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We analyze ultrafast tunneling experiments in which electron transport through a localized orbital is induced
by a single-cycle terahertz (THz) pulse. We include both electron-electron and electron-phonon interactions on
the localized orbital using the Anderson-Holstein model and consider two possible filling factors, the singly
occupied Kondo regime and the doubly occupied regime relevant to recent experiments with a pentacene
molecule. Our analysis is based on variational non-Gaussian states and provides the accurate description of the
degrees of freedom at very different energies, from the high microscopic energy scales to the Kondo temperature
TK . To establish the validity of this method we apply this formalism to study the Anderson model in the Kondo
regime in the absence of coupling to phonons. We demonstrate that it correctly reproduces key properties of the
model, including the screening of the impurity spin, formation of the resonance at the Fermi energy, and a linear
conductance of 2e2/h. We discuss the suppression of the Kondo resonance by the electron-phonon interaction on
the impurity site. When analyzing THz-STM experiments we compute the time dependence of the key physical
quantities, including current, the number of electrons on the localized orbital, and the number of excited phonons.
We find long-lived oscillations of the phonon that persist long after the end of the pulse. We compare the results
for the interacting system to the noninteracting resonant level model.
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I. INTRODUCTION AND MODEL

A. Motivation

Ultrafast experiments constitute a new approach to ex-
ploring quantum many-body systems and provide a platform
for developing new types of solid-state devices for nanotech-
nology and quantum information processing (for review, see
Refs. [1–4]). One of the promising techniques is a recently de-
veloped terahertz-STM (THz-STM) that integrates femtosec-
ond lasers with scanning tunneling microscopes (STM) [5–8].
This technique allows to combine atomic spatial resolution
of STM with subpicosecond coherent temporal control of
electron currents. Such experiments pose a new challenge to
many-body theory to develop methods for analyzing the far-
out-of-equilibrium quantum dynamics of interacting many-
body systems. Motivated by recent experiments in this paper
we provide a theoretical analysis of THz-STM experiments of
tunneling through a single localized orbital, such as a highest
occupied molecular orbital (HOMO) orbital in a pentacene
molecule used by Cocker et al. [7] (see Fig. 1). Our analysis
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extends earlier theoretical studies of such systems (see [9,10]
and references therein) by including a nonperturbative treat-
ment of electron-phonon and electron-electron interactions.

In writing this paper we set ourselves two goals. First,
we present a theoretical approach for analyzing nonequilib-
rium dynamics of the Anderson-Holstein impurity model.
This method is based on the variational non-Gaussian wave
functions introduced in Ref. [11] and further extended in the
context of quantum impurity models in Refs. [12–15] and
lattice gauge theories [16]. This technique is versatile and
can be applied to a broad class of nonequilibrium problems,
including quenches, pump and probe experiments, and the
analysis of ac and dc transport. Most of the previously de-
veloped approaches for the Anderson impurity problem focus
either on high-energy degrees of freedom on the scale of the
electron-electron repulsion U [17], or the low-energy sector
with the scale set by the Kondo temperature TK [18–21]. The
advantage of our approach is that within the same framework
it describes both high- and low-energy degrees of freedom
without requiring numerical resources of numerical renormal-
ization group (NRG) [22–26] or density matrix renormaliza-
tion group (DMRG) [27–31]. To establish the validity of this
method we verify that it correctly reproduces basic results
of the canonical Anderson impurity model: it captures the
Kondo resonance in the spectral function at the Fermi energy
and gives a conductance G = 2e2/h in the linear response
regime. We extend the analysis of the Anderson model to
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FIG. 1. Light-assisted tunneling through a single molecule:
schematic of a THz-STM experiment.

include the electron-phonon interaction on the impurity site
and demonstrate that coupling to the phonons can strongly
suppress the Kondo peak. Our second goal in this paper
is to analyze a specific type of nonequilibrium dynamics:
THz-STM experiments through a single molecule. For such
experiments we compute the time dependence of the key
observables: current through the system, number of electrons
on the molecule, and number of excited phonons. To illustrate
the important role of interactions in the system, we also
discuss a noninteracting resonant level model (RLM) in the
infinite bandwidth approximation. We show that, in this case,
the transient current dynamics in the THz-STM experiments
can be computed analytically. We discuss the difference in
the results between the noninteracting RLM system and the
Anderson-Holstein model.

B. Anderson-Holstein model

The system we consider is shown schematically in Figs. 1
and 2. In the absence of laser light the chemical potential
of the organic molecule is in the middle of the gap between
the HOMO and lowest unoccupied molecular orbital (LUMO)
orbitals of the molecule and there is no current through the
system [7]. The light pulse changes the relative energies of
the molecular level and the reservoirs [see Fig. 2(b)] and
allows for an ultrafast electron burst as a cotunneling process
between the STM tip, the molecule, and the metal. Due to
the asymmetry of the electric field in the pulse [5,6] it is
sufficient to consider only one of the orbitals in the molecule,
which we take to be the HOMO orbital. We model the in-
teraction between HOMO electrons using the Anderson-type
local repulsion U and include interaction of electrons with
vibrations of the molecule [7] using Holstein-type coupling
of the phonon displacement to the number of electrons in the
localized orbital [32]. Thus, molecular degrees of freedom are
given by the Hamiltonian

Hmol = HA + Hphon, HA = εdnd +Un↑n↓,

Hphon = ωbb
†b+ g(2 − nd )(b

† + b). (1)

(a) (b)

FIG. 2. (a) Anderson-Holstein microscopic model for tunneling
through a molecule. Only the HOMO orbital on the molecule is
considered. Coulomb repulsion between electrons on the molecu-
lar orbital is included through the Anderson model. Interaction of
electrons with the optical vibrational mode is included using the
Holstein model. (b) Light-assisted tunneling through a molecule in
THz-STM experiments. Electric field from the femtosecond pulse
modifies energy differences between the reservoirs and the molecular
level.

Here, dσ are the annihilation operators of electrons in the
HOMO, nd = n↑ + n↓ is the total number of electrons in the
molecule nσ=↑↓ = d†

σdσ , b is the annihilation operator for the
phonon with frequency ωb, and εd is the energy of the HOMO
orbital.

We model the STM tip and the metallic electrode as one-
dimensional chains of noninteracting electrons because we do
not expect appreciable dependence on the nature of electron
reservoirs. Our analysis can be easily extended to other type
of reservoirs

Ha=L,R = −t0
∑
〈i j〉,σ

c†i,σ,ac j,σ,a − μa

∑
j,σ

c†j,σ,ac j,σ,a. (2)

Here, c j,σ,a denote annihilation operators of electrons with
spin σ in the reservoir a = L,R at site j. Coupling between
the molecule and reservoirs is included via the hybridization
term

HV = V
∑
σ,a

(c†0,σ,adσ + H.c.). (3)

Incident femtosecond laser pulse induces time-dependent bias
voltage [see Fig. 2(b)] that we describe using time-dependent
chemical potentials μR,L of the two leads. Following the
setting of experiments in [7], we assume that the entire time-
dependent potential is applied between the molecule and the
right reservoir (our analysis can be easily generalized to the
arbitrary time-dependent potentials for both reservoirs)

Ve(t ) = μR(t ) − μL. (4)

An equivalent way of describing the pump pulse would be
to have constant chemical potentials but add time-dependent
phase factors to Eq. (3), which describes electrons hopping
on and off the molecule. The difference between the two
methods is the gauge choice for representing the electric
field using either the electrostatic or vector potentials. Formal
equivalence between the two formalisms can be established by

033379-2



ULTRAFAST MOLECULAR DYNAMICS IN TERAHERTZ-STM … PHYSICAL REVIEW RESEARCH 2, 033379 (2020)

eliminating the Peierls phase in the interacting picture, which
will result in the appearance of time-dependent bias voltage.

The full Hamiltonian of the system is then given by

H(t ) = Hmol + HV +
∑
a

Ha(t ). (5)

C. Review of the theoretical formalism

The theoretical modeling of light-assisted tunneling of
electrons through a single molecule requires the analysis of
nonequilibrium dynamics of the Anderson impurity model
with an added complication, that of the electron-phonon cou-
pling. The Anderson impurity problem is one of the most
fundamental models in the field of interacting electron sys-
tems. It provides the foundation for our understanding of
a broad range of physical phenomena, including the Kondo
effect in metals [32,33], the electron transport in mesoscopic
structures [34–37], the formation of heavy-fermion electron
systems [38–41]. A broad range of analytical tools have
been developed to study equilibrium properties of this model
including a Bethe ansatz solution [42,43], the renormaliza-
tion group approach [26], the slave-particle method [44,45],
and dynamical mean-field theory (DMFT) [46–50]. However,
the nonequilibrium dynamics of the model remains poorly
understood. While most of the theoretical work on quantum
dynamics of the Anderson model relied on the noncrossing
approximation [19,51], other promising new approaches uti-
lized real-time DMFT [52] combining the bold-line quantum
Monte Carlo technique with a memory function formalism
[53]. Calculations using either of these approaches are de-
manding in terms of numerical resources.

In this paper we propose a different approach to analyzing
the Anderson-Holstein impurity model both in and out of
equilibrium. This approach is based on combining a unitary
transformation of the generalized-polaron type with a fam-
ily of non-Gaussian variational states for quantum impurity
problems. The electron-phonon part of the transformation
entangles the electron and phonon degrees of freedom and
allows us to use factorized wave functions, in which bosonic
and electronic parts are described using a Gaussian ansatz
and a family of non-Gaussian variational wave functions,
respectively. The role of the unitary transformation in the
non-Gaussian ansatz for the Anderson model is to utilize
exact conservation laws to reduce the number of impurity
degrees of freedom at the cost of introducing additional
interactions and correlations between the bath particles. The
key difference between our method and the traditional ap-
proaches based on the polaron transformations [32] is that
we allow parameters of the transformation to vary in time.
The general philosophy of this method has been introduced
earlier in Ref. [11], which demonstrated that this technique
successfully describes equilibrium and dynamical properties
of many important solid-state systems including polarons in
the Su-Schrieffer-Heegger and Holstein models, spin-bath
models, and superconductivity in the Holstein model. Re-
cently, Ashida et al. [12,13] demonstrated that this method ef-
ficiently captures the complicated dynamics of the anisotropic
Kondo model, including the finite-time crossover between
the ferromagnetic and antiferromagnetic couplings [54]. Since
this method is used to study the Anderson model, we include

a separate analysis of the equilibrium properties including the
electron spectral function. We demonstrate that our approach
accurately captures the formation of the Kondo resonance at
the Fermi energy with the width set by the Kondo energy
scale. This demonstrates that our method is versatile and
captures both short-time and high-energy and long-time and
low-energy aspects of the Anderson model.

