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Quantum generative model for sampling many-body spectral functions
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Quantum phase estimation is at the heart of most quantum algorithms with exponential speedup. In this paper
we demonstrate how to utilize it to compute the dynamical response functions of many-body quantum systems.
Specifically, we design a circuit that acts as an efficient quantum generative model, providing samples out of
the spectral function of high rank observables in polynomial time. This includes many experimentally relevant
spectra such as the dynamic structure factor, the optical conductivity, or the NMR spectrum. Experimental
realization of the algorithm, apart from logarithmic overhead, requires doubling the number of qubits as
compared to a simple analog simulator.
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I. INTRODUCTION

Quantum computers possess the ability to solve prob-
lems that are intractable to classical ones. They can have
superpolynomial speedup over the best known classical
algorithm—so-called quantum supremacy [1]. In order to
demonstrate this supremacy attention has shifted from func-
tion problems such as implementing Shor’s algorithm [2], to
sampling problems [3], as it appears that one does not need
a full universal quantum computer to get a quantum speedup
[4–6]. For example, sampling from the output distributions of
random quantum circuit, as recently performed on Google’s
Sycamore chip [7], classically requires a direct numerical
simulation of the circuit, with exponential computational cost
in the number of qubits.

While these random circuits have the virtue of being
theoretically under control, meaning there is more confi-
dence about the fact that they are hard to sample from than
there is about factoring being hard, they are of limited practi-
cal use. They don’t solve any problem other than providing
evidence for quantum supremacy. Here, we trade some of
the hardness for practical usefulness and provide a quantum
circuit to obtain samples out of the spectral function of oper-
ators evolving under Hamiltonian dynamics in a many-body
system. The problem essentially belongs to the class DQC1
[8], which is believed to be strictly smaller than BQP, while
still containing classically intractable problems [9,10].

Spectroscopy is an important tool for characterizing con-
densed matter and molecular systems. There is an entire
plethora of techniques, each sensitive to different observables
and in different parts of the energy spectrum. Many of those
measurements can be formulated as a Fourier transform of
some time dependent correlation function. Take for exam-
ple, optical conductivity, which probes the current-current

correlations σ (ω) = 〈 j(ω) j(−ω)〉/iω or inelastic neutron
scattering which measures the density-density correlations
Sk (ω) = 〈ρk (ω)ρ−k (−ω)〉, etc.. Understanding the behavior
of these correlation functions is one of the central goals in
quantum many-body physics. For example, they allow us to
probe collective excitations of the system and to character-
ize universal dynamics close to quantum phase transitions
[11]. Furthermore, they can be a powerful tool for study-
ing nonequilibrium dynamics [12–15]. On a computational
level, obtaining dynamical response functions is inherently
difficult, as the coherent many-body dynamics induces large
nonlocal correlations [16,17]. The exponential dimension of
the underlying Hilbert space precludes exact methods and for
large systems one typically has to rely on approximate meth-
ods such as density-matrix renormalization group (DMRG)
[18], dynamical mean-field theory (DMFT) [19], semiclassi-
cal phase space methods [20], or even time-dependent density
functional theory (DFT). Each of these methods provides an
accurate description for a particular class of problems but they
all have limitations, e.g., long-range correlations are poorly
captured by DMFT, and DMRG becomes intractable at late
time or in higher dimensions. While much progress has been
made in extending the regime of validity of all these methods,
a universal solution to the quantum simulation problem does
not exist as long as P �= NP [4,21].

Here we present a method to efficiently extract samples out
of spectral functions using a quantum computer. The method
requires a number of qubits that is proportional to the volume
of the system. Under certain constraints—which are met in
most of the physically relevant situations—the algorithm runs
in polynomial time. We focus on the infinite temperature cor-
relation function but extensions to finite and zero temperature
are straightforward and briefly discussed at the end. Note
that, even at infinite temperature, strong correlations can lead
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to many interesting phenomena such as anomalous diffusion
[22,23], impurity induced correlations [24], many-body lo-
calization [25], and excited state quantum phase transitions
[26]. Moreover, some spectroscopic techniques, such as elec-
tron spin resonance (ESR) [27] and nuclear magnetic spin
resonance (NMR) [28], are naturally described by infinite
temperature ensembles.

