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Zero-temperature phases of the two-dimensional Hubbard-Holstein model:
A non-Gaussian exact diagonalization study
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We propose a numerical method which embeds the variational non-Gaussian wave-function approach within
exact diagonalization, allowing for efficient treatment of correlated systems with both electron-electron and
electron-phonon interactions. Using a generalized polaron transformation, we construct a variational wave func-
tion that absorbs entanglement between electrons and phonons into a variational non-Gaussian transformation;
exact diagonalization is then used to treat the electronic part of the wave function exactly, thus taking into
account high-order correlation effects beyond the Gaussian level. Keeping the full electronic Hilbert space, the
complexity is increased only by a polynomial scaling factor relative to the exact diagonalization calculation for
pure electrons. As an example, we use this method to study ground-state properties of the two-dimensional
Hubbard-Holstein model, providing evidence for the existence of intervening phases between the spin and
charge-ordered states. In particular, we find one of the intervening phases has strong charge susceptibility and
binding energy, but is distinct from a charge-density-wave ordered state, while the other intervening phase
displays superconductivity at weak couplings. This method, as a general framework, can be extended to treat
excited states and dynamics, as well as a wide range of systems with both electron-electron and electron-boson
interactions.

DOI: 10.1103/PhysRevResearch.2.043258

I. INTRODUCTION

Strongly correlated systems pose important theoretical
questions about the nature of interacting systems at inter-
mediate and strong coupling. Away from weak coupling,
traditional mean-field or perturbative approaches often fail
to accurately describe the physics, especially in cases with
competing and/or intertwined ordering tendencies.

In the condensed-matter setting, models are commonly
classified into interacting electrons, interacting bosons, and
interacting electron-boson systems. Advances in unbiased nu-
merical many-body methods, including exact diagonalization
(ED) [1,2], quantum Monte Carlo (QMC) [3,4], and density-
matrix renormalization group (DMRG) [5,6], have greatly
expanded our understanding of the fermionic and bosonic
Hubbard models, together with their variants. For exam-
ple, recent numerical solutions of the single- and three-band
Hubbard models have shed light on the stripe and d-wave
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superconducting phases in doped cuprates [7–11]. Although
the Hubbard model is often considered to be a prototype
microscopic model, experimental evidence suggests coupling
to phonons can also play an important role in the low-
energy physics of correlated materials. For example, STM
measurements have shown a significant isotope effect on the
second-derivative tunneling current [12]; spectral experiments
have shown significant lattice effects in cuprates, starting
from the underdoped regime [13], to optimal [14] and over-
doped regimes [15]; phonon softening has also been observed
using Raman [16] and neutron scattering [17]. These observa-
tions suggest that electron-electron (e-e) and electron-phonon
(e-ph) interactions should be taken into account simultane-
ously in order to properly understand the rich phenomena
observed in many correlated materials.

A significant barrier to understanding the low-energy
physics of models with both e-e and e-ph interactions is
the challenge they pose to conventional numerical methods.
On the one hand, numerical many-body approaches, such
as ED and DMRG, have achieved great success in analyz-
ing correlated electronic systems in the past decades. With
the improvement of both algorithms and high-performance
supercomputers, these approaches not only evaluated the
ground-state properties precisely, but also calculated the spec-
troscopies and dynamics in a well-controlled way [18–20].
However, extending efficient numerical techniques to include
phonons remains challenging. The bosonic Hilbert space is
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infinite dimensional, and the total allowed phonon number has
to be truncated to a small value (on the order of 1–5 phonons
per site). This has largely limited the study of strongly coupled
e-ph systems, e.g., the Peierls charge-density-wave (CDW)
systems.

On the other hand, approximate methods based on varia-
tional wave functions provide an alternative route to analyze
correlated systems. For example, variational Lang-Firsov
transformations have been applied to disentangle e-ph systems
in the long-wavelength limit [21,22]. A more intricate Jastrow
variational wave function has been employed to examine the
competing spin, charge, and superconducting orders via a par-
ticular mean-field decoupling of the electrons [23,24]. More
recently, these variational approaches were generalized to the
non-Gaussian class of wave functions. With the non-Gaussian
transformation chosen to be a generalized polaron transfor-
mation, this method gives a good estimate of the e-ph ground
state [25]; with specific parity transformation, this class of
wave functions also perfectly decouples the Kondo and An-
derson models [26–28]. However, extending the method to
systems with e-e interactions has not been straightforward,
due to the fact that four-fermion interaction terms make the
parameter space much more complicated. Besides, effective
e-e interactions can be generated when disentangling the
e-ph coupling. The absence of quantum fluctuations in the
Gaussian state limits the accuracy for even pure e-ph systems.
This issue becomes even more crucial for the calculation of
dynamics, due to greater complexity of the polaronic dress-
ing [29]. More precise treatment of electronic correlations is
therefore imperative.

To combine the merits of these two philosophies, we pro-
pose the hybrid non-Gaussian exact diagonalization (NGSED)
method. By adding the polaronic non-Gaussian ansatz for
the phonon dressing (to be described in more detail be-
low) to the ED-based electronic calculation, we increase the
computational complexity only by a polynomial factor. At
the same time, the inclusion of the full electronic Hilbert
space and many-body wave function addresses the fluctua-
tion issue of pure variational approaches, reducing the bias
incurred by a mean-field treatment of the correlated elec-
tronic state. Similar embedding ideas have been attempted
in a few numerical studies. For example, the iterative opti-
mized phonon implementation has been applied to ED [30]
and cluster perturbation theory [31]. However, even on an
optimized basis, the phonon number still spans a huge Hilbert
space, limiting the calculations to a six-site chain. The classi-
cal phonon approximation [32] and the standard Lang-Firsov
transformation [33] were also employed to disentangle the
local interactions in QMC and ED, but ignorance of explicit
phonon wave functions prevents an accurate description of
fluctuations of both effective tunneling and interactions. A
very similar idea of embedding Lang-Firsov transformations
with ED has been attempted in the t-J model [34,35]. With
only a local dressing parameter, these embedding calculations
still failed to capture the fluctuations caused by the polaronic
dressing. Therefore, a natural extension is the embedding of a
variational phonon wave function and polaron transformation
into an exact numerical technique: this forms the intuition of
our NGSED method.

Although the idea of embedding non-Gaussian transforma-
tions with numerical many-body techniques can be extended
to a variety of problems, we focus on the e-ph system as
a concrete topic in this paper. We introduce the NGSED
method for a generic e-ph model and present the iterative
approach to evaluate the ground-state properties. To assess
the accuracy of the variational wave function, we benchmark
the method against an exact QMC solution of the Holstein
model. We then focus on the Hubbard-Holstein model, where
we examine the ground-state properties and their dependence
on the e-e and e-ph interactions, phonon energy, and doping.
We observe a shift in the antiferromagnetic (AFM) phase
boundary, which is explained through the form of effective e-e
interactions. We identify a region between AFM and charge-
density-wave (CDW) states in which both charge and spin
orders are absent. This region can further be divided: one sub-
region has enhanced charge susceptibility and considerable
binding energy, possibly corresponding to a two-dimensional
(2D) analog of the Luther-Emery liquid observed in the one-
dimensional (1D) Hubbard-Holstein model [36]; the other
subregion exhibits superconductivity at the weak-coupling
side but gradually becomes metallic for stronger coupling.
In contrast to the conclusions obtained using pure variational
wave functions [23,24], we do not see a dramatic broaden-
ing of the superconducting phase on the weak-coupling side,
consistent with unbiased QMC results [37]. Complementing
previous high-temperature QMC studies, truncated-phonon
ED studies, and zero-temperature variational studies, this
work sheds light on the phases in such a competing-order
system.

The organization of this paper is as follows. We first intro-
duce the NGSED method and relevant derivations in Sec. II.
Then, we apply it to the Holstein and Hubbard-Holstein mod-
els and discuss the ground-state properties in Sec. III. We
conclude our method and simulations in Sec. IV, together with
the outlook of this method for other systems.

II. MODEL AND DERIVATIONS

We present the derivation of relevant formulas for a generic
electron-phonon system in this section, before focusing on
the Hubbard-Holstein model with specific form of e-e and
e-ph interactions. A generic electron-phonon model can be
expressed by the Hamiltonian

H =
∑
kσ

(εk − μ)c†
kσ
ckσ + He-e + He-ph + Hph, (1)

where ckσ (c†
kσ

) annihilates (creates) an electron at momentum
k with spin σ , with a dispersion relation εk and chemical
potential μ. N is the overall site number. Within second quan-
tization, ckσ takes the reciprocal representation with respect
to the annihilation operator of the Wannier orbital ckσ =∑

i e
−ik·riciσ /

√
N . Apart from the bare dispersion, the He-e,

He-ph, and Hph terms represent the contributions from e-e
interactions, e-ph coupling, and phonon energy, respectively.

