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a b s t r a c t

The successful implementation of the Galerkin Boundary Element Method hinges on the

accurate and effective quadrature of the influence coefficients. For parabolic boundary

integral operators quadrature must be performed in space and time where integrals have

singularities when source- and evaluation points coincide. For problems where the surface

is fixed, the time integration can be performed analytically, but for moving geometries

numerical quadrature in space and timemust be used. For this case a set of transformations

is derived that render the singular space–time integrals into smooth integrals that can be

treated with standard tensor product Gauss quadrature rules. This methodology can be

applied to the heat equation and to transient Stokes flow.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method is a well known technique to solve parabolic boundary value problems which has
generated considerable interest in engineering [1–3] as well as in the mathematics literature [4–7]. Time dependence is
reflected in the fact that parabolic layer potential operators involve integrals over time in addition to the boundary surface.
For instance, the single layer potential of the heat equation with the density g(·) on a boundary surface Γ is

Vg(x, t) =
∫ t

0

∫

Γ

1

(
4π (t − τ )

) 3
2

exp

(
− |x − y|2

4(t − τ )

)
g(y, τ ) ds(y)dτ . (1)

To accommodate more general parabolic equations and potentials we assume the kernel has the form

G(x, y, t − τ ) = 1

(t − τ )
n
2

K (ρ, x, y) , (2)

where

ρ = x − y√
4(t − τ )

. (3)

Here, n is a positive integer that reflects the singularity of the Green’s function. Specific examples will be discussed in Section
6. Because of the causality of parabolic boundary operators we have G = 0 whenever t < τ .

We make the following assumptions about K . Later, we will show that they are satisfied for the potentials of the heat
equation and transient Stokes flow.
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Assumption 1. The function K is C∞ in all variables. Further, there is an integerM such that the function

(µ, ρ, x, y) → 1

µM
K

(
ρ

µ
, x, y

)

is C∞ for µ ∈ [0, 1], ρ 6= 0 and x, y ∈ R
3.

Note that forM sufficiently large, the kernelG is singular only if (y, τ ) = (x, t). There are several options for the discretization

of parabolic boundary equations, they are surveyed in [8]. Herewe focus on the Galerkinmethod, because of its effectiveness

for non-smooth and time dependent geometries. These advantages come at a price, as the calculation of the influence

coefficients of the discretized layer potentials involve complicated and possibly singular space–time integrals. To motivate

the ensuing discussion, consider a time-dependent surface Γ = Γ (t) which has been subdivided into a conforming

triangulation with patches Γp(t), p = 1, . . . , P . To keep things manageable we assume that Γ (t) and its triangulation are

isomorphic to the initial surface and triangulation. Further, the time interval I = [0, T ] has been subdivided into equal

subintervals Ii = [iht , (i + 1)ht ] where ht is the time step size. The test- and ansatz spaces consist of piecewise polynomials

on this space–time subdivision.

To realize the Galerkin discretization integrals of the form

I i,jp,q =
∫

Ii

∫

Γp(t)

∫

Ij

∫

Γq(τ )

G(x, y, t − τ )φI (τ )φI (t)φΓ (y)φΓ (x) ds(y)dτ ds(x)dt (4)

must be computed, where φI , φI , φΓ , φΓ are polynomial shape functions.

When the surface is stationary one can rearrange the order of integration such that the time variables appear inside of the

space variables. For the heat kernel and the transient Stokeslet these time integrals can be expressed in closed form using

incomplete gamma functions [9,10]. The result is a space-dependent kernel Gij(x, y), that is smooth if the time intervals Ii
and Ij are well-separated. Otherwise, if j = i or j = i − 1 the functions or derivatives of Gij(·) are singular for x = y. In

these cases, the singularity removing transformations for elliptic boundary operators [11,12] are applicable to compute the

integrals (4) by numerical quadrature, see [13,14].

Unfortunately, this trick is limited to stationary surfaces whereas in many applications of interest the geometry is time

dependent. For instance, melting and solidification problems are governed by the heat equation and the objective is to

determine the time dependent interface between the solid- and liquid phase, see e.g., [15,16]. Also problems governed

by Stokes flow often involve moving surfaces, such as in Mems devices [17], micro-swimmers [18] and sedimentation [19].

The technical difficulty ofmoving geometries is that all variables in (4)must be handled by numerical quadrature. Because

of the singularity new transformations in space–timemust be derived, this is the goal of this work. One should note here that

the papers [20,21] also deal with singularity removing transformation that can be seen as an extension of the construction

in [11,12] to higher dimensions. However, thementionedpapers address elliptic operators. Because of the space–time scaling

expressed by the variable ρ in the kernel of (2), the parabolic case is different and we did not see an obvious way to apply

the earlier work to the case considered here.