D. Organization of the paper

This paper is organized as follows: In Sec. II we introduce
the general formalism of non-Gaussian variational wave func-
tions. In Sec. III we use the imaginary-time flow approach
to analyze the ground-state properties of the Anderson and
Anderson-Holstein models focusing on the regimes of single
and double occupancy of the localized orbital. We compute
electron spectral functions and demonstrate that in the Kondo
regime of the Anderson model our approach correctly re-
produces a resonance at the Fermi level. We show how the
spectral functions get modified upon adding the interaction
with phonons. Two prominent features are the suppression of
the Kondo resonance and the appearance of the phonon shake-
off peaks. As additional check of the validity of our method
we compute spin correlation functions between electrons on
the localized orbital and in the electron reservoirs. We demon-
strate that in the Kondo regime we get the expected oscillating
correlations decaying as a power law of the distance to the
localized orbital. In Sec. IV we introduce a real-time analy-
sis of the Anderson and Anderson-Holstein models. For the
Anderson model we analyze the dc transport and compute the
full nonlinear conductance. We demonstrate that in the Kondo
regime our method correctly gives a linear conductance equal
to 2e2/h. For the Anderson-Holstein model, we focus on the
analysis of photocurrent induced by the THz pulze in the
single- and double-occupancy regimes. We present results
for the time evolution of the current, the occupation number
of the localized orbital, and the phonon displacement. We
show the dependence of the total transferred charge on the
amplitude of the electromagnetic pulse. Section V contains
a summary of our results and a discussion of interesting
open problems. Many technical details of the calculations are
not presented in the main text of the paper but delegated to
the Appendices. This includes a derivation of the analytical
results for photocurrent in the noninteracting resonant level
model.

II. NON-GAUSSIAN VARIATIONAL ANSATZ

In this section, we introduce the variational ansatz

|�NGS〉 = UphUA|�GS〉 f |�GS〉b, (6)

which we will use to study both the ground-state and nonequi-
librium real-time dynamics. The unitary transformation Uph

entangles the phonon mode with the electronic degrees of
freedom in HOMO and in the reservoirs. The unitary transfor-
mation UA uses parity conservation to partially decouple the
impurity degrees of freedom. Throughout the paper we use
the terminology of the Anderson impurity model and refer to
the electronic degrees of freedom in the molecule as impurity
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degrees of freedom. Finally, |�GS〉 f ,b are Gaussian states for
electrons and the phonon mode.

A. Electron-phonon polaron transformation

The generalized polaron transformation Uph = eS is de-
fined by the generating operator

S = iRTλ(2 − nd ) (7)

with the time-dependent variational parameters λ =
(λx, λp)T . Here, R = (x, p) = (b† + b, i(b† − b))T is
the quadrature of the phonon mode. When the polaron
transformation (7) is applied to the system Hamiltonians

H1 = U †
phHUph (8)

we find that the lead Hamiltonians HL,R do not change,
whereas the molecular part of the Hamiltonian Hmol = HA +
Hphon becomes

HA = ε̃dnd + Ũn↑n↓ + 4(ωbλ
Tλ − 2gλp),

Hphon = 1
4ωbR

T R + (2 − nd )R
TGλ, (9)

and the hybridization term changes to

HV = Ve−iRT λ
∑
σ,a

c†0,σ,adσ + H.c. (10)

The polaron transformation reduces the electron-phonon
interaction to Gλ = (g− ωbλp, ωbλx )T , renormalizes the
single-particle energy level ε̃d = εd − 3(ωbλ

Tλ − 2gλp) and
the onsite interaction Ũ = U + 2(ωbλ

Tλ − 2gλp), whereas
the hybridization term Ve−iRT λ between the phonon-dressed
electrons in HOMO and reservoirs acquires polaronic dress-
ing.

B. Parity operator and impurity decoupling transformation

References [11,12] introduced an efficient way of solving
quantum impurity problems by utilizing parity conservation.
In particular, in the Kondo impurity problem one can construct
an exact unitary transformation that maps the conserved parity
operator to one of the components of the impurity spin. After
the transformation, the impurity spin is decoupled from the
reservoir at the cost of introducing interactions between bath
fermions, which, however, can be effectively handled using
the Gaussian part of the wave function. In this paper we gener-
alize such transformation to the Anderson impurity problem.
In the Anderson model one can not completely decouple the
impurity from the reservoir, but it is possible to reduce the
number of degrees of freedom so that the Gaussian ansatz for
the wave function can be utilized efficiently.

To simplify notations we introduce a four-component rep-
resentation of the electronic Hilbert space on the molecule:
{|0〉, |↑〉 = d†

↑|0〉, |↓〉 = d†
↓|0〉, |↑↓〉 = d†

↑d
†
↓|0〉}. We define

four-component matrices in this space so that the first Pauli
matrix acts in the space (1,2) ↔ (3,4). For example,

σx ⊗ I =
[
0̂ 1̂
1̂ 0̂

]
, σz ⊗ I =

[
1̂ 0̂
0̂ −̂1

]
. (11)

When the Pauli matrix is in the second position in the tensor
product, it acts simultaneously in subspaces 1 ↔ 2, 3 ↔ 4, so

that

I ⊗ σx =
[
σ̂x 0̂
0̂ σ̂x

]
, I ⊗ σz =

[
σ̂z 0̂
0̂ σ̂z

]
. (12)

We define the parity operator for spin-↑ electrons on the
molecule

�z = eiπ (d†
↑d↑−1).

The choice of the overall sign is a matter of convenience. In
the tensor notations introduced earlier

�z = −I ⊗ σ z.

Note that the operator �z performs a π rotation in the sub-
space (|↑〉, |↓〉) as well as a π rotation in the subspace (|0〉,
|↑↓〉). The parity operator for spin-↑ fermions in the bath is
defined as

Pz = eiπN↑ , (13)

N↑ =
∑
j,a

c†j,↑,ac j,↑,a. (14)

The parity operator for the system as a whole

P = �zPz

is conserved since the Hamiltonian preserves the number of
electrons with a given spin. Mathematically, this means that
[P,H1] = 0.

In the spirit of Refs. [12,13] we introduce a transformation
that maps the conserved operator P entirely into the impurity
degrees of freedom. Following this transformation, the origi-
nal conservation low for P becomes a conservation law for the
impurity electrons. We consider a unitary operator

UA = 1√
2
(1 + i�yPz ) (15)

with �y = −σ x ⊗ σ y. Direct calculation shows that

U †
APUA = σ x ⊗ σ x ≡ X. (16)

We observe that the operator X does not contain any degrees
of freedom of the reservoir electrons. Another important
feature of the operator X is that it only connects states with the
same electron parity, i.e., it does not mix between subspaces
(|↑〉, |↓〉) and (|0〉, |↑↓〉). Hence, the operator X is bosonic
and its eigenstates are physically well-defined states. After
performing the transformationUA on the Hamiltonian

H2 = U †
AH1UA

we are guaranteed that the operator X commutes with the
transformed Hamiltonian H2, which means that we reduced
the number of degrees of freedom corresponding to the
molecule. Let us discuss the implications of this fact in
more detail. Operator X has eigenvalues ±1. The eigenstates
corresponding to the eigenvalue +1 make a two-dimensional
Hilbert space with basis vectors

|+s〉 = 1√
2
(|↑〉 + |↓〉),

|+c〉 = 1√
2
(|0〉 + |↑↓〉). (17)
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The eigenstates corresponding to the eigenvalue −1 make an
orthogonal two-dimensional Hilbert space with basis vectors

|−s〉 = 1√
2
(|↑〉 − |↓〉),

|−c〉 = 1√
2
(|0〉 − |↑↓〉). (18)

Conservation of X means that the dynamics described by
the Hamiltonian H2 can not mix between subspaces (17) and
(18). Hence, for the dynamics in the +1 subspace we need to
consider only two electronic states in the molecule: |+s〉 and
|+c〉. We introduce the fermion operator

f+ = (−)F |+s〉〈+c|,
where F = ∑

j,σ,a c
†
j,σ,ac j,σ,a is the total number operator of

electrons in both reservoirs. In the +1 subspace Hamiltonian
H2 can be expressed entirely in terms of the reservoir opera-
tors ci,σ,a, for the molecule f ±

+ , and phonon operators. Anal-
ogously, in the −1 subspace (18) we introduce the fermion
operator that connects two states with different electron parity

f− = (−)F |−s〉〈−c|.
The explicit expression for H2 can be obtained from a

straightforward but somewhat lengthy calculation. The part
of the Hamiltonian corresponding to the left and right reser-
voirs does not change. The part of H2 corresponding to the
molecule, Hmol = HA + Hphon, becomes

HA = 4(ωbλ
Tλ − 2gλp) + ε̃d

+ 1
2Ũ f †γ fγ + (

ε̃d + 1
2Ũ

)
γPz f

†
γ fγ ,

Hph = 1
4ωbR

T R + (1 − γPz f
†
γ fγ )R

TGλ. (19)

The transformed hybridization term is given by

HV,γ = V

2
e−iRT λ

∑
a

[c†0,↑,a ( f
†
γ + fγ ) + γ c†0,↓,a( f

†
γ − fγ )

−Pz(γ c
†
0,↑,a + c†0,↓,a )( f

†
γ + fγ )] + H.c., (20)

where γ = ± denotes the even and odd sectors.

C. Gaussian part of the wave function

A convenient way of defining Gaussian wave functions
in Eq. (6) is to consider a unitary Gaussian transformation
acting on the electron and phonon vacuum |�GS〉 f |�GS〉b =
UGS|0〉. The Gaussian state is completely characterized by
the expectation values of the phonon quadratures 
R = 〈R〉
and covariance matrices �b = 〈{δR, δRT }〉GS/2 and � f =
〈CC†〉GS for bosons and fermions, respectively, where δR =
R − 
R is the quadrature fluctuation around its mean value,
and C = (c, c†)T is defined in the Nambu space c =
( f , c j,↑,L, c j,↓,L, c j,↑,R, c j,↓,R)T . Alternatively, one can intro-
duce the Majorana basis A using A = WfC with

Wf =
(

14N+1 14N+1

−i14N+1 i14N+1

)
. (21)

Majorana operators are given by linear combinations of the
form (cα + c†α ), i(c

†
α − cα ). Then, the covariance matrix is

defined as �m = i〈[A,A†]〉GS/2 [11,55].

The full Gaussian ansatz is a combination of Hartree-
Fock and Bogoliubov mean-field formalisms. In addition to
the Hartree-Fock–type expectation values 〈c†αcβ〉, we include
anomalous expectation values, such as 〈c†αc†β〉 and 〈c†α f †〉,
which are usually considered in the BCS theory. The latter
terms should be included because the transformed hopping
term in Eq. (20) contains fermion pair creation operators c† f †

and Pzc† f †. We note that transformation (15) mixes states with
different number of electrons on the impurity site and that
finite expectation values of 〈c† f †〉 do not imply BCS pairing
between the original fermions since f is a fictitious operator
that connects states with even and odd occupancies in one of
the sectors.