In general, the phonon part of Hamiltonian is

Hph =
∑
q

ωqa
†
qaq = 1

4

∑
q

ωqR
†
qRq, (2)
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and the e-ph coupling part is [38]

He-ph = 1√
N

∑
q

gq(aq + a†
−q)ρq. (3)

Here, the ωq describes the phonon dispersion, gq parametrizes
the e-ph interaction at a wave vector q; aq annihilates a
phonon at momentum q and ρq = ∑

iσ niσ e
−iq·ri is the elec-

tron density. For convenience in subsequent derivations, we
employ the bosonic quadrature notation Rq = (xq, pq)T , with
the canonical position xq = aq + a†

−q and momentum pq =
i(a†

−q − aq) determined by the phonon annihilation operator.
These canonical operators fulfill the commutation relations

[x†
q, pq′ ] = [xq, p

†
q′ ] = 2iδq,q′ . (4)

Thus, the parts of Hamiltonian relevant to phonons can be
rewritten as

He-ph + Hph = 1√
N

∑
q

gqR
†
qe1ρq + 1

4

∑
q

ωqR
†
qRq, (5)

with e1 = (1, 0)T .
Without loss of generality, we allow the parameters gq

and ωq to vary over momentum space, but obeying the time-
reversal symmetry, i.e., gq = g−q and ωq = ω−q. For the
electron interaction part He-e, the only restriction we place is
that it commutes with the local density operators ni. Thus, we
allow for any combination of density and spin operators, such
as the onsite Hubbard or long-range Coulomb interactions.

To describe the e-ph entangled system in the simplest form,
we consider the wave-function ansatz

|�〉 = Uplrn|ψph〉 ⊗ |ψe〉. (6)

Here, the right-hand side is a direct product of electron and
phonon states, where |ψe〉 is treated as a full many-body state
while |ψph〉 is a coherent Gaussian state

|ψph〉 = e− 1
2 R

T
0 σy	Re−i 1

4

∑
q R

†
qξqRq |0〉 = UGS|0〉, (7)

in which σy is the Pauli matrix. The polaron transformation
Uplrn creates entanglement between these two parts of the
wave function:

Uplrn = ei
1√
N

∑
q λq p−q.ρq . (8)

In the above wave-function prototype, the 	R, ξq, and λq
are variational parameters. An important feature of the wave-
function ansatz in Eq. (6) is that this wave function gives
exact solutions to the e-ph problem in both the adiabatic
(ω = 0) and antiadiabatic (ω = ∞) limits. In the adiabatic
limit, phonons can be treated as a classical field, mean-field
theory becomes exact, and the Gaussian wave function gives
an exact description of the phonon. Thus, the system becomes
pure electronic and can be precisely solved by ED. In the
antiadiabatic limit, the phonon field can be integrated out,
yielding an instantaneous, attractive onsite interaction, i.e.,
the attractive Hubbard model. The ED step again solves this
problem exactly. As it is exact in both the adiabatic and antia-
diabatic limits, we expect Eq. (6) does not induce significant
bias in realistic models with finite ω. The accuracy of this
assumption will be further assessed through the comparison
with exact DQMC solutions (see Sec. III A). In contrast, a

Gaussian ansatz for the fermionic wave function would not
accurately describe the system in either limits because the
quantum fluctuations become important with the presence of
electronic interactions in He-e.

Note, in principle, the coherent part of the phonon wave
function |ψph〉 can involve displacements for all different
momenta. However, any finite value of finite-q displacement
would lead to the explicit breaking of translational symmetry
and overestimate the tendency of charge ordering. Therefore,
to avoid possible biases induced by the symmetry-breaking
Gaussian states, we neglect any finite-q displacements in
Eq. (7). Physically, it means phonons cannot really con-
dense at a finite momentum, though the system might exhibit
dramatically enhanced fluctuations. We impose this strong
assumption because spontaneous symmetry breaking is not
possible in such a small cluster. Therefore, to fairly study the
competition between spin- and charge-density-wave states, we
only discuss their susceptibilities rather than long-range or-
dered states. This assumption also highly reduces the Hilbert
space dimension due to the momentum conservation.

The above polaron transformation generalizes the Lang-
Firsov transformation [39]. Historically, the Lang-Firsov
transformation has been widely exploited in electron-boson
systems to disentangle the coupling and simplify the calcu-
lation. To tackle the Hubbard-Holstein model, early attempts
have extended it to a variational transformation [21,22].
These transformations have shown advantages in solving the
Holstein model [40], Hubbard-Holstein model [41,42],
Anderson-Holstein model [43,44], and anharmonic
phonons [45]. However, due to the limitation of the
numerical treatment on either the phonon or electronic
side, these variational transformations were restricted only to
a q-independent λq. This treatment ignores the longer-range
spatial fluctuation of the effective interaction mediated by
the phonon, which we will show plays a significant role near
the quantum phase transition. A direct consequence of this
simplification is the overestimation of the CDW instability
(we will further discuss this in Sec. III). This limitation
necessitates the generalization of this transformation to a
polaronic non-Gaussian transformation in Eq. (8), where λq
is allowed to vary for different momenta.

By constructing the wave function through Eq. (6), we
can evaluate the ground state with the manifold spanned by
the variational parameters and the many-body electronic wave
functions. Variational parameters are determined by minimiz-
ing the energy

E ({λq},	R, {ξq}, |ψe〉) = 〈�|H|�〉. (9)

Numerically, the optimization can be iteratively achieved by
decomposing into the electronic and bosonic states, with cou-
pled coefficients. Each of them can be treated as a correction
to the effective Hamiltonian while optimizing the other. Thus,
for an equilibrium state, we minimize the total energy along
two gradient directions sequentially. With an initial guess
not far from the global minimum, we expect the many-body
electronic state and variational phonon state to converge to the
ground state self-consistently. In the following two subsec-
tions, we describe the procedures for evolving these two parts
of the state. Afterward, we describe the above self-consistent
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iteration in a more strict manner using notations introduced in
these two subsections.

A. Electron ground state: Exact diagonalization

We first optimize the electronic state (minimizing the en-
ergy), keeping fixed the variational parameters in Uplrn and
UGS. Then, Eq. (9) becomes an unrestricted minimization of
energy

E (|ψe〉) = 〈ψe|Heff |ψe〉 (10)

in the full electronic Hilbert space, where the effective elec-
tronic Hamiltonian is given by tracing over the phonon state

Heff = 〈ψph|U †
plrnHUplrn|ψph〉. (11)

The Heff is an operator only on the electronic Hilbert space.
Since the phonon state is Gaussian, the expression for Heff

can be obtained analytically:

−t
∑
jσαδα

〈
ei

1√
N

∑
q λqR†

qS
†
qe2e−iq·j(1−e−iq·δα )〉

0c
†
j+δα,σ

cjσ

+1

4

∑
q

ωq
〈(
R†
qS

†
q + 	T

Rδq0
)
(SqRq + 	Rδq0)

〉
0−

∑
q

ωq

2

− 1√
N

∑
q

(λqωq − gq)
(〈R†

q〉0S
†
q + 	T

Rδq0
)
e1ρq

− 1

2N

∑
q

∑
k,k′
σ,σ ′

Vq c
†
k+q,σ ckσ c

†
k′−q,σ ′ck′σ ′ + He-e

=
∑
kσ

ε̃knkσ + 1

4

∑
q

ωq(Tr[
q] − 2)

− 1

2N

∑
q

∑
k,k′
σ,σ ′

Vq c
†
k+q,σ

ckσ c
†
k′−q,σ ′ck′σ ′ + He-e

+1

4
	T

Rω0	R + 1√
N

(g0 − λ0ω0)	T
Re1ρ0. (12)

Here, the variational parameters for the phonon state are
rewritten as 
q = SqS†

q, with the matrix Sq representing the

linearization of the UGS, i.e., U †
GSRqUGS = SqRq.

The polaronic dressing is reflected in the effective ki-
netic energy, i.e., the renormalized band dispersion ε̃k =
−2tx cos kx − 2ty cos ky − μ, where

tα = te− ∑
q

|λq |2
N (1−cos qα )eT2 
qe2 , (13)

and the effective electronic attraction

Vq = 4gqRe[λq] − 2ωq|λq|2. (14)

In the above derivations, we have employed the assumption
that [He-e, ni] = 0. Note that in the last step of Eq. (12), the
electron density at momentum q = 0 is nothing but the total
occupation Ne in a microcanonical ensemble. Therefore, the
energy minimization with respect to 	R can be done immedi-
ately, leading to 	R = (2Ne(λ0ω0 − g0)/

√
Nω0, 0)T . As will

be shown later in Eq. (24), λ0 = g0/ω0 for the saddle-point
solution. Therefore, for the purpose of calculating the ground
state, it is convenient to set 	R ≡ 0.

Different from the original Lang-Firsov transformation in
the atomic limit, both the kinetic and interaction energies in
the effective electronic Hamiltonian are renormalized by the
phonons. The variational parameters allow us to find a balance
between these two effects and minimize the entanglement
between electrons and phonons by optimizing λq [33]. More-
over, different from the widely used modified Lang-Firsov
transformations [21,22], the generalized polaron transforma-
tion and phonon Gaussian state naturally give momentum
fluctuations of the effective interactionVq. In later discussions,
we will show that this fluctuation is crucial near the phase
boundary.

