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Non-Gaussian correlations imprinted by local dephasing in fermionic wires
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We study the behavior of an extended fermionic wire coupled to a local stochastic field. Since the quantum
jump operator is Hermitian and quadratic in fermionic operators, it renders the model soluble, allowing inves-
tigation of the properties of the nonequilibrium steady state and the role of dissipation-induced fluctuations.
We derive a closed set of equations of motion solely for the two-point correlator; on the other hand, we find,
surprisingly, that the many-body state exhibits non-Gaussian correlations. Density-density correlation function
demonstrates a crossover from a regime of weak dissipation characterized by moderate heating and stimulated
fluctuations to a quantum Zeno regime ruled by strong dissipation, which tames quantum fluctuations. Instances
of soluble dissipative impurities represent an experimentally viable platform to understand the interplay between
dissipation and Hamiltonian dynamics in many-body quantum systems.
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The interplay of quantum many-body dynamics and de-
coherence is essential for understanding a broad range of
physical phenomena: From suppression of weak localization
of electrons due to coupling to phonons and electron-electron
interactions [1–4], to the realization of light-induced topolog-
ical phases [5–9], to the operation of quantum optical devices
[10], and to the implementation of quantum computers [11]
and simulators [12]. Competing effects of quantum entangle-
ment and decoherence are also at the heart of questions of
quantum control and quantum nondemolition measurements.
One of the most surprising recent findings in this field is
the effect of weak measurements on quantum fluctuations
and on the decay rate of an excited state into a bosonic
bath [13,14]. Depending on system parameters, this decay
rate can be either inhibited or enhanced by weak measure-
ments, with the two phenomena referred to as quantum Zeno
and anti-Zeno effects [15–20], respectively. Several powerful
techniques have been applied to the analysis of the interplay
of quantum dynamics and decoherence in the many-body
Zeno problem [22–26], including Lindblad quantum master
equations, memory kernel formalism, Keldysh diagrammatic
techniques, and renormalization group approaches [27–44].
Examples of quantum many-body systems with decoherence
that allow exact theoretical solutions and can be realized
experimentally are particularly valuable, since they enable
a nonperturbative analysis of competing effects of dissipa-
tion. So far, such systems—including Bethe ansatz solution
[45] of noisy tight-binding fermions [46], boundary driven
quantum spin chains [47,48], and non-Hermitian Richardson-
Gaudin magnets [49]—have been few and far between. On
the experimental side, modern solid-state and cold-atom
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platforms—including atomic BEC with local losses, disor-
dered trapped ion strings with dissipation facilitated transport
properties, and the realization of dissipative scanning-gate
microscopes with 6Li atoms—already enable investigation of
effects of dissipation both in the form of losses and of dephas-
ing [33,34,38,50–53].

In this work, we present an example of such a system, in
which a local stochastic field couples to the electron density
on a single site in a one-dimensional fermionic chain (see
Fig. 1). This system has recently been realized experimentally
[38]. Here we provide a theoretical analysis of this model and
make predictions which can be tested with currently available
experimental platforms.

Before entering the technical details of our work, we pro-
vide an overview of the key results. When a stochastic field
couples locally to the electron density, it introduces two op-
posing effects on fluctuations in the difference of the number
of particles between the left and right parts of the fermionic
chain. The stochastic field provides local heating and thus
enhances fluctuations; on the other hand, it performs “weak
measurements” of the electron number, which hinders parti-
cle propagation across the site with decoherence, suppressing
relative number fluctuations. We find that the competition
between these two effects leads to the existence of two dis-
tinct regimes of dynamics: For weak dissipation, number
fluctuations become enhanced with increasing decoherence;
in contrast, for strong dissipation, fluctuations become sup-
pressed. The two regimes are separated by a sharp crossover
displayed in Figs. 5(b) and 5(c). A special feature of the
local dephasing problem from the mathematical viewpoint is
that the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy is closed, meaning that the equation of motion for
a given n-point correlation function can be expressed through
correlators whose order is n or less; for instance, Eq. (3) repre-
sents the evolution of the two-body correlation function. Such
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FIG. 1. Sketch of the model. (a) A fermionic wire is stochasti-
cally driven by a local dephasing serving as continuous measure-
ments (the strength γ of dephasing is related to the measurement
frequency [21]). (b) Alternatively, the model describes a quantum dot
coupled to an infinite-temperature reservoir (embodying dephasing)
and to zero-temperature leads with finite bandwidth W (the degrees
of freedom of the wire). The Zeno physics manifests in the interplay
between the bandwidth W and measurement frequency γ .