The outline of the remainder of this paper is as follows. In Section 2 we will state some minimal assumptions on the

geometry which ensure that the transformed integrals have indeed smooth integrands. Our construction has three stages,

we first apply a transformation for the spatial variable (Section 3), followed by a transformation in time (Section 4). Since

these two transformations still result in singular integrands we will then apply the Duffy transform in Section 5 to obtain

a regular integrand. Note that Section 3 follows closely the discussion in [12] where a set of suitable transformations for

elliptic boundary integral operators are derived. However, we felt that it was necessary to include this here at the expense

of some repetition, in order to set the stage for the new contributions and to improve self consistency and readability of this

work. We conclude in Section 7 with an illustration of the Galerkin BEM for parabolic moving boundary problems.

2. The setting

We consider the boundary surface of a time-dependent finite domain Γ (t) = ∂Ω(t) in three dimensions which is

subdivided into a triangulation

Γ (t) =
P⋃

p=1

Γp(t), (5)

where each Γp(t) is a parametric image of the unit triangle,

σ (2) =
{
x̂ ∈ R

2 : 0 ≤ x̂2 ≤ x̂1 ≤ 1
}
,

i.e.,

Γp(t) =
{
xp(x̂, t), x̂ ∈ σ (2)

}
.

The parametric images of the points (0, 0), (0, 1) and (1, 1) are the vertices of the triangulation and the parametric images

of the line segments (ξ, 0), (1, ξ ) and (ξ, ξ ), ξ ∈ [0, 1] are the edges.
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When considering a pair of patches Γp(t) and Γq(t) with a common vertex, then without loss of generality the common

vertex can be assumed to be the parametric image of the origin (0, 0) ∈ σ (2). Otherwise, we can take the affine

transformations Sp and Sq of σ
(2) that map the common vertex into the origin and consider the parameterizations xp ◦ Sp and

xq ◦ Sq. With such a transformation it is also possible to parameterize a common edge by the line segment (ξ, 0), ξ ∈ [0, 1].
We make the following assumptions on the triangulation and the parameterizations.

Assumption 2.

1. The triangulation is time conforming in the sense that for all t ∈ I the intersection of two different triangular patches

Γp(t) ∩ Γq(t) is either empty, a common vertex or a common edge. Moreover, if two patches intersect for some t ∈ I ,

they intersect for all t ∈ I in the same vertex or edge. The vertices and edges may, of course, move in time.

2. xp ∈ C∞(σ (2) × I) and there are constants C, c > 0 such that
∣∣xp(x̂, t) − xp(ŷ, t)

∣∣ ≥ chs

∣∣x̂ − ŷ
∣∣,∣∣xp(x̂, t) − xp(ŷ, τ )

∣∣ ≤ C
(
hs

∣∣x̂ − ŷ
∣∣ + |t − τ |

)
.

Here hs is the maximal diameter of Γp(t).

3. If Γp(t) and Γq(t) intersect in a common vertex or edge, then they satisfy the cone condition stated below in

Definition 1.

4. If Γp(t) and Γq(t) intersect in a common edge, then xp(ξ, 0, t) = xq(ξ, 0, t), ξ ∈ [0, 1].

Definition 1.

1. If Γp(t) and Γq(t) have one common vertex v0, then they satisfy the cone condition if there is a γ ∈ (0, 1) such that for

all x ∈ Γp and y ∈ Γq and t ∈ I

(x − v0) · (y − v0) ≤ (1 − γ )|x − v0||y − v0|

holds.

2. If Γp and Γq have a common edge then for x = xp(x̂, t) ∈ Γp the point vx = xp(x̂1, 0, t) is the projection of x on the

common edge. Further, the two panels satisfy the cone condition if there is a γ > 0 such that for all x ∈ Γp, y ∈ Γq

and t ∈ I

(x − vx) · (y − vx) ≤ (1 − γ )|x − vx||y − vx|

holds.

The first cone condition states that for every x ∈ Γp there is a cone with vertex v0 and axis in direction of x− v0 such that

Γq intersects with this cone only in v0. Similarly, the second condition states that there is a cone with vertex vx and axis in

direction of x − vx such that Γq intersects with this cone only in vx. Since p and q are interchangeable, a similar condition

holds for y, vy and Γp.

If x ∈ Γp, y ∈ Γq and v is either v0 or vx or vy in either cone condition, then the computation

|x − y|2 = |x − v|2 + |y − v|2 − 2(x − v) · (y − v)

≥ |x − v|2 + |y − v|2 − 2(1 − γ )|x − v||y − v|
≥ |x − v|2 + |y − v|2 − (1 − γ )

(
|x − v|2 + |y − v|2

)

= γ
(
|x − v|2 + |y − v|2

)

implies the inequality

|x − y| ≥ α
(
|x − v| + |y − v|

)
(6)

with α =
√
γ /2.

There are many practical situations where Assumption 2 can be satisfied. This includes rigid motions or geometries that

grow or shrink without the need of mesh refinements. To illustrate these ideas, consider a time conforming triangulation

where all patches are flat. If the vertices of Γp are v0, v1, v2 then an obvious parameterization is

xp(x̂, t) = v0(t) + x̂1a1(t) + x̂2a2(t)

where a1(t) = v1(t) − v0(t), a2(t) = v2(t) − v1(t) are two of the three edges.

