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We study a transition between a homogeneous and an inhomogeneous phase in a system of one-dimensional,
Raman tunnel-coupled Bose gases. The homogeneous phase shows a flat density and phase profile, whereas
the inhomogeneous ground state is characterized by periodic density ripples and a soliton staircase in the phase
difference. We show that under experimentally viable conditions the transition can be tuned by the wave-vector
difference Q of the Raman beams and can be described by the Pokrovsky-Talapov model for the relative phase
between the two condensates. Local imaging available in atom chip experiments allows us to observe the soliton
lattice directly, while modulation spectroscopy can be used to explore collective modes, such as the phonon mode
arising from breaking of translation symmetry by the soliton lattice. In addition, we investigate regimes where the
cold atom experiment deviates from the Pokrovsky-Talapov field theory. We predict unusual mesoscopic effects
arising from the finite size of the system, such as quantized injection of solitons upon increasing Q, or the system
size. For moderate values of Q above criticality, we find that the density modulations in the two gases interplay
with the relative phase profile and introduce novel features in the spatial structure of the mode wave functions.
Using an inhomogeneous Bogoliubov theory, we show that spatial quantum fluctuations are intertwined with the
emerging soliton staircase. Finally, we comment on the prospects of the ultracold atom setup.
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I. INTRODUCTION

Ultracold atom and molecule systems serve as versatile
platforms for precision measurements [3], quantum compu-
tation [4], and quantum simulation [5]. In particular ultra-
cold atom systems have several features which make them
particularly well suited for studying many-body physics.
Their isolation from the environment is excellent and allows
the observation of coherent quantum evolution undisturbed
by coupling to external baths [6]. In systems of ultracold
atoms, microscopic parameters are not only highly tunable
but they can also be changed on timescales that are much
shorter than typical timescales of many-body systems. The
rich toolbox of atom physics, as for example imaging with
single-atom resolution, enables a detailed characterization of
quantum many-body states which is difficult to achieve in
any other system [7]. Current research is highly enriched
by the unique perspective ultracold atoms provide for the
study of many-body problems. On the one hand they can
be used to realize paradigmatic models of quantum many-
body systems/quantum simulators such as Bose- and Fermi-
Hubbard models [8], band structures with geometrical and
topological features [9], one-dimensional Luttinger liquids
[10], or the sine-Gordon model [11]. Ultracold atoms pro-
vide us also with examples of quantum systems that do
not have analogues in high energy or solid state physics.
For example, spinor bosonic atoms realize a wide variety of

spinor condensates [12] and Mott states [13] with magnetic
order [14]. Alkaline-earth atoms provide realizations of Fermi
Hubbard models with SU(N) symmetry [15] with N up to
10. Especially, the possibility to study phase transition with
quantum simulators has the prospect to settle fundamental
questions such as the binding mechanism of Cooper pairs
in the Fermi-Hubbard model or to study strongly coupled
quantum critical points.

Another important, yet less explored, class of phase transi-
tions is given by commensurate-incommensurate phase transi-
tions. A famous example is given by the adsorption of atoms
on a crystalline substrate e.g. rare-gas monolayers adsorbed
on graphite [16]. This system can be described by a discrete
version of the Frenkel-Kontorowa model which is a one-
dimensional chain of atoms connected by springs and are sub-
ject to a cosine potential. If the cosine potential dominates, the
adsorbed atoms relax into a commensurate structure where the
average lattice spacing of the adsorbed atoms is a rational frac-
tion of the period of the periodic potential, while for a weaker
potential the adsorbed atoms form an incommensurate struc-
ture. Another example for commensurate-incommensurate
phase transitions arises in conductors due to the interacti
ons between conduction electrons and the atomic lattice. The
conduction electron density is spatially modulated forming
a charge density wave which in turn follows the periodic
lattice distortion. Commensurate-incommensurate transitions
also appear in magnetic systems like the anisotropic Ising
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FIG. 1. Experimental platform: Raman tunnel coupled Bose
gases two Raman laser beams R1 and R2 with wave vectors �k1
and �k2 induce a spatially modulated tunnel coupling between two
Bose gases ψ1(x) = √

n1(x)eiθ1(x) and ψ2(x) = √
n2(x)eiθ2 (x). The

detuning δ prevents direct resonant tunneling between the two wells.
The angle α between the two Raman beams allows to tune the
mismatch wave vector �Q = �k1 − �k2. The phase difference of the
two condensates θ (x) = θ1(x) − θ2(x) has the shape of a staircase
upon increasing Q above a critical threshold. The length scale lJ on
which the phase jump of 2π takes place, is determined by the tunnel
coupling J and proportional to 1/

√
J . By changing Q one can modify

the length between two adjacent solitons lQ ∝ 1/Q, see Refs. [1,2].

model with competing interactions, type-II superconductors,
quantum Hall bilayer systems under a tilted magnetic field
[17–21], and the transition from zero to finite momentum
pairing in two-component attractive fermions in presence of a
Zeeman field [22–24]. A comprehensive list of experimental
platforms can be found in Refs. [16,25,26].

