
C
o
n
s
is

te
nt *

 Complete *
 W

e
ll D

o
c
u
m

e
n

ted * Easy to
 R

e
u
s
e
 *

 *
 E

valuate

d

*

R
T
S

S
 *

 Artifa
c
tHard-Real-Time Routing in Probabilistic

Graphs to Minimize Expected Delay
Kunal Agrawal1, Sanjoy Baruah1, Zhishan Guo2, Jing Li3∗, Sudharsan Vaidhun2

1Washington University in St. Louis; 2University of Central Florida; 3New Jersey Institute of Technology;

Abstract—This work studies the hard-real-time routing prob-
lem in graphs: one needs to travel from a given vertex to another
within a hard deadline. For each edge in the network, the
worst-case delay that may be encountered across that edge is
bounded. As far as this given bound is trustworthy at a very
high level of assurance, it must be guaranteed that one will
meet the specified deadline. The actual delays across edges are
uncertain and the goal is to minimize the total expected delay
while meeting the deadline. We propose a comprehensive solution
to this problem. Specifically, if the precise a priori estimates
of the delay probability distributions are available, we develop
an optimal table-driven algorithm that identifies the route with
the minimum expected delay. If those estimates are not precise
(i.e., unknown or dynamic), we develop an efficient Q-Learning
approach that leverages the table-driven algorithm to track the
true distributions rapidly, while ensuring to meet the specified
hard deadline. The proposed solution suggests a promising
direction towards incorporating probabilistic information and
learning-based approaches into safety-critical systems without
compromising safety guarantees, when it is not feasible to
establish the trustworthiness of the probabilistic information at
the high assurance levels required for verification purposes.

Index Terms—real-time routing, guaranteed delay bounds,
minimize expected delay, reinforcement learning

I. INTRODUCTION

Suppose that you are leaving your home s and going to
the airport t — see Figure 1. To not miss the flight, you
must complete the trip within an hour, but would like to
arrive sooner if possible. There are several alternative routes
available, and, for now, you are only given an estimate of the
maximum delay and the expected (i.e., average) delay that you
are likely to encounter on each segment of the road. Which
route should you choose? To begin with, should you leave
home via the edge (s, v1) or (s, v2)? Given the symmetric
nature of the delay characterizations on the road segments in
the upper and lower halves of Figure 1, it is evident that,
in the absence of further information, these two choices are
equivalent. With no loss of generality, let us suppose that you
chose (s, v1). Then, your routing strategy should be as follows:

Traverse the edge (s, v1). Upon reaching v1, determine
the delay that you have experienced thus far. If it ex-
ceeds 10 minutes, then take the edge (v1, t) to arrive at
the airport within the required (30+ 30 = 60) minutes
of leaving home, with an additional expected delay of

This research was supported, in part, by the National Science Foun-
dation (USA) under Grant Numbers CNS–1948457, CNS–1814739, CNS–
1911460, CPS–1932530, CNS–1850851, PPoSS-2028481, OIA–1937833,
CCF-1733873 and CCF–1725647, and in part by Northrop Grumman Cor-
poration grant. ∗Jing Li is the corresponding author.

𝑠

𝑣#

𝑣$

𝑡

5,20

5,20

30,30
30,30

5,30

5,30

20,30

20,30

𝑣+

𝑣,

Delay Prob.
15 2/3
30 1/3

Delay Prob.
10 1/2
30 1/2

Fig. 1: A routing graph from home to the airport, where blue
is the expected delay and red is the maximum delay – all in
minutes. Delay bound is one hour (60 minutes).

30 minutes. Else take the path
〈
v1 → v3 → t

〉
to arrive

at the airport also in (10+20+30 = 60) minutes, with
an additional expected delay of (5 + 5 = 10) minutes.

We can see that this strategy is safe — it guarantees to
get us to the airport within the specified one-hour “deadline”
(assuming, of course, that the given maximum delay bounds
are correct). But what is the expected (average) duration of
the entire trip? That depends on the likelihood of the delay
across the edge (s, v1) exceeding 10 minutes, which cannot
be determined based solely upon the provided information;
and hence neither can the expected end-to-end duration of the
entire trip from the home to the airport.