If all interior angles are positive, then Assumption 2. 2. is obviously satisfied. Further, if the angle between adjacent panels

remains positive for all times, then the cone conditions are also satisfied. Note that for a flat triangle, the vector x − vx is

parallel to a2, see Fig. 1.
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Fig. 1. A pair of triangles with a common edge and the projection vx of a point x.

Below, we will frequently use the following fact which follows from standard calculus of multivariate functions.

Lemma 1. If D ⊂ R
d is convex and f is a smooth and possibly vector valued function in D, then there are smooth functions ak

such that for z,w ∈ D

f(z) − f(w) =
d∑

k=1

ak(z,w)(zk − wk)

holds.

Wemake the following observations about patches with nonempty intersections in a time dependent triangulation that
satisfies Assumption 2.

Self panel, p = q.

Assumption 2. 2. states that
∣∣xp(x̂, t) − xp(ŷ, t)

∣∣ ≥ chs

∣∣x̂ − ŷ
∣∣. (7)

Further, by setting z = (x̂, t), w = (ŷ, τ ) and f = xp it follows from Lemma 1 that there are smooth functions a1 =
a1(x̂, ŷ, t, τ ), a2 = a2(x̂, ŷ, t, τ ) and v = v(x̂, ŷ, t, τ ) such that

xp(x̂, t) − xp(ŷ, τ ) = a1(x̂1 − ŷ1) + a2(x̂2 − ŷ2) + v(t − τ ) (8)

To make our notations less cluttered we omit the dependence of the vectors a1, a2 and v on the variables x̂, ŷ, t and τ .

Common edge.

If Γp and Γq have a common edge then it follows from applying (6) two times, that
∣∣xp(x̂, t) − xq(ŷ, t)

∣∣
≥ α

(∣∣xp(x̂, t) − xp(x̂1, 0, t)
∣∣ +

∣∣xp(x̂1, 0, t) − xq(ŷ, t)
∣∣)

≥ α2
(∣∣xp(x̂, t) − xp(x̂1, 0, t)

∣∣ +
∣∣xp(x̂1, 0, t) − xq(ŷ1, 0, t)

∣∣ +
∣∣xq(ŷ1, 0, t) − xq(ŷ, t)

∣∣)

and thus it follows from Assumption 2. 4. and estimate (7) that there is a constant c > 0 such that
∣∣xp(x̂, t) − xq(ŷ, t)

∣∣ ≥ chs

(∣∣x̂1 − ŷ1
∣∣ + x̂2 + ŷ2

)
. (9)

If, in Lemma 1, we let z = (x̂, ŷ, t, τ ), w = (ŷ1, 0, ŷ1, 0, τ , τ ) and f(z) = xp(x̂, t) − xq(ŷ, τ ) then f(w) = xp(ŷ1, 0, τ ) −
xq(ŷ1, 0, τ ) = 0 and thus there are smooth functions a1, . . . , a3 and v, such that

xp(x̂, t) − xq(ŷ, τ ) = a1(x̂1 − ŷ1) + a2x̂2 + a3ŷ2 + v(t − τ ). (10)

Common vertex.

If Γp and Γq have exactly one common vertex then
∣∣xp(x̂, t) − xq(ŷ, t)

∣∣ ≥ chs

(
x̂1 + x̂2 + ŷ1 + ŷ2

)
. (11)

which can be derived from the cone condition using similar arguments as before.
If we let z = (x̂, ŷ, t, τ ), w = (0, 0, τ , τ ) and f(z) = xp(x̂, t) − xq(ŷ, τ ) then f(w) = xp(0, τ ) − xq(0, τ ) = 0 and thus it

follows from Lemma 1 that there are smooth functions a1, . . . , a4 and v, such that

xp(x̂, t) − xq(ŷ, τ ) = a1x̂1 + a2x̂2 + a3ŷ1 + a4ŷ2 + (t − τ )v. (12)

3. Spatial transformations

It will become apparent in Section 5 that space and time can be treated separately when designing singularity removing
transformations. In this section we begin with suitable transformations for the spatial variables x̂ and ŷ in (4). They are
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Fig. 2. Domain of z-integration for the self panel case.

designed to handle singularities of the integrand when x = y, which can happen when Γp and Γq are either the same patch,

or patches with a common edge or vertex. This parallels the construction for elliptic integral operators. We recall this here

for completeness, following the discussion in [12] closely.

Self panel, p = q.