Since we keep the full electronic Hilbert space, it is
straightforward to diagonalize the matrix Heff and find the
ground state through a standard Lanczos approach. As we will
discuss below, the ground state can be obtained alternatively
through a flow equation: imaginary-time evolution. However,
with the full Hilbert space information, computing a matrix
diagonalization is much cheaper than performing a time evo-
lution, though the latter has been widely used in variational
approaches.

B. Phonon ground state: Imaginary-time evolution

Keeping the electronic wave function fixed, the en-
ergy minimization in Eq. (9) can be achieved through the
imaginary-time evolution

∂τ |�(τ )〉 = −(H − 〈�(τ )|H|�(τ )〉)|�(τ )〉. (15)

Restricting this equation to the variational class of states, one
has to project the right-hand side (RHS) on the tangential
plane (see the derivations below). This procedure guaran-
tees the monotonic decrease of energy while maintaining the
normalization of the wave function. If we restrict 	R = 0
as mentioned above, the derivative of the variational wave
function becomes

∂τ |�(τ )〉 = UplrnUGS

[
− 1

4

∑
q

R†
qS

†
qσy∂τSqRq + i

1√
N

∑
q

R†
qS

†
qe2ρq∂τλq

]
|0ph〉 ⊗ |ψe〉. (16)

Taking into account the orthogonality of the electronic wave-function basis, the tangential vectors are a†
qa

†
−q|0ph〉 ⊗ |ψe〉 and

a†
q|0ph〉 ⊗ ρq|ψe〉 [46]. The rotated Hamiltonian is

U †
GSU

†
plrnHUplrnUGS = 1

4
ωqR

†
qS

†
qSqRq − 1√

N

∑
q

(λqωq − gq)R†
qS

†
qe1ρq

− t
∑
jσαδα

ei
1√
N

∑
q λqR†

qS
†
qe2e−iq·j(1−e−iq·δα )c†

j+δα,σ
cjσ − 1

2N

∑
q

∑
k,k′
σ,σ ′

Vq c
†
k+q,σ

ckσ c
†
k′−q,σ ′ck′σ ′ , (17)
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where α = x, y denotes the direction, while δα is a unit vector
along the α direction. To determine the evolution of the vari-
ational wave function, we project the rotated Hamiltonian to
the above two sets of tangential vectors.

On the one hand, the projection with respect to the second-
order bosonic terms is [25,29]

(1, i)S†
qσy∂τSq

(
1
i

)
= (1, i)S†

q�̃qSq

(
1
i

)
. (18)

The renormalized phonon energy matrix is

�̃q = ωq + 8|λq|2
N

∑
kα

tα[1 − cos qα]〈nk〉 cos kαE22. (19)

Here, E22 = e2eT2 and e2 = (0, 1)T . Transforming the scalar
equation of motion (18) into a matrix form, we should fill up
the missing matrix elements in an anti-Hermitian way, which
gives

∂τSq = 1
2 [σy�̃qSqσy − 
q�̃qSq]. (20)

Absorbing the gauge freedom, we have

∂τ
q = σy�̃qσy − 
q�̃q
q. (21)

On the other hand, the projection to the other tangential
vector gives

∂τλq(i,−1)S†
qe2〈ρ−qρq〉

= 2iλq(1, i)S†
qe2

∑
kσα

tα[cos kα − cos(kα + qα )]

×〈ρ−qc
†
kσ ck+q,σ 〉 + (ωqλq − gq)(1, i)S†

qe1〈ρ−qρq〉. (22)

We define the modulated electronic correlation function∑
kσα

tα[cos kα − cos(kα + qα )]〈ρ−qc
†
kσ
ck+q,σ 〉 = �q + i�q,

(23)

where both �q and �q are real-valued functions. Comparing
the real and imaginary parts of Eq. (22), we have the equation
of motion

∂τλq = (gq − ωqλq)eT1 
qe1 + 2λq
�q

Cq
+ 2λq

�q

Cq
eT1 
qe2,

(24)

where the density correlation is Cq = 〈ρ−qρq〉.
By solving the imaginary-time equations of motion (21)

and (24), one obtains the variational parameters that minimize
the energy for given electronic state |ψe〉. In particular for
q = 0, the renormalized phonon energy in Eq. (19) reduces
to ω0 and the electronic correlations in Eq. (23) vanish, lead-
ing to the saddle-point solution λ0 = g0/ω0. This condition
has been exploited above to simplify the effective electronic
Hamiltonian.

C. Non-Gaussian exact diagonalization iterations

The above two subsections outline the approach to obtain
the electronic ground state with fixed variational parameters,
and the ground state of variational wave functions with the
fixed electronic state. Since the energy minimization is re-
stricted at each step, a global ground state can be obtained

Hamiltonian

Hamiltonian

Hamiltonian

Hamiltonian

Hamiltonian

ground      state

FIG. 1. Schematic illustration of the NGSED iterations toward
the ground state of an e-ph system.

only through iterations. Thus, the non-Gaussian exact diago-
nalization algorithm works as follows:

(1) Set the initial values of the variational parameters {
q}
and {λq}.

(2) Calculate the effective hopping {tα} using Eq. (13) and
effective electronic interactions {Vq} using Eq. (14).

(3) Construct the effective electronic Hamiltonian in
Eq. (12) and perform exact diagonalization to obtain the (ith
iteration) electronic ground state |ψ (i)

e 〉.
(4) Based on the electronic many-body wave function

|ψ (i)
e 〉, calculate the renormalized phonon energy matrix {�̃q}

using Eq. (19) and the correlation functions Cq, �q, and �q
using Eq. (23).

(5) Perform the imaginary-time evolution of the varia-
tional wave function |ψ (i)

ph 〉 and the polaronic transformation

U (i)
plrn using Eqs. (21) and (24).

(6) Repeat 2–5 until the variational parameters {
q} and
{λq} converge.

The above process is sketched in Fig. 1.
Before we discuss specific parameters, we would like to

briefly present an example of the NGSED iterations to give
an overview of how the ground state is obtained. Figure 2(a)
shows the evolution of the energy per site (E/N) during the
iteration for the Hubbard-Holstein model with λ = 2 and
ω = 5. The model and model parameters (u, λ, and ω) will
be introduced and discussed later in Sec. III. For all three u
values, the energy drops rapidly in the first five iterations and
starts to saturate. For this set of model parameters, it takes ∼30
iterations to converge with an accuracy of 10−6.

To analyze the ordering tendencies of the many-body state,
we evaluate the charge structure factor N (q) = 〈ρ−qρq〉/N
and spin structure factor

S(q) = 1

N

∑
k,σ

∑
k′,σ ′

σ ′σ 〈c†
k′+qσ ′ck′σ ′c†

k−qσ ckσ 〉. (25)
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FIG. 2. (a) The evolution of site-averaged ground-state energy
during the NGSED iterations, for u = 10, 5, and 0, respectively. (b),
(c) The evolution of charge (blue) and spin (red) structure factor
at the nesting momentum (π, π ) for (b) u = 10 and (c) u = 0. All
calculations in this figure are obtained for λ = 2 and ω = 5.

These structure factors reflect the charge and spin ordering
tendencies at certain momenta. The evolution of these ob-
servables as a function of iteration number, at the nesting
momentum q = (π, π ), is shown in Figs. 2(b) and 2(c). As the
variational parameters converge, observables adjust to reflect
the ordering tendencies determined by the model parameters.
We will discuss the detailed parameter dependence and mo-
mentum dependence of observables in Sec. III.

III. EQUILIBRIUM PROPERTIES OF THE
HUBBARD-HOLSTEIN MODEL

In this section, we apply the NGSED approach to a spe-
cific strongly correlated e-ph model and study the equilibrium
properties. A typical model describing correlated electrons
and phonons is the Hubbard-Holstein (HH) model [47,48],
whose Hamiltonian is

HHH = −t
∑
〈i,j〉,σ

[c†
jσ ciσ + H.c.] +U

∑
i

ni↑ni↓

+ g√
N

∑
k,q,σ

xqc
†
kσ ck+q,σ + ω

∑
q

a†
qaq. (26)

The HH model is a particular example of the generic e-ph
system in Eq. (1). Here, we only consider the nearest-neighbor
electron hopping parametrized by the integral t , and onsite
Hubbard interaction U . Both the electron-phonon coupling
g and the phonon energy ω are restricted to be momentum
independent in the HH model. In this case, one can define the
dimensionless e-e and e-ph coupling strengths u = U/t and
λ = g2/tω, respectively. Note, this λ is distinct from the vari-
ational parameters λq. We adopt this notation as it is standard
in the HH model and non-Gaussian literature.

The equilibrium phases of the Hubbard-Holstein model
have been studied using different methods. Early studies
have examined the equilibrium properties of the 1D HH
model, using ED with optimized phonon basis [30,49],
local Lang-Firsov transformation [33], QMC [36,50–52],
DMRG [53–55], cluster perturbation theory [31], and density-
matrix embedding method [56]. The common results indi-
cated CDW/AFM competition on either side of the antia-
diabatic limit u = 2λ and an intermediate regime between
the ordered phases. This intermediate regime was originally
claimed to be superconducting [50], but more recently con-
firmed to be a Luther-Emery liquid with quasi-long-range
charge and superconducting correlations [36]. The other ex-
treme limit of infinite dimensions has been studied extensively
using DMFT [57,58]. These studies indicate the absence of an
intermediate phase.