In summary, the variational state (6) is composed of
two unitary transformations acting on the Gaussian state of
phonons and electrons, where the generalized Lang-Firsov
transformation Uph entangles electrons and phonons, and the
transformation UA between the impurity and the bath elec-
trons accounts for strong correlations between the impurity
and the bath. The Gaussian state of the phonon mode is the
squeezed coherent state, and the fermionic Gaussian state
includes the Hartree-Fock-Bogoliubov contributions.

In the next section we will obtain the variational ground
state of the Anderson-Holstein model by analyzing the flow
of variational parameters λ,
R, and �b, f (m) in imaginary time.
We will then derive the real-time equations of motion (EOM)
which we will apply to study the dynamics.

III. GROUND-STATE PROPERTIES

In this section, we use imaginary-time evolution to ap-
proximate the ground state of the Anderson-Holstein model.
We will demonstrate that in the case of the canonical Ander-
son model our method correctly captures the nonperturbative
Kondo effect, including the formation of a resonance at the
Fermi energy and presence of characteristic spin correlations
between the impurity and reservoir electrons indicating the
presence of Kondo spin screening clouds. We project the
equations of motion (EOM)

∂τ |�〉 = −(H − 〈H〉)|�〉 (22)

onto the tangential plane of the variational manifold (6), and
obtain the EOM for the variational parameters λ, 
R, and
�b, f (m) (see Ref. [11] for details). As τ → ∞, the system
reaches a fixed point which approximates to the ground state
of the system.

The steady-state solution of the EOM in the limit τ → ∞
determines the ground-state properties, including the occupa-
tion number, the magnetization, and the spectral function of
electrons in HOMO, as well as correlation functions between
HOMO and reservoirs.

A. Equations of motion in imaginary time

We first analyze the structure of the tangential vectors of
the variational manifold (6). To this purpose, we introduce the
unitary operator

UGS = e− 1
2R

T σ y
Re−i 14R
T ξbRei

1
2C

†ξ f C (23)
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that generates the Gaussian state and transforms R and C as
U †
GSRUGS = SR + 
R and U †

GSCUGS = UfC. The covariance
matrices �b = SST and � f = Uf (1 + σ z )U †

f /2 are related to

the symplectic and unitary transformations via S = eiσ
yξb and

Uf = eiξ f .
Let us consider the tangential vector for the variational

wave function (6). It is defined as the derivative of |�NGS〉
with respect to τ :

∂τ |�NGS〉 = UphUAUGS(V1 +V2 +Vh)|0〉. (24)

We separated the V1, V2, Vh terms in Eq. (24) based on the
number of creation and annihilation operators.

The V1 term in (24) is linear in phonon operators

V1 = RT ST
[
i(1 − γ 〈Pz f †γ fγ 〉GS)∂τλ − 1

2σ
y∂τ
R

]
. (25)

It is determined by the expectation value 〈Pz f †γ fγ 〉
GS

in the
Gaussian state.

The V2 term in (24) is quadratic in phonon and electron
creation and annihilation operators

V2 = − 1
4 :R

T ST σ y∂τSR: + 1
2 :C

†U †
f (∂τ + Of )UfC: (26)

Note that since the operator V2 acts on the vacuum state we
should bring it to normal ordered form. This is indicated by
“:...:” in Eq. (26). Due to the presence of matrices performing
rotations of creation and annihilation operators, S for phonons
andUf for fermions, this normal ordering is with respect to the
instantaneous Gaussian state. The matrix Of is defined from

Of = −λTσ y∂τλσ z ⊗ I f + γ
(
2λTσ y − i
T

R

)
∂τλOP, (27)

where the diagonal matrix I f has only one nonzero element
(I f )11 = 1, and

OP = 2iW †
f

δ

δ�m
〈Pz f †γ fγ 〉GSWf . (28)

The Vh term in Eq. (24),

Vh = γ
[(
2λTσ y − i
T

R

)
U †
GSPhUGS

−iRT STU †
GSPcUGS

]
∂τλ, (29)

contains higher-order terms defined by the expansion

Pz f
†
γ fγ = 〈Pz f †γ fγ 〉GS + Pc,

Pc = 1
2 :C

†OPC: + Ph. (30)

Equation (30) should be understood as the definition of Ph.
The projection on the tangential vector UphUAUGSV1|0〉

leads to EOM for the expectation value of the phonon quadra-
ture 
R:

∂τ
R = −�b[ωb
R − 2λ Im〈Idc〉GS
+ 2(1 − γ 〈Pz f †γ fγ 〉GS)Gλ]

+ 2i(1 − γ 〈Pz f †γ fγ 〉GS)σ y∂τλ, (31)

where

Idc = Veλ

∑
a

[Pz( f
†
γ + fγ )(γ c0,↑,a − c0,↓,a )

+ ( f †γ + fγ )c0,↑,a − γ ( f †γ − fγ )c0,↓,a], (32)

and the effective hybridization strength Veff = Veλ is reduced
by the factor eλ ≡ 〈eiRT λ〉GS = ei


T
Rλe− 1

2 λT �bλ.
The projection on the tangential vector UphUAUGSV2|0〉

results in EOM

∂τ�b = σ y�reσ
y − �b�re�b, (33)

∂τ�m = −Hm − �mHm�m + i[�m,Om] (34)

for the covariance matrices �b,m, where �re =
ωbI2 − 2Re〈Idc〉GSλλT and Hm are the mean-field
single-particle Hamiltonians of phonon and electrons, and
Om = −iWf OfW

†
f /2. The explicit form of Hm is shown in

Appendix A.
By projecting on the tangential vectorUphUAUGSVh|0〉, we

obtain EOM

∂τλ
TG∂τλ = ∂τλ

T ξτ . (35)

The explicit form of the Gram matrix G and the vector ξτ is
given in Appendix A. By solving Eqs. (31), (33), (34), and
(35) numerically, we obtain the ground-state configuration in
the limit τ → ∞. We note that the EOM (35) is quadratic in
∂τλ, but it can be reduced to the linear ordinary differential
equation (ODE) (see Appendix B).

B. Physical observables

In this section we will discuss several physical quantities
that can be used to characterize the ground state of the
Anderson-Holstein model (here the bias voltage Ve = 0).

In the sector γ , the ground-state energy Eγ =
Eres + Emol + EV is composed of a reservoir part
Eres = ∑

i j,σ,a ha,i j〈c†i,σ,ac j,σ,a〉GS, the molecular energy
Emol = EA + Ephon:

EA = ε̃d + 1
2Ũ 〈 f †γ fγ 〉GS + 1

2UPγ 〈Pz f †γ fγ 〉GS,
Ephon = 1

4ωb(

T
R
R + tr�b) − 1

2ωb + 
T
RGλ

+ 4(ωbλ
Tλ − 2gλp), (36)

and the hybridization energy EV = Re〈Idc〉GS, where
ha=L,R = I2 ⊗ (−t0δi, j±1 − μaδi j ). As pointed out in
Ref. [11] the energy Eγ monotonically decreases during
the imaginary-time evolution.

The occupation number and the magnetization of elec-
trons in HOMO are given by 〈nd〉 = 1 + γ 〈Pz f †γ fγ 〉

GS
and

mz = γ 〈Pz(1 − f †γ fγ )〉GS, respectively. Correlation between
electrons in the HOMO and reservoirs are characterized by the
correlation functions Cα=x,y,z = 〈d†ταdc†jτ

αc j〉/4, where τα

is the Pauli matrix. In the transformed frame, the correlation
functions can be expressed as expectation values computed in
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the Gaussian state

Cx = 1
4γ 〈(1 − f †γ fγ )c

†
jτ

xc j〉GS,
Cy = −i 14 〈Pz(1 − f †γ fγ )c

†
jτ

yc j〉GS,
Cz = 1

4γ 〈Pz(1 − f †γ fγ )c
†
jτ

zc j〉GS. (37)

The hole excitations in HOMO interact with the charge in the
substrate via the Coulomb interaction, which results in the
displacement

〈R〉 = 
R − 2iσ yλ(1 − γ 〈Pz f †γ fγ 〉GS) (38)

of phonon.
The spectral functionA(ω) = −ImGR(ω)/π characterizes

the properties of excitations above the ground state. More
specifically, for the Anderson-Holstein system, it is deter-
mined by the Fourier transformGR(ω) = ∫

dt eiωtGR(t ) of the
retarded Green function

GR(t ) = −i〈{d↓(t ), d†
↓(0)}〉θ (t ). (39)

Following the unitary transformation given by UphUA, the
Green’s function becomes

GR(t ) = −i〈{d̄↓(t ), d̄†
↓(0)}〉GSθ (t ), (40)

where the evolution d̄↓(t ) = eiH2t d̄↓e−iH2t of the fermionic
operator d̄↓ = e−iRT λF is governed by the Hamiltonian H2,
and

F = 1
2 [γ ( f

†
γ − fγ ) − Pz( f

†
γ + fγ )]. (41)

We approximate d̄↓(t ) ∼ eiHMFt d̄↓e−iHMFt by the mean-field
Hamiltonian HMF = Hp

MF + He
MF with Hp

MF = δRT�reδR/4
and He

MF = iATHmA/4, where �re and Hm are determined
by the average value of quadrature and covariance matrices
in the ground state. Since the bosonic and electronic parts in
the Gaussian state are factorized, the retarded Green function
reads as

GR(t ) = −iθ (t )
[〈
e−iRT (t )λeiR

T λ
〉
GS〈F (t )F †〉GS

+ 〈
eiR

T λe−iRT (t )λ〉
GS〈F †F (t )〉GS

]
. (42)

The Green function GR(t ) contains the average values on
the Gaussian state, which can be obtained analytically in terms
of the covariance matrices and 
R (see Appendix C). For
instance,

〈
e−iRT (t )λeiR

T λ
〉
GS = e−α

∞∑
n=0

αn

n!
e−inωret ,

〈
eiR

T λe−iRT (t )λ
〉
GS = e−α

∞∑
n=0

αn

n!
einωret , (43)

where α = λT�bλ and ωre is the symplectic eigenvalue of �re.
Eventually, the imaginary part of the Fourier transform

G>(ω) = −i
∫ ∞

0
dt ei(ω+iδ)t 〈F (t )F †〉GS,

G<(ω) = −i
∫ ∞

0
dt ei(ω+iδ)t 〈F †F (t )〉GS (44)

(a) (b)

(c) (d)

FIG. 3. The correlation functions Cα in the Kondo regime (a),
(b) and the double-occupation regime (c), (d), where εd = −0.5 the
hopping amplitude t0 is taken as the unit. (a) U = 1 and � = 0.16;
(b) U = 1 and � = 0.04; (c) U = 0.25 and � = 0.04; (d) U = 0.05
and � = 0.04.

gives the spectral function

A(ω) = − 1

π
e−α

∞∑
n=0

αn

n!
Im[G>(ω − nωre )

+G<(ω + nωre )], (45)

where we add a small imaginary part iδ in the numerical
calculation of Fourier transforms G>(<).