a situation typically occurs for Gaussian systems [54], where
high-order correlators factorize in terms of the two-body
correlators. However, one does not expect the state to be Gaus-
sian. Indeed, for a given realization of the fluctuating field, the
state is Gaussian since the system evolves under a noninter-
acting Hamiltonian with time-dependent stochastic potential,
while after averaging over different realizations of the noise,
the state becomes non-Gaussian [55]. Figure 5(b) further sup-
ports such conclusion. This remarkable circumstance that the
BBGKY hierarchy is closed, despite the emergence of non-
Gaussian correlations, allows us to investigate the effects of
dissipation nonperturbatively.

Throughout this Rapid Communication, we develop sev-
eral complementary approaches for solving the model in
Fig. 1. Let us start with the formalism of the quantum master
equation (QME). The fermionic wire is described with the
following Hamiltonian:

Ĥ0 =
∑
k

ξk ĉ
†
k ĉk, ξk = −2J cos k − μ. (1)

The operator c(†)
k annihilates (creates) a fermion with momen-

tum k (the distance between neighboring sites is set to unity).
μ is chemical potential. J is the hopping between nearby sites
and it sets the unit of energy. The Planck constant h̄ = 1
throughout this Rapid Communication. The density matrix
evolves according to (QME)

dρ̂

dt
= −i[Ĥ0, ρ̂] + γ

(
L̂ρ̂L̂† − 1

2
{L̂†L̂, ρ̂}

)
, (2)

where L̂ = n̂0 = 1
N

∑
p,q ĉ

†
pĉq is the quantum jump operator

representing the local dephasing. It is worth emphasizing
that, although the Hamiltonian (1) is noninteracting, the com-
plexity of the underlying evolution is due to local quartic
“dissipative interactions” arising from the second term in
Eq. (2). Significant simplification occurs by noting that L̂† =
L̂ and the dynamics of any observable Ô can be written as

d

dt
O = d

dt
trÔρ̂ = i〈[Ĥ0, Ô]〉 + γ

2
〈[L̂, [Ô, L̂]]〉.

As long as the Hamiltonian and the quantum jump op-
erator are both quadratic in the fermionic operators, it
follows that the evolution of any n-point correlation function
�
k1,k2,...,kn
k′

1,k
′
2,...,k

′
n
(t ) ≡ 〈ĉ†

k1
ĉk′

1
· · · ĉ†

kn
ĉk′

n
〉 can be expressed through op-

erators whose order is n or less; in other words, we can write
down a closed system of equations of motion for any given
order of interest [56]. In particular, for �kk′ (t ) ≡ 〈ĉ†

k ĉk′ 〉 we

FIG. 2. Numerical simulation of Eq. (3). (a) Density profile
n(x, t ) ≡ �xx (t ) at different times as a function of x. Note a ballistic
density front emitted due to the dissipative impurity located at the
origin. Here we fix γ = J . The inset shows the analytical predic-
tion for the algebraic decay of spatial correlations when the system
reaches the steady state. (b) and (c): Fermionic density at the origin
relaxes as t−2 towards the NESS. In the regime of strong dissipation
(II), dynamics is exponentially damped at short times [inset of panel
(c)], and has a superimposed oscillatory behavior at late times.

get

d

dt
�kk′ (t ) = i(ξk − ξk′ )�kk′ + γ

N2

∑
p,q

�p,q

− γ

2N

∑
q

(�k,q + �q,k′ ). (3)

Note that the total number of fermions Ntot = ∑
k �kk is con-

served, Ṅtot = 0. Although we are able to write down a closed
equation of motion for the two-body correlation function, we
find that the many-body density matrix is genuinely non-
Gaussian: Even if the initial state, such as a filled Fermi sea,
is Gaussian, the local dephasing will imprint non-Gaussian
correlations. A possible way to see this is to investigate
higher-order correlation functions. For example, in Ref. [57]
we demonstrate, by explicitly deriving the corresponding
equation of motion, that the four-point correlator cannot be
factorized (using Wick’s theorem) in terms of the two-body
correlation functions. The mentioned equation turns out to
be a challenge for numerical treatments of extended systems,
motivating the development of an alternative approach for
investigating higher-order correlators below.