In this work, we propose the realization of a
commensurate-incommensurate phase transitions in
a quantum platform of ultracold atoms confined to
one-dimensions, which in terms of tunability and flexibility
excels traditional solid-state setups employed to realize
commensurate structures. Specifically we consider a pair
of tunnel-coupled, one-dimensional tubes of ultracold 87Rb
atoms prepared in an elongated microtrap on an atom
chip [27], which has been recently shown to constitute an
efficient simulator of the quantum sine-Gordon model by
measuring higher order correlation functions [11]. We revive
the tunneling amplitude between the two one-dimensional
Bose gases with Raman beams and modulate it spatially
(see Fig. 1). The spatial modulation corresponds to a
situation in which upon tunneling atoms acquire a finite
momentum along the direction of the tubes. This modification
enlarges the potential of one-dimensional Bose gases on
atom chips as quantum simulators: imprinting a phase
winding on the tunneling process constitutes a realization
of the Pokrovsky-Talapov (PT) model [1,2,16,28–35]. This
is a variant of the sine-Gordon field theory, which hosts
a commensurate-incommensurate transition between a
homogeneous and inhomogeneous phase. The latter supports
the onset of solitons in the relative phase profile of the two
gases and provides an avenue to engineer and manipulate
topological structures in tunnel-coupled one-dimensional
Bose gases on atom chips. Specifically, the PT Hamiltonian

is given by

H =
∫

dx

[
1

2
(∂x�)2 − 2 cos� + Q∂x�

]
, (1)

where Q acts as a chemical potential for the phase gradient
which in the inhomogeneous phase (Q > Qc = 4

√
2/π ) im-

prints solitons in the ground state of the system [36].
We will show that the field � in equation (1) can be iden-

tified with the phase difference of the two one-dimensional
Bose gases (cf., Fig. 1). We shall see that the microscopic
model describing our platform, has several differences with
the basic PT model in Eq. (1), where the most important one
is the coupling between the relative phase and the symmet-
ric density of the two tubes. Such coupling between phase
and density appears not important in other realizations of
the commensurate-incommensurate transition in cold atoms
simulators such as those based on optical lattices [37–39].

Further commensurability effects for cold fermionic atoms
and strongly interacting bosons trapped in one-dimensional
optical lattices have been studied in Refs. [22,40,41], while
commensurate-incommensurate phase transitions involving
chains of cold trapped ions have been investigated in
Refs. [42–44].

Summary of results

We demonstrate that two one-dimensional condensates
with Raman assisted tunneling of atoms provide a new ex-
perimental platform for studying the quantum commensurate-
incommensurate transition. Local imaging available in atom
chip experiments can be used to study key features of the
model including formation of the soliton lattice in the in-
commensurate phase and appearance of the gapless phonon
mode arising from breaking of translational symmetry by
the soliton lattice. We also discuss differences between
the microscopic Hamiltonian and the canonical PT model
which become prominent close to the critical region of the
commensurate/incommensurate transition, or for small sys-
tems. In particular, we observe density ripples in the density
profiles of the two gases which are in a one-to-one corre-
spondence with kinks in their phase difference. The onset of
(i) solitons in the density of the Raman tunnel coupled quantum
liquids is a result which goes beyond the description with the
PT theory (see Sec. III A). These spatial modulations in the
density profiles of the two gases is at the root of (ii) discrepan-
cies from the PT effective field theory description. Specifically,
we compare the density of solitons in our simulator with
density of solitons in the PT theory in Fig. 7 of Sec. V.
We find the largest deviations for small system sizes and
misfit parameter close to criticality. The finite size study of
our model illustrates novel (iii) mesoscopic effects such as
the quantized injection of solitons into the system, which are
absent in the PT theory for an infinite system (see Fig. 4). Our
cold atom implementation allows to study the spatial features
of quantum many-body states and comes with a level of
tunability which is difficult to achieve in solid state platforms
realising commensurate/incommensurate transitions, as, for
example, via changing the lattice spacing constant. Some
features of the commensurate/incommensurate phase transi-
tion can be understood with a classical treatment. However,
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the quantum nature of ultracold atom platform allows for
the exploration of quantum effects in the incommensurate
soliton structures. As an example we show in Sec. IV that (iv)
the wave functions of the excited states have peaks exactly
at the position of solitons. Therefore the corrugated spatial
profile of the modes is informative of the soliton structures
shaped by the momentum imprinted by the Raman beam
on the atoms. We arrive at these results by using a varia-
tional approach and an inhomogeneous Bogoliubov theory.
The latter is a straightforward approach to include quantum
fluctuations when compared to other methods (Bethe ansatz
[45–48], semiclassical wave functions [1]) which require to
regularize the PT field theory in the ultraviolet.

II. EXPERIMENTAL IMPLEMENTATION

In this section, we discuss the setup of two one-
dimensional Raman tunnel coupled Bose gases. In atom
chip experiments, one can manufacture one-dimensional Bose
gases by creating a magnetic trap, which is generated by elec-
tric currents on the atom chip itself [49,50]. In order to create a
double well potential, one uses a pair of radio-frequency wires
on the atom chip [51,52]: the radio frequency field will dress
the magnetic states of the atoms and time-averaging results in
an effective double well potential. By tuning the strength of
the radio-frequency fields, one can vary the distance between
the double wells changing in this way the Josephson tunneling
strength J0.

We also introduce a tilted double well potential which leads
to an energy offset 	 and suppresses the direct tunneling pro-
cess. In an atom chip experiment, this tilting can be achieved
by changing the ratio of the different radio frequency currents.
The coupling between the left and right wells can be revived
using Raman assisted tunneling [53–55]. One adds two laser
beams, which create the potential VR(�r) = V0(r) cos(δω · t +
�Q · �r) with a slight detuning δω and the mismatch of the wave
vectors �Q = �k1 − �k2 of the two laser beams. The effect of the
Raman beams on the atoms in the left and right tube can be
modeled by the following Hamiltonian matrix:

H =
(

V+(x, t ) h̄J0
h̄J0 V−(x, t ) − h̄	

)
, (2)

with

V±(x, t ) = V0 sin(δωt ± Qyd + Qxx), (3)

where the distance between the double well is given by 2d .
The detuning of the Raman beams is chosen such that it

equals the energy difference between the double well, i.e.,
δω � 	. Going to the interaction picture with the unitary
transformation

U = exp

(− i
h̄δω

V+(x, t ) 0
0 − i

h̄δω
V−(x, t ) − i	t

)
(4)

and a subsequent time averaging leads to the effective Hamil-
tonian

H =
(

0 JeiQxx

Je−iQxx 0

)
. (5)

In the last equation, we have introduced the effective tunneling

J = −J0 · J1

(
2V0 sin(Qyd )

h̄	

)
, (6)

which is renormalized by a Bessel function of the first kind
J1(·) with index n.