In the next two subsections, we show the occupation
number, the correlation functions, the displacement, and the
spectral function for the Anderson-Holstein model.

C. Anderson model in equilibrium

In this section, we present results for the ground-state
properties of the Anderson model, i.e., when the electron-
phonon coupling g = 0. We expect that in the Kondo regime
εd < 0, εd +U > 0, and � = V 2 < (U, εd ), HOMO is singly
occupied, i.e., 〈nd〉 ∼ 1 and its magnetization mz = 0, which
reflects screening of the impurity spin by electrons in
reservoirs. An important signature of the Kondo regime
of the Anderson model is the formation of antiferromag-
netic correlations between spins of electrons in HOMO and
on the adjacent sites in the reservoirs. These correlations
will be absent when the impurity is in the doubly occupied
regime with εd < εd +U < 0 and 〈nd〉 ∼ 2, which is relevant
to the HOMO in the THz-STM experiments.

In Fig. 3, we plot the correlation functions Cα=x,y,z of the
electrons in HOMO and one of the reservoirs in the Kondo
regime (U, εd , �) = (1,−0.5, 0.16) and (1,−0.5, 0.04),
and the double-occupation regime (0.25,−0.5, 0.04) and
(0.05,−0.5, 0.04). In the Kondo regime [Figs. 3(a) and 3(b)],
the SU(2)-symmetric Cα shows significant antiferromagnetic
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(a) (b)

FIG. 4. Electron spectral function in the localized orbital in the
Kondo and double-occupancy regimes without the electron-phonon
interaction. System size is 100 and the hopping amplitude t0 is taken
as the unit: (a) (U, εd , �) = (1, −0.5, 0.04) in the Kondo regime;
(b) (U, εd , �) = (0.05, −0.5, 0.04) in the double-occupancy regime.

correlations of electrons in the HOMO and the reservoirs. In
the double-occupation regime [Figs. 3(c) and 3(d)] we observe
small values of the correlations Cα ∼ 10−3, which indicates
weak correlations between the singlet electron pair in the
HOMO and the reservoirs.

In Fig. 4, we show the spectral function A(ω) in the
Kondo and the doubly occupied regimes, where we take
δ = 0.01. In Fig. 4(a), the spectral function in the Kondo
regime (U, εd , �) = (1,−0.5, 0.04) displays both the Kondo
resonance peak around ω = 0 and two resonance humps
with energy levels εd and εd +U . In the the double-
occupation regime (U, εd , �) = (0.05,−0.5, 0.04), as shown
in Fig. 4(b), the Kondo resonance peak vanishes.

In the case of large U and single electron on the impurity
orbital, one can use Schrieffer-Wolf transformation to reduce
the system to the Kondo model. We verified that spin cor-
relations, the Kondo screening length, and the ground-state
energy that we obtain for the Anderson model using the
method presented in this paper are in agreement with what
one finds for the effective Kondo model using non-Gaussian
variational approach [12,13]. The latter has been extensively
benchmarked using DMRG [12,13], hence, we conclude that
variational ansatz (6) provides an accurate description of the
Anderson model.

D. Anderson-Holstein model

In this section, we present results for the equilib-
rium properties of the full Anderson-Holstein model with
finite electron-phonon interaction. Consequences of the
electron-phonon interaction g include a change of the effective
single-particle energy level, softening of the onsite repulsive
interaction, and polaronic dressing of hybridization. Note, for
example, that when the occupation number on the molecular
orbital nd is different from two, we get a finite displacement of
the phonon operator x0 = 〈x〉, which favors partial occupation
of the HOMO.We observe that in the Kondo regime including
the electron-phonon interaction tends to suppress the forma-
tion of the singlet cloud, while in the doubly occupied regime
it favors the creation of the hole excitations in HOMO.

In Fig. 5(a), we show the occupation number nd and the
displacement x0 as a function of the coupling strength g in
the Kondo regime (U, εd , �) = (1,−0.5, 0.16), where the
magnetization mz = 0. In Fig. 5(b), we show the correla-

(a) (b)

(d)
0 0.5 1

g

-4

-2

0

2
nd
x0

(c) (d)

FIG. 5. The occupation number nd , the displacement x0, and
the correlation function Cα in the Kondo regime (a), (b) and the
double-occupation regime (c), (d), where εd = −0.5, ωb = 1, and
the hopping amplitude t0 is taken as the unit. (a) The occupation
number nd and the displacement x0 forU = 1 and � = 0.16. (b) The
correlation function Cα forU = 1 and � = 0.16. (c) The occupation
number nd and the displacement x0 for U = 0.05 and � = 0.04.
(d) The correlation function Cα forU = 0.05 and � = 0.04.

tion function Cα for different g = 0.1, 0.5, and 0.9 in the
Kondo regime. As g increases, the displacement x0 becomes
larger, which lifts the single-particle energy level of HOMO,
therefore, the the occupation number nd decreases from 1
to 0. The finite electron-phonon interaction also softens the
onsite interaction and the effective hybridization strength
Veff < V , thus, as shown in Fig. 5(b), the larger the coupling
strength g, the weaker the correlationCα between HOMO and
leads. Eventually, the Kondo singlet is destroyed by the finite
electron-phonon coupling.

In Fig. 5(c), we show the occupation number nd and the
displacement x0 as a function of g in the double-occupation
regime (U, εd , �) = (0.05,−0.5, 0.04), where the magneti-
zation mz = 0. In Fig. 5(d), we show the correlation functions
Cα for different g = 0.1, 0.5, and 0.9 in the double-occupation
regime. Since the single-particle energy level is lifted, the
particle number nd decreases from 2 to 0 as g increases.
For small electron-phonon couplings, e.g., g = 0.1, HOMO is
mostly doubly occupied, andCα displays a weak correlation of
HOMO and reservoirs. In the intermediate coupling regime,
e.g., g = 0.5, the occupation number nd decreases to 1.5,
meaning that electrons in HOMO are in the superposition
of doubly and singly occupied states. Since the total spin in
HOMO is totally screened, i.e., mz = 0, the singly occupied
electron forms the singlet state with lead electrons. This
explains somewhat the presence of a stronger correlation Cα

in the intermediate regime than that in the weakly coupling
regime. When g increases further, e.g., to g = 0.9, the occupa-
tion number nd is reduced to 0, and the correlationCα becomes
vanishingly small.
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(a)

(c)

(b)

(d)

FIG. 6. Electron spectral function in the localized orbital in the
Kondo and double-occupancy regimes including electron-phonon
interaction. System size is 100 t0 = ωb = 1: (a), (c) (U, εd , �) =
(1, −0.5, 0.04) in the Kondo regime; (b), (d) (U, εd , �) =
(0.05, −0.5, 0.04) in the double-occupancy regime. Peaks marked
by boxes correspond to phonon satellite peaks.

In Fig. 6, we show the spectral functionA(ω) in the Kondo
and doubly occupied regimes. In Fig. 6(a), the spectral func-
tion A(ω) in the Kondo regime (U, εd , �) = (1,−0.5, 0.04)
is shown, where the coupling strength g = 0.2 and 0.4.
For g = 0.2, the renormalized single-particle energy level
is slightly lifted to ε̃d ∼ −0.40 and the onsite interaction
Ũ ∼ 0.93 is softened due to the electron-phonon interaction.
Since ε̃d < 0 and ε̃d + Ũ > 0 still in the Kondo regime, the
Kondo peak survives in the spectral function. However, the
system deviates from the symmetric Anderson model, i.e.,
|ε̃d | 
= ε̃d + Ũ , therefore, in the spectral function, the two
peaks around ε̃d and ε̃d + Ũ become asymmetric. The small
α ∼ 0.02 shows that the electron excitation in HOMO is
weakly dressed by the phonon, and the spectral function is
dominated by the pure electron excitation with the phonon
in the vacuum state, i.e., n = 0 in Eq. (45). For the larger
g = 0.4, ε̃d is shifted to −0.06 and the onsite interaction is
reduced to Ũ ∼ 0.71. The spectral function shows that the
Kondo peak is destroyed, and two peaks around ε̃d and ε̃d + Ũ
still survive. Since the electron excitation in HOMO is dressed
by the phonon with larger average phonon number α ∼ 0.08,
two satellite peaks corresponding to the phonon sideband
appear in the spectral function, as shown in the (black) box
of Fig. 6(a).

In Fig. 6(b) we show the spectral function A(ω) in the
doubly occupied regime (U, εd , �) = (0.05,−0.5, 0.04) for
two values of the electron-phonon coupling strength g = 0.2
and 0.4. We point out that for g = 0.2 the renormalized
single-particle energy level is shifted to ε̃d ∼ −0.41 and
the onsite electron-electron interaction becomes effectively
attractive Ũ ∼ −0.01 due to the phonon-mediated attraction.
The small α ∼ 0.01 implies that the electron in HOMO is
weakly dressed by the phonon mode, as a result, the con-
tribution of the phonon excitation to the spectral function
is negligible. Comparing with the spectral function without

electron-phonon interaction, we find that the peak is shifted
to the larger frequency around the lifted single-particle level
ε̃d . When the coupling constant is further increasing, e.g., g =
0.4, ε̃d is shifted to −0.1 and the attractive interaction Ũ ∼
−0.22 becomes stronger. The electron excitation in HOMO
is dressed by phonons with larger average number α ∼ 0.06,
which results in the visible peak corresponding to the single-
phonon excitation, as shown in the (black) box of Fig. 6(b).

IV. REAL-TIME DYNAMICS

In this section, we apply the non-Gaussian ansatz (6) to
study real-time dynamics for the Anderson-Holstein system.
Similar to the procedure used in the imaginary-time evolution,
we project the Schrödinger equation

i∂t |�〉 = H |�〉 (46)

to the tangential space of the variational manifold (6) and ob-
tain EOM for variational parameters λ, 
R, and �b, f (m). Anal-
ysis of these differential equations allows us to explore a large
variety of nonequilibrium phenomena. We note that time-
dependent variational approach to nonequilibrium dynamics
of the interacting Fermi system has been used previously by
Schiro and Fabrizio [56] to analyze interaction quenches in
the fermionic Hubbard model. The main differences between
our work and Ref. [56] are as follows: (i) we use exact
parity conservation to introduce entangling transformation
between the impurity and the fermionic bath; (ii) we do not
use nonunitary Gutzwiller projection, which makes numerical
implementation much easier, since the EOM for variational
parameters can be obtained analytically. Furthermore, our
analysis allows to include electron-phonon interactions, which
is nontrivial in approaches based on Gutzwiller projections.