In the context of correlated high-Tc materials, the study of
two-dimensional systems is more relevant. However, due to
the limitations of numerical techniques, the study of the 2D
Hubbard-Holstein model is relatively rare. Using determinant
QMC (DQMC), Nowadnick et al. studied the phase diagram
of the 2D Hubbard-Holstein model at high temperature (lower
temperatures being restricted by the fermion-sign problem)
and characterized the metallic phase between the compet-
ing ordered phases [59,60]. These studies were followed by
ED studies at zero temperature. However, due to the infinite
Hilbert-space dimensions, these ED studies of HH model were
restricted to a one-phonon truncation at small clusters [61,62]
or single-phonon-mode simplification [63–65]. These calcula-
tions, though also exact, are highly restricted by the coupling
strength and fillings due to the model simplification. The
variational local Lang-Firsov transformation was also applied
to 2D (t-J)-Holstein models, with either Gutzwiller approxi-
mation [66] or exact treatment of the electrons. As mentioned
above, this transformation is already close to the generic
polaron transformation employed in this work, but the igno-
rance of the spatial fluctuations makes crucial differences in
this context. More recently, the phases of the 2D Hubbard-
Holstein model were examined using variational Monte Carlo
(VMC), where an s-wave superconducting phase was identi-
fied in the weak-coupling limit [23,24]. However, the nature
of the variational wave function biased the system toward
superconductivity and the results have been challenged by
unbiased QMC studies [37].

Thus, the 2D HH model provides a good platform to
demonstrate the capability of the new NGSED method, due
to both its known physical properties in the u = 0 and λ =
0 limits, and important open questions regarding the phase
diagram, especially the existence and nature of intermediate
phases, which have been challenging to address by the meth-
ods in previous studies. With the NGSED approach, we push
the ED calculation to a relatively large cluster: a 4 × 4 system,
where vital high-symmetry momenta are included. Although
the phonon part of the wave function is variational, we mini-
mize bias by treating the electronic part as a full many-body
wave function. We benchmark the method by comparing with
DQMC in a parameter regime where the fermion-sign prob-
lem is absent. We use the parallel Arnoldi method [67] to
determine the ground-state wave function and the Runge-
Kutta Dormand-Prince 5 method to solve the imaginary-time
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evolution. In the following subsections, we first benchmark
the NGSED method in the Holstein model with only e-ph
interaction. Then, we discuss the ground-state properties of
the half-filled Hubbard-Holstein model at a fixed phonon
frequency. We conclude by briefly examining the impact of
phonon frequency and carrier doping in this system.

A. The u = 0 limit: Holstein model

To make sure the wave function in Eq. (6) correctly cap-
tures the phonon coupling in the e-ph system and does not
induce significant bias on the electronic structure, we first
benchmark our NGSED method with the pure Holstein model,
i.e., for u = 0, because it is a case where DQMC can give
exact ground-state solutions (with extrapolation to T = 0).
Technically, DQMC is an unbiased numerical method for
correlated fermionic models and is most efficient at high
temperatures. The evaluation of low-temperature properties
is usually bottlenecked by the fermion-sign problem, where
the Boltzmann weight is not positive-definite. As an NP-
hard (nondeterministic polynomial-time hard) problem, there
are only a few models where the fermion-sign issue can be
evadable, and the Holstein model is one example. Additional
details regarding DQMC for the Holstein model are included
in Appendix A.

We compare the ground-state results for four different
phonon frequencies, ω = 5t , t , 0.5t , and 0.2t , obtained from
NGSED and DQMC for the same temperature (T = 0) and
lattice size (4 × 4). As shown in Fig. 3, the charge struc-
ture factor is monotonically increasing. With large λ’s, the
charge susceptibility approach N = 16, which is the theo-
retical maximal value one can reach on a 4 × 4 cluster. In
the thermodynamic limit, this charge susceptibility should
always diverge with the presence of long-range charge or-
der. For those parameter regimes accessible by DQMC, both
the charge structure factor N (q) and the average energy
E/N match well between these two methods. For small ω,
DQMC becomes challenging at strong couplings due to pro-
hibitively long autocorrelation times. Therefore, we compare
the NGSED results with the mean-field theory (MFT) predic-
tions for ω = 0, where MFT becomes exact (see Appendix B
for the derivations). We find the small-ω results asymptoti-
cally approach the MFT adiabatic predictions. Interestingly,
the ground-state energy, with both electrons and phonons con-
sidered, is almost independent of the phonon frequency.

Another limit of the Holstein model is the antiadiabatic
limit, where the phonon frequency ω = ∞. In this limit, the
phonon degrees of freedom can be integrated out, leading
to an instantaneous attraction between electrons. Unlike the
phonon-mediated electronic interaction Vq in Eq. (14), the
attraction in the antiadiabatic limit is V = 2λ, independent of
momentum q [68,68]. Therefore, it leads to an onsite attrac-
tion in real space. Due to the infinite phonon frequency, the
dressing effect becomes a virtual process, indicating that the
dressing correction to the kinetic energy vanishes. Therefore,
in the ω = ∞ limit, the problem exactly maps to the attractive
Hubbard model with U = −2λ. It is where the Lang-Firsov
transformation can exactly decouple the e-ph system. Since
the phonon frequencies are all smaller or comparable to the
electron bandwidth (W = 8t) and we explicitly evaluate the

MFT ω = 0 
ω = 0.2t 
ω = 0.5t 
ω = t 
ω = 5t 

NGSED DQMC

ω = ∞ 

MFT ω = 0 
ω = 0.2t 
ω = 0.5t 
ω = t 
ω = 5t 

NGSED DQMC

λ 520 3 4

E/
N 

[t]

0

-4

-8

-12 1

16

12

4

0

8

N(
π,

 π
)

(a) charge structure factor

(b) average energy

FIG. 3. The ground-state (a) charge structure factor N (π, π ) and
(b) average energy per site E/N as function of λ in the Holstein
model (u = 0). The open dots are obtained by NGSED iterations,
while the stars are obtained by DQMC with temperature extrapolated
to T = 0. The gray dashed lines indicate the adiabatic limit ω = 0
results obtained by MFT, while the gray dotted line represents the
charge structure factor N (π, π ) for the antiadiabatic limit ω = ∞
obtained by the attractive Hubbard model.

phonon dressing effects, the ground-state properties are far
away from the antiadiabatic limit. Comparison with the an-
tiadiabatic limit provides intuition for the ordering tendencies
and will be further discussed in the context of the Hubbard-
Holstein model.

The benchmarks with exact solutions obtained from
DQMC and extreme limits in the Holstein model demonstrate
that the NGSED method can adequately evaluate the coupling
to phonons, though both the non-Gaussian transformation and
phonon states are restricted to a variational subspace of the
entire Hilbert space. The full wave-function ansatz (6) does
not produce significant bias.

B. Phase diagram of the Hubbard-Holstein model

Having confirmed the accuracy of the method in the u =
0 limit, we move on to finite u and discuss the ground-
state properties of the Hubbard-Holstein model. Although
the phonon frequencies in typical correlated materials like
cuprates are usually much smaller than the electronic band-
width, here we first focus on a relatively high phonon
frequency ω = 5t for the purpose of elucidating the na-
ture of the Hubbard-Holstein model. As indicated in Fig. 3,
this selected frequency is away from both the adiabatic
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FIG. 4. (a), (b) Distribution of (a) S(q) and (b) N (q) associated
with the ground state obtained for u = 10, λ = 4, and ω = 5. (c),
(d) Same as (a) and (b) but for u = 0. The S(0, 0) ≡ 0 and N (0, 0) ≡
16 are not shown in the figure.

and antiadiabatic limits. We will then discuss the frequency
dependence in Sec. III C, where we will show that the inter-
esting intermediate phases are less evident for smaller phonon
frequencies.

A brief overview of the iteration processes for a few ω =
5t systems are shown in Fig. 2 of Sec. II C: the ground state
converges to two different phases for u � λ and u 
 λ, as is
seen from the structure factors. Here, we present the detailed
properties of this system and different phases.

Let us first look at these extreme cases, leaving the phases
at u ∼ 2λ for later discussions. With the same set of parameter
as Fig. 2 (λ = 4 and ω = 5), the momentum distribution of
the ground-state spin and charge structure factors are shown
in Fig. 4. For the u-dominant regime [here u = 10 � λ for
Figs. 4(a) and 4(b)], the system is dominant by the spin or-
dering, reflected by the large S(q) compared with N (q). More
specifically, the spin correlation sharply peaks at q = (π, π )
momentum. This reflects the tendency toward antiferromag-
netism in the thermodynamic limit. At the same time, the
system displays almost no charge fluctuations since the charge
degrees of freedom are frozen at equilibrium. In the context
of this paper, we call this spin-dominant phase an “AFM
phase” though we do not have spontaneous SU(2) symmetry
breaking in a finite cluster. In pure variational methods with
mean-field decoupling, this AFM phase indeed establishes
a symmetry breaking and a spin order parameter [23,24].
On the contrary, in the λ-dominant regime [here u = 0 
 λ

for Figs. 4(a) and 4(b)], the ground state exhibits significant

charge correlations. Different from the AFM case, here only
the (π, π ) momentum exhibits strong correlations while other
momenta are negligible. This is a difference between continu-
ous and discrete symmetry breaking: the magnon fluctuations
weaken the spin ordering in the AFM phase, while there is
no Goldstone mode for the CDW phase. As expected, when
charge ordering dominates, the ground state forms checker-
board doublons and holons, exhibiting no net spin correlation.