Since the integrand is singular when x̂ = ŷ, we introduce the transformation

z1 = ŷ1 − x̂1 x̂1 = w1

z2 = ŷ2 − x̂2 x̂2 = w2

w1 = x̂1 ŷ1 = z1 + w1

w2 = x̂2 ŷ2 = z2 + w2

(13)

For x̂, ŷ in σ (2) it is easy to see that the z = (z1, z2)-variables must be in the union of six triangles
[
z1
z2

]
∈ D1 ∪ · · · ∪ D6,

see Fig. 2. Each triangle Dk can be mapped on the unit square with the Duffy transform. Thus

z = ξrk(η1), z ∈ Dk, (ξ, η1) ∈ [0, 1]2, (14)

for k ∈ {1, . . . , 6}. The domain of integration of thew = (w1, w2)-variables depends on z. From (13) it follows that

Wk(z) = σ (2) ∩
(
−z + σ (2)

)

SinceWk(z) is the intersection of σ (2) with a shifted version of σ (2) it is an axiparallel isosceles right triangle with side length

1 − ξ . Thus the transformation that maps the unit square toWk(z) is

w = vk + (1 − ξ )

[
η2
η2η3

]
, (η2, η3) ∈ [0, 1]2.

where vk is the lower left corner. For the six subdomains we thus obtain

k = 1 : r1 =
[
−η1
−1

]
v1 =

[
ξ

ξ

]

k = 2 : r2 =
[

−1

−η1

]
v2 =

[
ξ

ξη1

]

k = 3 : r3 =
[

−η1
1 − η1

]
v3 =

[
ξ

0

]

k = 4 : r4 =
[
1 − η1
−η1

]
v4 =

[
ξη1
ξη1

]

k = 5 : r5 =
[
1

η1

]
v5 =

[
0

0

]

k = 6 : r6 =
[
η1
1

]
v6 =

[
ξ (1 − η1)

0

]

(15)

In all cases the Jacobian of the transformation is J = ξ (1 − ξ )2η2.



6 N. Manson and J. Tausch / Computers and Mathematics with Applications 77 (2019) 1–14

Fig. 3. Domain of z-integration for the case of a common edge.

Common edge.

In this case we introduce the transformation

z1 = ŷ1 − x̂1 x̂1 = w1

z2 = ŷ2 x̂2 = z3

z3 = x̂2 ŷ1 = z1 + w1

w1 = x̂1 ŷ2 = z2

(16)

For x̂, ŷ in σ (2) it is easy to see that the z = (z1, z2, z3)-variables must be in the union of four polyhedra D1 ∪ D2 ∪ D3 ∪ D4,

which have one vertex in the origin and are characterized by the opposite face, see Fig. 3.

Thus we write

z = ξrk(η1, η2), z ∈ Dk, (ξ, η1, η2) ∈ [0, 1]3, (17)

for k ∈ {1, . . . , 4}, where rk(η1, η2) parameterizes the opposite face. Moreover, it follows from (16) that w1 must be in the

intersection w1 ∈ [−z1, 1 − z1] ∩ [0, 1].

k = 1 : r1 =
[ −η1
1 − η1
η2

]
w1 = ξ + (1 − ξ )η3 J1 = (1 − ξ )ξ 2

k = 2 : r2 =
[ −η1η2
(1 − η1)η2

1

]
w1 = ξ + (1 − ξ )η3 J2 = (1 − ξ )ξ 2η2

k = 3 : r3 =
[
1 − η1
η2
η1

]
w1 = (1 − η1)ξ + (1 − ξ )η3 J3 = (1 − ξ )ξ 2

k = 4 : r4 =
[

η1η2
1

(1 − η1)η2

]
w1 = ξ (1 − η1η2) + (1 − ξ )η3 J4 = (1 − ξ )ξ 2η2

(18)

Common vertex.

In this case the transformation is simply

z1 = x̂1

z2 = x̂2

z3 = ŷ2

z4 = ŷ1
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The z-domain can be split into two regions σ (2) ⊗ σ (2) = D1 ∪ D2, where

D1 =
{
z :

0 ≤ z2 ≤ z1 ≤ 1

0 ≤ z4 ≤ z3 ≤ 1

z3 ≤ z1

}
, and D2 =

{
z :

0 ≤ z2 ≤ z1 ≤ 1

0 ≤ z4 ≤ z3 ≤ 1

z1 ≤ z3

}
.

Thus

z = ξrk(η1, η2, η3), z ∈ Dk, ξ , η1, η2 ∈ [0, 1]3, (19)

where

r1 =




1

η1
η2
η2η3


 and r2 =



η2
η2η3
1

η1


 . (20)

In both cases the Jacobian is J = ξ 3η2.

4. Temporal transformations

We now single out the time integration in the integrals of the type (4). To that end, we start with a transformation for a

singular time integral

I0 =
∫ ti+1

ti

∫ t

ti

f (t, τ )

(t − τ )
n
2

dτdt

where f is a smooth function. The transformation

ζ =
√
(t − τ )/ht , t = ht (ζ

2 + ω) + ti,

ω = (τ − ti)/ht , τ = htω + ti,
(21)

has Jacobian J = 2h2
t ζ . This transformation maps the triangular (t, τ )-integration domain to {(ζ , ω) : 0 ≤ ω ≤ 1 − ζ 2, 0 ≤

ζ ≤ 1}. In the second step we transform the ω-variable

ω = (1 − ζ 2)η4

which gives a unit square in the (ζ , η4)-plane. Thus

I0 = 2h
2− n

2
t

∫ 1

0

∫ 1

0

ζ 1−ñf (ζ , η4) dζdη4,

where f̃ is a smooth function that incorporates the Jacobian from the η4-transformation. The integrand is smooth as long as

n ≤ 1.