We turn to explore Eq. (3) both numerically and ana-
lytically. In Fig. 2, we plot the evolution of the fermionic
density profile nx(t ): The heater locally perturbs the system,
resulting in the emission of a ballistic density front (its ve-
locity equals to the maximum group velocity vm = 2J); at
the same time, in the vicinity of the dissipative impurity, a
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FIG. 3. (a) Fraction of fermions left inside the Fermi pocket, f ,
evaluated at longest simulation times, as a function of the dissipation
strength γ , demonstrating the Zeno crossover. Inset: Momentum
distribution of fermions nk ≡ �kk at t = 0 and at t = N/2vm, show-
ing that the heater results in the redistribution of fermions towards
high-momenta states; note that the Fermi edge (we fix kF = π/4) is
preserved. (b) A finite density of fermions at x = 0 remains in the
NESS even at strong dissipative rates; the numerical solution (dia-
monds) is on top of the analytical prediction (solid line). (c) Local
DOS at site x = 0 in the NESS as a function of frequency.

nonequilibrium steady state (NESS) forms [58]. To investigate
NESS properties numerically, we let the system evolve up to
times ∼N/2vm. In momentum space, since the total energy
is not conserved, we find that the initial Fermi sea becomes
redistributed towards large-momenta states, as shown in the
inset of Fig. 3(a). Interestingly, the system preserves the Fermi
edge, and its distribution function becomes nonthermal. We
characterize the cumulative effect of the heater by the fraction
f of fermions removed from the Fermi pocket. Figure 3(a)
shows that f , evaluated at the longest simulation time t =
N/2vm, exhibits a crossover as a function of γ , switching from
the anti-Zeno regime at weak dissipation to the Zeno regime
at strong dissipation.

We now discuss the approach towards the NESS. As shown
in Figs. 2(b) and 2(c), our numerical analysis indicates that
in regimes of both weak (I) and strong (II) dissipation, the
system exhibits t−2 relaxation (on top of oscillatory behavior);
see [57] for further details. Qualitative differences are present
in the intermediate-time dynamics, as one can inspect from
Figs. 2(b) and 2(c): For stronger dissipation, the density at
the origin demonstrates slower evolution. Indeed, strong noise
drives out of resonance hopping processes involving the dissi-
pative site, implying a “trapping” of particles jumping to the
origin and a suppression of transport across this site.

FIG. 4. (a) Schematics of the Dyson series for the retarded
Green’s function [cf. Eq. (5)]; and (b) for the Keldysh Green’s func-
tion [cf. Eq. (6)]. (c) The self-energy obtained by averaging over the
noise of the Dyson equations (5) and (6).

Although the dynamics encoded in Eq. (3) can be effi-
ciently simulated numerically, they represent a challenge for
analytical solutions. Remarkably, diagrammatic field theory
provides an alternative derivation of Eq. (3), and allows one to
extract analytically the NESS properties. We start by noticing
that the Linbladian evolution in Eq. (2) is equivalent to the
stochastic Schrodinger equation (SSE) with Hamiltonian:

Ĥξ (t ) = Ĥ0 + V̂ (t ), V̂ (t ) = ξ (t )n̂0, (4)

where ξ (t ) is a white noise with 〈ξ (t1)ξ (t2)〉ξ = γ δ(t1 − t2).
To compute the dynamics of any observable Ô, one needs to
perform averaging over the noise:

O(t ) = 〈Oξ (t )〉ξ , Oξ = tr(Ôρ̂ξ ),

where ρ̂ξ is the density matrix for a given noise realization
ξ (t ). The conservation of the total number of fermions follows
from [N̂tot, Ĥξ (t )] = 0. The initial density matrix at t = 0 is
chosen to be a filled Fermi sea.