Now, suppose that in addition to the maximum and expected
delays across each edge you were provided with some in-
formation regarding the actual distribution of delays across
the edges, as specified in Figure 1. Specifically, the delay
across the edge (s, v1) is 15 with probability two-thirds and
30 with probability the remaining one-thirds. So the average
delay across (s, v1) is 20. In this case, we will never reach
vertex v1 within 10 minutes of leaving home. Therefore, we
must always take the route

〈
s → v1 → t

〉
for an end-to-end

expected delay of 20 + 30 = 50 minutes.
On the other hand, the delay across the edge (s, v2) is either

10 or 30, each with probabilityone-half. Hence, the average
delay on (s, v2) is 20, same as the one on (s, v1). If we were
to leave home via the edge (s, v2), then there is a probability
of one-half that we would reach vertex v2 in 10 minutes, which
means that we would be able to take the path

〈
v2 → v4 → t

〉
for half of the time. The expected end-to-end delay is

1

2

(
10 + (5 + 5)

)
+

1

2

(
30 + 30

)
=

20

2
+

60

2
= 40 minutes.

This example illustrates how the knowledge of delay distri-
butions, if available, can be used to make “better” routing
decisions — while we cannot distinguish the strategies of
leaving home via the edges (s, v1) or (s, v2) solely based

on their expected and maximum delays, the knowledge of
the actual delay distributions that yield these expected and
maximum delays allow us to rate one over the other. When
such knowledge is lacking or imprecise, one can only make
reasonable “guesses” from experience and exploration, which
is in general referred to as “learning.”

The problem considered. Real-time routing problems of
the kind illustrated in our example above arise in several
safety-critical systems, such as autonomous navigation for
search-and-rescue, delivery of time-sensitive material across
transportation or communication networks. In such problems,
there is a hard deadline by which one needs to travel from
one specified vertex to another — such a deadline is a safety
constraint, that must be respected under all circumstances.
Subject to this constraint, the optimization objective is to
minimize the expected traversal time.

Timing guarantees in safety-critical systems must be en-
sured even under very unlikely circumstances. Hence, only
the information that is trustworthy to very high degrees of
confidence may be used for assuring safety — in this work,
we assume that the worst-case delay bounds are trustworthy
at such assurance levels. Additional information that is less
trustworthy may also be available. When multiple design
options can assure safety, it is reasonable to use such additional
information to identify a safe option that is more likely to
optimize the relevant objectives. In this work, we assume
that probability distributions of the actual delays experienced
across individual edges constitute such additional information,
and study the problem of incorporating such probabilistic
information into our algorithms for making routing decisions
to optimize performance without compromising safety.

We emphasize that we do not require the offline estimations
of the delay distributions to be trustworthy to the same high
levels of assurance at which safety must be assured. If these
estimations are precise, then we optimally solve the optimiza-
tion problem while guaranteeing worst-case correctness. If the
estimations turn out to be imprecise, our learning algorithm
approximates the distributions and the optimal offline solution;
while the performance (i.e., the actual end-to-end delay) may
be sub-optimal, safety will not be compromised (i.e., we are
nevertheless guaranteed to meet the specified deadline).

Contribution. For the above hard-real-time routing problem,
we provide a comprehensive solution that makes use of the
additional probabilistic information to minimize the expected
end-to-end delay while always meeting the hard deadline. In
particular, when accurate delay distributions (for each edge)
are known a priori, we develop an optimal table-driven solu-
tion that finds the route with minimum expected delay offline.
We further propose an efficient Q-learning1 approach [2]–
[4] to handle the scenario where the delay distributions are
imprecise or dynamic. This approach exploits the structure
and properties of our proposed table-driven algorithm to

1Q-learning is a classical Reinforcement Learning [1] mechanism that seeks
to find the best policy that maximizes some formulated “reward” of the
problem under consideration.

formulate a Q-table2 representation, rapidly approximate the
actual distributions, and optimize the routing decisions online.

Our solution is comprehensive. When the estimations on
delay distributions are precise and static, the proposed table-
driven algorithm serves as a perfect initialization for form-
ing the optimal Q-table of the learning algorithm. If the
estimations are imprecise, gradually deviate from the actual
distributions, or even unknown, the Q-learning algorithm can
quickly adapt to the actual delay distributions; once converged,
the resulting Q-table can be reduced back to the optimal offline
routing tables.