With the increase of e-e interaction u starting from the
CDW phase for any fixed λ, the charge structure factor rapidly
drops as shown in Figs. 5(a) and 5(b). There is a sharp tran-
sition near u ∼ 2λ (but slightly away from this value, see
discussions below). Beyond this transition point, spin cor-
relations rapidly build up, overwhelm the charge instability,
and form the Mott AFM state. For various λ’s and u’s, we
obtain the coarse-grained “phase diagram” of spin and charge
structure factors in Figs. 5(c) and 5(d), indicating the regions
of these two phases. Note that the difference between contin-
uous and discrete symmetry breaking mentioned above leads
to the distinct nature of the CDW and AFM phases. This is
reflected by the ground-state degeneracy, or the excitation gap
shown in Figs. 5(e) and 5(f). In the CDW phase (u 
 2λ),
the ground state exhibits a twofold degeneracy within the nu-
merical accuracy; however, in the AFM phase (u � 2λ), the
ground state is nondegenerate. This indicates that the 4 × 4
system can be regarded as a (π, π )-ordered Peierls phase
due to the commensurability and discrete symmetry breaking,
while cannot support a SU(2) symmetry-breaking due to the
power-law decay of spin correlations.

The two extreme phases described above are expected and
understood. What we are more interested in is the behavior
near the boundary u ∼ 2λ, where the two instabilities compete
with each other. Interestingly, strong spin correlations start to
build up already at u < 2λ, as reflected in Figs. 5(a) and 5(b).
For example, in the λ = 4 system, S(π, π ) becomes dominant
at u = 7.4 instead of 8; whereas in the λ = 2 system, the AFM
phase is reached for u � 3.7 instead of 4. This is the case also
for all λ’s in the phase diagram in Figs. 5(c) and 5(d). The
fact that the boundary of the AFM phase sits on the u < 2λ

side has been observed in 1D DMRG [54] and 2D QMC [59]
studies, but was not reproduced in previous variational stud-
ies with long-wavelength Lang-Firsov transformation. Now,
with the NGSED, we are able to interpret the origin of this
phenomenon explicitly. For convenience, let us define the
effective Coulomb interaction as

U (eff)
q = U −Vq. (27)

In the antiadiabatic limit, or Lang-Firsov picture, the sign of
U (eff)
q determines the local trend to form a doublon or spin

singlet. We find this local picture being approximately correct
for systems far away from the phase boundary, as shown in
Fig. 6(b): theU (eff)

q are all negative for u = 6 while positive for
u = 9. Although momentum-space fluctuation exists already
in these cases, the ground state is qualitatively determined by
the sign of the effective interaction. The overall sign accounts
for the CDW and AFM at two extremes discussed above.

However, the ground-state solution for the polaronic dress-
ing parameter λq strongly varies over the first Brillouin
zone [see Fig. 6(a)]. Due to the large charge susceptibil-
ity, the polaronic dressing, reflected in λq, converges to a
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substantially larger value at the nesting momentum than
other q’s. In contrast to the uniform distribution assumed
in the Lang-Firsov transformation and the U (eff)

q ≡ U − 2λ

consequence, such momentum fluctuations of λq leads to the
effective long-range interactionsVq and, accordingly, the fluc-
tuations of U (eff)

q . These momentum fluctuations may not be
critical when U (eff)

q is significantly positive or negative (i.e.,
for u 
 2λ or u � 2λ), but plays a role near the boundary
between CDW and AFM phases. As shown in Figs. 6(b)
and 6(c), the U (eff)

q=(0,0) is always lower than other momenta

(at the CDW phase U (eff)
q=(π,π ) ≈ U (eff)

q=(0,0)). Moreover, only the
effective repulsion at q = (0, 0) follows the antiadiabatic pre-
diction as a function of u, while other U (eff)

q are much larger.
Therefore, the antiadiabatic phase boundary u = 2λ, where
the strength of phonon-induced interaction is estimated by the
local Lang-Firsov transformation, overestimates the realistic
impact of phonons. The consequence is that charge ordering
drops and spin ordering develops at a relatively small-u value.

Apart from the shift of the phase boundary, the fluctuations
of the effective interactions lead to exotic intermediate phases
near the phase boundary. As indicated in Fig. 5, there are
two narrow regimes between the well-determined CDW and
AFM phases. One intermediate regime (denoted as A) lies
next to the CDW phase (e.g., 3.1 � u � 3.2 for λ = 2 and
6.9 � u � 7 for λ = 4), marked as green in Fig. 5. In this
regime, the system still exhibits a large charge structure factor,
but has lost the ground-state degeneracy, e.g., displays finite
excitation gap. That being said, the system lies in a non-CDW
state with large charge structure factor in this narrow regime.

From the perspective ofU (eff)
q , it is becauseU (eff)

q has changed
sign in part of the Brillouin zone, though it is still negative at
the nesting momentum.

The situation in the intermediate regime A is very sim-
ilar to the Luther-Emery liquid in 1D or quasi-1D system,
which might display coexisting superconductivity and charge
order [11,36]. In recent VMC studies, the entire intermediate
regime was claimed to be superconducting [23,24]. However,
due to the biased electronic wave-function ansatz, the con-
clusion remains controversial [37]. With the full many-body
wave function kept for the electrons, the NGSED calculation
provides a more reliable characterization of the two interme-
diate regimes. Unfortunately, we cannot examine the scaling
of the charge or pair correlations and extract the correlation
length in a finite cluster. As a compromise, we calculate the
binding energy defined as

Ebd = E (half-filling) + E (2-hole) − 2E (1-hole). (28)

Figure 7 shows the evolution of Ebd as a function of u for λ =
2 and 4. For u < 3 (λ = 2) and u < 6.8 (λ = 4), the binding
energy is sizable and negative, as the CDW state forms bipo-
larons with strong couplings. This binding energy decreases
(in magnitude) with the rise of u. Up to intermediate regime A,
the ground state is fragile due to the competition between two
different instabilities, but we still observe finite binding en-
ergy. This might be an indication of coexisting Cooper pairs.
Intriguingly, recent DQMC studies suggested that the phonon
dispersion in the Holstein model may favor superconductivity
over CDW [69]. Such a dispersive (effective) phonon energy
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is indeed realized in the Hubbard-Holstein model through the
momentum dependence of λq [see Eq. (19)] and becomes
more evident in the intermediate regimes, as discussed above.
Therefore, both the binding energy and phonon dispersion
indicate the possible presence of superconductivity in the
intermediate regimes.

More precisely, in contrast to intermediate regime A, in-
termediate regime B, which is adjacent to the AFM phase,
exhibits both small charge and spin structure factors. This
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FIG. 7. The binding energy as a function of u for (a) λ = 2 and
(b) λ = 4 and ω = 5 [same parameter set as Figs. 5(a), 5(e), and 6].

phenomenon is distinct from the 1D Hubbard-Holstein model.
Here, in the intermediate regime B, the effective interactions
have been delicately balanced and become too weak to over-
come the kinetic energy and localize electrons. Considering
the possible tendency toward superconductivity present in
the neighboring intermediate regime A, regime B is possibly
superconducting.

However, the binding energy discussed above should be
rigorously defined in the thermodynamic limit, where the
addition of carriers can be treated as a perturbation. (In the
4 × 4 cluster, each doped hole represents a 6.25% doping.)
Therefore, we rely on the pairing correlations instead of Ebd

in the determination of the phases in the half-filled system. To
investigate the nature of the intermediate regimes and conduct
a more rigorous analysis of superconductivity, we calculate
the s-wave superconducting pair correlation function, defined
as

Ps = 1

N
〈�|	†

s	s|�〉, (29)

where the pairing operator is

	s =
∑
i

ci↓ci↑ =
∑
k

c−k↓ck↑. (30)

Note, the expectation value should be taken over the full
wave function |�〉 instead of just the electronic wave function
|ψe〉. Different from the charge and spin structure factor, the
pairing operator 	s does not commute with the non-Gaussian
transformation Uplrn. Thus, the expansion of the pairing cor-
relation function, with electron wave function and variational
parameters, is

Ps = 1

N

∑
i,j

〈ψe|c†
i↑c

†
i↓cj↓cj↑|ψe〉e

∑
q

4|λq |2
N eT2 
qe2(eiq(ri−rj )−1)

= 1

N2

∑
Q,k,k′

〈ψe|c†
k′↑c

†
Q−k′↓cQ−k,↓ck,↑|ψe〉

×
∑
r

e−iQ·re
∑

q
4|λq |2

N eT2 
qe2(eiq·r−1). (31)

While permuting the electronic operators with the polaronic
transformation Uplrn, they physically represent the same op-
erators of dressed quasiparticles. Therefore, to evaluate the
BCS-type electronic pairs, one has to compute a super-
position of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type
quasiparticle pairs because the polaronic dressing exchanges
momentum between electrons and phonons.