The paper is structured in the following way. First, we
discuss how to extract the spectrum by performing quantum
phase estimation on a special purified state whose precise
form depends on the operator of interest. It is this part of the
algorithm which is responsible for the speedup. The fact that
the entire operator content is represented in a single pure state
eliminates the need to sample over all initial states, making
it more efficient than performing analog Ramsey interferom-
etry [29]. Second, we return to the question of preparing
the required initial state and show that it does not degrade
the speedup. We provide an explicit algorithm to construct the
required states by postselection on an ancilla qubit. Finally,
we discuss extension to zero and finite temperature states.

II. QUANTUM GENERATIVE MODEL

Consider the infinite temperature two-time correlation
function:

S(t ) = 1

Tr[1]
Tr[eiHtOe−iHtO], (1)

of an operator O, undergoing dynamics according to Hamil-
tonian H . In particular, we are interested in obtaining samples
out of its spectral function:

�γ (ω) = Re
∫ ∞

0
dteiωt−γ t S(t ), (2)

where γ is the effective linewidth.
We proceed by purifying [30–32] a normalized version of

the operator O2, acting on the Hilbert space H, into a pure
state on an extended Hilbert space H ⊗ H:

|O〉 = N−1/2
2N∑
i=1

Oi|i〉 ⊗ |i〉, (3)

where Oi and |i〉 are the eigenvalues and eigenvectors of O,
respectively. The normalization is simply N = TrO2. Next,
we perform quantum phase estimation on the unitary which
propagates one of the two copies with the actual Hamiltonian
H and the other copy with −H , such that a phase difference
accumulates between the copies over time. If we denote

H =
2N∑
n=1

εn|En〉〈En|, (4)

then quantum phase estimation on the state |O〉 results in
the state:

|�〉 =
2N∑

n,m=1

2−l/2
2l−1∑
x=0

cn,me
i	(εn−εm )x|En〉 ⊗ |Em〉 ⊗ |x〉,

with cn,m =
∑

i 〈En|i〉〈Em|i〉Oi√
N

. (5)

Here l denotes the number of ancilla qubits used to per-
form the quantum phase estimation and |x〉 denotes the
computational basis state of the ancilla given by the binary
representation of x, e.g., x = 2 implies |0 . . . 010〉. Finally
	 denotes the effective time for which the control (phase
estimation) qubit is coupled to the system. See Fig. 1 for a
circuit representation. Performing an inverse quantum Fourier
transform [2,32] on this state one arrives at:

|�QFT〉 =
2N∑

n,m=1

2l−1∑
k=0

cn,mA
k
n,m|En〉 ⊗ |Em〉 ⊗ |k〉,

withAk
n,m = 1

2l

2l−1∑
x=0

exp

[
i
2π

2l

(
	2l

2π
(εn − εm) − k

)
x

]
.

Finally a measurement is performed on the phase estimation
qubits in the computational basis, see Fig. 1. The probability
to find the control bits in state | f 〉 is simply given by:

P( f ) =
2N∑

n,m=1

|cn,m|2∣∣Af
n,m

∣∣2 (6)

Assuming time-reversal symmetry of the Hamiltonian H and
operator O, one finds

|cn,m|2 = |〈En|O|Em〉|2
Tr[O2]

. (7)

This is exactly the (normalized) golden rule transition rate
between energy eigenstates. Moreover, the second part in
expression (6) is a function that concentrates around f =
	2l (εn − εm)/2π , i.e.,

∣∣Af
n,m

∣∣2 = 1

4l
sin2

[
π

(
	2l

2π (εn − εm) − f
)]

sin2
[

π
2l

(
	2l
2π (εn − εm) − f

)]
� sinc2[

	2l

2π
(εn − εm) − f ], (8)

with sinc(x) = sin(πx)/πx. Consequently, for carefully cho-
sen parameters the output distribution of the phase estimation
qubits is exactly the desired spectral function: P( f ) ∼
�γ (ω	2l/2π ). A proper spectral measurement requires:

