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We introduce an equation for density matrices that ensures a monotonic decrease of the free energy and
reaches a fixed point at the Gibbs thermal. We build a variational approach for many-body systems that can
be applied to a broad class of states, including all bosonic and fermionic Gaussian, as well as their
generalizations obtained by unitary transformations, such as polaron transformations in electron-phonon
systems. We apply it to the Holstein model on 20 × 20 and 50 × 50 square lattices, and predict phase
separation between the superconducting and charge-density wave phases in the strong interaction regime.
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In thermal equilibrium, the Gibbs state [1] can be
obtained by using a purification [2] Φ and evolving a
maximally entangled state according to

dτjΦi ¼ −½H − hðτÞ�jΦi; ð1Þ

for a time τT ¼ 1=2T, where H is the system Hamiltonian,
and hðτÞ ¼ hΦjHjΦi. For many-body systems, doing this
exactly is not possible due to the exponential growth of the
number of necessary parameters with the system size. One
way to overcome that is to restrict oneself to a family of
states ΦðξÞ that is easy to describe and mimics the Gibbs
state. One can then use the imaginary-time variational
method (ITVM) [3] to determine ξðτÞ by restricting
Eq. (1) to that family. This is the method of choice in tensor
networks [4,5], where it has provided a useful description of
many-body problems at finite temperature in one dimension.
A key feature of Eq. (1) is that the mean energy hðτÞ

monotonically decreases with τ. In the ITVM, this is
inherited by the equations obeyed by ξðτÞ if one uses
differential geometry methods to deduce them from Eq. (1)
[6]. This is particularly useful for zero temperature studies
[7], where ITVM becomes a truly variational method. At
finite temperature, however, the Gibbs free energy is the
right quantity to characterize the system. Unfortunately,
Eq. (1) does not ensure that it decreases, and thus ITVM is
not a truly variational method.
In this Letter, we introduce an equation that extends

Eq. (1) to finite temperatures, ensuring that the free energy
decreases with τ: regardless of the initial density operator,
the system ultimately flows to the Gibbs ensemble. We use
a purification to express it as in Eq. (1) and show how to
apply it to families of states, obtaining a truly variational
method which we call the free energy flow based

variational method (FEFVM). It provides us with the
natural extension of the standard ITVM for finite temper-
atures. We first apply our method to a textbook example to
illustrate how it circumvents the limitations of ITVM. This
is the Hubbard Model in two dimensions with attractive
interactions, where standard mean-field methods provide a
good description of the presence of superconductivity
below a certain temperature [8]. We use both ITVM and
FEFVM with Gaussian states that are the basis of mean-
field theory. We explain why ITVM fails, and how FEFVM
arrives at the correct mean-field results. We then apply
FEFVM to the 2D Holstein model describing electrons on a
lattice interacting with optical phonons. Here, simple mean-
field analysis is not sufficient since it can capture the charge
density wave (CDW), but not the superconducting order
parameters. Furthermore, for strong electron-phonon inter-
action the phase diagram is challenging even for advanced
numerical methods, such as quantum Monte Carlo or the
analytic Migdal-Eliashberg solution. We predict that for a
wide range of filling factors, sufficiently low temperature,
and strong interactions a phase separation occurs between
superconducting (SC) and CDW phases. While this model
has been studied previously [9–13], the strong coupling
regime has not been analyzed and the possibility of phase
separation has not been considered. We attribute this to the
fact that earlier papers have been limited in system sizes
that could be investigated, an impediment that is absent in
FEFVM, since we can use it to study systems with up to
50 × 50 sites. A summary of our results is shown in Fig. 1
with the resulting phase diagram for phonon frequency
ωb=t ¼ 10 and filling factor ν ¼ 0.6, where T is the
temperature, g the coupling constant, and t the hopping
energy. As expected [9–13], we predict a superconducting
phase at low g. For higher g, it predicts separation between
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the SC and CDW phases. This is obtained by both a
homogeneous and a general variational ansatz. This follows
from the negative value of the compressibility [Fig. 1(a)],
and the distribution of the electron density and the SC order
parameter [Fig. 1(b)], respectively. The CDW transition
temperature monotonically increases with increasing g.
This should be understood as the pseudogap temperature
of the onset of short-range correlations because we used a
variational family that does not fully account for vortex
excitations. We expect, however, that it accurately describes
the increasing temperature of phase separation.
Flow equation: Given a Hamiltonian H and a tempera-

ture T we are interested in the Gibbs state

ρT ¼ e−βH=Z; ð2Þ

where Z ¼ trðe−βHÞ, and β ¼ 1=T. A unique feature is that
it minimizes the free energy functional

fðρÞ ¼ trðHρÞ − TSðρÞ; ð3Þ

where SðρÞ ¼ −tr½ρ lnðρÞ�. The minimum of f is reached
for ρ ¼ ρT, so that this provides us with the variational
principle. This minimization can be done through a flow
equation that extends Eq. (1),

dτρ ¼ −fFðρÞ − fðρÞ; ρg; ð4Þ

where the free energy operator FðρÞ ¼ H þ T ln ρ, so that
fðρÞ ¼ tr½ρFðρÞ�, and f; g denotes the anticommutator.