We now develop a nonequilibrium diagrammatic tech-
nique inspired by the treatment of disordered fermionic
systems [59]. For the retarded Green’s function, defined
as GR

tt ′ (k, k
′) ≡ −iθ (t − t ′)〈{ĉk (t ), ĉ†

k′ (t ′)}〉, the Dyson series
[59] reads [see Fig. 4(a)]

ĜR =
∞∑

m,n=0

(
ĜR

0 ◦ V̂ )m ◦ ĜR
0 ◦ (

V̂ ◦ ĜR
0

)n
. (5)

Here ĜR
0 is the unperturbed retarded Green’s function. Be-

cause the underlying problem is far from equilibrium, we
will also need to compute the Keldysh Green’s function,
GK

tt ′ (k, k
′) ≡ −i〈[ĉk (t ), ĉ†

k′ (t ′)]〉:

ĜK =
∞∑

m,n=0

(
ĜR

0 ◦ V̂ )m ◦ ĜK
0 ◦ (

V̂ ◦ ĜA
0

)n
. (6)

An element of this series is schematically depicted in
Fig. 4(b). Because the noise is local in space and time, av-
eraging results in the self-energy known as a self-consistent
Born approximation (SCBA), shown in Fig. 4(c), which in
our case holds exactly. For further technical details we refer to
Ref. [57], where, in particular, we show that the equation for
the equal-time Keldysh Green’s function reduces to Eq. (3).
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From (5), we compute the NESS retarded Green’s function
in the frequency domain [Eq. (S12) in Ref. [57]], allowing
one to extract, for example, the local density of states (DOS)
at the impurity site ν0(ω) ≡ − 1

π
Im GR

ω(0, 0) [see Fig. 3(c)].
For γ 	= 0 it develops tails at high frequencies; the presence
of low-energy modes confirms the aforementioned power-law
dynamics nearby the NESS [see Figs. 2(b) and 2(c)]. This
structure of the DOS can be directly measured in state-of-the-
art solid-state experiments, which can access the dynamics
of nonequilibrium quantum impurities [60]. Similarly, from
Eq. (6), we derive an expression for the NESS Keldysh
Green’s function [Eqs. (S15) and (S17) in Ref. [57]], from
which we compute, for instance, the spatial profile of the
fermionic density. Figure 3(b) shows that the analytical ex-
pression for the density at the origin, n∞

0 , is in remarkable
agreement with the result numerically computed from (3).
For kF = π/4 (kF = 3π/4), n∞

0 is a monotonically decreasing
(increasing) function of γ , and it remains finite even for very
strong dissipation. It is compelling that different single-body
observables, such as n∞

0 and f , exhibit qualitatively distinct
behavior [see Figs. 3(a) and 3(b). Although dissipation occurs
locally in space, we find that in the NESS, the fermionic
density profile demonstrates long-range behavior following
a x−1 fit with superimposed Friedel’s oscillations [see inset
of Fig. 2(a)]. These two features are related to the fact that
the system preserves the Fermi-edge singularity, shown in the
inset of Fig. 3(a). This intrusive effect reminds one of the situ-
ation of a static impurity [61,62], and might be of relevance for
experimental manipulations of quantum many-body systems
subject to local dissipation.

We now turn to numerical simulation of the SSE which
offers a complementary physical viewpoint. An infinitesimal
time step is performed via “Trottorizing” the evolution op-
erator: Û ξ

t+δt,t ≈ e−(i/2)δt Ĥ0e−iδWn̂0e−(i/2)δt Ĥ0 with a time step
δt � min{γ −1, J−1}. By δW we denote a Wiener process
[63] with 〈δW δW 〉 = γ δt . Figure 5(a) shows that the typical
evolution of the density at the origin exhibits pronounced
fluctuations and is far from the Linbladian result obtained
from Eq. (3). Only after averaging over many (Nξ ∼ 104 for
γ = J) noise realizations the two approaches start to match
[57]. This physical picture suggests that these pronounced
fluctuations dominate the aforementioned algebraic behavior
and nonequilibrium crossover.