Parameters for an atom chip experiment

In this section, we elaborate on the experimental details
and the possibilities to tune parameters of a typical atom chip
experiment. Starting from the confinement of the clouds the
radial and longitudinal trapping frequencies are ω⊥ ≈ 2π ×
1.4 kHz and ωx ≈ 2π × 7 Hz, respectively. The distance
between the wells can be continuously varied in the range
from ∼2 to 3 μm, which allows to adjust the tunneling
strength J0/(2π h̄) from 0 to 100 Hz. In addition to the
magnetic trapping one can create a box potential by using a
blue detuned laser beam, which cuts off the left and the right
tails of the Bose gas. This blue detuned laser beam enables to
change the length of the system between 30 and 60 μm [56].
Digital mirror devices permit to create an additional dipole
potential and achieve nearly arbitrary potential configurations.
In this way, we can generate a flat bottom box potential
by compensating the longitudinal harmonic effect and even
extend the length of the box up to 250 μm [57].

For two Raman lasers with λ = 1064 nm, one can achieve
sin(	Qyd ) ∼ 1. An intensity of 100 mW/mm2 generates a
dipole potential with a depth of 2π h̄ × 100 Hz, which enables
to change the amplitude V0/(h̄	) from 0 to 0.5. This allows
for an effective tunneling strength |J|/J0 between 0 and 0.4
and the misfit parameter Qx can be varied between 0 and
11.8 μm−1 by changing the angle α between Raman beams,
see Fig. 1. Since the resolution of the imaging system is
∼2 μm, we will only consider a maximum Qx of 0.628 μm−1

where we expect a 2π phase flip in the range of 5 pixels. In
order to avoid unwanted radial excitations, the Raman beams
will be ramped slowly on a time scale of 10 ms.

The atom density can be set between n = 10–100 μm−1,
which results in a chemical potential of μ = 2π × (0.05 −
0.5)h̄ω⊥, respectively. For a typical atom chip experiment
with 87Rb the gas can be cooled down to below 10nK, which
gives a thermal coherence length of λT ∼ 60μm. This particle
number and temperature allow to achieve an effective one-
dimensional system because of μ, kBT < h̄ω⊥. For a typical
Josephson tunneling J/(2π h̄) = 1 Hz, the Josephson length
is λJ = (h̄/4mJ )1/2 ≈ 5 μm, which is below the thermal
coherence length λJ 	 λT ; this will allow to neglect thermal
fluctuations in the following, which are the main sources of
decoherence in the system [58]. In principle three body loss
is another potential source of dissipation. However, recent
atom chip experiments demonstrate long-time quantum co-
herent evolution by observing recurrences [56] whereby the
experimental parameters were similar to those required for the
simulation of the PT model. The emergence of these revivals
suggest that detrimental effects such as particle losses, noisy
stray fields or other forms of decoherence are not appreciable
on the relevant timescales in the state of the art of atom chip
experiments.
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III. MICROSCOPIC MODEL

We model the physical system presented in Fig. 1 with the
Hamiltonian

H =
2∑

b=1

∫ L

0
dx

[
h̄2

2M
|∇ψb|2 − μψ

†
b ψb + g

2
ψ

†
b ψ

†
b ψbψb

]

− h̄J
∫ L

0
dx[eiQxψ

†
1ψ2 + e−iQxψ

†
2ψ1], (7)

with μ the chemical potential of the two gases, J the tunneling
amplitude, g the interaction strength and Q the mismatch
wave vector. The bosonic field operators ψ1 and ψ2 fulfill the
boundary conditions

ψb(x = 0) = ψb(x = L) = 0 (8)

due to the box potential. In particular, the tunneling term
(eiQxψ

†
1ψ2 + h.c) describes the tunneling of an atom between

the two tubes while picking up a phase ±iQx. In the following
sections, we choose typical values of g, μ, J , and Q relevant
for experimental realizations with atom chip experiments
[10,11,27].

A. Ground state and phase transition

In this section, we determine the ground state of the Hamil-
tonian given in (7) as a function of the mismatch parameter Q.
We employ the variational principle and choose the following
coherent state ansatz

|α〉 =
∏

x

eα1(x)ψ
†
1 (x)eα2(x)ψ

†
2 (x) |0〉 (9)

with the coherent state amplitudes α1 and α2. The variational
principle minimizes the expectation value of the energy

E = 〈α|H |α〉
〈α|α〉 , (10)

which is given by

E [α] =
2∑

b=1

∫ L

0
dx

[
h̄2

2M
|∂xαb|2 − μ|αb|2 + g

2
|αb|4

]

− h̄J
∫ L

0
dx[eiQxα∗

1α2 + e−iQxα∗
2α1] . (11)

The boundary conditions of the field operators in Eq. (8) imply
that the coherent state amplitudes vanish at the edges of the
system

αb(x = 0) = αb(x = L) = 0. (12)

In order to work with dimensionless quantities, we rescale
space and field variables

x = x0x̄ , (13)

αb = x−1/2
0 ᾱb , (14)

with the Josephson length

x0 =
√

h̄

2MJ
. (15)