In the case j = i − 1 the singularity occurs only at one point t = τ = ti, thus we split the integral into two triangular

regions

I1 =
∫ ti+1

ti

∫ ti

ti−1

f (t, τ )

(t − τ )
n
2

dτdt =
∫ ti+1

ti

∫ t−ht

ti−1

f (t, τ )

(t − τ )
n
2

dτdt +
∫ ti+1

ti

∫ ti

t−ht

f (t, τ )

(t − τ )
n
2

dτdt.

The first integral can be treated by standardmeans and the second integral (denoted by I+1 ) contains the singularity. To derive

the transformation for the second integral consider the transformation

ζ =
√
(t − τ )/ht , t = ht (ζ

2 − ω) + ti,

ω = (ti − τ )/hτ , τ = ti − hτω,
(22)

which has Jacobian J = 2hthτ ζ . This transformation maps the triangle in the (t, τ ) plane to the domain {(ζ , ω) : 0 ≤ ω ≤
ζ 2, 0 ≤ ζ ≤ 1}. In the second step we transform the ω-variable

ω = ζ 2η4

which gives a unit square in the (ζ , η4)-plane. Thus

I+1 = 2h
2− n

2
t

∫ 1

0

∫ 1

0

ζ 3−ñf (ζ , η4) dζdη4

has a smooth integrand as long as n ≤ 3.
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5. Combining space and time transformations

We now turn to the type of integrals that have to be computed in the implementation of the Galerkin boundary element

method of parabolic problems. In the parameterization of Section 2 the integral (4) appears as

I i,jp,q =
∫ ti+1

ti

∫ tj+1

tj

∫

σ (2)

∫

σ (2)

1

(t − τ )
n
2

K (ρ, x, y) Φ̂(x̂, ŷ, t, τ ) d2x̂ d2ŷdτdt. (23)

where ρ, x and y are now considered functions of x̂ and ŷ and the smooth function Φ̂ incorporates all shape functions and

Jacobians of surface parameterizations.

This integral is singular only if j = i or j = i−1 and if the panels are identical or have a common edge or vertex. Together

with the temporal transforms (21) or (22) we obtain from (23) either six, four or two integrals of the type

I =
∫ 1

0

∫ 1

0

∫

[0,1]4

ξm

ζ n−1
K (ρ, x, y)Φ̃(ξ, ζ , η)d4η dξdζ , (24)

where ξm, m ∈ {1, 2, 3} comes from the Jacobian in the spatial transformations, Φ̃ is the function Φ in the transformed

coordinates and also contains Jacobians and ρ, x, y are functions of the new variables.

Integral (24) is still singular. To regularize it split the unit square in the (ξ, ζ )-plane into two triangles and apply the Duffy

transforms[
ξ

ζ

]
= λ

[
1

µ

]
and

[
ξ

ζ

]
= λ

[
µ

1

]
. (25)

The Jacobians contribute an extra factor of λ. This results in two integrals I = Ia + Ib, where

Ia =
∫ 1

0

∫ 1

0

∫

[0,1]4

λ2+m−n

µn−1
K (ρ, x, y)Φ(λ,µ, η)d4η dλdµ, (26)

Ib =
∫ 1

0

∫ 1

0

∫

[0,1]4
λ2+m−nµmK (ρ, x, y)Φ(λ,µ, η)d4η dλdµ. (27)

In the remainder of this sectionwe show that Ia and Ib are regular integrals and therefore standard rules can be used for their

quadrature. In all singular cases, it follows from (8), (10), (12), and the discussion in Section 3 that

x − y = ξAr + (t − τ )v. (28)

where A = A(ξ, η, t, τ ) ∈ R
3×2 is a matrix, and r = r(η) is the vector defined in (14),(17) and (19), respectively.

Lemma 2. There are constants c > 0, τ0 > 0 such that for (t, τ ) ∈ σ (2) with τ ≥ t − τ0 the estimate

|Ar| ≥ c

2
hs (29)

holds.

Proof. First consider the case t = τ . It follows from (7), (9), (11) and going through the transformations in Section 3 that

|x − y| ≥ chs|z| = chsξ |r|. (30)

Recall that in all singular cases (15) (18) and (20) r = r(η) parameterizes a side of the z-domain that is opposite to the origin.

Hence the vector r is always non-zero, in fact, it can be found that |r| ≥ 1/
√
2. Moreover, because of t = τ Eq. (28) simplifies

to

x − y = ξAr. (31)

Combining (30) and (31) gives

|Ar| ≥ c√
2
hs (32)

which holds for A = A(ξ, η, t, t). By continuity of A, we can conclude that for some τ0 > 0 and a smaller constant on the

right hand side, the above inequality also holds for τ when t − τ0 ≤ τ ≤ t . This is the assertion.