To our knowledge, this is the first work that (1) takes prob-
abilistic information in making optimal decisions in routing
problems while providing hard-real-time guarantees; and (2)
builds a machine learning approach upon theoretically sound
and optimal sub-solutions for such problems. Furthermore, it
suggests a novel and promising direction towards the integra-
tion of safety versus efficiency considerations in the design
and analysis of real-time systems.

Organization. Section II formally states the problem under
consideration. In Section III, we briefly discuss related works.
Section IV describes the optimal table-driven algorithm for the
offline setting, while Section V explains the Q-learning algo-
rithm for the online setting. We conduct extensive experiments
in Section VI and conclude in Section VII.

II. MODEL AND PROBLEM STATEMENT

In this work, we study the problem of traveling with a low
expected delay from the source vertex to the destination in a
network, while guaranteeing to arrive at the destination from
the source within a specified deadline. We model this problem
as a shortest-path problem on directed graphs as follows. We
represent the network as a directed graph G = (V,E), with
a (probabilistic) delay function Pr specified on each edge.
The vertices represent locations of interest, and the edges
direct connections between pairs of locations. For each edge
(u, v) ∈ E, Pr(u,v) is a discrete probability distribution3 over a
finite sample space of positive integers: i.e., Pr(u,v)(x) denotes
the probability that the delay experienced in traversing the
edge (u, v) equals x. We initially assume that Pr(u,v) is a
priori known for all (u, v) ∈ E. In Section V, we consider
the situation when Pr(u,v) is unknown or dynamic.

For each edge (u, v) ∈ E, we define the worst-case
delay of the edge, denoted dW (u, v), to be a (deterministic)
upper bound on the maximum delay that will be encountered

2The policy obtained by Q-learning is represented in the form of a look-up
table called Q-table, which selects the action that optimizes the “reward” given
the current system state. The learning process iteratively explores/samples
the system space and updates the Q-table using the observed “reward”
until the Q-table converges. Since different Q-table representations (with
their reward formulations) lead to different converged policies with different
performances on the considered problem, it is crucial to formulate a good
Q-table representation.

3Our techniques are easily extended to the case where these probability
distributions are continuous rather than discrete; however, the computational
complexity of the resulting algorithms may be considerably higher.

across (u, v).4 And we define the expected delay of the edge,
dE(u, v), to be the quantity:

∑
x

(
x · Pr(u,v)(x)

)
. Note that

even when Pr(u,v)(x) is dynamic or unknown, we assume
that the worst-case delay bound dW (u, v) is known to hold at
a very high level of assurance.

A path p from some vertex u to vertex v, designated as u
p

v, is a sequence of vertices p = 〈u ≡ v0, v1, v2, . . . , vk ≡ v〉
such that (vi−1, vi) ∈ E for each i, 1 ≤ i ≤ k. We denote the
maximum delay and expected delay of a path as:

dW (p) =
k∑
i=1

dW (vi−1, vi) and dE(p) =
k∑
i=1

dE(vi−1, vi)

An instance of the problem that we seek to solve is
specified as

〈
G = (V,E),Pr,s, t,D

〉
, where

• G = (V,E) is a directed graph of the network;
• For each (u, v) ∈ E, Pr(u,v) is its delay function, which

can be known (Section IV) or unknown (Section V);
• s ∈ V is the source vertex, and t ∈ V the destination;
• D ∈ N≥0 is the end-to-end deadline from s to t.

Definition 1 (feasible instance). Problem instance
〈
G =

(V,E),Pr,s, t,D
〉

is said to be feasible if and only if there is a
path p in the graph from the source vertex s to the destination
vertex t (i.e., s

p
 t) for which dW (p) ≤ D.

Consider a particular traversal from s to t, during which
we have reached some vertex u and desire to know which
outgoing edge to take from u. We know the actual delays that
we have encountered thus far, and hence the remaining end-
to-end deadline. However, we do not know, prior to traversing
an edge (u, v) ∈ E, the actual delay we will experience on
traversing (u, v) — all we know is that this delay is guaranteed
to not exceed dW (u, v) and that it is likely to be drawn5 from
the probability distribution Pr(u,v). Thus, it is not safe to take
the edge (u, v), if doing so may lead to a vertex from which
there is no path to the destination with a guaranteed cumulative
delay not exceeding the remaining deadline. This concept is
formalized in the definition of safe edges.