Given this rescaling the energy has the form

E [ᾱ] =
2∑

b=1

∫ L̄

0
dx̄

[
h̄2x−2

0

2M
|∂x̄ᾱb|2 − μ|ᾱb|2 + g

2x0
|ᾱb|4

]

− h̄J
∫ L̄

0
dx̄[eiQ̄uᾱ∗

1 ᾱ2 + e−iQ̄x̄ᾱ∗
2 ᾱ1] , (16)

where we have introduced the dimensionless length L̄ = L/x0
and wave vector Q̄ = x0Q. We measure the energy in Eq. (16)
in units of E0 = h̄2x−2

0 /(2M ) and hence the classical Hamil-
tonian reads

Ē [ᾱ] =
2∑

b=1

∫ L̄

0
dx̄

[
|∂x̄ᾱb|2 − μ̄|ᾱb|2 + ḡ

2
|ᾱb|4

]

−
∫ L̄

0
dx̄[eiQ̄x̄ᾱ∗

1 ᾱ2 + e−iQ̄x̄ᾱ∗
2 ᾱ1] , (17)

where we introduced Ē [ᾱ] = E [ᾱ]/E0, the dimensionless
chemical potential μ̄ = μ/E0 and the dimensionless inter-
action strength ḡ = g/(E0x0). From now on we will only
work with dimensionless quantities and drop the bar from the
rescaled parameters unless differently stated.

The minimum of the energy given in Eq. (17) is found by
setting the functional derivatives with respect to α1(x) and
α2(x) to zero

δE [α]

δα∗
1 (x)

= 0 ,
δE [α]

δα∗
2 (x)

= 0 , (18)

which is explicitly given by

0 = −∂2
x α1 − μα1 + g|α1|2α1 − eiQxα2 , (19a)

0 = −∂2
x α2 − μα2 + g|α2|2α2 − e−iQxα1. (19b)

The equations (19) together with the boundary conditions
(12) form a boundary value problem determining the field
amplitudes αb. In order to solve this boundary value problem,
we study the imaginary time evolution of the coherent state
amplitudes given by

∂ταb(τ ) = − ∂E

∂α∗
b (τ )

, (20)

and its complex conjugate. For τ → ∞, we obtain a stationary
value, i.e., ∂ταb(τ ) = 0, which solves the system of differen-
tial equations given by Eqs. (19) and (12).

Depending on the initial condition of (20), the imaginary
time evolution may end in a local minimum of the energy
functional (17). The right choice of the initial condition will
instead lead the imaginary time evolution into the global
minimum of Eq. (17).

We use the polar representation of the coherent amplitudes

αb(x) =
√

nb(x)e
iθb(x) , (21)

to obtain the density profile nb(x) and the phase difference

θ−(x) = θ1(x) − θ2(x) (22)

and the shifted relative phase

θ (x) = (2π )−1[θ−(x) − Qx] (23)
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FIG. 2. Density and shifted relative phase profiles in the commensurate and incommensurate phase: For a fixed system size of L̄ = 40 and
Q̄ = 0.7 the density profile (a) as well as the relative phase profile (b) are homogeneous. The microscopic parameters are μ̄ = 30 and ḡ = 0.6
and are typical for atom chip experiments [10,11,27]. For a fixed system size of L̄ = 40 and Q̄ = 1.9 the density profile (c) shows periodic
density modulations and the relative phase profile (d) shows a staircase structure in space where the dotted lines mark 2π jumps representing
the transitions between two adjacent solitons. The solitonic structure implies a density modulation, i.e., the density ripples occur at the same
positions of kinks in the phase difference profile degree of freedom. The (in)homogeneous phase is called the (in)commensurate phase in the
context of the Pokrovsky-Talapov transition. We refer to Sec. V and Appendix for more details on this notion.

determined by the stationary state of the imaginary time
evolution. Atom-chip platforms can easily access the phase
difference by matter wave interference of the two Bose gases
and absorption imaging of the density [10,59].

We observe that for all values of Q the density drops to
zero at the edges of the system as a result of the boundary
conditions given in Eq. (8). For small Q, the density profile
is homogeneous in the center of the system, whereas for
larger Q we observe periodic density modulations (see Fig. 2).
Similarly, the shifted relative phase θ (x) is homogeneous for
small values of Q, but shows a staircase structure for large
values of Q. The height of each jump is approximately 2π ;
such jumps can be clearly seen in the shifted variable θ (x),
rather than in the phase difference θ−(x). We will call a
single phase jump of 2π a soliton and hence the profile θ (x)
constitutes a staircase of solitons as can be seen in Fig. 2(d).

The qualitative difference of the density and the shifted
phase profile for small and large Q indicates a phase transition
from a homogeneous phase to an inhomogeneous phase.
In Sec. V we will develop an effective description of the
microscopic model in Eq. (7) and show that the phases can
be effectively described by the Pokrovsky-Talapov model
[16,32].

B. Phase diagram

In this section, we discuss the order parameter, the phase
diagram of the Hamiltonian (7). The number of (2π ) jumps in
the relative phase, the number of solitons,

NS = (2π )−1[θ (0) − θ (L)] (24)

is used to determine the density of solitons

ρ = NS/L , (25)

which acts as an order parameter of the transition. The density
of solitons as a function of Q and L is depicted in Fig. 3.

The size of the system represents an additional length
scale which competes with the characteristic distance between
two adjacent solitons lQ. For an infinite system, the distance
between solitons diverges at the transition; on the other hand
lQ is finite in the incommensurate phase, and a decreasing
function of Q. The distance between two adjacent solitons

FIG. 3. Density of solitons: the homogeneous phase is char-
acterized by a uniform phase profile and the absence of solitons
(extended red region); around Q � 1.8 solitons are injected with
a non-vanishing density (incommensurate phase). The dotted lines
mark different sizes of the system where soliton injection is studied
in Fig. 4. The microscopic parameters are the same as in Fig. 2.