Theorem 1. If 2 + m − n ≥ 0 and n ≤ M + 1 then the integrands of Ia and Ib are C
∞ in all variables.

Proof. First consider ρ in the transformed variables. We have

ρ = x − y√
4(t − τ )

= ξ

ζ

Ar√
4ht

+ ζ

√
ht

2
v = ξ

ζ
ρ̃,
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where ρ̃ is a smooth function of ξ, ζ and η. In the second transform of (25) we have ξ/ζ = µ and therefore ρ is a smooth

function of (µ, λ, η) and so is the integrand of Ib.

In the first transform of (25) we have ξ/ζ = 1/µ so the limit µ → 0 must be considered more carefully. Since µ = 0

corresponds to t = τ it follows from Lemma 2 that for small values of µ

|̃ρ| =
∣∣∣∣

Ar√
4ht

+ ζµ
ht

2
v

∣∣∣∣ ≥ c
hs√
ht

is uniformly bounded away from zero. Therefore Assumption 1 implies that the integrand in (26) is smooth for the given

range of n and the proof is complete.

6. Examples of kernels

In this section we verify that Assumption 1 of Theorem 1 is indeed satisfied for the typical layer potentials of the Heat

equation and transient Stokes flow.

Single layer heat kernel

The function K in (2) that corresponds to the single layer operator of the heat equation is

K (ρ, x, y) = exp
(
−|ρ|2

)

with n = 3. Assumption 1 is satisfied for any positive integer M and thus the transformations discussed in the previous

sections will lead to a regular integral.

Double layer heat kernel

For the double layer operator we have to consider the quantity (x − y) · ny. From standard calculus of surface

parameterizations, it can be concluded that there is amatrix B = B(x̂, ŷ, τ ), a vector b = b(x̂, ŷ, τ ) and a scalar β = β(ŷ, t, τ )

such that for x ∈ Γp and y ∈ Γq

(x − y) · ny =





(x̂ − ŷ)TB(x̂ − ŷ) + β(t − τ ) if Γp = Γq,

bT (x̂ − ŷ) + β(t − τ ) Γp, Γq have a common vertex or edge.

With the transformations of Sections 3 to 5 it follows that there are scalar functions b̃ = b̃(ξ, ζ , η) and β̃ = β̃(ξ, ζ , η) such

that

(x − y) · ny

2(t − τ )
=





(
ξ

ζ

)2

b̃ + β̃ if Γp = Γq,

ξ

ζ2
b̃ + β̃ Γp, Γq have a common vertex or edge.

Thedouble layer kernel of the heat equation is the product of this termwith the single layer kernel. The effect of the additional

factor is that the leading term in integral (24) is ξ 3/ζ 4 in the cases of the self panel and a common edge and ξ 4/ζ 4 in the

case of a common vertex. Thus the Duffy transform (25) will result in regular integrals.

Stokeslet

We use the form of the time dependent Stokeslet which can be found in [9]

Gkl(r, s) = 1

s
3
2

[
δklψ1 (|ρ|)+ ρkρl ψ2 (|ρ|)

]

where r = x − y, s = t − τ , ρ is defined in (3), k, l ∈ {1, 2, 3} and the functions ψ1, ψ2 are given by

ψ1(ρ) = 1

π
3
2

1

ρ3

(
γ

(
3
2
, ρ2

)
− γ

(
5
2
, ρ2

))
,

ψ2(ρ) = 1

π
3
2

1

ρ5
γ

(
5
2
, ρ2

)
.

Here γ (α, z) is the incomplete gamma function

γ (α, z) =
∫ z

0

ζ α−1e−ζdζ , α > 0,
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see e.g. [22]. For our purposes we need the following properties, which follow immediately from this definition,

γ (α, z) = zαγ ∗(α, z),

γ (α, z) ∼ Γ (α), z → ∞.

Here γ ∗(α, z) is an entire function in z and Γ (α) is the Euler gamma function. From these properties it follows that the

ψ-functions are smooth and that the Stokeslet satisfies Assumption 1 with n = M = 3. Therefore the transformations in the

previous sections will result in regular integrals.

Stresslet

We now turn to the stresslet of the transient Stokes flow. It is given by

Tijk(r, s) = 1

s2

[(
δjkρi + δikρj

)
ψ3 (|ρ|)+ δijρkψ4 (|ρ|)+ ρiρjρkψ5 (|ρ|)

]
(33)

where the functions ψ3, ψ4 and ψ5 are defined by

ψ3(ρ) = 1

π
3
2

1

ρ5

(
3γ

(
5
2
, ρ2

)
− 2γ

(
7
2
, ρ2

))
,

ψ4(ρ) = − 2

π
3
2

1

ρ5
γ

(
5
2
, ρ2

)
,

ψ5(ρ) = 4

π
3
2

1

ρ7
γ

(
7
2
, ρ2

)
,

(34)

see [9]. The double layer kernel is

Kik(r, s) = Tijk(r, s)nj(y) + 1

4π

ri

|r|3
nk(y)δ(s), (35)

where the Einstein summation convention is used. The delta function implies that the double layer potential involves an

additional surface integral.