Definition 2 (safe edge). Let path p = 〈s ≡ v0, v1, . . . , vi〉
denote some path that has been traversed across a feasible
instance 〈G = (V,E),Pr,s, t,D〉. Upon arriving at vi, the
edge (vi, vj) ∈ E is a safe edge if and only if there is some

path p′ from vj to the destination vertex t (vj
p′

 t) such that(
i∑

k=1

delay(vk−1, vk)

)
+dW (vi, vj) +dW (p′) ≤ D.

Now, we are ready to formally specify the problem that we
seek to solve in this paper.

4Note that our results and techniques do not require Pr(u,v)(dW (u, v)) >
0: it is quite possible that the values of worst-case delay dW (u, v) are
derived using a completely different methodology — one that offers a greater
degree of assurance — than the methodology that is used to determine the
probability distributions (the Pr(u,v)’s). If this is the case, it may be that
Pr(u,v)(dW (u, v)) = 0.

5We use “likely to be”, rather than “is”, to emphasize that these probability
distributions are trusted to a lower assurance level than the worst-case delays.

Problem statement. For instance 〈G = (V,E),Pr,s, t,D〉
that is feasible, determine a strategy for traversing the graph
from s to t that makes the following guarantee: at each vertex
along the path, it chooses the outgoing safe edge that results
in the minimum expected delay from that vertex to t. (Note
that, as a consequence, the strategy guarantees a safe path
with the minimum expected delay from s to t.) In the offline
version, we assume Pr is given and accurate, while in the
online version, Pr is dynamic or unknown.

By “minimum expected duration”, we are applying a fre-
quentist interpretation of probability [5]. We seek to obtain a
strategy for traversing the graph guaranteeing that, if we were
to repeatedly travel from s to t, then our strategy would, on
average, have the minimum delay to get from s to t, while
always ensuring safety (i.e., only taking safe edges).

III. RELATED WORK

There is an extensive body of research on the problem
of finding the shortest paths in graphs (see, e.g., [6] for a
survey); such shortest-path algorithms have formed the bases
of several real-time routing algorithms. Most, however, deal
with the situation where there is only a single numerical
estimate of the delay across individual edges (rather than
a probability distribution for such delay). There is some
prior work on probabilistic shortest-path algorithms (e.g., [7]–
[9]) and stochastic shortest-path algorithms (e.g., [10]–[15]);
however, the probabilistic or stochastic models assumed in
these prior works are not suitable for the problem we seek
to solve. Amongst other mismatches, to our knowledge, no
prior work incorporates the “hard” end-to-end deadline that is
a fundamental part of our problem.

The prior work that is most related to ours assumed a
model that characterizes each edge e by a worst-case delay
(the dW (e) parameter of our model) and a typical-case delay
dT (e), which is a less pessimistic delay bound for all “typical”
(i.e., non-pathological) run-time conditions [16], [17]. Such
typical-case parameters could be obtained using, e.g., gener-
alizations of the typical-case analysis methodology proposed
by Quinton et al. [18]. However, the performance objective
considered in [16], [17] is very different from the one we seek
here: whereas we seek to identify safe paths that minimize the
expected (i.e., average) delay, they aim to identify safe paths
that minimize the maximum delay under all typical conditions.

Very recently, a Q-learning based approach has been pro-
posed [19], [20]; by designing proper reward functions that
reflect the expected delay, this approach explores the safe
action space to identify routing decisions that maximize the
cumulative reward. This approach does not assume any prior
knowledge of the delay distributions. However, the proposed
model must be re-trained when the deadline changes even very
slightly (please refer to Section V for details).

IV. TABLE-DRIVEN ALGORITHM FOR OFFLINE ROUTING

This section presents our algorithm that optimally solves the
problem described in Section II. In Section IV-A, we explain
the design of our algorithm by illustrating its execution upon

(parts of) the example in Figure 1. The pseudo-code form of
the algorithm is provided in Section IV-B. Finally, we establish
its correctness and prove its optimality in Section IV-C.

A. Algorithm Description

Recall that a problem instance is characterized by
〈
G =

(V,E),Pr, s, t,D
〉
, denoting that we are to travel from vertex

s to vertex t in the graph G within an end-to-end deadline of
D, and the delay encountered across each edge e ∈ E is as
specified in the discrete probability distribution Pre.

