separated panels.

and

ht t
Isp=/ /// Ki(x =y, t —1)dt ¢(X, t,y, t)dydxdt.
0 oJo JO

where X = X,(X, t),y = X,(§, t) and y’ = x,(¥, t). That is, the primed quantities are evaluated at ¢ instead of 7.
For the first integral we have from Lemma 1 and (7) that

p—p =bX,y,t,T)X—-y)Vt -1,

where b is a smooth function. Since the functions in (34) are analytic, the factor «/t — t contributes an additional factor of
¢ in(24). Thus we get n = 3 in Theorem 1 and therefore I/, has a smooth integrand in the transformed coordinates.

In integral IS the 7 integration gives the time integrated stresslet. Since the r;/|r| part cancels, it remains to compute
a surface 1ntegral for the stresslet of the steady Stokes kernel and an integral with T;’,Z(r t). The former is smooth in the
transformed spatial coordinates. For the latter the spatial transformations and the temporal transformation t = h,¢? result
in an integral of the form

by / / /[01]3 ”k< Arg. ¢ 77) d'ndeds.

Proceeding as before, with the Duffy transform (25) leads to an integral with a smooth integrand.
7. Numerical examples

To illustrate how the singularity removing transformations work with standard cubature methods we present results
obtained with tensor product Gauss-Legendre rules. In this example we consider piecewise constant elements in space and
time for the single layer potential of the heat equation on a translating unit sphere I'(t) = S+ e sin(2xrt). The triangulation
of S is obtained by radial projection of uniform subdivisions of the unit cube. It is well known that for optimal convergence
the time step size and the spatial meshwidth must scale like h, ~ h2, see [5,10], therefore we first consider space time
refinements starting with 192 panels and hy = 0.025 (Sp1), 768 panels and h; = 0.00625 (Sp2), and so on. Figs. 4 and
5 display the relative cubature errors for different singular and non-singular cases and four mesh refinements. Since no
analytical values are available, we have computed the integrals to very high order until convergence occurred in the first
twelve significant digits. These values were used instead of the exact value for the error of the lower order calculations.

It is well known that the convergence of Gauss quadrature is exponential in the order if the integrand is analytic. However,
it should be noted that (26) is ‘only’ smooth. Nevertheless, in the figures the convergence appears to be close to exponential.
Moreover, the convergence is relatively unaffected by the meshsize if optimal space-time scaling is maintained. On the
other hand, Fig. 6 displays errors for a fixed spatial mesh while the time step size is decreased. Here one can see that the
convergence rate decreases with larger h;.
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Fig. 6. Cubature errors versus order for refining the time stepsize. I; = I;, Self panel.

We have also implemented the quadrature method to solve the two-dimensional heat equation. The smaller dimension-
ality allows us to calculate more mesh refinements to fully investigate the convergence behavior of a fully discrete Galerkin
method. We consider a time dependent curve that is broken up into segments I',(t), which are parameterized as X = X,(X, t)
where X € [0, 1]. Singularities occur when two segments are either identical or have a common end point. These can be
treated by transforms similar to those described in Section 3. Since this is a straight forward application of this methodology
we omit the details here, we only mention that after the time transforms of Section 4 one obtains integrals of the form (24)
with the only difference that the variable » has now two instead of four components. Then the remainder of Section 5 implies
that we obtain smooth integrands.

The weakly singular boundary integral equation for the heat equation exterior to the domain £2(t) is

t au
/ f Gyt — 1)y, o) dsy)dr =
o Jr on
} t 3G
JUX, t) + — Xy t—1)=GX,y,t —T)v, | uly, T)ds(y)dz.
o Jre \an

Here, the normal velocity of the surface v, = v,(y, 7) appears as an additional term for time dependent surfaces, see e.g.[15].
For the solution of the heat equation u(x, t) = G(x — xo, t) where X is a point inside the domain £2(0) we solve the Dirichlet
problem for the known Neumann data, where the ansatz and test space consist of the piecewise constants in space and
time. Furthermore, the Dirichlet data are replaced by their piecewise linear/constant interpolation in space/time. We have
tested two geometries, a unit square that rotates in the time interval [0, 1] once about its center and a translating unit circle
whose center has time dependent coordinates xo(t) = 2 cos(2wt)—2 and yo(t) = 2 sin(27t). We use tensor-product Gauss—
Legendre quadrature to compute the transformed integrals. Thus the error of the solution depends on the mesh width in
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Table 1
L, errors of the Galerkin solution, N5y and N; are the number of spatial and temporal nodes.
Rotating Square.
Ng N¢
20 80 320 1280
10 0.57371 0.53451 0.55592 0.56598
20 0.48216 0.31812 0.31938 0.32498
40 0.53286 0.18653 0.16466 0.16906
80 16.7322 0.20098 0.08928 0.08544
160 3.7e+33 0.44416 0.10549 0.04709
Table 2
L, errors of the Galerkin solution. Translating Circle.
N N
20 80 320 1280
10 0.97917 0.78284 0.70532 0.62064
20 0.91415 0.34885 0.34608 0.30676
40 0.97190 0.47609 0.10426 0.15189
80 13.9612 0.59329 0.17262 0.04972
160 4.2e421 0.51388 0.24019 0.07202
Table 3

L, errors of the Galerkin solution for increasing quadrature order. N, = 20,
rotating square.

P N, = 20 N, = 80
p=6 05737110 167322237
p=10 0.5734032 45891282
p=14 05734124 2.9760603
p=18 0.5734102 2.5127979
p=22 0.5734091 2.3483674
p=26 0.5734096 2.2906505
p=30 0.5734097 2.2742646

space and time as well as the quadrature order. Tables 1 and 2 show the errors for mesh refinements and a fixed quadrature
order of six.

We see that the theoretical O(+/h; + h;) behavior is well reproduced near the diagonals of the table. It is also apparent
that errors in the lower left corners of the table become larger.

This is not a discretization but a cubature error. As already seen in Fig. 6 this error increases when h; becomes large in
comparison with the panel size. We recompute the entries (N, N;) = (10, 20) and (Ns, N;) = (80, 20) of Table 3 for different
quadrature orders.

The results can be interpreted as follows. In column N; = 20 the mesh ratio is sufficiently large and the shown L,-errors
of the discretized solution show very little dependence on the quadrature order. Column N; = 80 corresponds to a small
mesh ratio and exhibits a strong dependence. Fortunately, near the optimal mesh ratio the cubature converges rapidly.
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