The Stresslet and double layer kernel satisfy Assumption 1 with n = 4 andM = 4. Hence Theorem 1 can only be applied

form ≥ 2. In the case of identical time intervals and identical panels the integrals Ia and Ib in (26) and (27) are still singular.

Likewise, for the surface integral due to the second term in (35) the spatial transformations of Section 3 will give smooth

integrands only whenm ≥ 2.

That this case creates difficulties is not a surprise because the singularity in the double layer kernel must be understood

as Cauchy principal value, see [9]. In this paper it is shown that for a stationary surface the Galerkin influence coefficients

become weakly singular in space after time integration. This follows from the explicit form of the antiderivatives of the

functions

∂−1
t γ

(
α, |ρ|2

)
= |r|2

4
Γ (α − 1) + t γ̃ (α, |ρ|2),

where the time dependence is in ρ and

γ̃ (α, |ρ|2) = γ (α, |ρ|2) − |ρ|2γ (α − 1, |ρ|2).
Then the time integrated stresslet is

∫ s

0

Tijk(r, s
′) ds′ = − 1

4π
δij

rk

|r|3
+ 3

4π

rirjrk

|r|5
+ 1

s
Tw
ijk(r, s) , (36)

where

Tw
ijk(r, s) =

[(
δjkρi + δikρj

)
ψ̃3 (|ρ|)+ δijρkψ̃4 (|ρ|)+ ρiρjρkψ̃5 (|ρ|)

]
.

The functions ψ̃3, ψ̃4 and ψ̃5 are defined just as in (34) but with γ (α, ρ2) replaced by γ̃ (α, ρ2). The first term on the right

hand side in (36) cancels the second term in (35). The other term in (36) is the stresslet of the steady Stokes and is weakly

singular in space. The third term, Tw
ijk(r, s)/s, is weakly singular in space–time and satisfies the assumptions of Theorem 1

with n = 2 and M = 3.

Consider now the strongly singular integral for the double layer potential. That is, an integral of the form (4) where the

function G is now Kik of (35) and p = q and j = i. We split this integral into two pieces

Iwp,p =
∫ ht

0

∫ t

0

∫

σ

∫

σ

Kik(x − y, t − τ )φ(x̂, t, ŷ, τ ) − Kik(x − y′, t − τ )φ(x̂, t, ŷ, t) dŷdx̂dτdt,
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Fig. 4. Cubature errors versus order for Ij = Ii , top left to bottom right: Self panel, common edge, common vertex and separated panels.

and

Isp,p =
∫ ht

0

∫

σ

∫

σ

∫ t

0

Kik(x − y′, t − τ ) dτ φ(x̂, t, ŷ, t) dŷdx̂dt.

where x = xp(x̂, t), y = xp(ŷ, τ ) and y′ = xp(ŷ, t). That is, the primed quantities are evaluated at t instead of τ .

For the first integral we have from Lemma 1 and (7) that

ρ − ρ
′ = b(x̂, ŷ, t, τ )(x̂ − ŷ)

√
t − τ ,

where b is a smooth function. Since the functions in (34) are analytic, the factor
√
t − τ contributes an additional factor of

ζ in (24). Thus we get n = 3 in Theorem 1 and therefore Iwp,p has a smooth integrand in the transformed coordinates.

In integral Isp,p the τ integration gives the time integrated stresslet. Since the rk/|r| part cancels, it remains to compute

a surface integral for the stresslet of the steady Stokes kernel and an integral with Tw
ijk(r, t). The former is smooth in the

transformed spatial coordinates. For the latter the spatial transformations and the temporal transformation t = htζ
2 result

in an integral of the form

Iwp,p =
∫ 1

0

∫ 1

0

∫

[0,1]3
T̃w
ijk

(
ξ

ζ
Ar, ξ , ζ , η

)
d3η dξdζ .

Proceeding as before, with the Duffy transform (25) leads to an integral with a smooth integrand.

7. Numerical examples

To illustrate how the singularity removing transformations work with standard cubature methods we present results

obtained with tensor product Gauss–Legendre rules. In this example we consider piecewise constant elements in space and

time for the single layer potential of the heat equation on a translating unit sphere Γ (t) = S+e1 sin(2π t). The triangulation

of S is obtained by radial projection of uniform subdivisions of the unit cube. It is well known that for optimal convergence

the time step size and the spatial meshwidth must scale like ht ∼ h2
s , see [5,10], therefore we first consider space time

refinements starting with 192 panels and ht = 0.025 (Sp1), 768 panels and ht = 0.00625 (Sp2), and so on. Figs. 4 and

5 display the relative cubature errors for different singular and non-singular cases and four mesh refinements. Since no

analytical values are available, we have computed the integrals to very high order until convergence occurred in the first

twelve significant digits. These values were used instead of the exact value for the error of the lower order calculations.

