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We study the far from equilibrium prethermal dynamics of magnons in Heisenberg ferromagnets. We
show that such systems exhibit universal self-similar scaling in momentum and time of the quasiparticle
distribution function, with the scaling exponents independent of microscopic details or initial conditions.
We argue that the SU(2) symmetry of the Hamiltonian, which leads to a strong momentum-dependent
magnon-magnon scattering amplitude, gives rise to qualitatively distinct prethermal dynamics from that
recently observed in Bose gases. We compute the scaling exponents using the Boltzmann kinetic equation
and incoherent initial conditions that can be realized with microwave pumping of magnons. We also
compare our numerical results with analytic estimates of the scaling exponents and demonstrate the
robustness of the scaling to variations in the initial conditions. Our predictions can be tested in quench
experiments of spin systems in optical lattices and pump-probe experiments in ferromagnetic insulators
such as yttrium iron garnet.
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Introduction.—Understanding the emergence of univer-
sal dynamics in interacting quantum systems far from
thermodynamic equilibrium is a central challenge in
theoretical physics. A large body of theoretical works have
proposed that isolated quantum systems, such as quark-
gluon plasma after heavy ion collision, the early Universe
after inflation, or cold atoms after a quench, can exhibit
universal relaxation of quasiparticles as they evolve far
from equilibrium [1–13]. Such behavior is manifested in
self-similar scaling in time and momenta of correlation
functions in the prethermal regime, with the scaling
exponents independent of microscopic details or initial
conditions. The universal relaxation can be attributed to the
existence of nonthermal fixed points in the system’s phase
space (Fig. 1), with the nonequilibrium state inheriting its
universal exponents [14]. Manifestations of universal
relaxation were recently observed experimentally for the
first time in cold atomic gases [15–17]. This experimental
feat creates new challenges, both in classifying all the
possible universality classes as well as devising new
tabletop experiments to explore them.
Here, we uncover a new universal prethermal regime

arising in the relaxation dynamics of magnons in the
Heisenberg model. Similar to the case observed experi-
mentally with an interacting Bose-Einstein condensate
(BEC) [15–17], the prethermal quasiparticle distribution
becomes self-similar in momentum k and time t:

nkðtÞ ¼ tαfðtβjkjÞ; ð1Þ

where α and β are universal exponents independent of
microscopic details or initial conditions, and fðxÞ is a
universal function. Key properties that determine α and β

are dimensionality, quasiparticle dispersion, and the nature
of interactions. While a ferromagnet at low energy can be
described as an interacting Bose gas after a Holstein-
Primakoff transformation [18], the SU(2) symmetry of the
Hamiltonian sets the Heisenberg model apart from a
conventional BEC in two important ways. First, interaction
between quasiparticles is strongly constrained by SU(2)
symmetry giving rise to “soft” collisions [Eq. (4) below].
Second, the SU(2) symmetry suppresses collisions between
quasiparticles and the condensate that arise due to sym-
metry breaking, preventing the renormalization of the
quadratic dispersion of quasiparticles (unlike a BEC
where Goldstone modes have linear dispersion). These
two features lead to distinct universal exponents in a broad
range of wave vectors.

FIG. 1. The presence of a nonthermal fixed point in phase space
can induce a long-lived prethermal state. Appearance of the
prethermal state starting from an incoherent state ρ̂inc depends on
the average density ρ of magnons pumped into the system and the
frequency ω at which they are pumped, see discussion in the main
text. Here, J is the exchange coupling, g is the strength of the
interaction that breaks SU(2) symmetry, and a is the lattice
constant.
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Crucially, we find that the key requirement for the
observation of the self-similar scaling in Eq. (1) is that a
sufficiently large population of magnons is pumped into the
system—the details of the initial conditions are unimportant.
In terms of the experimentally controllable density of
magnons ρ and pumping frequency ω, the occupation
number of modes at frequency ω is given by
nω ≈ ρadðJS=ωÞd=2, where we assumed that magnons are
pumped in an energy window Δω ∼ ω and have dispersion
ωk ¼ JSðjkjaÞ2 (a, lattice constant; J, exchange coupling; d,
system dimension; S, spin number). The condition nω ∼ 1
defines a boundary below which we do not observe self-
similarity and the system evolves directly into the thermal
fixed point, see Fig. 1. Furthermore, when pumping quasi-
particles close to the bottom of the band, we expect
interactions that break SU(2) symmetry, e.g., dipolar or
anisotropic exchange interactions, to be important (Fig. 1). In
this case, we expect different scaling exponents which will
not be discussed here.
The prethermal state lives for a wide and experimentally