Figure 8 presents Ps as a function of u calculated for
four different λ’s. The pairing correlation is close to 0.5 for
u = 0, which is the expectation value for a CDW state; it is
strongly suppressed in the AFM phase due to the low rate of
double occupancy. We observe an enhancement of Ps in the
intermediate regime B. As shown in Appendix E, the enhance-
ment is only evident for s symmetry. This enhancement is
relatively large for small λ, supporting the existence of super-
conductivity. With the increase of coupling strength, both the
pairing correlation and the coherence of Cooper pairs in the
intermediate regime A are gradually suppressed until λ ∼ 3,
where it becomes a smooth crossover between the CDW and
AFM phases (up to the parameter resolution selected in our
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calculation 	u = 0.1). If the intermediate regime B is indeed
superconducting, the regime A with strong CDW fluctuations
could be a crossover between CDW and superconductivity.

To summarize the evolution of superconductivity and the
intermediate regimes, we sketch a phase diagram in Fig. 8(e)
through a grid of 	u = 0.1 and 	λ = 0.5. The two intermedi-
ate regimes are denoted as green (intermediate regime A) and
gray (intermediate regime B), following the same color code
as Fig. 5. We exploit the variation of darkness to represent
the change of pairing correlations in the intermediate regime
B. In our calculations we find the intermediate regimes are
enlarged only slightly as λ decreases from 5 to 0.5. This is in
contrast with the VMC predictions which assigned the entire
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FIG. 9. (a) Charge and (b) spin structure factor as a function
of dimensionless e-ph coupling λ for u = 8 and ω = t , 2t , 4t , 8t ,
and 16t , respectively. Diagram of (c) N (π, π ) and (d) S(π, π ) as a
function of both u and λ. The dashed lines denote the antiadiabatic
critical line u = 2λ. The phonon frequency ω is set as t .

u < 2λ, λ < 1 region as superconducting [23,24]. However,
our results are consistent with the QMC conclusions in the
same regime [37]. Considering that QMC is unbiased, this
conclusion reflects the necessity of reliability treating the
electronic wave function. More recently, our phase diagram in
Fig. 5 has been confirmed by an independent QMC study with
finite-size scaling [70], suggesting that the intermediate state
indeed exhibits long-range ordered superconductivity. This
consistency further demonstrates the reliability of our NGSED
method and the phase assignment using a finite cluster.

C. Impact of phonon frequencies and doping

Having understood the phase diagram of the 2D Hubbard-
Holstein model with a fixed phonon frequency, we briefly
discuss the impact of various frequencies and carrier doping
in this subsection.

Similar to the case of the Holstein model discussed in
Sec. III A, we expect the e-ph system exhibiting steeper phase
transitions with smaller phonon frequency. For a fixed λ, the
smaller ω implies larger g/ω. As shown in Figs. 9(a) and 9(b)
for the calculations with ω ranging from t to 16t , both charge
and spin structure factors drop more rapidly for smaller fre-
quencies when approaching the phase boundary, consistent
with previous DQMC results at finite temperatures [59,71].
Intuitively, it can be understood as the adiabatic limit behaves
similar to a mean-field theory, suppressing all quantum fluctu-
ations which accumulates before reaching a phase transition.
Here, using the language of the polaronic dressing in the non-
Gaussian wave function, we provide the interpretation from
a different perspective: the combined impact of polaronic
dressing in both tunneling and interaction parameters. As is
well known, the Lang-Firsov transformation should give the
same effective e-e interaction for a fixed λ in the atomic limit.
However, the dressing parameter λq, to generate the same Vq,
is larger for a smaller ω. That means, if one takes the tunneling
terms into account, the polaronic renormalization for tα is
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FIG. 10. Structure factors N (π, π ) and S(π, π ) calculated for
12.5% doping: for various interaction parameters u and (a) λ = 2,
(b) λ = 4. The phonon frequency is ω = 5t .

larger. Therefore, the quantum fluctuations become effectively
weaker with respect to the same interaction strength, leading
to a sharper phase transition.

For the same reason, for larger phonon frequencies, the
boundary of the AFM phase is less affected by spatial fluc-
tuation ofVq, therefore, it is closer to the u = 2λ antiadiabatic
line. Such a move of the phase boundary causes a larger
intermediate phase, consistent with the VMC results [23,24].
That being said, the intermediate phase becomes invisible (if
it exists at all) for smaller phonon frequencies comparable to
those in cuprates. Limited by the resolution and finite size of
our calculation, we are unable to determine whether a critical
coupling strength exists for smaller phonon frequencies.

Varying both λ and u for ω = t , we obtain the phase
diagram shown in Figs. 9(a) and 9(b) using NGSED. An
immediate observation is the suppression of the intermedi-
ate regime, if it exists at all. This regime is invisible in
the VMC studies on the strong-coupling side [23,24], but is
still present at finite temperature according to DQMC stud-
ies [59]. Although the effective interaction is more dispersive
(see Appendix C), its impact on the electronic configuration
becomes less critical, due to the suppression of quantum fluc-
tuations as mentioned above. This accounts for the similarity
of the phase diagram compared with previous ED calculations
on a Peierls-Hubbard model [with only q = (π, π ) phonon
mode] [65]. It is worth mentioning that the convergence for
smaller ω requires many more iterations since the lack of
quantum fluctuations causes traps in local energy minima in
the parameter space. The convergence speed can be improved
by a few warmup iterations, as discussed in Appendix C.

With the presence of finite doping, the competition be-
tween spin and charge order is not restricted to a single
nesting momentum. Although both N (q) and S(q) spread out
in momentum, the q = (π, π ) component still dominates (the
structure factors calculated at other q’s are all smaller than
1.5, not shown here). Figure 10 shows calculations for 12.5%
doping with λ = 2 and 4. Both the charge and spin structure
factors are significantly smaller than the half-filled case (see
Fig. 5). Interestingly, the ground-state charge structure factor
for λ = 4 is not monotonically suppressed by the increase
of u, in contrast to the situation at half-filling. For u < 4,
the increase of electron correlations in fact slightly enhances
the (π, π )-charge ordering. This trend may be regarded as a

correlation-enhanced polaronic dressing effect [72]: the pres-
ence of electronic correlations reduces the mobility of carriers
in a doped system, and therefore favors the polaronic dress-
ing to some extent. A more rigorous confirmation of this
nonmonotonicity and a specific assessment of the underlying
physics are beyond the scope of this work, and should be fur-
ther investigated using a combination of multiple numerical
methods.

IV. CONCLUSION AND OUTLOOK

We have presented NGSED, a wave-function-based
method used to treat systems with both e-e and e-ph inter-
actions, taking advantage of both variational non-Gaussian
transformations and exact diagonalization. The variational
part of the wave function avoids the challenge of treating
an excessively large Hilbert space for phonons, while the
full many-body electronic state minimizes bias and allows
for the complexities associate with electronic correlations.
We presented the formalism for this method using a generic
e-ph system, where the e-ph coupling is gq, the e-e interac-
tion is Uq and the phonon energy is ωq are allowed to be
momentum dependent. We applied the NGSED method to
the Hubbard-Holstein model, where we compare with various
other approaches. To assess the bias incurred by our varia-
tional ansatz we have benchmarked against numerically exact
DQMC results on the Holstein model. The consistency with
DQMC results justifies the correctness of NGSED, at least for
the Holstein type of e-ph coupling.

With this method, we have examined the ground-state
properties of the 2D Hubbard-Holstein model. While in the
limiting cases where one of the interactions is dominant, our
results are consistent with known conclusions, we have found
interesting and delicate structures near the transition. We show
that the boundary of the AFM phase is on the u < 2λ side,
which is consistent with the known exact results in 1D and
variational results in 2D, but has not been completely ex-
plained yet. With the information of the entangled e-ph wave
function, we provided an intuitive picture of this boundary
shift from the effective e-e interaction point of view. We
demonstrate that the traditional local Lang-Firsov transfor-
mation overestimates the impact of phonons by neglecting
their uneven momentum distribution. The advantage of the
NGSED method is its efficacy for capturing this distribution
and physically addressing the origin of the boundary shift.