1

γ
� 	2l

2π
� 2l − 1

ωmax
. (9)

The first inequality expresses the fact that one at least
needs to resolve frequencies at a better level than the effec-
tive linewidth γ . The second simply states that a minimal
amount of bits are required to resolve the bandwidth ωmax =
max(εn − εm). With l bits, there are 2l configurations while
the number of distinguishable peaks is ∼ωmax/γ , conse-
quently the number of bits should scale like

l ∝ log
ωmax

γ
. (10)

For any problem in which the bandwidth scales polynomial
with the system size N and for which the linewidth decreases
algebraically in the system size, the number of phase estima-
tion qubits scales logarithmically in N . Note that this is the
case in almost all physically relevant situations. First, for local
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FIG. 1. Quantum circuit. Quantum phase estimation is performed on a purified operator. The purified state can be prepared by entangling
two copies with an ancilla control qubit and postselecting the result on outcomes |1〉, see Fig. 2. A phase difference between the two copies
appears because each phase estimation bit propagates one copy according to U and the other as U †. The output distribution after quantum
Fourier transform is the spectral function.

models, the bandwidth simply scales linearly in the system
size and even systems with all-to-all interactions only have
quadratic scaling of the bandwidth with system size. Second,
with a few exceptions, one is typically only interested in
studying the behavior of the system for a time T which is
polynomial in the system size. In that case, an algebraically
small linewidth should be sufficient. Finally, 	 ≈ 2π/ωmax,
which is not unreasonable for polynomial bandwidth. Note
that it appears that we need O(l ) gates to apply the controlled
unitaries in Fig. 1, however all those gates commute and can
in principle be done in parallel. The last gate can nonetheless
not be implemented in the same physical time as the first,
while the first gate only takes a time O(	), the last gate
requires a time of O(γ ). A standard implementation of QFT
takes O(l2) gates [32], but more sophisticated versions only
requireO(l log l ) gates [33]. Therefore the computational time
scales is at worst O(γ −1 + l2) or O(ωmax/γ + l2) if one has
to decompose the Hamiltonian H into two-qubit gates.

III. INITIAL STATE PREPARATION

The efficiency of the above procedure hinges on the abil-
ity to prepare the initial state |O〉. We provide an explicit
probabilistic method to prepare |O〉 out of a product state by
postselecting on the measurement outcome of an ancilla qubit.
First of all note that, if operator O would be of low rank, the
above procedure would be superfluous. In the latter case, one
could simply extract the two-point function (1) by evolving
each of the eigenvectors of O. Only rk(O) states would have
to be propagated, so it can be done in polynomial time as
long as the rank is polynomial in the system size. We wish
to obtain a method for operators that have no, or only small,
rank deficiency.

Let us start by preparing a maximally entangled pair state

|ψEP〉 =
2N∑
i=1

1√
2N

|zi〉|zi〉, (11)

and try to project the system to the desired state |O〉;
note that |O〉 ∝ O ⊗ 1|ψEP〉. The creation of the entangled
pair state |ψEP〉 is relatively easy; it is simply a product
state of Bell pairs between the system and its copy. It
can be constructed out of a product state in constant time,
see Fig. 2.

A single control qubit can now be used to apply
a controlled unitary rotation, with the action on the
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FIG. 2. State preparation scheme. An initial entangled pair states
is created between two N-qubit registers. Next, one of the two copies
is connected to an ancilla control qubit, which is placed in an equal
superposition of z states, i.e., both are evolved for some time φ under
the Hamiltonian, H = O(σ z

a + 1)/2. Performing another Hadamard
gate on the ancilla and postselecting the outcome on |1〉, the entan-
gled pair state will be transformed into the desired |O〉 state. The
success probability of the procedure is determined by the ratio of the
typical value of O2 to its maximal value O2

max.
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system being:

U (φ) = exp(iφO) ⊗ 1. (12)