accessible temporal window given the slow relaxation of
long wavelength Goldstone modes in a ferromagnet. In
particular, the thermalization time is determined by terms
that break SU(2) symmetry, e.g., dipolar interactions. For
example, in the context of Bose-Einstein condensation of
magnons in yttrium iron garnet after microwave pumping
[19–21], it was found a thermalization time τ ∼ 10–100 ns
that is consistent with dipolar interactions, which are much
slower than microscopic timescales associated with the
exchange coupling J ∼ 100 meV.
Beside their fundamental appeal, our predictions are

relevant to various experiments. For example, we argue that
the universal scaling exponents can be accessed in yttrium
iron garnet [19–23] given their negligible magnetic
anisotropy and despite their ferrimagnetic order [24]. In
particular, there is a large energy window in which
quasiparticles can be pumped such that (i) the collisions
rate due to exchange coupling is much faster than the
collision rate due to terms that break SU(2) symmetry and
(ii) a single parabolic spin wave mode is populated
(ω ≪ 100 meV). Cold atom platforms are also promising
because the system can be effectively isolated from the
environment and the exchange interaction can be engi-
neered using various mechanisms, e.g., Feshbach resonan-
ces, dipolar interactions, or lattice shacking [25–31].

Microscopic model.—Focusing only on a single magnon
band, we consider a two-dimensional Heisenberg ferro-
magnet on a square lattice with nearest neighbor exchange
and Zeeman field

Ĥ ¼ −J
X
hjj0i

Ŝj · Ŝj0 þ hz
X
j

Ŝzj; ð2Þ

with J > 0 and hjj0i denoting nearest neighbors. We
assume that the system has N lattice sites, each containing

a spin S degree of freedom, and periodic boundary
conditions in each spatial direction. The spin operators
satisfy the commutation relations ½Ŝzj; Ŝ�j0 � ¼ �δjj0 Ŝ

�
j and

½Ŝþj ; Ŝ−j0 � ¼ 2δjj0 Ŝ
z
j, with Ŝ�j ¼ Ŝxj � iŜyj . We also assume

that the lattice is at a small temperature such that magnon-
phonon interactions can be neglected, which is the case for
the prethermal timescales of interest t≲ 1 μs [32,33]. We
include a Zeeman field hz, which is present in many
relevant experiments and seems to break the SU(2) sym-
metry, to illustrate that hz has no effect on the relaxation
dynamics.
We proceed to build an effective theory valid when the

density of quasiparticles is small, ρa2 ≪ S. We recall that
one magnon states jki ¼ Ŝþk jFi are exact eigenstates of Ĥ
with energies

εk ¼ hz þ JSðγ0 − γkÞ; γk ¼
X
τ
eik·τ: ð3Þ

Here, jFi ¼ j↓↓ � � �↓i denotes the ferromagnetic ground
state, Ŝþk denotes Ŝþk ¼ ð1= ffiffiffiffi

N
p ÞPj e

−ik·rj Ŝþj , τ denotes the
nearest neighbor vector, and εk ≈ hz þ JSðjkjaÞ2 in the
long wavelength limit. Two magnon states
jk; pi ¼ ð1=2SÞŜþk Ŝþp jFi, however, are not eigenstates of
Ĥ [18,34]. The interaction between magnons can be
obtained from the matrix elements

Ĥjk; pi ¼ ðεk þ εpÞjk; pi þ
X
q

Gq
k;pjkþ q; p − qi;