In addition to the boundary shift, we have identified two
narrow intermediate regimes between the CDW and AFM
phases. One of them may be superconductivity, while the
other exhibits strong charge fluctuations and significant bind-
ing energy. Both phases reside within the superconducting
phase suggested by VMC studies [23,24]. However, the in-
termediate regimes obtained in our NGSED calculations are
much narrower and do not intersect with u = 0, a result that
is supported by unbiased QMC calculations. Although the 2D
Hubbard-Holstein model is the simplest toy model involving
both electron-electron and electron-phonon interactions, the
presence of enhanced superconductivity in the intermediate
regime may be related to the superconducting dome in high-Tc
cuprates, as recent observations have indicated the important
role of phonons in the overdoped regime [15].
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With the capability to adequately capture the phonon dress-
ing, the NGSED method combines the merits of variational
and exact approaches in many-body systems: it addresses the
issue of both the large phonon Hilbert space and the lack of
correlations in the pure variational approach. Thus, it provides
a general prototype for a variety of problems involving e-e
and e-ph interactions: by allowing the coupling strength gq
and phonon energy ωq to vary in momentum space, it can
be applied to more realistic e-ph systems like those with
forward scattering, B1g or acoustic phonons; by a rotation of
the fermionic basis via the Uplrn similar to Eq. (31), it can
also be employed to calculate other instantaneous observ-
ables involving high-order correlations. More importantly, as
a wave-function-based method, the NGSED method can be
generalized to investigate the out-of-equilibrium physics in
the pump-probe electron-phonon system, through the projec-
tion of equations of motion for the real-time dynamics [28]
combined with advanced Krylov-subspace techniques. By the
same means, it can also be extended to the evaluation of ex-
cited states, spectroscopies, and thermal ensembles [73–75].
With these extensions, NGSED may be used to explain and
predict complex spectroscopies and pump-probe experiments,
which are beyond the capability of perturbation and statistical
methods.

The polaron transformation provides the lowest-order de-
coupling between electrons and bosons. Extending to more
intricate forms of non-Gaussian transformations, the NGSED
method can be employed to decouple the interaction between
electrons and other bosonic excitations, such as excitons,
plasmons, and magnons. The non-Gaussian transformations
have been used to study impurity models like the Kondo and
Anderson models [26–28], and some models in lattice gauge
theory, like the 1D Schwinger model [76], paving the way for
application to Kondo-Hubbard and Anderson-Hubbard mod-
els, as well as the lattice gauge theory in higher dimensions.
The study of these electron-boson or impurity problems would
help to elucidate the collective and local properties of corre-
lated materials.

More generally, numerical methods involving non-
Gaussian wave functions offer opportunities to extend elec-
tronic structure theory. The traditional ab initio electronic
structure theory is constructed on top of Gaussian states
(Slater determinants), evolving into post-Hartree-Fock meth-
ods (configuration interaction, coupled cluster, etc.) and
multireference methods. Using the non-Gaussian wave func-
tions as the fundamental basis, one can embed quantum
entanglement at the outset. The NGSED method, as an analog
of the full configuration interaction, can be regarded as the
first building block in a non-Gaussian-based post-mean-field
class of methods. Relevant post-mean-field methods con-
structed on this set of bases include the embedding with other
many-body approaches. For example, with the same formal-
ism handling the phonon wave function, the non-Gaussian
transformation can be embedded with DMRG or iPEPS [77],
self-consistently transforming a fermion-boson problem into
one of quasiparticles with long-range interactions. Since the
non-Gaussian transformation has rotated the many-body basis
from electrons to quasiparticles, it might be helpful to reduce
the fermion-sign issue in DQMC. Moreover, the multiref-
erence framework can also be extended to a non-Gaussian

wave-function basis, through the construction of superposi-
tions of non-Gaussian wave functions or even NGSED.
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APPENDIX A: BRIEF INTRODUCTION TO DQMC IN THE
HOLSTEIN MODEL

We present a brief introduction and supplementary data
about the DQMC technique. As a standard technique to
many-body systems, especially the Holstein model, a de-
tailed introduction to DQMC can be found in literature, e.g.,
Refs. [71,78,79]. We emphasize that the notorious fermion
sign problem is absent in the Holstein model because the
phonon field couples in the same way to both spin-up and
-down electrons, so that the probability measure is propor-
tional to the fermion determinant squared and is therefore
non-negative. The absence of a sign problem allows us to
access relatively low temperatures. However, at exceedingly
low temperatures DQMC calculations for the Holstein model
are still limited due to prohibitively long autocorrelation
times [80]. To partially mitigate this issue, we employ a com-
bination of local and global updates, as explained in Ref. [71].

In Fig. 11 we show how the energy density E/N and struc-
ture factor N (π, π ) approach their asymptotic T = 0 values
for representative parameters λ = 1 and ω = 0.2, 1, 5. For all
the DQMC data reported in the main text, we use the values
of E/N and N (π, π ) at our lowest temperature, where they
have ceased to change appreciably, to approximate the value
at T = 0. We note that that the requisite temperatures to probe
the T = 0 limit become lower as ω increases. This trend can
be understood from the fact that the Holstein model maps to
the negative-U Hubbard model in the limit ω → ∞, which
has a vanishing Tc for coexisting SC and CDW order. On
the other hand, for ω = 0, Tc is roughly on the order of the
hopping t .

APPENDIX B: EXACT MEAN-FIELD SOLUTIONS IN THE
ADIABATIC LIMIT

In this Appendix, we provide the derivation of the MFT
solution in the adiabatic (ω = 0) limit. In the adiabatic limit of
infinite ion mass, corresponding to ω → 0, mean-field theory
becomes exact for the ground-state properties of the Holstein
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FIG. 11. (a) Average energy E/N and (b) structure factor
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sentative parameters λ = 1 and ω = 0.2, 1, 5. In both plots, error
bars are smaller than the symbol size. For phonon frequencies ω � t
these observables attain their asymptotic T = 0 value for β � 20.
For larger phonon frequencies lower temperatures are required.

model. To facilitate this limit, it is easiest to reintroduce units
and make the transformation of harmonic oscillator coordi-
nates x → √

2Mωx, p → √
2/Mωp. In real space, the phonon

terms in the Hamiltonian then become

He-ph + Hph = g
√

2Mω
∑
i

xiρi +
∑
i

p2
i

2M
+ 1

2
Mω2x2

i .

(B1)
We take the limit M → ∞, keeping the quantities α ≡
g
√

2Mω and k ≡ Mω2 fixed, so that

He-ph + Hph → α
∑
i

xiρi +
∑
i

1

2
kx2

i . (B2)

Note the dimensionless coupling is λ = α2/2k.
The ground-state configuration of the system is obtained

by minimizing the energy functional

E0[{x}] = ε0[{x}] +
∑
i

1

2
kx2

i (B3)

with respect to the phonon coordinates {x}, where ε0 is the
ground-state energy of the electron part of the Hamiltonian
in phonon configuration {x}. Minimizing E0 yields the self-
consistency condition

xi = −α〈ρi〉/k, (B4)

where we take the ground-state expectation value on the RHS.
Specializing to Q = (π, π ) order we parametrize the

phonon configuration as xi = x0 + (−1)ix+iyδx, allowing also
for a uniform shift. In this case, the self-consistency con-
dition (B4) reduces to two equations for the q = 0 and Q
components:

x0 = −αρ/k, δx = −α〈ρQ〉/k. (B5)

Further specializing to the band structure considered in
the main text (nearest-neighbor hopping at half-filling) the
first of these equations becomes x0 = −α/k and half-filling
corresponds to μ = −α2/k. Putting everything into the
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FIG. 12. CDW gap 	 as a function of λ in the adiabatic ω = 0
limit, obtained by solving (B9).

Hamiltonian we obtain

H =
∑
kσ

εkc
†
kσ ckσ + 	

∑
kσ

c†
k+Qσ ckσ + α2

2k
N + k

2α2
	2N,

(B6)
where 	 ≡ αδx and N is the total number of lattice sites.
Diagonalizing the electronic part of the Hamiltonian gives

He =
∑ ′

kσ
Ek(γ †

kσ+γkσ+ − γ
†
kσ−γkσ−), (B7)

where Ek =
√

ε2
k + 	2, operators γkσ± are linear combina-

tions of ckσ and ck+Qσ , and the prime indicates a sum over the
reduced Brillouin zone defined by |kx| + |ky| � π . The q = Q
component of the density 〈ρQ〉 can then be written

1

N

∑
kσ

〈c†
k+Qσ

ckσ 〉 = − 1

N

∑ ′
kσ

	

Ek
tanh

(
βEk

2

)
. (B8)

Plugging this into (B5) and seeking solutions with 	 �= 0 we
obtain the “gap equation”

2λ
1

N

∑ ′
kσ

tanh(βEk/2)

Ek
= 1. (B9)

The result for 	 as a function of λ on a 4 × 4 lattice is
shown in Fig. 12. Note we also introduce a small nonzero
temperature to smooth out the singular Fermi functions at
T = 0.

The structure factor N (π, π ) is also readily obtained in the
adiabatic limit as

N (π, π ) = N〈ρQ〉2 + 1

N

∑ ′
kσ

1

E2
k

	2 + ε2
k cosh(βEk )

1 + cosh(βEk )
.

(B10)
This is the formula used for N (π, π ) in Fig. 3 of the main text.

APPENDIX C: CONVERGENCE FOR SMALL
PHONON FREQUENCIES

In this Appendix, we present some detailed results about
the small-frequency ω = t system and discuss the conver-
gence issue in small-frequency systems. Complementary to
the cuts along the λ axis, here in Fig. 13 we present two cuts
along the u axis with λ = 2 and 4, respectively. Compared
to the ω = 5 results in Fig. 5, the small-frequency system
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FIG. 13. (a) The average energy of ground state calculated for
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dashed (solid) lines denote the final results without (with) a warmup
process. (b) The calculated spin (red) and charge (blue) structure fac-
tor for various u values and λ = 2, with (solid) and without (dashed)
the warmup process. (c), (d) The same as (a) and (b) but for λ = 4
instead.

exhibit a steeper transition near the phase boundary, due to
the adiabatic reasoning mentioned in the main text.