224102-5



V. KASPER et al. PHYSICAL REVIEW B 101, 224102 (2020)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Q

0

5

10

15

20

25

30

35

N
s

L = 20
L = 30
L = 40
L = 50
L = 60

FIG. 4. For finite system size we observe discrete jumps in the
number of solitons upon increasing Q. This effect results from fitting
m � L/lQ solitons into the system with size L. The plots correspond
to the horizontal cuts in the phase diagram of Fig. 3 (dotted lines).
Microscopic parameters are the same as in Fig. 2.

scales as lQ ∼ 1/Q. The competition between the system size
L and the soliton length lQ can introduce new features not
present in the thermodynamic limit. For instance, Fig. 4 shows
the quantized injection of solitons as Q is increased for various
sizes of the system.

Figure 3 allows for bona fide estimate of the critical point.
For L � 40 and Q � 1.8 = Qc, there is negligible soliton
density and identify this region as the homogeneous phase,
whereas for Qc � Q, we obtain a nonvanishing soliton density,
the inhomogeneous phase.

IV. BOGOLIUBOV THEORY

In this section, we study quantum fluctuations on top
of the commensurate and incommensurate ground states. In
particular we determine the Bogoliubov spectrum and discuss
the physical features of the mode functions in the incommen-
surate phase. We introduce small quantum fluctuations field
operators on top of the mean-field value

ψb = αb + δψ̂b . (26)

Inserting this expansion into the Hamiltonian in Eq. (7) and
expanding up to second order in δψ̂b, we obtain the Bogoli-
ubov Hamiltonian

H =
2∑

b=1

∫ L

0
dx|∂xδψ̂b|2 −

∫ L

0
dx(δψ̂†

1 eiQxδψ̂2 + H.c.)

+ g

2

2∑
b=1

∫ L

0
dx

[
α2

bδψ̂
†
b δψ̂

†
b + (α∗

b )
2δψ̂bδψ̂b

+ 4|αb|2δψ̂†
b δψ̂b

]
(27)

Since the field configuration in the ground state, α∗
b , displays

solitons, we have to solve an inhomogeneous Bogoliubov
problem. The Heisenberg equations of motion for δψ̂b are

i∂tδψ̂1 = −∂2
x δψ̂1 − eiQxδψ̂2 + g(α1)

2δψ̂
†
1 + 2g|α1|2δψ̂1,

i∂tδψ̂2 = −∂2
x δψ̂2 − e−iQxδψ̂1 + g(α2)

2δψ̂
†
2 + 2g|α2|2δψ̂2.

(28)

These equations of motions can be solved by inserting the
mode expansion

δψ̂b(x, t ) =
∑

m

[âmum,b(x)e
−iωmt + â†

mv∗
m,b(x)e

iωmt ] (29)

in the equations of motion (28); this procedure yields the
eigenvalue problem

ωm

⎛⎜⎝u1,m
u2,m
v1,m
v2,m

⎞⎟⎠

=

⎛⎜⎜⎝
h1(x) −eiQx g(α1)2 0

−e−iQx h2(x) 0 g(α2)2

−g(α∗
1 )

2 0 −h1(x) e−iQx

0 −g(α∗
2 )

2 eiQx −h2(x)

⎞⎟⎟⎠
⎛⎜⎝u1,m

u2,m
v1,m
v2,m

⎞⎟⎠ ,

where hb(x) = −∂2
x + 2g|αb|2. The Bogoliubov modes satisfy

δnm =
∑

x

[u∗
n(x)um(x) − v∗

n (x)vm(x)] , (30)

which ensures the canonical commutation relation of âm and
â†

m.
We numerically solve the system in equation (30) and

obtain the spectrum and mode functions. For Q = 0, the
Hamiltonian of the tunnel-coupled Bose gases is symmetric
under the exchange of the tube labels 1 ↔ 2; this allows to
diagonalize the system in two independent subspaces corre-
sponding to the two parities associated to the symmetry. In
the following, we will call symmetric and antisymmetric the
modes belonging respectively to these two subspaces. The
dispersion relation of the anti-symmetric degrees of freedom
is particlelike: it is known to have a gap 	 = √

2J (2J + 2μ),
and to grow parabolically at low momenta [60]. When the
background density of the condensates is flat, the tunneling
operator gaps only the anti-symmetric modes [61,62], while
the spectrum of the symmetric degrees of freedom remains
gapless at low energies, following the linear dispersion re-
lation of the conventional Bogoliubov theory for homoge-
neous gases [60]. We find by the numerical solution of (30)
that similar results hold for a pair of tunnel coupled Bose
gases if Q < Qc (homogeneous phase). In particular, one can
“adiabatically” connect the Q = 0 and the Q < Qc state in
the numerical evaluation of the eigenvalues of equation (30).
Hence the spectrum at Q < Qc can still be separated into two
distinct branches with properties analog to the Q = 0 case. In
particular, the branches persist despite the “1 ↔ 2” symmetry
is explicitly broken by a non-vanishing value of Q; this is
illustrated in left panel of Fig. 5.