Our algorithm has the following behavior. It first constructs
certain data structures for each vertex v ∈ V , which will be
used when traversing the graph from the source to the desti-
nation. The data structures answer the following questions: If
the remaining time of the end-to-end deadline upon arriving
at vertex v is ∆, then which outgoing edge from v should be
taken in order to minimize the expected delay of the remaining
traversal to the destination t, and what is this expected delay?
That is, at each vertex v these data structures enable efficient
computation of two functions: πv : N → V and ξv : N → R,
denoting that if one arrives at v with a remaining deadline
∆ then one should depart along the edge (v, πv(∆)), and the
expected remaining delay to arrive vertex t is ξv(∆).

Specifically, the data structure at each vertex v ∈ V can be
thought of as a routing table of 3-tuples (d, π, e) in which all
the first components – the d’s – are distinct. The presence of
a particular 3-tuple (do, πo, eo) in the table denotes that it is
possible to travel from v to t with expected delay eo while
guaranteeing a worst-case delay of do, and the edge (v, πo) is
the outgoing edge from v that one should take to achieve this.

After constructing these routing tables in the pre-processing
phase, they are used during run-time to compute the quantities
πv(∆) (routing decision at the next step) and ξv(∆) (expected
delay to reach the final destination) upon arriving at a vertex
v with a remaining end-to-end deadline ∆ as follows.

• If ∆ is smaller than the smallest d of any (d, π, e) in the
table at vertex v,

• Then we return πv(∆) = − and ξv(∆) = ∞. This
denotes failure: we are unable to find a path from v to
t (hence the expected delay of such a path is ∞) that
guarantees a worst-case delay no larger than ∆.

• Else we identify the unique 3-tuple in the table at
vertex v with the largest value of d that is ≤ ∆. More
specifically, we identify the 3-tuple (d′, π′, e′) in the table
at vertex v such that (i) d′ ≤ ∆; and (ii) there is no
3-tuple (d′′, π′′, e′′) in the table at vertex v such that
(d′ < d′′ ≤ ∆).

• Our algorithm maintains the tuples in sorted order ac-
cording to the first component – the d values – to allow
us to apply a binary search to identify the relevant tuple.

Having identified this 3-tuple (d′, π′, e′), we return πv(∆) =
π′ and ξv(∆) = e′.

Before illustrating how to construct the lookup table, we
first illustrate the use of these tables in Example IV.1 below.

𝑥 𝑃𝑟 $,&' 𝑥
15 2/3
30 1/3

𝑥 𝑃𝑟 $,&(𝑥
10 1/2
30 1/2

TAB v-
𝑑 𝜋 𝑒
50 𝑣2 10
30 𝑡 30

TAB v2
𝑑 𝜋 𝑒
30 𝑡 5

TAB v4
𝑑 𝜋 𝑒
50 𝑣5 10
30 𝑡 30

TAB v5
𝑑 𝜋 𝑒
30 𝑡 5

TAB 𝑡
𝑑 𝜋 𝑒
0 − 0

𝑠

𝑣5

𝑣2

𝑡

5,20

5,20

30,30
30,30

5,30

5,30

20,30

20,30

𝑣4

𝑣-

Fig. 2: Illustration of the RELAX operation.

Example IV.1. Figure 2 shows the lookup tables computed by
our algorithm for the example of Figure 1 for all the vertices
except s. Recall that the deadline D is assumed to be 60.

(1) If we were to leave s along the edge (s, v1) and arrive at
v1 after encountering a delay of 15, then we have a remaining
deadline of (60 − 15) = 45. The tuple in the lookup table at
vertex v1 that has the largest d-parameter ≤ 45 is the tuple
(30, t, 30); hence, we are directed along the edge (v1, t), and
expect to experience a remaining delay of 30 to arrive at t.

(2) If (s, v1) has taken a delay of 30, our remaining deadline
is 30. The same tuple (30, t, 30) has the largest d ≤ 30, so we
again take (v1, t) with an expected remaining delay of 30.

(3) Suppose we had instead chosen to traverse the edge
(s, v2) and experienced a delay of 30. Our remaining deadline
is 30. The tuple (30, t, 30) in the lookup table at v2 has the
largest d-parameter ≤ 30, so we are directed along (v2, t) with
an expected remaining delay of 30.

(4) Finally, suppose we had traversed (s, v2) and expe-
rienced a delay of 10. Our remaining deadline at v2 is
(60− 10) = 50. The tuple (50, v4, 10) has the largest d ≤ 50
in the lookup table at v2; hence, we can take the edge (v2, v4)
with a smaller expected delay of 10 (rather than 30 in the
three cases above).