Gq
k;p ¼

J
N
ðγq−p þ γqþk − γq − γkþq−pÞ ;

such that one magnon states are coupled via momentum-
conserving collision Gq

k;p. When the incoming magnons
have long wavelength, the collision term takes the simple
form Gq

k;p ≈ −ðJa2=NÞðk · pÞ for all values of S. This
characteristic ðk · pÞ interaction, which is independent of
hz, arises from the global SU(2) symmetry of the exchange
coupling and justifies why magnons propagate ballistically
when jkj → 0. Hard core collisions may arise if the SU(2)
symmetry is broken.
A long-wavelength description that captures the features

of the SU(2) symmetric parent Hamiltonian is

Ĥ ¼
X
k

εkâ
†
kâk −

Ja2

N

X
kpq

ðk · pÞâ†pþqâ
†
k−qâpâk þ H:c:; ð5Þ

where âk is a bosonic operator defined after a Holstein-
Primakoff transformation of the spin operators and
εk ¼ hz þ JSðjkjaÞ2. In contrast to the Bogoliubov theory
of weakly interacting Bose particles, Eq. (5) explicitly
shows the absence of anomalous terms (a†−ka

†
k) which

describe coherent scattering between finite energy quasi-
particles and the condensate. Equation (5) also shows that
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scattering of quasiparticles vanishes as their momentum
approaches zero, which precludes the formation of a
magnon condensate at k ¼ 0.
Initial conditions.—We consider an initial incoherent

population of magnons in a narrow band of energies
centered around ω. Such an initial condition can be
achieved via transverse microwave pumping h⊥ðtÞ at
frequency Ω ¼ 2ω [35]. The amount of magnons pumped
into the systems can be controlled by the strength of h⊥,
giving two independent knobs to control which kmodes are
excited and their respective population nk. Although para-
metric pumping of magnons also creates anomalous corre-
lations hâ†−kâ†ki, these decohere rapidly since pairs with
different wave vectors k oscillate with different frequencies.
We also note that this protocol leads to no net spin texture
hâki ¼ 0. We parametrize the initial condition as

nkðt ¼ 0Þ ¼ n� exp
�
−
ðjkj − k�Þ2

Γ2

�
; ð6Þ

where k� is the wave vector at which magnons are pumped
(ω ¼ k2�=2m), n� parametrizes the occupation number of
magnons at k�, and Γ determines the initial width of the
distribution (its value depends on the details of the pump
pulse, e.g., its duration). We note that, although n� can be
much larger than 1, n� and Γ need to satisfy ρa2 ≈
k�Γa2n� ≪ S for Eq. (5) to be valid.
Kinetic equation.—The measurable quantity of interest is

the magnon population nkðtÞ ¼ hâ†kðtÞâkðtÞi as a function
of time. In ferromagnetic materials, such a quantity can be
measured via Brillouin scattering [20,21]. An alternative
technique is spin qubit magnetometry [36], which has been
used to measure (steady-state) magnon population [37,38]
as well as imaging single spins [39], but also has been
proposed to access a variety of elementary excitations in
ferromagnets [40,41], spin ice [42], spin chains [43], and
spin liquids [44]. In cold atom experiments, it is possible to
use snapshots of local spin measurements hŜxi Ŝxji for the
different spin pairs in order to compute nk.
The time evolution of nkðtÞ at intermediate timescales

(after decoherence of anomalous terms has occurred) can
be described using the kinetic equation ∂tnk ¼ Ik, with Ik
the collision integral:

Ik ¼ J2a8
Z
p

Z
q
ðk · pÞ2½nknpð1þ nkþqÞð1þ np−qÞ

− ð1þ nkÞð1þ npÞnkþqnp−q�δðεi − εfÞ: ð7Þ

Here, εi ¼ εk þ εp and εf ¼ εkþq þ εp−q the energies of the
initial and final states, respectively, and

R
p ≡

R ½d2p=ð2πÞ2�.
The kinetic equation is valid in the weak coupling regimeR
k jIkj=