We now present results for transport through the molecule
in the two cases: with and without electron-phonon inter-
action. To find dc conductance we perform a quench-type
protocol, when we start with the reservoirs at different chem-
ical potentials but disconnected from the molecule, and hence
from each other. We switch on the molecule-reservoirs cou-
pling and then evolve the system in real time until it reaches
the steady state but before electron wave packets reflected
from the outer ends arrive back at the molecule. The steady-
state current I as a function of (finite) Ve gives us the full
nonlinear current voltage characteristic of the system. Dif-
ferential conductance is defined through the relation σc =
∂Ve I . In the case of ultrafast THz-STM experiments, bias
voltage is applied as a time-dependent pulse given in Eq. (54).
This voltage pulse results in a transfer of a finite number
of electrons between the two reservoirs. We compute the
full time-dependent evolution of the current in the system.
We demonstrate that in the case of finite electron-phonon
interaction a burst of current gives rise to vibrations of the
molecules which persist well after the duration of the pulse.
This was observed in experiments by Cocker et al. [7].

A. Equations of motion

Projection of Eq. (46) to the tangential vectors
UphUAUGSV1,2,h|0〉 gives EOM for variational parameters
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in the real-time evolution. When we perform projection on
the vectorsUphUAUGSV1,2|0〉 we find in

∂t
R = iσ y[ωb
R − 2λ Im〈Idc〉GS
+ 2(1 − γ 〈Pz f †γ fγ 〉GS)Gλ

+ 2(1 − γ 〈Pz f †γ fγ 〉GS)∂tλ], (47)

∂t�b = i(σ y�re�b − �b�reσ
y), (48)

and

∂t�m = [Hm − iOm, �m]. (49)

To obtain the time evolution of λ, we perform the projection
on the tangential vectorUphUAUGSVh|0〉 and obtain

∂tλ
TM∂tλ = ∂tλ

T ξt , (50)

where ξt = iξτ . While Eq. (50) is nonlinear in λ, it can
be reduced to a linear ODE. Details are presented in
Appendix B. Thus, the description of a broad range of
nonequilibrium phenomena in the Anderson-Holstein model
can be reduced to solving Eqs. (47)–(50) for the time evolu-
tion of variational parameters.

Before presenting results of our analysis we comment on
one important technical aspect of the calculations. The total
electron number operators

N↑ = 1

2
(1 + γPz ) +

∑
i,a

c†i,↑,aci,↑,a,

N↓ = 1

2
(1 − γPz ) + γPz f

†
γ fγ +

∑
i,a

c†i,↓,aci,↓,a (51)

should be conserved throughout the real-time evolution. This
fundamental conservation law should not be affected by
the transformations of the Hamiltonian Uph and UA. How-
ever, when computing long-time evolution needed for finding
steady states the numerical errors may accumulate and lead to
the violation of particle-number conservation. To circumvent
this numerical problem, we introduce a penalty term

H� = �[(N↑ − N̄↑)2 + (N↓ − N̄↓)2] (52)

in the Hamiltonian, where � is chosen to be much larger than
all the energy scales in the system, and N̄↑(↓) is the aver-
age number of spin-up (-down) electrons. Note that specific
value of � turns out to be unimportant for all results that
we discuss in this paper. The mean-field Hamiltonian H�,m

in the Majorana basis for the penalty term H� is derived in
Appendix D, which modifies the mean-field Hamiltonian (A1)
as Hm → H̄m = Hm + H�,m. In Eq. (49), the substitution of
Hm by H̄m leads to the conserved particle numbers 〈N↑(↓)〉 =
N0

↑(↓) in the real-time evolution.
For the system with bias time (in)dependent Ve(t ), we can

study the occupation number 〈nd〉, the displacement 〈R〉, and
the correlation function Cα . In the nonequilibrium state, the
current is defined as I = ∑

j,σ ∂t 〈c†j,σ,Lc j,σ,L〉. The Heisenberg
equation of motion leads to

I = −V Im{eλ[〈Pz( f †γ + fγ )(γ c0,↑,L − c0,↓,L)〉GS
+〈( f †γ + fγ )c0,↑,L〉GS − γ 〈( f †γ − fγ )c0,↓,L〉GS]}, (53)

(a) (b)

FIG. 7. The occupation number nd and the finite-bias conduc-
tance σc in the Kondo regime (a) U = 1 and � = 0.16 and the
double-occupation regime (b) U = 0.05 and � = 0.04, where εd =
−0.5 and the hopping amplitude t0 is taken as the unit.

where the average values depend on the covariance matrix
�m (see Appendix A). The derivatives σc = ∂Ve I give the
conductance.

B. Transport in the Anderson model

In this section, we present results for electron transport in
the Anderson model without the electron-phonon interaction.
We compute the nonlinear conductance in both the Kondo and
doubly occupied regimes.

For the Kondo regime we set parameters (U, εd , �) =
(1,−0.5, 0.16) and for the doubly occupied regime we choose
(U, εd , �) = (0.05,−0.5, 0.04), Fig. 7 shows the occupation
number nd and the conductance σc in the steady state as the
function of Ve. Figure 7(a) shows the conductance σc around
zero bias in the Kondo regime. The peak value σc = 2 origi-
nates from the Kondo resonance and agrees with the Friedel
sum rule [57]. In the doubly occupied regime, when the bias
Ve crosses ∼εd +U , the energy level of the doubly occupied
state in HOMO is higher than the Fermi surface of the right
reservoir. As a result, the transport channel is turned on and
the electron in HOMO tunnels to the reservoir, resulting in the
decay of nd and the appearance of a conductance peak around
εd +U in Fig. 7(b). In the presence of electron-phonon inter-
action the nonlinear conductance develops satellite peaks to
the Kondo peak. This feature can be understood as the phonon
sidebands [58–60] analogous to satellite peaks in the electron
spectral function shown in Fig. 6.

In the experiment, an ultrafast pulse is applied to shift
the chemical potential of the right lead, where the HOMO
is doubly occupied. As shown in Fig. 8, the effect of the
ultrafast pulse centered at the instant tc is described by the
time-dependent bias

Ve(t ) = −Ve,0e
−α2(t−tc )2 sinωd (t − tc), (54)

whereVe,0 is the intensity, α determines the width of the pulse,
and ωd is the frequency.

For different pulse intensities Ve,0, the transient current
I and the occupation number nd as a function of time t
are shown in the left and right panels of Fig. 9. The two
rows in Fig. 9 correspond to system parameters (U, εd ) =
(0.05,−0.5) and (1,−0.5) in the double-occupation and
Kondo regimes, where � = 0.04, tc = 5, α = ωd = 1, and t0
is taken as the unit. The number Ntran of electrons transferred
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FIG. 8. The time-dependent bias for different amplitudes Ve,0 =
0.5, 1, 1.5, 2, where tc = 5, α = ωd = 1, and t0 is taken as the unit.

from the left lead to the right lead as the function of pulse
intensity Ve,0 is displayed in Fig. 10.

The pulse has a single period sine-type shape, which first
shifts the Fermi level of the right reservoir downwardly and
then lifts it above the Fermi level of the left reservoir after tc.
In the double-occupation regimes, as shown by the first row
of Fig. 9, when the Fermi energy is resonant with εd +U < 0
at the instant tres < tc, the transport channel is turned on and
the transient current flowing to the right reservoir establishes.
However, after the instant tc when the Fermi level of the right
reservoir is higher than that of the left reservoir, there is no

(a) (b)

(c) (d)

FIG. 9. The transient current and the occupation number in the
double-occupation and Kondo regimes, where εd = −0.5, � = 0.04,
tc = 5, α = ωd = 1, and t0 is taken as the unit. (a), (b)U = 0.05; (c),
(d)U = 1.

(a) (b)

FIG. 10. The net transported charge in the double-occupation
and Kondo regimes, where each lead contains 100 sites, εd = −0.5,
� = 0.04, tc = 5, α = ωd = 1, ωb = 1, and t0 is taken as the unit.
(a)U = 0.05; (b)U = 1.

resonant energy level. Eventually, due to the asymmetric spec-
tral structure around the Fermi level εF = 0, the light pulse
induces the nonzero net charge transported ∼10−2 from the
left to the right, as shown in Fig. 10(a). In the Kondo regime,
the energy spectrum is symmetric around the Fermi level, as
a result, the net charge transported is highly reduced. We note
that a finite value of the net charge ∼10−3 in Fig. 10(b) most
likely arises from the nonlinear electronic dispersion relation
in reservoirs.

C. Transport in the Anderson-Holstein model

In this section, we concentrate on the phonon excitations
generated by the ultrafast pulse in the doubly occupied regime.
Since the light pulse induces a transient current, i.e., the
transport of electrons between HOMO and leads, the holes
are created in the HOMO. The Coulomb interaction between
the charge in the substrate and the hole excitation in HOMO
induces the molecular vibration after interacting with the
ultrafast pulse, which is described by the time-dependent
average value 〈R〉 = (x0, p0)T of the quadrature.

In the first and second rows of Fig. 11, we show the
occupation number nd , the average value 〈R〉 = (x0, p0)T of
the quadrature, and the transient current I in the double-
occupation and Kondo regimes (U, εd ) = (0.05,−0.5) and
(1,−0.5), respectively. Here, � = 0.04, g = 0.2, tc = 5, α =
ωd = 1, and t0 is taken as the unit. The electrons are trans-
ferred from the left reservoir to the right one when the
terahertz pulse is applied, and the long-lived oscillation of net
charge transport around a center value is observed, as shown
in the left panel of Fig. 12 for the double-occupation and
Kondo regimes. Here, the center value of the oscillation as
a function of pulse intensity is also shown in the right panel of
Fig. 12.

In the initial stage, i.e., t < tc, the ultrafast pulse shifts the
Fermi level of the right reservoir downwardly, thus, electrons
in HOMO flow to the right reservoir, and the occupation
number nd decreases, as shown in the first column of Fig. 11.
Since more holes are generated in the HOMO, the molecule is
driven away from the equilibrium position along the negative
direction by the electron-phonon interaction, as shown in the
second column of Fig. 11. When the Fermi level of the right
reservoir is resonant with ε̃d , the transport channel is turned
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FIG. 11. The occupation number (the first column), the average value of the quadrature (the second column), and the transient current (the
third column) in the double-occupation (the first row) and the Kondo (the second row) regimes, where εd = −0.5, � = 0.04, g = 0.2, tc = 5,
α = ωd = 1, and t0 is taken as the unit. (a)–(c)U = 0.05; (d)–(f)U = 1.

on, and the significant transient current is formed, as shown in
the third column of Fig. 11 and the left panel of Fig. 12.