At Q = Qc, the system experiences a commensurate-
incommensurate phase transition of first order which closes
the gapped mode of the antisymmetric sector [1,16] (when
fluctuations are included, the transition is expected to become
of second order, however, our mean-field ansatz for the ground
state, and the associated phase diagram 3, does not include
such fluctuations [32]). Accordingly we expect two linear
sound modes in the inhomogeneous phase. One branch result-
ing from the breaking of U(1) symmetry, while the second
branch is due to the breaking of continuous translation invari-
ance into a discrete translation symmetry, as a result of the
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FIG. 5. Dispersion relation. (Left) Dispersion relation of the “symmetric” (orange) and “antisymmetric” (blue) modes in the commensurate
phase (Q = 0.9). The dispersion relation of the antisymmetric modes as a function of momentum is quadratic at low energies with a gap
	 = √

2J (2J + 2μ) � 11 (here J = 1 and μ = 30). (Right) In the incommensurate phase (Q = 2.1), we observe two linearly dispersing
sound modes at low energies. These two sound modes correspond to the U(1) phonon (blue) and to the soliton phonon (orange). A scaling
with system size of the low-energy eigenvalues is provided in Appendix.

formation of a soliton lattice spacing lQ in the system.
Therefore these two phonon branches belong respectively
to the symmetric and anti-symmetric sectors of the
inhomogeneous Bogolyubov problem. The speed of sound
of the soliton phonon is known to follow linearly the misfit
parameter Q [1,16].

In the realistic quantum simulator of the PT field the-
ory studied in this work, the symmetric and antisymmetric

branches of the dispersion relation hybridize for Q > Qc,
since the profile of the density of the two gases displays spatial
modulations, contrary to the theory of tunnel-coupled Bose
gases developed in Ref. [61]). This coupling effect is moderate
in our model as can be inferred from the depth of the density
ripples in Fig. 2, but it is completely absent in the conventional
PT theory which can be written as a sole function of the phase
difference of the two gases [1]. Since the latter constitutes
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FIG. 6. Columns (1) and (2). Spatial profile of the density fluctuations determined from the Bogoliubov calculation for each mode. The two
columns allow to categorize the modes within tube 1 and 2 into symmetric and antisymmetric modes. Symmetric modes are labeled in blue,
while antisymmetric modes are labeled in orange. For instance, the third and fourth rows display the first excited state in the symmetric and
antisymmetric sectors. By sorting the eigenvalues according to this symmetry considerations we show the dispersion relation of the symmetric
(blue) and anti-symmetric (orange) modes in the right panel of Fig. 5. Column (3) shows the relation between the ground state current (light
red) and the absolute value of the Bogoliubov mode functions (green). Note that the relative phase and the ground state current are peaked
everywhere a soliton is formed in the relative phase profile of the two tubes; the modes in the antisymmetric sector are sensitive to the presence
of solitons and are peaked at the same positions as the solitons. In the figure, we have plotted the absolute value of the Bogoliubov mode
functions (green) to illustrate the influence of the modulation of the background field on the mode functions. The modes of the symmetric
sectors show a milder spatial corrugation (see m = 2). This is in contrast with the Pokrovsky-Talapov field theory where the symmetric modes
are completely insensitive to soliton injection, because they do not couple to the antisymmetric modes.
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an anti-symmetric degree of freedom, the soliton phonon is
the only relevant soft mode in PT field theory. In Fig. 5, we
plot the low-energy eigenvalues and find evidence for the two
sound modes. For low-lying energy eigenvalues, we obtain
the separation into symmetric and antisymmetric branches by
studying the spatial structure of small density fluctuations

δρb(x) = αb(x)δψ̂
†
b (x) + H.c. , (31)

which allows to split the mode functions into two groups
distinguished by their dominant waveform (see left panel of
Fig. 6). In terms of the operator (29) we can rewrite Eq. (31)
as

δρb,m(x) ≡ αb(x)[αmum,b(x) + α†
mv∗

m,b(x)] + H.c. (32)

in terms of the coherent state amplitude αb(x) in the ground
state of the tube b.

We observe that the excitations in the antisymmetric sector
preserve memory of the location of the solitons forming in the
ground state. In order to illustrate that, we compare the ground
state current

jb(x) ≡ i[α∗
b (x)∂xαb(x) − H.c.] (33)

with the profile of the mode functions in the right panel of
Fig. 6. From Fig. 2, one can infer that whenever a soliton
appears as a density ripple/phase jump, the current has a
peak in a one-to-one correspondence with a peak in the
mode functions’ profiles. This connection explains the strong
spatial variations displayed by the antisymmetric modes when
compared to symmetric ones: solitons pin quantum fluctua-
tions which in turn model the shape of the mode functions.
Conversely, the mode functions of the symmetric phase show
a more regular spatial profile since they are weakly coupled to
solitons.

V. EFFECTIVE FIELD THEORY

In this section, we derive an effective field theory for the
Hamiltonian given in Eq. (7) following the lines of Ref. [63].
Therefore we express the coherent amplitudes αb(x) by den-
sity nb(x) and phase θb(x), and obtain the energy

E =
2∑

b=1

∫ L

0
dx

[
(∂xnb)2

4nb
+ nb(∂xθb)

2 − μnb + g

2
n2

b

]

− 2
∫ L

0
dx

√
n1n2 cos [θ1 − θ2 − Qx] . (34)

The boundary conditions (12) become

nb(x = 0) = nb(x = L) = 0 (35)

with a free phase angle at the boundary. Expanding the density
in Eq. (34) as

nb(x) = n0 + δnb(x), (36)

around a homogeneous background density n0, we obtain

E = n0

∫ L

0
dx

[
2∑

b=1

(∂xθb)
2 − 2 cos (θ1 − θ2 − Qx)

]
. (37)

The expansion around a homogeneous background density
is justified as can be seen from Fig. 2 which shows that

FIG. 7. Comparison with the Pokrovsky-Talapov model. Plot of
|ρmic. − ρPT|/ρmic., with ρmic. the soliton density of the microscopic
model studied in this work and ρPT the soliton density of the effective
PT field theory. A mismatch between ρPT and ρmic. indicates regions
of the phase diagram, where corrections beyond the conventional PT
description are present (microscopic parameters here are the same as
in Fig. 2). Such corrections are more pronounced close to the critical
point and vanish as the system size increases.