We now prove that the free energy monotonically
decreases with τ, i.e., dτf½ρðτÞ� ≤ 0 with the equality only
if ρ ¼ ρT and that any initial (normalized) state ρð0Þ flows
to ρT in the limit τ → ∞. From the definition of fðρÞ, we
have dτfðρÞ ¼ trðFdτρÞ þ TtrðρdτκÞ, where κ ≡ ln ρ. The
last term vanishes, since

trðρdτκÞ ¼ tr

�Z
1

0

dueð1−uÞκðdτκÞeuκ
�

¼ trðdτeκÞ ¼ trðdτρÞ ¼ 0;

where we have utilized that Eq. (4) conserves the trace of ρ.
Using Eq. (4)

dτfðρÞ ¼ −2tr½ρXðρÞ2� ≤ 0; ð5Þ

where XðρÞ ¼ ½FðρÞ − fðρÞ�. The derivative vanishes when
XðρÞ ¼ 0 which leads to Eq. (2) [14].
We now transform Eq. (4) into an equation analogous to

Eq. (1). We employ a particular purification of ρ, Φp
(thermal double [2]). This is done by adding for each
(bosonic or fermionic) mode an auxiliary one so that

jΦpi ¼ ð ffiffiffi
ρ

p
⊗ 1ÞjΦþi; ð6Þ

where Φþ is a maximally entangled state between each
mode and the corresponding auxiliary one [15], so that we
can recover ρ ¼ traðjΦpihΦpjÞ. It follows Eq. (4) that

dtjΦpi ¼ −½FpðΦpÞ − fpðΦpÞ�jΦpi; ð7Þ

where FpðΦÞ ¼ FðρÞ ⊗ 1 and fpðΦÞ ¼ fðρÞ, with
ρ ¼ traðjΦihΦjÞ. The similarity of Eqs. (7) and (1) is
apparent, although Fp depends on Φ and only acts non-
trivially on the system. Thus, the resulting equation is
nonlinear.
Variational method.—The success of variational

methods crucially depends on the choice of variational
states: they have to faithfully represent the physical
behavior of the system under study and be amenable to
an efficient computation of the observables of interest. A
sensible choice is the set of Gaussian states, corresponding
to density operators that can be written as a Gaussian
function of the creation and annihilation operators. They
underlie mean-field theories and the expectation values of
observables can be efficiently computed by means of
Wick’s theorem. However, they are not able to represent
some important phenomena; in particular, they cannot
account for correlations between bosonic and fermionic
degrees of freedom. Analogously to the zero temperature
case [6], in order to circumvent this deficit, we use an
extended family of states of the form

ρvðξÞ ¼ UðξuÞρGðξgÞUðξuÞ†: ð8Þ

Here, ρG is an arbitrary Gaussian mixed state parametrized
by ξg with trðρGÞ ¼ 1. U is a unitary operator which
entangles different degrees of freedom and allows us to
describe states that do not obey Wick’s theorem. We take
the family of unitary operators U ∈ U defined in the zero
temperature case in Ref. [6]. The number of variational
parameters scales polynomially with the system size.

(b)(a)

FIG. 1. (a) Phase diagrams for the Holstein model in a 50 × 50
lattice for ωb=t ¼ 10 and ν ¼ 0.6. The inset displays the filling
factor ν as a function of the chemical potential at the point P,
where g=t ¼ 5, T=t ¼ 0.2. (b) Phase separations at P for ν ¼
0.56 (left panel) and ν ¼ 0.6 (right panel) in a 20 × 20 lattice. The
first and second rows display the electron density and the SC
order parameter.
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With the goal of describing states in Eq. (8) we consider
a purification,

jΨvðξÞi ¼ ½UðξuÞ ⊗ 1�jΨGðξgÞi; ð9Þ

with a normalized pure Gaussian state ΨG so that
ρvðξÞ ¼ traðjΨvðξÞihΨvðξÞjÞ, where the trace is taken with
respect to the ancilliary degrees of freedom [16].
Starting from Eq. (7) we derive in Ref. [17] a set of

differential equations for the variational parameters of the
purification ξðτÞ. As announced, those equations inherit the
important feature of the original flow equation (4), namely,
that the free energy of ρv½ξðτÞ� monotonically decreases
with τ. The main idea consists of projecting Eq. (7) onto the
tangent plane of the manifold (9). The set U should be
chosen so that this can be done efficiently. A feature of
the chosen family of variational states is that the free
energy operator F can be efficiently computed, since
ln ρv ¼ UðξuÞ ln½ρGðξgÞ�UðξvÞ†, and the logarithm of a
Gaussian state can be readily calculated [17].
As for ξg, we use the covariant matrix formalism. We

consider Nb (Nf) bosonic (fermionic) modes with annihila-
tion operators bn (cm). For a Gaussian state we take, as usual
[17,20,21], the covariance matrix Γb;m for the bosons and
fermions, respectively, and the displacement vector, ΔR [17].
Negative-U Hubbard model.—Let us briefly illustrate

how the variational method overcomes some of the
problems encountered by ITVM with a simple model,