In the intermediate stage, i.e., tc < t < tc + π/ωd , since
the Fermi level of the right reservoir is above that of the left
one, the HOMO is repumped, as shown in the first column
of Fig. 11. However, the resonant transport is absent since
the Fermi level of the right reservoir is detuned from LUMO.
Eventually, less electrons flow back to the left reservoir, and
the finite net charge is transported to the right reservoir, as
shown in Fig. 12. In the final stage t > tc + π/ωd , when the
light pulse is turned off, the long-lived phonon mode with
frequency ∼ωb survives, as shown in Fig. 11(b). Due to the
indirect coupling to the reservoir through electrons in HOMO,
the phonon mode has a finite lifetime, which is revealed by
the slowly decaying amplitude of the oscillation in 11(b).
The molecular vibration induces the long-lived oscillation of
current and net charge transport around their values in the
steady state, as shown in the third column of Fig. 11 and
the left panel of Fig. 12. This long timescale exceeds what
one would expect from the simple perturbation theory. Let
us consider the situation when in equilibrium there is one
electron on the localized orbital (similar argument can be
given for the case of double occupancy). If the molecule has
excited phonons but one electron in the localized orbital, as in
equilibrium, phonon relaxation requires going through virtual
states with either one or zero electrons on the HOMO. Then,
relaxation rate of phonon excitations would be expected to be

of the order of g
ω0

max{ V 2

εd+U−εF
, V 2

εF−εd
}. We observe a smaller

relaxation rate in our analysis.
Comparison of the Kondo [see Fig. 11(b)] and doubly

occupied [see Fig. 11(a)] regimes shows that in the latter case
the amplitude of long-lived currents oscillations is strongly
suppressed. This should be expected since in this limit fluctu-
ations in the number of electrons on HOMO are suppressed,
which implies strong reduction of the photoexcited phonon
amplitude. The argument explains suppression in the photoin-
duced current shown in Fig. 11(c).

D. Discussion of results

Before concluding this section we would like to highlight
several results of our analysis.

The main difference between the regimes of single and
double occupancy is the dependence of the net transferred
charge on the amplitude of the THz light pulse Ve,0. In the
former case we observe a linear dependence of the transferred
charge on Ve,0 [see Fig. 9(b)], whereas in the latter case
we find a nonlinear dependence [see Fig. 9(a)]. A special
feature of the single-occupancy regime is the existence of the
Kondo resonance at the Fermi energy, which gives rise to
finite dc conductance. This, however, is not the whole story.
In Appendix E we present the analysis of the photoinduced
current in the RLM with the energy of the localized state set
exactly at the Fermi energy εd = 0, which would also allow

033379-12



ULTRAFAST MOLECULAR DYNAMICS IN TERAHERTZ-STM … PHYSICAL REVIEW RESEARCH 2, 033379 (2020)

(b)

(d)

(a)

(c)

FIG. 12. The net charge transport in the doubly occupied (the
first row) and Kondo regimes (the second row), where εd = −0.5,
� = 0.04, g = 0.2, tc = 5, α = ωd = 1, and t0 is taken as the unit.
(a), (b) The time-dependent and average value of net charges trans-
port to the right reservoir in the double-occupation regime U =
0.05. (c), (d) The time-dependent and average value of net charges
transport to the right reservoir in the Kondo regimeU = 1.

for finite dc conductance. In the RLM we also find a nonlinear
dependence of the photocurrent on Ve,0 [see Fig. 12(d)]. We
remind the readers that the integral of the time-dependent
electric field in the THz pulse is zero. Hence, for a completely
linear system the net transferred charge should vanish. The
linear dependence of photocurrent onVe,0 in the Kondo regime
is thus a surprising feature of the system.

Another interesting result of our analysis is the existence
of different timescales characterizing the transient dynamics.
The occupation number of electrons on the localized orbital
exhibits two distinct scales in its dynamics. There is a rela-
tively short timescale over which the strong amplitude devi-
ation from equilibrium configuration decays. It is followed
by small amplitude oscillations that match the frequency
of the photoexcited phonon mode, with both oscillations of
the phonon amplitude and the electron occupation number
exhibiting slow decay. The existence of different timescales
is a common feature of pump and probe experiments in
strongly correlated electron systems (see, e.g., Ref. [61]).
Slow relaxation of phonon excitations was one of the key
features observed in experiments by Cocker et al. [7]. Our
analysis suggests that the origin of this relaxation is due to
phonon displacements modifying virtual tunneling processes
of reservoir electrons into the localized orbital, which ulti-
mately allows the phonon energy to be converted into particle-
hole excitations.

V. SUMMARY AND OUTLOOK

We introduced a method for analyzing the Anderson-
Holstein impurity model. Key ingredients of the approach are

two unitary transformations that use the parity conservation
to partially decouple the impurity degrees of freedom and a
generalized polaron transformation to entangle phonons and
electrons. An appealing aspect of this method is that degrees
of freedom at very different energy scales, from the local re-
pulsion U to the Kondo temperature TK , are described within
the same framework and without the numerical demands of
the NRG and DMRG calcualtions. To verify the accuracy of
this approach we computed the properties of the Anderson
model, including the equilibrium spectral function, linear and
nonlinear dc conductance. We demonstrated that we correctly
reproduce known results for this model. We extended the
analysis of the Anderson model to include electron-phonon
interactions and showed that it leads to a suppression of the
Kondo resonance.We used our approach to analyze THz-STM
experiments of tunneling through a single molecule. We found
that a picosecond light pulse that induces the current flow
gives rise to strong oscillations of the molecular phonon,
which persist long after the end of the pulse. We analyzed the
time dependence of the current induced by the THz pulse and
showed a strong difference between the Kondo and doubly
occupied regimes of the molecule.

Our analysis used Anderson model with a single local-
ized orbital. We remind the readers that THz pulses used in
femtosecond STM are usually asymmetric with respect to the
positive and negative voltages. For example, in experiments
in Ref. [7] the chemical potentials of the electron reservoirs
remained far detuned from the LUMO orbital during the
pulse and probability to excite electrons into this state was
small. Thus, considering only the HOMO and neglecting the
LUMO electron orbital is justified. We note, however, that our
analysis can be extended to the two-orbital Anderson model,
which would include both HOMO and LUMO electron states.
Another possibility is having several orbitals with a small
energy difference. When interorbital Coulomb interaction is
larger than the energy difference between orbitals, the system
should behave similar to the single-orbital case that we dis-
cussed. This was pointed out, for example, in Ref. [62], where
experiments with quantum dots were in the regime where
level spacing between single-particle orbitals in individual
dots was smaller than interorbital Coulomb repulsion. Exact
diagonalization using multiple orbitals was in good agreement
with analysis based on a single-band Anderson model.

Our work can be extended in several other directions. One
interesting question is developing a deeper understanding of
the interplay of electron-electron and electron-phonon inter-
actions in pump and probe experiments [63–67]. Recent time-
resolved ARPES/x-ray experiments by Gerber et al.measured
changes of the electron energy relative to the phonon displace-
ment in a photoexcited iron selenide [68]. They observed a
strong renormalization of the electron-phonon coupling rel-
ative to the value predicted from band-structure calculations
and attributed it to the effects of electron-electron interactions.
Extension of the formalism presented in this paper can be used
to study the time-dependent spectral function of electrons
following a THz light pulse. This analysis will provide a direct
comparison between changes of the electron energy and the
phonon amplitude.

Another interesting question is the analysis of shot-to-shot
fluctuations in the number of electrons transferred through the
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junction during the THz pulse. In the case of dc transport the
study of shot noise has been a valuable tool for understanding
underlying many-body states (see Refs. [69–71] for a review),
including the demonstration of fractional statistics in the
fractional quantum Hall states [72,73] and understanding the
backscattering mechanism in the Kondo system [74–76] as a
probe of the low-temperature fixed point.

The formalism developed in our paper introduces a pow-
erful technique that can be used for the theoretical analysis
of many different types of nonequilibrium problems. For
example, it should provide useful insights into the analysis
of resonant x-ray scattering experiments [77] in materials
with mobile electrons. The essence of these experiments is
that an incident photon excites an electron from the core
orbital into one of the unoccupied bands, which results in a
sudden introduction of a positively charged hole in the sea
of conduction band electrons [78]. The attractive potential
of the hole is strong enough to allow the formation of the
excitonic bound state, however, such bound state can be
occupied by only one of the electrons. Hence, an analysis of
the many-body dynamics following absorption of the incident
photon should include the local repulsion on the hole site. The
formalism developed in this paper can be used for computing
resonant inelastic x-ray scattering (RIXS) processes involv-
ing the excitation of bosonic modes, such as phonons and
magnons, as well as a continuum of electron-hole pairs. We
note that the non-Gaussian method discussed in this paper
can be extended to open systems, which should be useful
for describing pump and probe experiments in which cou-
pling between photoexcited phonons and/or electrons with
the reservoirs is important. Another interesting direction for
applying the ideas presented in this paper is to use variational
non-Gaussian states as a solver for nonequilibrium DMFT
calculations [52,79].
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APPENDIX A: MEAN-FIELD HAMILTONIAN OF
FERMIONS

The Wick theorem gives the mean-field Hamiltonian

Hm = −i
1

2
Wf

(
E0 
0



†
0 −ET

0

)
W †

f + HP
m (A1)

in the Majorana basis, where the matrices

E0 = 1

2

⎛
⎝Ũ v− v−

v
†
− 2hL 0

v
†
− 0 2hR

⎞
⎠,
0 = 1

2

⎛
⎜⎝

0 −v+ −v+
vT

+ 0 0

vT
+ 0 0

⎞
⎟⎠,

EP = 1

2
γ

⎛
⎜⎝

UP v− v−
−vT

+ 0 0

−vT
+ 0 0

⎞
⎟⎠, 
P = 1

2
γ

⎛
⎝0 v− v−
0 0 0
0 0 0

⎞
⎠

(A2)

are defined by UP = Ũ + 2ε̃d − 2
T
RGλ, the vectors v± =

V 〈e∓iRT λ〉GS(1,±γ ) ⊗ (1, 0N−1), and the hopping matrices
ha=L,R = I2 ⊗ (−t0δi, j±1 − μaδi j ) in the left and right reser-
voirs. The matrix HP

m = 4δEP/δ�m is determined by the
derivative of EP = 〈Pzc†EPc〉 + 2Re〈PzcT
Pc〉.