fluctuations δnb(x) are small besides at the edges of the
system. The central and relative coordinates

θ+ = 1
2 (θ1 + θ2), (38a)

θ− = θ2 − θ1, (38b)

decouple, and the energy density can be written as

E = n0

∫ L

0
dx

[
1

2
(∂xθ−)2 − 2 cos(θ− − Qx)

]
. (39)

Changing variables to θ = θ− − Qx, we find

E = n0

∫ L

0
dx

[
1

2
(∂xθ )

2 + Q∂xθ − 2 cos θ

]
, (40)

which corresponds to the energy density of the classical
Pokrovsky-Talapov model (see Appendix). The Pokrovsky-
Talapov model (40) describes the transition from a commen-
surate phase with a homogeneous ground state to an incom-
mensurate phase characterized by a finite soliton density.

At the mean-field level and for a large system size, the
critical point is located at Q̄c = 4

√
2/π ∼ 1.8. In an atom-

chip experiment with 87Rb and a typical effective Raman
assisted tunneling strength |J̃| ∼ 2π × 1Hz this results in a
critical point located at Q̄c/x0 ≈ 0.1(μm)−1. Contrary to the
Pokrovsky-Talapov model the relative phase degree of free-
dom in our model couples to variations of the density δnb(x)
contributing with terms beyond the leading order expansion
in Eq. (37). These terms are responsible for effects beyond the
Pokrovsky-Talapov effective description.

It is therefore natural to investigate to which extent the
microscopic model reproduces Pokrovsky-Talapov physics.
The agreement of the order parameter between the micro-
scopic model and the effective field theory is excellent in the
commensurate phase, and far away from the phase transition
in the incommensurate phase, as illustrated in Fig. 7.
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VI. CONCLUSIONS

In this work, we have presented an ultracold atom
system which can be employed as a simulator of a
commensurate/incommensurate phase transition. Specifically
we proposed to use Raman tunnel-coupled, one-dimensional
quantum liquids in atom chip experiments as a platform to
study the quantum effects in the incommensurate phase. We
have shown how this model can be understood as an approxi-
mate Pokrovsky-Talapov model, and included quantum fluctu-
ations within an inhomogeneous Bogoliubov calculation. We
have investigated the differences between the PT field theory
and the realistic platform considered in our work, discussed
deviations from the PT commensurate/incommensurate phase
diagram, and studied how quantum features interplay with
solitons and influence the shape of the wave functions.
Here we proposed an “emerging” quantum simulator of
the PT model, where the physics of the commensurate-
incommensurate transition emerges at the quantum field the-
ory level from a microscopic Hamiltonian. It would be inter-
esting to find alternative ways to quantum simulate [64] the
PT model. The combined gain in scalability and flexibility of
digital-analog quantum simulators could represent a way to
achieve this goal [65].

Furthermore, a nonequilibrium study of the Pokrovsky-
Talapov model on a atom chip could offer interesting perspec-
tives, since such platforms have been already shown to repre-
sent formidable simulators for the dynamics of tunnel coupled
Luttinger liquids [10,56,66,67]. Future work could encompass
the dynamical production and annihilation of solitons by
quenching the misfit parameter across the phase transition, or
by studying light-cone propagation of correlation functions in
presence of multiple speeds of sounds. This could motivate a
novel series of experiments involving nonequilibrium dynam-
ics of topological excitations, as kinks, in one-dimensional
quasicondensates. We see our results as a intermediate step
towards a surge of novel interest on quantum simulations
in and out-of-equilibrium of the Pokrovsky-Talapov physics.
Our study can be also straightforwardly generalized to a large
class of quantum spin chains [68–70], to two component Bose
mixtures with spin, and to the XXZ spin chain with magnetic
field, which maps into the PT model [36].
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APPENDIX A: THE POKROVSKY-TALAPOV MODEL

The Hamiltonian density of the classical, one-dimensional,
Pokrovsky-Talapov model is a sine-Gordon model with a
spatially dependent cosine term

E =
∫ L

0
dx

[
1

2
(∂xθ−)2 − 2 cos(θ− − Qx)

]
. (A1)

Frequently, one performs a change of variables

� = θ− − Qx , (A2)

such that the energy becomes

E =
∫ L

0
dx

[
1

2
(∂x�)2 + Q∂x� − 2 cos�

]
, (A3)

where the spatial gradient term proportional to Q fixes
the density of solitons [1] and we left out a constant
term. The Pokrovsky-Talapov model hosts a commensurate-
incommensurate transition characterized by the onset of a
nonvanishing density of solitons occurring for Q > Qc where
Qc is the critical mismatch parameter, whereas for Q < Qc,
the field configuration is homogeneous. A qualitative way
to understand the commensurate-incommensurate transition,
is realizing that for large J [cf., Eq. (16); in Eq. (A1), we
have set J = 1], the potential tends to favour minima of
the potential, �n = 2nπ , with n an integer; on the other
hand for large Q the gradient term becomes the dominant
contribution to the energy and a field configuration following
the linear trend � � Qx is favored, on top of which a soliton
staircase structure establishes. The competition between these
two energetically different configurations leads to the onset of
the commensurate-incommensurate transition at Q = Qc.

In order to determine the ground-state field configuration,
we take the derivative of (39)

0 = δE

δθ−(x)
, (A4)

which leads to

0 = −∂2
x θ− + 2 sin(θ− − Qx) . (A5)

Changing again the variables to � = θ− − Qx we obtain the
equation

0 = ∂2
x � + 2 sin�, (A6)

where we have shifted sin� → sin(� + π ) in (A1), as also
done in Ref. [1].