HBCS ¼ −t
X
hnmi;σ

c†nσcmσ þ U
X
n

c†n↑c
†
n↓cn↓cn↑; ð10Þ

on a square lattice, where hnmi denotes nearest neighbor
sites. It is well known that mean field BCS theory correctly
describes the appearance of a SC phase at sufficiently low
temperatures [22].
We compare the results of our method with ITVM (see

also Ref. [17]). In both, we use the simple Fermionic
Gaussian family of translationally invariant states [i.e.,
ðΓmÞn;n0 ¼ ðΓmÞn−n0 ], which are also the ones that underlie
mean-field descriptions of this model. In this way, we can
check if the flow equations [Eq. (1) for ITVM and Eq. (4)
for FEFVM] converge to the correct mean-field result. To
account for the spontaneous symmetry breaking in the SC
phase, in the ITVM we introduce a small symmetry
breaking in the Hamiltonian ϵ

P
n c

†
n;↑c

†
n;↓ and take ϵ ≪ 1.

In Fig. 2 we draw the s-wave order parameter,
Δs ¼ Ujhcn↓cn↑ij, as a function of the temperature at half
filling. The inset of Fig. 2 clearly shows that ITVM gives
rise to an ϵ-dependent order parameter and free energy, and
an incorrect critical temperature. In contrast, FEFVM
correctly converges to the mean-field result. The reason
for the failure of ITVM can be summarized as follows: the
error accumulates along the time evolution up to the time
τ ¼ β=2. This can be explicitly shown for the BCS model

[17]. However, for the FEFVM, ρT is a fixed point of
Eq. (4) at τ → ∞, and does not depend on the path used to
reach it. Furthermore, the ITVM does not perform well
whenever there is symmetry breaking: Since the initial
infinite-T thermal state maintains all symmetries during the
flow, a small symmetry breaking has to be introduced.
As the figure displays, the result provided by that method is
very sensitive to the value of ϵ. This simple example
illustrates that for finite temperature, a method that ensures
the decrease of the free energy performs better than one
based on imaginary time evolution, as it is used in the
context of tensor networks [4].
Holstein model.—We now investigate the 2D Holstein

model, which describes electrons on a lattice inter-
acting with optical phonons. The Hamiltonian is
H ¼ He þHph þHint, where

He ¼ −t
X

hn;mi;σ
c†nσcmσ;

Hph ¼ ωbRTR=4 − ωb=2;

Hint ¼ g
X
nσ

xnc
†
nσcnσ;

with t, ωb, and g, the electron hopping, phonon frequency,
and coupling, respectively. For weak electron phonon-
interaction, g ≪ ωb, one can eliminate the bosons and
obtain the negative-U Hubbard model. In that limit, at
sufficient low temperatures the model displays a SC phase.
For strong interactions and classical phonons, Esterlis et al.
[9] have used a Monte Carlo analysis to predict a
commensurate CDW behavior that can be understood as
the localized phase of bipolarons. The CDW transition
temperature has also been obtained via the determinantal
quantum Monte Carlo method [10], which can be applied
beyond the classical phonon limit but requires more
computational resources. Most of the studies so far have
worked at half filling, ν ¼ 0.5, where the total number of
electrons coincides with the number of lattice sites.

(b)(a)

FIG. 2. Lattice BCS model: s-wave order parameter (a) and free
energy density (b) as a function of the temperature T=t, forU=t ¼
−2 and a 50 × 50 lattice at half filling. The red curve gives the
result of the FEFVM, which is on top of the mean field result in
the thermodynamic limit. The black dashed line and the green
curve (see insert) correspond to the ITVM for a symmetry-
breaking field with ϵ ¼ 10−8, 10−12, respectively.
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We study the 2D Holstein model in both the weak- and
strong-coupling regime using the variational ansatz (9). In
order to describe the electron-phonon correlations, we
include a unitary transformation U ¼ eS, where S ¼
i
P

ln;σ λlnplc
†
nσcnσ contains the variational parameters

λln, in addition to those of the Gaussian states ΔR and
Γb;m. It is inspired by the Lang-Firsov transformation [23],
but possess a high degree of flexibility to account for
different phenomena [6]. We use two different Ansätze for
ΔR, Γb;m, and λln: (i) General, where all components of the
vector ΔR and matrices Γb, Γm, and λ can take arbitrary
values; (ii) Homogeneous, where ΔR;l ¼ ΔR;0 þ ð−1ÞlΔR;π
and ξn;n0 ¼ ξ0;n−n0 þ ð−1Þnξπ;n−n0 , with ξ ¼ Γb;Γm; λ. We
can describe not only states with translational symmetry,
but also with CDW orders.
In Fig. 1(a), we show the phase diagram for ν ¼ 0.6 and