Simulations of the SSE allow direct investigation of cor-
relation functions associated with density fluctuations—a
formidable task for both the QME and diagrammatic methods.
Specifically, we study two correlators:

�
ξ
LR ≡ 〈N̂LN̂R〉 − 〈N̂L〉〈N̂R〉, �ξ ≡ 〈(N̂L − N̂R)2〉. (7)

N̂R ≡ ∑l
i=1 n̂i is the total density of fermions on l sites on

the right of the impurity (we fix l = 5). Analogously, we
define the total density of fermions on the left, N̂L. Figure 5(b)
shows the difference between the dynamics of the noise-
averaged correlator 〈�ξ

LR〉ξ and the evolution of the same
quantity assuming the system in a Gaussian state. We find that
non-Gaussian correlations, imprinted by the local dephasing
channel, are strongest at intermediate times, when the system
is already far from the filled Fermi sea, but did not yet reach

FIG. 5. Numerical simulations of the SSE. (a) Evolution of the
density at the origin n0,ξ (t ) for three different noise realizations
(N = 200, γ = J , and kF = π/4). We find that the typical instance
of dynamics is far from the average, n0(t ). (b) Deviation of the
noise-averaged correlator 〈�ξ

LR〉ξ [cf. Eq. (7)] from its expectation
value assuming a Gaussian state, demonstrating the development of
non-Gaussian corrections. (c) and (d) Two fluctuation correlation
functions, �LR and �, exhibit the Zeno crossover in the NESS.
Standard deviation in both observables is less than the “symbol” size.
Inset of (c) The dependence of � on temperature is monotonous in
equilibrium, further indicating that the heating effect is suppressed at
strong dissipation.

the NESS, which turns out to also be non-Gaussian (a similar
conclusion for the problem of global dephasing is discussed
in Ref. [64]). The non-Gaussian correlations are also more
pronounced near the site with decoherence, as we show in
Ref. [57]. Deviations from Gaussianity are at reach in state-of-
the-art cold-atom experiments, as recently demonstrated in the
measurement of higher-point correlation functions of phase
profiles in a pair of tunnel-coupled one-dimensional atomic
superfluids [65].

We now focus on NESS properties. At equilibrium, these
correlators depend monotonically on temperature [see inset
of Fig. 5(d)]. After a relatively short time [t0 ≈ 30J−1 for
γ = J; see Fig. 5(b)], both observables �

ξ
LR and �ξ demon-

strate saturation, indicating proximity to the NESS. This fact
suggests that by averaging over both time and noise, �(LR) ≡
1

T

∫ t0+T

t0

dt〈�ξ
(LR)〉ξ , one probes the NESS correlations. Here

we fix Nξ = 103 and T = 60J−1. Figures 5(c) and 5(d) show
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that in the NESS such correlations exhibit a crossover around
γ = J: For small γ � J , the equilibrium cartoon in the in-
set of Fig. 5(d) suggests that the temperature of the system
increases with the heater strength, in contrast to the case of
strong γ � J , where it starts to decrease. This inability to
heat up the system for strong dissipation is the essence of
the quantum Zeno effect. Our procedure also suggests the
feasibility of experimental verification of this result (note that
it is already accessible with cold-atom platforms [34] to probe
correlations after ∼20J−1).

The Lindblad QME illustrates that the BBGKY hierar-
chy is closed, which mirrors at a diagrammatic level in the
exactness of the SCBA. This circumstance allows one to
extract analytically the NESS properties and, in particular,
to demonstrate the onset of algebraic spatiotemporal corre-
lations. On the other hand, the simulations of the SSE enable
one to investigate the effects of fluctuations nonperturbatively.
We have found that these fluctuations exhibit non-Gaussian
correlations and behave nonmonotonically as a function of
the dissipation strength (this manifests in the Zeno crossover

discussed throughout this Rapid Communication). It would
be interesting to extend this program to interacting systems
both of fermionic and bosonic nature, in view of applications
to solid-state and cold-atom experiments. As an example,
the question of fluctuation statistics in the setup of coupled
Josephson-junction arrays with local dissipation [39] is par-
ticularly promising.
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