It iswell known that the convergence of Gauss quadrature is exponential in the order if the integrand is analytic. However,

it should be noted that (26) is ‘only’ smooth. Nevertheless, in the figures the convergence appears to be close to exponential.

Moreover, the convergence is relatively unaffected by the meshsize if optimal space–time scaling is maintained. On the

other hand, Fig. 6 displays errors for a fixed spatial mesh while the time step size is decreased. Here one can see that the

convergence rate decreases with larger ht .
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Fig. 5. Cubature errors versus order for Ij = Ii−1 , top left to bottom right: Self panel, common edge, common vertex and separated panels.

Fig. 6. Cubature errors versus order for refining the time stepsize. Ij = Ii , Self panel.

We have also implemented the quadrature method to solve the two-dimensional heat equation. The smaller dimension-

ality allows us to calculate more mesh refinements to fully investigate the convergence behavior of a fully discrete Galerkin

method.We consider a time dependent curve that is broken up into segments Γp(t), which are parameterized as x = xp(x̂, t)

where x̂ ∈ [0, 1]. Singularities occur when two segments are either identical or have a common end point. These can be

treated by transforms similar to those described in Section 3. Since this is a straight forward application of this methodology

we omit the details here, we only mention that after the time transforms of Section 4 one obtains integrals of the form (24)

with the only difference that the variable η has now two instead of four components. Then the remainder of Section 5 implies

that we obtain smooth integrands.

The weakly singular boundary integral equation for the heat equation exterior to the domainΩ(t) is
∫ t

0

∫

Γ (τ )

G(x, y, t − τ )
∂u

∂n
(y, τ ) ds(y)dτ =

1
2
u(x, t) +

∫ t

0

∫

Γ (τ )

(
∂G

∂n
(x, y, t − τ ) − G(x, y, t − τ )vn

)
u(y, τ ) ds(y)dτ .

Here, the normal velocity of the surface vn = vn(y, τ ) appears as an additional term for time dependent surfaces, see e.g. [15].

For the solution of the heat equation u(x, t) = G(x− x0, t) where x0 is a point inside the domainΩ(0) we solve the Dirichlet

problem for the known Neumann data, where the ansatz and test space consist of the piecewise constants in space and

time. Furthermore, the Dirichlet data are replaced by their piecewise linear/constant interpolation in space/time. We have

tested two geometries, a unit square that rotates in the time interval [0, 1] once about its center and a translating unit circle

whose center has time dependent coordinates x0(t) = 2 cos(2π t)−2 and y0(t) = 2 sin(2π t). We use tensor-product Gauss–

Legendre quadrature to compute the transformed integrals. Thus the error of the solution depends on the mesh width in
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Table 1

L2 errors of the Galerkin solution, Ns and Nt are the number of spatial and temporal nodes.

Rotating Square.

Ns Nt

20 80 320 1280

10 0.57371 0.53451 0.55592 0.56598

20 0.48216 0.31812 0.31938 0.32498

40 0.53286 0.18653 0.16466 0.16906

80 16.7322 0.20098 0.08928 0.08544

160 3.7e+33 0.44416 0.10549 0.04709

Table 2

L2 errors of the Galerkin solution. Translating Circle.

Ns Nt

20 80 320 1280

10 0.97917 0.78284 0.70532 0.62064

20 0.91415 0.34885 0.34608 0.30676

40 0.97190 0.47609 0.10426 0.15189

80 13.9612 0.59329 0.17262 0.04972

160 4.2e+21 0.51388 0.24019 0.07202

Table 3

L2 errors of the Galerkin solution for increasing quadrature order. Nt = 20,

rotating square.

p Ns = 20 Ns = 80

p = 6 0.5737110 16.7322237

p = 10 0.5734032 4.5891282

p = 14 0.5734124 2.9760603

p = 18 0.5734102 2.5127979

p = 22 0.5734091 2.3483674

p = 26 0.5734096 2.2906505

p = 30 0.5734097 2.2742646

space and time as well as the quadrature order. Tables 1 and 2 show the errors for mesh refinements and a fixed quadrature

order of six.

We see that the theoretical O(
√
ht + hs) behavior is well reproduced near the diagonals of the table. It is also apparent

that errors in the lower left corners of the table become larger.

This is not a discretization but a cubature error. As already seen in Fig. 6 this error increases when ht becomes large in

comparison with the panel size. We recompute the entries (Ns,Nt ) = (10, 20) and (Ns,Nt ) = (80, 20) of Table 3 for different

quadrature orders.

The results can be interpreted as follows. In column Nt = 20 the mesh ratio is sufficiently large and the shown L2-errors

of the discretized solution show very little dependence on the quadrature order. Column Nt = 80 corresponds to a small

mesh ratio and exhibits a strong dependence. Fortunately, near the optimal mesh ratio the cubature converges rapidly.
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