It is worth to mention that the convergence is much
harder for ω = t compared to larger frequencies. It typically
takes 100–200 iterations even without reaching the close
proximity of the phase boundary, while the ω = 5t systems
converge within 30 iterations. This is because the retarda-
tion of phonons drives the system away from an effective
electronic model. The electron and phonon states have to
exchange information many times to adjust to the optimal
configuration. Near the phase boundary, the convergence can
even be trapped by some local minima within the numerical
accuracy 10−6, as shown in Fig. 13. Due to the suppression
of quantum fluctuations, the local minima barrier becomes
steeper. To overcome this issue, we add “warmup” iterations
for larger ω but with the same λ, i.e., using g′ = √

αg and
ω′ = αω where α is a scaling factor much larger than 1. These
iterations are relatively faster and give raw approximations for
the ground-state configurations at small frequencies, avoid-
ing possible local minima. Figure 13 shows the results for
the ground-state energy and structure factors obtained using
and without using “warmup” iterations. For systems near a
phase transition, inappropriate treatment of the convergence
may lead to a completely incorrect phase near the transition,
though close in energy. The results in Fig. 9 were obtained by
asymptotically tuning the scaling factor from 16, 8, 4, 2 to 1.

In addition to the ground-state energy and structure factors,
we also present the effective interaction U (eff)

q in Fig. 14. The
interaction is more dispersive compared to large ω’s, indicat-
ing the effective interactions mediated by the phonon become
longer range in the adiabatic limit. However, as mentioned

5
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FIG. 14. Distribution of the effective interactionU (eff)
q for various

u values, with fixed (a) λ = 2 and (b) λ = 4. The phonon frequency
is fixed as ω = 1t . The red bars represent U (eff)

q > 0, blue bars repre-
sent U (eff)

q < 0, and black bars represent U (eff)
q = 0. The dashed line

indicates the antiadiabatic limit u = 2λ.

in the main text, the suppression of the quantum fluctuations
occurs exponentially; therefore, these interactions become
semiclassical and lead to a sharp mean-field-like transition
near the phase boundary.

APPENDIX D: COMPARISON WITH NGS-GS METHOD

In the limit of the Holstein model, previous studies have
shown that the non-Gaussian transformation well describes
the ground-state properties [23–25]. To make a specific com-
parison, we present the calculation based on a pure variational
ansatz

|�(t )〉 = Uplrn(t )
∣∣ψGS

ph

〉 ⊗ ∣∣ψGS
e

〉
. (D1)

Here, the Gaussian phonon wave function |ψGS
ph 〉 and the non-

Gaussian transformationUplrn are the same as the definition in
Eqs. (7) and (8). In contrast to the full many-body wave func-
tion |ψe〉, the electronic part is also replaced by a Gaussian
wave function ∣∣ψGS

e

〉 = ei
∑

ij ηic
†
i↑c

†
j↓ |0〉. (D2)

The ground-state energies calculated using this non-Gaussian
+ Gaussian ansatz are summarized in Fig. 15. For most
frequencies and coupling strengths, this ansatz is consistent
with the results of NGSED, indicating that the electronic state

NGS+GS
NGSED

λ
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FIG. 15. Comparison of the ground-state energies obtained by
NGSED calculations [solid lines, same as Fig. 3(b)] and the NGS +
Gaussian wave-function ansatz (blue squares), for phonon energies
ω = 0.2t , 0.5t , t and 5t .
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the same sets of parameters as (a).

indeed forms CDW orders in these cases. Only on the small-ω
and large-λ limits, the NGS + GS ansatz starts to deviate
(slightly) from the NGSED. This can be attributed to the fact
that the dressing factor λq, in this case, becomes huge and
causes stronger fluctuations.

APPENDIX E: DETAILS ABOUT SUPERCONDUCTIVITY

In this Appendix, we discuss some details about the su-
perconductivity in the 2D Hubbard-Holstein model. This
includes the coherence of the Cooper pairs and different pair-
ing symmetries.

1. Coherence of Cooper pairs

For superconductivity, one important quantity is the co-
herence of the Cooper pairs. To test this property, we also
calculate the pairing correlation in the FFLO form. We ex-
tend the definition of the pairing operators to allow spatial
modulation

	
(s)
k =

∑
k

ck−k′↓ck′↑ =
∑
i

ci↓ci↑e−ik·ri . (E1)

Then the pairing correlation determines the spatial coherence
of Cooper pairs

P(s)
q =

∑
i,j

〈c†
i↑c

†
i↓cj↓cj↑〉e−iq·(rj−ri )

= 1

N

∑
k′

〈ψe|
∑
k2

c†
k2↓c

†
k′−k2↑

∑
k1

ck′−k1↑ck1,↓|ψe〉

×
∑
r

e−i(k′−q)·re− ∑
q

4|λq |2
N eT2 
qe2(1−eiq·r ). (E2)

Note that P(s)
q=0 ≡ Ps in the BCS form. The Fourier transform

of P(s)
q gives the real-space correlation of Cooper pairs at

sites i and j. Figure 16 shows the FFLO pairing correlation
and the real-space correlation for the intermediate phases for
λ = 1, 2, and 3. With the increase of the interaction param-
eters, the P(s)

q=0 decreases as explained in Fig. 5. At the same
time, the distribution of P(s)

q in momentum space spreads out,
reflecting that Cooper pairs are less coherent. This trend can
also be reflected from the real-space correlation. As shown in
Fig. 16(b), the Cooper pair correlation becomes shorter range
with the increase of interactions.

2. Different pairing symmetries

To test the possibility of other pairing symmetries, we also
calculate the d-wave and extended-s-wave (s∗) pair correla-
tion functions, defined as

Pd/s∗ =
∑
i,j

∑
α,β

δα ,δβ

〈c†
i+δα↑c

†
i↓cj↓cj+δβ↑〉 f (d/s∗ )

αβ . (E3)

Here, α and β take x or y directions; the neighboring distance
δx = ±x̂ and δy = ±ŷ. The d-wave and extended-s-wave
shape functions are

f (d/s∗ )
αβ =

{
1
4 , for α = β

∓ 1
4 , for α �= β.

(E4)

Due to the nonlocal dressing with phonons, the d- and
extended-s-wave pair correlation functions become more
complicated upon making the unitary transformation:

Pd/s∗ = 1

N

∑
k′

∑
k1,k2

ξ (k′,k1,k2)

[
ζx(k′) cos

(
k′
x

2
− k1x

)
cos

(
k′
x

2
− k2x

)
+ ζy(k′) cos

(
k′
y

2
− k1y

)
cos

(
k′
y

2
− k2y

)

∓ζxy(k′) cos

(
k′
x

2
− k2x

)
cos

(
k′
y

2
− k1y

)
∓ ζxy(k′) cos

(
k′
y

2
− k2y

)
cos

(
k′
x

2
− k1x

)]
. (E5)

In the last step, the bare electronic pairing correlation is

ξ (k′,k1,k2) = 〈ψe|c†
k2↓c

†
k′−k2↑ck′−k1↑ck1↓|ψe〉 (E6)

and dressing factor

ζx(k′) =
∑
r

e−ik′ ·re− ∑
q [(1−cos qx )−eiq·r (1+cos qx )]

2|λq |2
N eT2 
qe2 ,

ζy(k′) =
∑
r

e−ik′ ·re− ∑
q [(1−cos qy )−eiq·r (1+cos qy )]

2|λq |2
N eT2 
qe2 ,

ζxy(k′) =
∑
r̄

e−ik′ ·r̄e− ∑
q [(2−cos qx−cos qy )−4eiq·r̄ cos qx

2 cos
qy
2 ] |λq |2

N eT2 
qe2 . (E7)

043258-16



ZERO-TEMPERATURE PHASES OF THE … PHYSICAL REVIEW RESEARCH 2, 043258 (2020)

u0 4 106 82u0 4 106 82

(a1) λ=1 (a2) λ=2

0.6

0.4

0.2

0d
0.8

1
(a4) λ=4(a3) λ=3

CDW AFM CDW AFM CDW AFM CDW AFM

u0 4 106 82

(b4) λ=4

u0 4 106 82

(b1) λ=1 (b2) λ=2 (b3) λ=3

0.6

0.4

0.2

0ex
-s

0.8

1

FIG. 17. (a1)–(a4) d-wave and (b1)–(b4) extended-s-wave pairing correlations for λ = 1, 2, 3, and 4, respectively. The color code follows
the same convention of Figs. 8(a)–8(d).

Here, the r̄ in the last summation denotes the half-unit-cell-
shifted coordinates r̄ = r + x̂/2 − ŷ/2.

As shown in Fig. 17, both correlations increase with
u since the onsite Coulomb interactions favor nonlo-
cal pairs. In contrast to the s-wave superconductivity,

none of these pair correlators display a sharp peak in
the intermediate regime that is larger than the corre-
lations in the AFM phase. Therefore, we believe the
dominant pairing symmetry is s-wave in the intermediate
regime.
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