ωb=t ¼ 10. Even though ωb is large compared to t, the
coupling constant g=t ranges from 3 to 6, which allows us
to explore some intriguing physics in both the weak and
strong coupling regimes. The phase diagram for a smaller
phonon frequency is shown in Ref. [17]. As expected, for
relatively small g and low temperatures we find a SC phase.
As g increases, the full variational Ansatz (i) predicts phase
separation between SC and a CDW phase. While the naive
Ansatz (ii) predicts a supersolid phase (with nonvanishing
SC and CDW order parameters), where both the
SC order parameters Δk¼0;π ¼

P
n e

−iknVnnhcn↓cn↑i=N
(Vnn ¼ 2ðωb

P
l λ

2
ln − 2gλnnÞ is introduced in Ref. [17]

with momenta 0 and π exist, as shown in the left column
of Fig. 3. The general Ansatz (i) establishes the presence of
phase separation, as it is shown by the snapshots of the
density distribution and the SC order parameter in Fig. 1(b)
for fill factors ν ¼ 0.56 and 0.6. One can recover this later
behavior from (ii) as well by two equivalent manners. The
first relies on the fact that a negative value of the
compressibility κ ¼ ∂2

νf indicates the onset of phase
separation. In Fig. 3(b), κ is shown for g=t ¼ 4.3, 4.7,
and 5 as a function of T, which agrees with the corre-
sponding region of phase diagram of Fig. 1(a) (cf. the three
vertical lines). Alternatively, one can compute the chemical
potential μ as a function of ν. As shown in Fig. 3(d) for
g=t ¼ 5 and T=t ¼ 0.2 in a 50 × 50 lattice [see also the
inset of Fig. 1(a)], in the interval ν ∼ ½0.3; 0.7�, the μ − ν
diagram displays the phase separation between a CDW at
half filling, and a SC phase. The same result follows from
the Maxwell construction [19]. To carry it out, one plots the
free energy fs ¼ f þ 4g2ν=ωb (extracting the phonon
energy) as a function of ν, as shown in Fig. 3(d), and
draws straight lines that are tangent to the free energy f and
go through the minimum of f (which occurs at half filling).
The fractions of CDW and SC phases, e.g., about 70%
CDW (30 percent SC) at ν ¼ 0.56 and 50% CDW (50%
SC) at ν ¼ 0.6, can be predicted by MC, which is in a very
good agreement with the result [Fig. 1(b)] of the full
variational Ansatz (i).

Conclusions.—We have introduced a flow equation that
ensures that the free energy monotonically decreases and
converges to the Gibbs state. This can be applied to the
description of many-body systems within families of
states, yielding an efficient method to find variational
approximations to the Gibbs state. As compared to the
methods based on an evolution in imaginary time, ours has
the target state as a fixed point. We have applied it to
Holstein models describing the interactions of electrons
and phonons in a lattice. As compared to previous studies,
we can deal with much larger system sizes, although the
other methods can have other advantages when analyzing
smaller systems. For strong coupling, we predict phase
separation between a commensurate CDW at half filling
and a SC phase with either lower or higher density,
depending on whether the average density is below or
above half filling. Otherwise, our findings are consistent
with the results obtained by the Monte Carlo analysis in
the model with classical phonons [9]. Our formalism can
be extended to study broader classes of electron-phonon
models, including the Migdal-Eliashberg regime with
ωb < t, systems with both electron-electron and elec-
tron-phonon interactions, and systems with disorder. It
can also be extended to compute spectral function [17]
and to other families of variational states. In particular,
it would be very interesting to adapt it for tensor networks
to complement current methods in the study of finite
temperatures.

(a) (b)

(c) (d)

FIG. 3. (a)–(b) The SC order parameters and the compress-
ibility along three vertical lines in Fig. 1 obtained using
homogeneous Ansätze. Negative compressibility indicates
thermodynamically unstable states and corresponds to phase
separation. (c)–(d) The SC order parameters, the free energy,
and the chemical potential versus the filling factor ν for
ωb=t ¼ 10, g=t ¼ 5, T=t ¼ 0.2. In (d) the free energy is plotted
by subtracting a term proportional to the electron density, which
does not affect the compressibility and the Maxwell construction.
All plots have been obtained with the homogeneous Ansatz.
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