Multiplying from the right-hand side with ∂x�, we obtain

0 = ∂x
[
1
2 (∂x�)2 + 2 cos�

]
. (A7)

Integrating the last equation, this yields

C

2
= 1

2
(∂x�)2 − 2 cos� (A8)
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with an integration constant C. Integrating once again results
in

x − x0 =
∫ �(x)

�(x0 )

d�√
C + 4 cos�

. (A9)

Since we consider an infinitely long system we can set without
loss of generality θ (0) = 0 and obtain

x =
∫ �(x)

0

d�√
C + 4 cos�

. (A10)

Solving this equation for �(x) leads to

�(x) = 2Am

(√
C/4 + 1 x,

2

1 + C/4

)
, (A11)

where the right-hand side is determined by inverse Jacobi
amplitude, Am(z, k), of argument x and index k.

1. lQ and location of the critical point

We insert the relation (A10) into the energy of the PT
model and consider the phase offset (	� = 2π ) given by the
injection of a single soliton in the system; we obtain

E/L = −2πQ +
∫ 2π

0
d�

√
C + 4 cos� = −2πQ

+ 2

[√
C − 4 E

(
8

4 − C

)
+ √

C + 4 E
(

8

C + 4

)]
,

(A12)

where E (·) is the complete elliptic integral of the second kind,
and the integration constant C has yet to be determined.

The location of the critical point Qc can be calculated deter-
mining when the “chemical potential” Q makes the solitonic
configuration energetically favouable [2]: normally the energy
of a soliton is higher than the minimal energy configuration,
En = 0, of a sine-Gordon field theory, corresponding to �n =
2nπ (field pinned at the minima of the cosine). This excess
of energy can be compensated by the Pokrovsky-Talapov
misfit, Q; analogously to a chemical potential, it can lower
the energy of a soliton, which can become a favorable energy
configuration when its energy equals that one of the field in
the commensurate phase. Since we set the latter equal to zero,
this corresponds at the vanishing of the expression in (A12):

2πQ = 2

[√
C − 4 E

(
8

4 − C

)
+ √

C + 4 E
(

8

C + 4

)]
(A13)

The length lQ diverges at C = 4, and it is defined as

l (C) =
∫ 2π

0

d�√
C + 4 cos�

. (A14)

Intuitively, this is a signature of the onset of the
commensurate-incommensurate transition, since, upon in-
creasing Q, the density of solitons increases and therefore
their mean spacing will decrease. This allows already to
determine the location of the critical value of Q; replacing
C = 4 into (A13), we find Qc = 4

√
2/π .

Alternatively, using the symmetry of the integrand, we get

l (C) = 2
∫ π

0

d�√
C + 4 cos�

. (A15)

Setting C = 4 + ε, with ε 	 1, we obtain

l (ε) = −
√
2

4
ln ε + . . . (A16)

On the other hand, we have from Eq. (A13)

Q = 1

2π

∫ 2π

0
du

√
4 + ε + 4 cos u (A17)

Close to the critical point, C = 4 + ε (with ε 	 1), we obtain

Q = 1

2π

∫ 2π

0

√
4 + 4 cos u

+ 1

4π

∫ 2π

0

du√
4 + ε + 4 cos u

ε + O(ε2). (A18)

The first integral defines Qc and the second integral yields

Q = Qc + l (ε)

4π
ε, (A19)

with Qc = 4
√
2/π . Solving (A16) for ε 	 1, leads to

ε = e− 4√
2

l (ε)
, (A20)

and inserting this result into Eq. (A19), we find

Q − Qc = 1

4π
l (ε)e− 4√

2
l (ε)

. (A21)

Solving for l (ε) close to criticality (ε 	 1). we obtain [71]

l (ε) ∝ ln
1

Q − Qc
. (A22)

This result implies that the density of the “kink condensate” ρ

(the inverse of the solitons’ spacing) vanishes logarithmically
close to the transition [1] with diverging derivative

ρ ∝
(
ln

1

Q − Qc

)−1

, Q � Qc; (A23)

it effectively grows linearly, ρ ∝ Q, for Q > 2Qc, as reported
in Ref. [1]. The density of solitons determine the size of
the steps in the solitonic staircase shown in Fig. 1, lQ ∝
1/ρ ∝ ln(1/(Q − Qc)). Over intervals of size lQ, the function
�(x) assumes practically constant value 2nπ and then over
an interval of size lK it jumps by 2π . In the regime where
the density grows linearly with the chemical potential, the
characteristic size of a soliton becomes then lQ ∼ 1/Q.

APPENDIX B: FINITE SIZE SCALING OF THE LOWEST
ENERGY BOGOLIUBOV EIGENVALUES

The right panel of Fig. 8 shows the 1/L linear scaling of
the low-energy eigenvalues in the symmetric sector of the
homogeneous phase.

In the left panel of Fig. 8, we plot the finite size scaling
of the low-energy eigenvalues in the incommensurate phase.
We observe 1/L scaling for certain ranges of L interrupted by
“jumps.” Such discontinuities are understood as new solitons’
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FIG. 8. Finite 1/L scaling of the lowest eigenvalues of the Bogoliubov spectrum in the inhomogeneous phase (left, Q = 2.1) and in the
symmetric sector of the homogeneous phase (right, Q = 0.9). The lowest energy eigenvalue crosses the horizontal axis around L � 60 in both
phases.

injections when L is increased (cf. with Figs. 3 and 4). This
injection of solitons leads to a readjustment of the background
field in the incommensurate phase and therefore to a shift in

the slope of the 1/L fit of the low-energy eigenvalues. This
represents an other imprint of the solitons on the quantum
properties of our model.
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