R
k ωknk ≪ 1, which is true if ρa2 ≪ S. We note that

the lack of condensate formation at k ¼ 0 justifies the
kinetic equation at long times because, otherwise,

condensate formation would give rise to nonperturbative
corrections to the kinetic equation.
Universal exponents from kinetic simulations.—We first

focus on prethermalization in the large pumping regime
n� ≫ 1, where the collision term (7) defines a timescale
τ� ¼ J2=ω3n3�. As shown in Fig. 2(a), on a timescaleOðτ�Þ,
the details of the initial conditions are lost and the
distribution function at intermediate momenta jkj ∼ k�
acquires a self-similar form governed by Eq. (1). We find
that the distribution function nk can be fitted by Eq. (1) in a
broad range of momenta (between one and two decades)
using the parameters

α ¼ 0.65� 0.05; β ¼ 0.30� 0.05; ð8Þ

and the universal function scales as fðxÞ ∼ 1=x2.3 at large
wave vectors. The uncertainty in Eq. (8) is obtained by

(a)

(b)

FIG. 2. Evolution of the occupation number nk starting from an
initial incoherent pump at wave vector jkj ¼ k�, with occupation
(a) n� ¼ 100 and (b) n� ¼ 1 [see Eq. (6)]. Shown with a solid
black line is the initial distribution, and shown with dash-dotted
lines is the distribution function once the details of the initial
conditions are lost. The Bose-Einstein distribution is added as a
guide to the eye (solid, light blue line). In both panels, we
normalized the y axis with the value of the Bose-Einstein
distribution at k ¼ 0 (n0). The inset (a) illustrates the collapse
of the data points using a self-similar distribution function in
Eq. (1), with α and β defined in Eq. (8). The inset (b) exhibits no
collapse of the data points. The distributions are plotted at times
t=τ� ¼ 0;0.01;0.02;0.09;0.11;0.13;0.16;0.18;0.22;0.28;∞ for
(a) and t=τ0� ¼ 0; 0.01; 0.02; 0.5; 0.1; 0.15; 0.2; 0.25;∞ for (b),
with decreasing tones of blue [τ� ¼ J2=ω3n3� and τ0� ¼ J2=ω3n2�].
Parameters used, Γ ¼ 0.2k�; momentum cutoff Λ ¼ 4k� (for
n� ¼ 100 and ω=J ¼ 0.01, ρa2 ≈ 0.1).
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initializing the simulation from qualitatively distinct initial
conditions (but the same energy and particle number) and
computing the variations in ðα; βÞ. Figure 2(a) also shows
the lack of scattering of magnon states at jkj ≈ 0. For small
momenta, the distribution function evolves as ∂tnk ∼ tjkj2.
Such behavior is cut off by interactions that break SU(2)
symmetry. We emphasize that the exponents ðα; βÞ in
Eq. (8) are different from those found in cold atom
experiments [15–17], a consequence of different scattering
dynamics and different dimensionality (for instance, α ≈
β ≈ 0.1 in a 1D Bose-Einstein condensate in Ref. [16]).

As shown in Fig. 2(b), we do not observe self-similar
scaling in our numerical results at small occupation number
(n� ¼ 1). In particular, we observe that the distribution at
intermediate and large momenta relax to the thermal form
nk ∝ e−εk=T without exhibiting self-similarity (small
momenta states, jkj ≪ k�, still scale as nk ∝ tjkj2), in
agreement with previous results on different models [5,13].
Importantly, the universal exponents are independent of

the details of the initial condition. Figure 3(a) shows the
evolution of the quasiparticle distribution after an initial
pump at two frequencies. Similarly to Fig. 2, the details of
the initial conditions are lost in a timescale Oðτ�Þ and the
system evolves in a self-similar fashion with the same
universal exponents in Eq. (8).
Universal exponents from dimensional analysis.—The

scaling exponents can be analytically estimated using
arguments based on wave turbulence [45,46]. In the
presence of two positive conserved quantities (particle
number and energy), a dual cascade is typically expected:
energy cascades to large wave vectors and particles cascade
to small wave vectors. If we assume that a particle cascade
dominates in the self-similar range, then magnon number
conservation ρ ¼ R ½ddk=ð2πÞd�nkðtÞ ¼ tα−βd