The 2 × 2 Gram matrix

G = 〈PcPc〉�b + 〈PhPh〉
(
4σ yλλTσ y

+
R

T
R + 2i
Rλ

Tσ y − 2iσ yλ
T
R

)
(A3)

of the tangential vectorUphUAUGSVh|0〉 is determined by

〈PcPc〉 = 〈 f †γ fγ 〉GS − 〈Pz f †γ fγ 〉2GS,
〈PhPh〉 = 〈PcPc〉 − 1

2 〈Pz f †γ fγ :C
†OPC:〉GS. (A4)

The vector

ξτ = i(�b − σ y)(〈PcPc〉Gλ − γ�cλ)

−(2σ yλ + i
R)
(
1
2UP〈 f †γ fγ 〉GS + γ�h

)
(A5)

is the overlap of the tangential vector and the right-hand side
of Eq. (22), where

�c = i
V

2

∑
a

[eλ〈(1 + γPz ) f
†
γ (γ c0,↑,a − c0,↓,a )〉GS

+ e∗
λ〈(1 − γPz )(γ c

†
0,↑,a + c†0,↓,a ) f

†
γ 〉GS]

+〈Pz f †γ fγ 〉GSIm〈Idc〉GS, (A6)

�h = 1

2
V

∑
a

[eλ〈 f †γ (γ c0,↑,a − c0,↓,a )〉GS

−e∗
λ〈(γ c†0,↑,a + c†0,↓,a ) f

†
γ 〉GS]

−EP〈Pz f †γ fγ 〉GS − 1
2 〈Pz f †γ fγ :C

†HP
f C:〉GS, (A7)

and HP
f = iW †

f HP
mWf /2 is the matrix in the Nambu basis.

The mean-field Hamiltonian, the Gram matrix, and the
vector ξτ involve the average values 〈Pz〉GS, 〈PzCiC

†
j 〉GS,

and 〈Pz f †γ fγC
†
i Cj〉GS on the Gaussian state. We consider

the average values of operators Pθ
z = eθ f † f Pz and Pθ

z CiC
†
j ,

which eventually give 〈Pz〉GS = 〈Pθ=0
z 〉 and 〈PzCiC

†
j 〉GS =

〈Pθ=0
z CiC

†
j 〉GS, as well as 〈Pz f †γ fγC

†
i Cj〉GS by the derivative

∂θ 〈Pθ
z CiC

†
j 〉GS|θ=0

.
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As shown in Refs. [11,12], the average values 〈Pθ
z 〉GS =

−Pf(�F/2) and〈
Pθ
z c

†
l ck

〉
GS = 1

4

〈
Pθ
z

〉
GS

[
(1, i)S�

(
1
−i

)]
kl

,

〈
Pθ
z clck

〉
GS = −1

4

〈
Pθ
z

〉
GS

[
(1, i)S

(
1
i

)]
kl

(A8)

are determined by the Pfaffian of

�F = √
1 + ��m

√
1 + � − σ (1 − �), (A9)

S = (σ�m − 1)T , and

T = 1

1 + 1
2 (1 + �)(σ�m − 1)

, (A10)

where � = I2 ⊗ σθ , σθ = diag(−eθ , 11×N ,−11×N , 11×N ,

−11×N ) is a diagonal matrix and

σ =
(

0 14N+1

−14N+1 0

)
(A11)

is a symplectic matrix. The anticommutation relation results
in 〈

Pθ=0
z clc

†
k

〉
GS = 〈

P0
z

〉
δlk − 〈

P0
z c

†
kcl

〉
,〈

Pθ=0
z c†l c

†
k

〉
GS = (σ0)kk

[〈
P0
z ckcl

〉]∗
(σ0)ll . (A12)

By the derivative to θ and taking the limit θ → 0, we obtain

〈Pz f †γ fγ c
†
i c j〉 = −1

2
gF 〈Pzc†i c j〉GS

− 1

4
〈Pz〉GS

[
(1, i)Sw

(
1 − 1

2
S�

)(
1
−i

)]
ji

(A13)

and

〈Pz f †γ fγ cic j〉 = −1

2
gF 〈Pzcic j〉GS

− 1

8
〈Pz〉GS

[
(1, i)SwS

(
1
i

)]
ji

, (A14)

where w = I2 ⊗ diag(1, 01×4N ) and

gF = tr
(
�−1
F σw + 1

2T σw�m
)
. (A15)

The commutation relation leads to

〈Pz f †γ fγ cic
†
j 〉GS = 〈Pz f †γ fγ 〉GSδi j − 〈Pz f †γ fγ c

†
j ci〉GS,

〈Pz f †γ fγ c
†
i c

†
j 〉GS = (σθ )ii〈Pz f †γ fγ c jci〉∗(σθ ) j j

+ δi1〈Pz f †γ c†j 〉 − 〈Pz f †γ c†i 〉δ j1. (A16)

The mean-field Hamiltonian HP
m is determined by the

derivatives

δ

δ�m,i j
〈Pz〉GS = −1

2
〈Pz〉GS

√
1 + �

1

�F

√
1 + �, (A17)

δ

δ�m,i j
〈Pzc†l ck〉GS = −1

2
〈Pzc†l ck〉GS

(√
1 + �

1

�F

√
1 + �

)
i j

− i
1

4
〈Pz〉GS

[
T �

(
1
−i

)]
jl

[(1, i)T T ]ki

(A18)

and

δ

δ�m,i j
〈Pzclck〉 = −1

2
〈Pzclck〉GS

(√
1 + �

1

�F

√
1 + �

)
i j

+ i
1

4
〈Pz〉GS

[
T

(
1
i

)]
jl

[(1, i)T T ]ki. (A19)

APPENDIX B: LINEARIZED ODE FOR ∂τλ

In this Appendix, we reduce EOM (35), i.e.,

∂τλ
TM∂τλ = ∂τλ

T ξτ (B1)

to the linear ODE, where ξτ = (ξτ,x, ξτ,p)T and

M =
(
M11 M12

M21 M22

)
. (B2)

Since the left-hand side of Eq. (35) is always real, the imagi-
nary part of ∂τλ

T ξτ must vanish, which gives rise to

∂τλxImξτ,x + ∂τλpImξτ,p = 0. (B3)

Four possibilities may happen: (a) Imξτ,x = Imξτ,p = 0;
(b) Imξτ,x = 0, Imξτ,p 
= 0; (c) Imξτ,x 
= 0, Imξτ,p = 0; (d)
Imξτ,x 
= 0, Imξτ,p 
= 0.

For the case (a), EOM (35) is reduced to M∂τλ = ξτ . For
the case (b), EOM (35) becomes

∂τλp = 0, M11∂τλx = ξτ,x. (B4)

For the case (c), EOM (35) is

∂τλx = 0, M22∂τλp = ξτ,p. (B5)

For the last case, EOM (35) reads as

∂τλp = − Imξτ,x

Imξτ,p
∂τλx,

∂τλx = 1

vT
ξ Mvξ

vT
ξ ξτ , (B6)

where the vector vξ = (1,−Imξτ,x/Imξτ,p)T .

APPENDIX C: EVALUATION OF
AVERAGE VALUES IN GR(t )

In this Appendix, we calculate the average values in the
retarded Green function GR(t ), which are〈

e−iRT (t )λeiR
T λ

〉
GS,

〈
eiR

T λe−iRT (t )λ〉
GS (C1)

for the phonon and

〈F (t )F †〉GS, 〈F †F (t )〉GS (C2)

for fermions.
We first consider the phonon part. The average value〈

e−iRT (t )λeiR
T λ

〉
GS = b〈�̄GS|e−iωretb†b|�̄GS〉b (C3)

can be rewritten as the mean value of e−iωreb†bt on the normal-
ized Gaussian state

|�̄GS〉b = eiR
T STp λ|0〉b, (C4)

where the symplectic matrix Sp diagonalizes the phonon
mean-field Hamiltonian �re as STp �reSp = ωreI2.
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The Gaussian state |�̄GS〉b is fully characterized by the
average value 
λ = −2S−1

p iσ yλ of quadrature and the covari-
ance matrix �̄b = I . The average value〈

e−iRT (t )λeiR
T λ

〉
GS = e− 1

4 
T
λ 
λ(1−e−iωre t ) (C5)

follows from the result in Ref. [11]. Following the similar
procedure, one can obtain 〈eiRT λe−iRT (t )λ〉GS.

We analyze the fermionic part in the next step. The average
value

〈F (t )F †〉GS = 1
4 [u

T
−g1(t )u− + γ uT−g2(t )u+

+ γ uT+g3(t )u− + g4(t )] (C6)

contains four terms g1(t ) = 〈C(t )C†〉GS, g2(t ) =
〈C(t )PzC†〉GS, g3(t ) = 〈PzC(t )C†〉GS, and

g4(t ) = 〈Pz( f + f †)(t )Pz( f + f †)〉GS, (C7)

where uT± = (1,±1) ⊗ (1, 02N ).
It follows from the Heisenberg equations of motion that the

first three terms obey

i∂t g1,2(t ) = H f g1,2(t ),

i∂t g3(t ) = g3(t )H f , (C8)

where H f = iW †
f HmWf /2. The solutions

g1,2(t ) = e−iH f t g1,2(0),

g3(t ) = g3(0)e
−iH f t (C9)

are determined by the boundary values g1(0) = 〈CC†〉GS,
g2 = 〈CPzC†〉GS, and g3(0) = 〈PzCC†〉GS are obtained analyt-
ically in Appendix A.

Applying the parity operator on the mean-field Hamilto-
nian, we can write the fourth term

g4(t ) = eiE
e
MFt f 〈�GS|( fγ + f †γ )e

−i 12C
†H�Ct ( fγ + f †γ )|�GS〉 f

(C10)
by H� = �H f �, where He

MF|�GS〉 f = Ee
MF|�GS〉 f . Intro-

ducing the unitary transformation V�, V
†
�CV� = U�C, we

obtain

g4(t ) = eiε̄t f 〈�̄GS|e−ic†εct |�̄GS〉 f , (C11)

where ε̄ = Ee
MF + trε/2,U� diagonalizes the matrix H� as

U †
�H�U� = D =

(
ε 0
0 −ε

)
, ε j � 0 (C12)

and |�̄GS〉 f = V †
�( fγ + f †γ )|�GS〉 f is a normalized Gaussian

state.
The Gaussian state |�̄GS〉 f is fully characterized by the

covariance matrix

�̄ f = f 〈�̄GS|CC†|�̄GS〉 f
= U †

�[(σx� f u+uT+� f σx )
T

−� f u+uT+� f + � f ]U�. (C13)

It follows from the result in Ref. [11] that

g4(t ) = −eiε̄tPf

(
�̄F

2

)
, (C14)

where

�̄F =
√
1 − e−iεt �̄m

√
1 − e−iεt − σ (1 + e−iεt ) (C15)

is determined by �̄m = i(Wf �̄ fW
†
f − 1). Following the same

procedure, one can also obtain the average value 〈F †F (t )〉GS.

APPENDIX D: MEAN-FIELD HAMILTONIAN OF
PENALTY TERM

In this Appendix, we derive the mean-field Hamiltonian of
the penalty termH� by theWick theorem. In the explicit form,
the Hamiltonian

H�/� = (1 − 2N̄↑)
∑
j,a

c†j,↑,ac j,↑,a +
(∑

ia

c†i,↑,aci,↑,a

)2

+ (1 − 2N̄↓)
∑
i,a

c†i,↓,aci,↓,a +
(∑

i,a

c†i,↓,aci,↓,a

)2

+ (N̄↓ − N̄↑)γPz + γPzc
†Eμ

P c

+ 2γ
∑
j,a

Pz f
†
γ fγ c

†
j,↓,ac j,↓,a

+ N̄2
↑ + N̄2

↓ − N̄↑ − N̄↓ + 1, (D1)

where the matrix

Eμ
P =

⎛
⎝1 − 2N̄↓ 0 0

0 (δσ↑ − δσ↓)δσσ ′δi j 0
0 0 (δσ↑ − δσ↓)δσσ ′δi j

⎞
⎠.