By applying a Hadamard gate on the control bit before and
afterU , the combined state becomes:

|ψ〉 = 1
2 (1 +U (φ))|ψEP〉|0〉 + 1

2 (1 −U (φ))|ψEP〉|1〉. (13)

Measuring the control qubit in the computational basis, one
finds it in the |1〉 state with probability

P1(φ) = 〈ψEP| sin2 (φO/2)|ψEP〉. (14)

At the same time, the fidelity between the target state |O〉 and
the postselected state |ψ1〉 becomes

F (φ) = |〈O|ψ1〉|2 = |〈OU (φ)〉|2
〈O2〉〈4 sin2 (φO/2)〉 , (15)

where the averages are in the infinite temperature state |ψEP〉;
without loss of generality we assumed O to be traceless. The
fidelity tends to 1 when φ → 0, however, at the same time
the acceptance probability also goes down. To be efficient, we
need to achieve a fidelity F = 1 − ε with a probability that
is at worst algebraically small in N . For sufficiently small φ,
we find

P1 = φ2

4

〈
O2

〉 + O(φ4), (16)

while

F = 1 − φ2

4

(
〈O4〉
〈O2〉 − 〈O3〉2

〈O2〉2
)

+ O(φ4). (17)

Consequently, as long as higher order contributions can be
neglected, one gets a fidelity better than 1 − ε by setting
φ2 = ε〈O2〉/〈O4〉, resulting in success with probability

P1 ≈ ε
〈O2〉2
〈O4〉 � 〈O2〉

O2
max

� ε
rk(O)

2N

(
Omin

Omax

)2

, (18)

where Omax is the largest singular value of O and Omin is
the smallest nonzero singular value. For most physical ob-
servables, such as those comprised of sums of local terms,
the fourth moment simply scales as the square of the sec-
ond, i.e., 〈O4〉 ∝ 〈O2〉2. Hence, for all those observables the
state can be prepared in a constant time of O(1/ε). Addi-
tionally, it is sufficient that the operator only has polynomial
rank deficiency and polynomial scale separation between its
smallest and largest singular value, to be able to generate the
state in polynomial time. Some simple eigenstate distributions
are discussed in Fig. 3. Finally, instead of the probabilistic
preparation scheme, the state can also be prepared in a unitary
way. Adopting a recent proposal [34,35], which combines a
Grover diffusion operator with QAOA, it is possible to pre-
pare the desired state with a high fidelity at a rather small
depth, e.g., all distributions discussed in Fig. 3 can be pre-
pared with a fidelity greater than 99% with a shallow p = 2
Grover-QAOA [34].

IV. DISCUSSION

Even at infinite temperature, the dynamical properties
of operators evolving under a many-body Hamiltonian are

FIG. 3. Preparation efficiency fidelity between the post-selected
state |ψ1〉 and the target state |O〉 decays with the rotation angle φ

of the controlled unitary rotation U (φ) (full lines). Similarly, the
success probability increases from 0 to 1/2 when the angle increases
(dashed lines). Different curves show expressions 15 and 14 for dif-
ferent eigenvalue distributions ofO, i.e., results are shown forWigner
semicircle, uniform, arcsine, and Gaussian eigenvalue distributions.
Each of these distributions has a success probability P = c(1 − F )
in a broad region of φ’s around zero. The constant c = O(1) for all
distributions, i.e., 1/2, 5/9, 2/3, and 1/3 for the semicircle, uniform,
arcsine, and Gaussian, respectively.

theoretically interesting. In particular their spectral function
provides information about the universal behavior of the sys-
tem [17,36]. Both the high and low frequency behavior of
the spectral function is universal and while the former gives
insight into the Lyapunov exponent of the operator, the latter
provides information about the diffusion constant.

Apart from theoretical interest, there is at least one relevant
problem which is effectively at infinite temperature, namely
nuclear magnetic resonance (NMR) spectroscopy. In NMR
one measures the response of the nuclear spins of the system
placed in high magnetic field to an external drive, i.e., O =∑N

i=1 σ z
i . These systems are not isolated from the environ-

ment, yet have relatively long but finite coherence time. As a
consequence, γ is finite and P1 ∼ 1/ε and the entire algorithm
runs in a time t = O(ε−1 + γ −1 + l2), which to leading order
in N is log2 N .