R
ddκfðjκjÞ,

implies α ¼ dβ (κ ¼ tβk) [energy conservation, instead,
implies α ¼ βðdþ 2Þ]. A second relation between ðα; βÞ is
obtained from the kinetic equations assuming that nk ≫ 1:

the collision term (7) can be rescaled as Ik ¼
t3α−4β−2dβþ2βIκ, and ∂tnk can be rescaled as ∂tnk ¼
tα−1½αfðjκjÞ þ βκf0ðjκjÞ�. Matching the coefficients of t
of these two terms results in 2ðdþ 1Þβ − 2α ¼ 1. This
analytical estimate yields values αp ¼ 1, βp ¼ 0.5 which
are modestly close to numerical exponents [Eq. (8)].
We rationalize the discrepancy between analytics and

numerics by noting that the slowly relaxing jkj ≪ k� modes
arrest relaxation and can modify the two scaling conditions
derived above. First, the particle cascade is hindered by the
small scattering matrix elements when k → 0. As such,
the condition α ¼ dβ is not satisfied exactly. Second, as the
Bose-Einstein distribution starts to develop from large wave
vectors to small wave vectors (Fig. 2), the collision integral
(7) has finite contributions from quadratic terms n2 in the
self-similar range (these contributions account for ∼15% of
the total value). As a result, we also observe deviations from
the condition 2ðdþ 1Þβ − 2α ¼ 1. These corrections are
unusual and different from the behavior observed in aweakly
interacting Bose gas. In the latter case, there is an uncon-
strained particle cascade and collisions dominated by n3

terms in Eq. (7). An interesting future direction is to explore
whether magnetization fluctuations have any effect in the
scaling exponents.
SU(2) symmetry breaking terms.—Interactions that break

SU(2) symmetry allow us to populate the k ≈ 0 modes and
give rise to different exponents if they dominate over
Heisenberg exchange. One common interaction is
exchange anisotropy Ĥz ¼ δJz

P
hi;ji Ŝ

z
i Ŝ

z
j, which reduces

the symmetry of the Hamiltonian from SU(2) to U(1)
and effectively gives rise to hard-core collisions Ĥz ¼
ðδJz=NÞPk;p;q â

†
kþqâ

†
p−qâkâp. Dipolar interaction, in addi-

tion, breaks the remaining U(1) symmetry and gives rise to
anomalous terms in the Hamiltonian. So long as quasi-
particles are pumped at energy scales in which Heisenberg
exchange dominate over interactions that break SU(2)

(a) (b)

FIG. 3. (a) Robustness of self-similarity under different initial conditions. Shown is the evolution of the distribution function using a
two-peak initial condition. After a short time, the distribution function becomes self-similar, as in Fig. 2. (b) Thermalization in the
presence of SU(2) symmetry breaking terms which gives rise to scattering at small momenta. We do not observe a noticeable change in
the ðα; βÞ values from those found in Eq. (8). In both panels, we normalized the y axis with the value of the Bose-Einstein distribution at
k ¼ 0 (n0). Parameters used are described in the main text.
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symmetry, we expect the exponents ðα; βÞ in Eq. (8)
to hold.
To confirm that this is indeed the case, Fig. 3(b) shows

the magnon relaxation in the presence of a weak exchange
anisotropy δJz ¼ 0.05Jðk�aÞ2 and n� ≫ 1. Contrary to the
results above, the k ≈ 0 modes are populated. However, the
universal exponents at intermediate momenta, where
Heisenberg exchange dominates, remain within the values
found in Eq. (8).

Summary and outlook.—We showed that the Heisenberg
model hosts self-similar quasiparticle relaxation after an
incoherent pump. One future direction to explore is
whether other universal regimes are possible under differ-
ent classes of initial conditions, e.g., spin textures [47,48]
or in the presence of orbital degrees of freedom [49]. Other
open questions are whether the same self-similar scaling
survives in the large magnon density regime, i.e., as we
approach criticality, and its connection with coarsening
dynamics and aging [50,51]. Such studies need to go
beyond the kinetic equation, for instance, using truncated
Wigner approximation for spin systems [52–55]. On the
experimental front, probing the predicted nonthermal fixed
point in ferromagnets is within grasp of ongoing experi-
ments, namely driven ferromagnetic insulators and
quenches of spins in optical lattices.
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