(D2)
The Wick theorem gives the mean-field Hamiltonian

H�,MF = i:ATH�,mA:/4, where

H�,m/� = −i
1

2
Wf

(
Eμ 
μ


†
μ −Eμ

)
W †

f + 4
δEμ

P

δ�m
(D3)

is determined by

Eμ = 2δab

[(
1 − N̄↑ +

∑
lc

〈c†l,↑,ccl,↑,c〉GS
)

δσ↑

+
(
1 − N̄↓ +

∑
lc

〈c†l,↓,ccl,↓,c〉GS
)

δσ↓

]
δσσ ′δi j

−2

(
〈c†j,↑,bci,↑,a〉GSδσ↑ + 〈c†j,↓,bci,↓,a〉GSδσ↓

)
δσσ ′,

(D4)


μ = 2(〈c j,↑,bci,↑,a〉GSδσ↑ + 〈c j,↓,bci,↓,a〉GSδσ↓)δσσ ′, (D5)

and

Eμ
P = (N̄↓ − N̄↑)γ 〈Pz〉GS + γ

〈
Pzc

†Eμ
P c

〉
GS

+ 2γ
∑
j,a

〈Pz f †γ fγ c
†
j,↓,ac j,↓,a〉GS. (D6)
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The derivatives to the covariance matrix are given by Eqs. (A17)–(A19) and

4
δ

δ�m,i j
〈Pz f †γ fγ c

†
l ck〉GS = −2〈Pz f †γ fγ c

†
l ck〉

(√
1 + �

1

�F

√
1 + �

)
i j

− 2〈Pzc†l ck〉GS∂θ

(√
1 + �

1

�F

√
1 + �

)
i j

+ i〈Pz〉GS
{
1

2
gF

[
T �

(
1
−i

)]
jl

[(1, i)T T ]ki −
[
1

2
T w(σ�m − 1)T �

(
1
−i

)]
jl

[(1, i)T T ]ki

+
[
T w

(
1
−i

)]
jl

[(1, i)T T ]ki − 1

2

[
T �

(
1
−i

)]
jl

[(1, i)T T (�mσ − 1)wT T ]ki

}
, (D7)

where

∂θ

(√
1 + �

1

�F

√
1 + �

)
= −1

4
wσT T − 1

4
T σw + 1

4
T σw�m

√
1 + �

1

�F

√
1 + �

+ 1

4

√
1 + �

1

�F

√
1 + ��mwσT T + √

1 + �
1

�F
σw

1

�F

√
1 + �. (D8)

APPENDIX E: ULTRAFAST PROCESSES IN RLM

In this Appendix, we consider phototransport in the resonant level model in the so-called infinite bandwidth limit (see Ref. [9]
for details). The system Hamiltonian is given by

HRLM =
∑
k,a

(k − μa )c
†
k,ack,a + εdd

†d + V√
L

∑
k,a

(c†k,ad + H.c.), (E1)

where we set vF = 1, the chemical potential of the left lead is fixed μL = 0, and the effect of the ultrafast light is described by
μR(t ) = V0 sin(ω0t ) θ (t ) θ (T0 − t ) with frequency ω0 = 2π/T0.

In equilibrium, Green’s functions of the system can be found from (see, e.g., Ref. [9])

G<
d (ω) = i

∫
dt eiωt 〈 0 |d†(0)d (t )| 0 〉 = 2i�

(ω − εd )2 + �2
n(ω), (E2)

G<
kd,a(ω) = i

∫
dt eiωt 〈 0 |d†(0)ck,a (t )| 0 〉

= i
V√
L
n(ω)

[
2πδ(ω − εk,a )

1

ω − εd − i�
+ 1

ω − εk,a + i0+
2�

(ω − εd )2 + �2

]
, (E3)

G<
kp,ab(ω) = i

∫
dt eiωt 〈 0 |c†p,b(0)ck,a (t )| 0 〉

= 2π in(ω)δ(ω − εka )δkpδab + i
�

L
n(ω)

[
1

ω − εka + i0+
2�

(ω − εd )2 + �2

1

ω − εpb − i0+

+ 2πδ(ω − εpb)
1

ω − εka + i0+
1

ω − εd + i�
+ 2πδ(ω − εka )

1

ω − εd − i�

1

ω − εpb − i0+

]
, (E4)

where � = V 2 and n(ω) is the Fermi distribution. We can use these expressions to find expectation values of fermionic
bilinears as

〈d†d〉 =
∫ +∞

−∞

dω

2π i
G<

d (ω) =
∫ 0

−∞

dω

2π

2�

(ω − εd )2 + �2
, (E5)

〈d†ck,L(R)〉 =
∫ +∞

−∞

dω

2π i
G<

kd,a(ω) = V√
L

n(k)

k − εd − i�
+ V√

L

∫ 0

−∞

dω

2π

1

ω − k + i0+
2�

(ω − εd )2 + �2
, (E6)

and

〈c†p,bck,a〉 =
∫ +∞

−∞

dω

2π i
G<

kp,ab(ω) = n(k)δkpδab + �

L

[
1

k − εd − i�

1

k − p− i0+ n(k)

+ 1

p− k + i0+
1

p− εd + i�
n(p) +

∫ 0

−∞

dω

2π

1

ω − k + i0+
2�

(ω − εd )2 + �2

1

ω − p− i0+

]
(E7)

before the pulse arrives, where εk,a = εk,b = k.
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When the ultrafast pulse is turned on, the current

I = ∂t 〈NL〉 = 2V√
L

∑
k

Im〈c†k,Ld〉, (E8)

i.e., the change of electron number in the left lead, can be
obtained by the Heisenberg equations of motion

i∂t d = εdd + V√
L

∑
k,a

ck,a (E9)

and

i∂t ck,a = (k − μa )ck,a + V√
L
d. (E10)

The solution

ck,L(t ) = ck,L(0)e
−ikt − i

V√
L

∫ t

0
ds e−ik(t−s)d (s),

ck,R(t ) = ck,R(0)e
−ikt+iJ (t )

− i
V√
L

∫ t

0
ds e−ik(t−s)eiJ (t )−iJ (s)d (s),

d (t ) = d (0)e−i(εd−i�)t

− i
V√
L

∑
k

ck,L(0)e
−i(εd−i�)t

∫ t

0
ds e−i(k−εd+i�)s

−i
V√
L

∑
k

ck,R(0)e
−i(εd−i�)t

∫ t

0
ds e−i(k−εd+i�)seiJ (s)

(E11)

of Eqs. (E10) and (E9) gives rise to the time-dependent current

I (t ) = −(1 − e−2�t )�

(
1

4
− 1

2π
arctan

εd

�

)

+ 2�2e−2�t
∫ 0

−∞

dk

2π
Im

Fk (t )

k − εd − i�

+�2e−2�t
∫ 0

−∞

dk

2π
|Fk (t )|2, (E12)

where the decay rate � = V 2, J (t ) = ∫ t
0 ds

′μR(s′), and

Fk (t ) =
∫ t

0
ds e−i(k−εd+i�)seiJ (s). (E13)

For the time-dependent chemical potential μR(t ), the func-
tion

J (t ) = V0
ω0

(1 − cosω0t )θ (T0 − t ) (E14)

determines

Fk (t ) = ieia0
∑
n

(−i)|n|J|n|(a0)
k − εd + nω0 + i�

×{[e−i(k−εd+nω0+i�)t − 1]θ (T0 − t )

+ [e−i(k−εd+nω0+i�)T0 − 1]θ (t − T0)}

+ i
e−i(k−εd+i�)t − e−i(k−εd+i�)T0

k − εd + i�
θ (t − T0)

(E15)

by the expansion

e−ia0 cosω0s =
∑
n

(−i)|n|J|n|(a0)e−inω0s, (E16)

where a0 = V0/ω0 > 0.
The number of electrons transport from the left lead to the

right one is defined as Ntran = ∫ ∞
0 dt I (t ). The integral of I (s)

over time gives

Ntran =
(
1

2
− �T0

)(
1

4
− 1

2π
arctan

εd

�

)

+ 2�2
∫ 0

−∞

dk

2π
Im

C1(k)

k − εd − i�
+ �2

∫ 0

−∞

dk

2π
C2(k),

(E17)

where

C1(k) = ieia0
∑
n

(−i)|n|J|n|(a0)
k − εd + nω0 + i�

[
i
e−i(k−εd+nω0−i�)T0 − 1

k − εd + nω0 − i�

+ 1

2�
e−i(k−εd+nω0−i�)T0 − 1

2�

]

+ e−i(k−εd−i�)T0

(k − εd )2 + �2
− i

1

2�

e−i(k−εd−i�)T0

k − εd + i�
(E18)

and

C2(k) =
∑
nm

(−1)|n|i|n|+|m|J|n|(a0)J|m|(a0)
(k − εd + nω0 + i�)(k − εd + mω0 − i�)

×
[
i
e−i(n−m)ω0T0 − 1

(n − m)ω0
− i

e−i(k−εd+nω0−i�)T0 − 1

k − εd + nω0 − i�

− ei(k−εd+mω0+i�)T0 − 1

i(k − εd + mω0 + i�)
− e−2�T0 − 1

2�

]

+ e−2�T0

2�
|C3(k)|2 + 2Re

iei(k−εd+i�)T0

(k − εd )2 + �2
C3(k)

(E19)

(a) (b)

(c) (d)

FIG. 13. Ultrafast dynamics of RLM with the tight-binding dis-
persion relation, where � = 0.25 and ω0 = 1. (a), (b) The transient
current for εd = −0.5 and 0. (c), (d) The transport electron number
Ntran for εd = −0.5 and 0.
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is determined by

C3(k) = eia0
∑
n

(−i)|n|J|n|(a0)
k − εd + nω0 + i�

[e−i(k−εd+nω0+i�)T0 − 1]

− e−i(k−εd+i�)T0

k − εd + i�
. (E20)

For RLM with the tight-binding dispersion relation,
it is difficult to obtain the transient current and the

transport number Ntran analytically. One can investigate the
dynamics governed by the quadratic Hamiltonian HRLM nu-
merically. Here, we consider the pulse profile (54) in the
main text. The transient current is shown in Figs. 13(a)
and 13(b) for εd = −0.5 and 0, where � = 0.25, ω0 = 1,
and V0 = 0.5, 1, 1.5, and 2. The transport electron num-
ber Ntran as a function of V0 is shown in Figs. 13(c)
and 13(d).
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