Finally, it’s interesting to extend the present results to finite
and zero temperature. There was nothing specific about the
phase estimation scheme; one simply has to purify a differ-
ent operator. At zero temperature, expression (3) has to be
replaced with

|O〉0 = 1√
〈O2〉O

|ψ0〉 ⊗ |ψ0〉. (19)

If the ground state |ψ0〉 can be efficiently prepared, the prepa-
ration of |O〉0 might continue as before, with a similar success
rate. One only has to replace the expectation in (14) with
ground state expectation values. Consequently, for local ob-
servables we still expected P1 = O(1/ε). Note that the state
|O〉0 is a product state between the system and the copy,
hence the copy only serves as a reference for the phase. One
can eliminate the copy entirely by first extracting the ground
state energy, resulting in an approach similar to Ref. [37].
Finally, in order to sample from any finite temperature spectral
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function, one simply has to replace the maximally entan-
gled pair state |ψEP〉 with the less entangled purification of a
Gibbs state:

|ψβ〉 = Z−1/2
∑
n

e−βεn/2|En〉 ⊗ |En〉, (20)

such that |O〉β ∝ O|ψβ〉; it clearly tends to the zero and in-
finite temperature state for large and small β, respectively. If
the purified Gibbs state can be made efficiently, the algorithm
is just as efficient as before. Whether or not this is possible de-
pends entirely on the problem at hand, i.e., a QMA-complete
problem might have been embedded in the Hamiltonian, im-
plying it cannot take less then exponential time. On the other
hand, many physically relevant problems are expected to be
less hard. At zero temperature, one can imagine an adiabatic
preparation procedure and as long as there is no exponential
gap closing this should work in polynomial time. For |ψβ〉,
one might have to resort to numerical optimal control methods
to find efficient state preparation schemes [38,39].

Finally, we briefly comment on the effect of noise
and gate errors on spectrum sampling. One important as-
pect of implementing our proposal on currently available
quantum platforms is finding efficient ways to combine
Trotterization, single, and two qubit gates to realize rele-

vant many-body Hamiltonians. For example, modeling NMR
spectra of molecules requires implementing SU(2) symmetric
spin interactions �σi �σ j [40], whereas most platforms have only
one natural two qubit gate, e.g., σ x

i σ x
j in ion chains based

systems [41] and σ z
i σ

z
j in Rydberg systems [42]. When de-

signing platform specific protocols one needs to find optimal
time steps and gate sequences that balance Trotterization error
with errors accumulating due to decoherence. This will result
in a finite accuracy and precision of computed spectra, which
needs to be at least as good as the linewidth of the available
experimental data to which it is compared if we use the circuit
as a generative model. For an in-depth discussion on quantum
phase estimation with noisy systems, we refer the reader to
Ref. [43], but we stress that one should really envision code-
signing the entire circuit with the hardware [44,45].
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V. Vuletić, and M. D. Lukin, Nature (London) 551, 579
(2017).

[43] T. E. O’Brien, B. Tarasinski, and B. M. Terhal, New J. Phys. 21,
023022 (2019).

[44] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt,
K. A. Landsman, K. Wright, and C. Monroe, Proc. Natl. Acad.
Sci. USA 114, 3305 (2017).

[45] Details of error analysis for specific quantum platforms will be
presented in future publications.

014301-6

https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/PhysRevLett.111.147205
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.2307/2032342
http://arxiv.org/abs/arXiv:2006.15093
http://arxiv.org/abs/arXiv:2006.00354
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevC.100.034610
https://doi.org/10.1103/PhysRevA.92.062343
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1038/s42256-020-0198-x
https://doi.org/10.1103/PhysRevA.100.022332
https://doi.org/10.1038/nature24622
https://doi.org/10.1088/1367-2630/aafb8e
https://doi.org/10.1073/pnas.1618020114