In the remainder of this section, we motivate and describe
the algorithm we are proposing for the construction of these
tables. We start with an overview of our approach as follows.

Let TAB[v] denote the lookup table to be constructed at the
vertex v, for all v ∈ V . §1. We first initialize these tables using
an upper bound on the expected delay ξv(d) for any d ∈ N≥0.
§2. Next, we repeatedly choose an edge (u, v) ∈ E and use
the information that is available in TAB[v] to update TAB[u]
such that the upper bounds on ξu(d) are reduced — closer
to their actual values. §3. Our algorithm terminates when no
update can be made to change TAB[u] for any u ∈ V .

Note that many well-known (deterministic) shortest-path
algorithms on graphs, including the Bellman-Ford and Dijkstra
algorithms [21], [22], are centered on this same procedure.
The operation of updating upper bounds on shortest path-
length estimates at the vertex u based on the presence of the
edge (u, v) and upper bounds on shortest path-length estimates
at vertex v is referred to in the shortest-paths literature as

d Expected Delay

80 2
3
(15 + 10) + 1

3
(30 + 10) = 30

65 2
3
(15 + 10) + 1

3
(30 + 30) = 36 2

3

60 2
3
(15 + 30) + 1

3
(30 + 30) = 50

45 2
3
(15 + 30) + 1

3
(30 +∞) =∞

TABLE I: RELAX(s, v1)

d Expected Delay

80 1
2
(10 + 10) + 1

2
(30 + 10) = 30

60 1
2
(10 + 10) + 1

2
(30 + 30) = 40

40 1
2
(10 + 30) + 1

2
(30 +∞) =∞

TABLE II: RELAX(s, v2)

d π e

⇒

d π e

80 v1 30

65 v1 36 2
3

60 v1 50

⇒

d π e

80 v1 30

65 v1 36 2
3

60 v2 40

TABLE III: TAB[s] after initialization ⇒ TAB[s] after
relaxing (s, v1) ⇒ TAB[s] after relaxing (s, v2)

relaxation (on) the edge (u, v). Therefore, we also refer to
this operation as the relaxation on the edge.

We now elaborate on the above steps of our algorithm.
§1. Initialize the tables. The table TAB[t] at the destination
vertex t is initialized to contain the single tuple (0,−, 0),
denoting that for all delay bounds ≥ 0 there is a path with
an expected delay 0 from t to itself, requiring us to take no
outgoing edge. The tables at all the other vertices are initially
empty, indicating that the best currently-known upper bound
on expected delay from that vertex to t is ∞.
§2. RELAX edges and update the tables. Suppose that we
are at the vertex u during some traversal from s to t and have
a remaining duration d of the specified end-to-end deadline D.
If we were to encounter a delay x whilst traversing the edge
(u, v), then on reaching vertex v we would have a remaining
duration (d− x) of the end-to-end deadline. By the definition
of functions πv and ξv , it follows that the outgoing edge we
should subsequently take out of vertex v is πv(d−x), and (the
upper bound on) the expected delay of the remaining traversal
from v to the destination t is ξv(d − x). Focusing upon the
latter piece of information, we may conclude that should we
choose to take the edge (u, v) when we were at vertex u with
a remaining end-to-end deadline d, an upper bound on the
expected delay of traversing from u to t is given by∑

{x| Pr(u,v)(x)>0}
Pr(u,v)(x)× (x+ ξv(d− x)) (1)

We illustrate this formula on our running example (Figure 2).

Example IV.2. Now we wish to compute the expected delay
in traveling to t within a deadline of 60, if we were to leave
s along the edge (s, v2). From the probability distribution
Pr(s,v2) depicted in Figure 2, the actual delay encountered
across this edge must be one of the two values: (i) 10 (with
probability 1

2); or (ii) 30 (with probability 1
2).

(i) If the actual delay on (s, v2) is 10, then at vertex v we
have a remaining deadline of (60 − 10) = 50; the expected
further delay in getting to t is given by ξv(50), which equals
10 (due to the presence of the 3-tuple (50, v4, 10) in TAB[v2]).

(ii) If the actual delay is 30, however, at vertex v we have
a remaining deadline of only (60−30) = 30. In this case, the
expected further delay becomes ξv(30), which equals 30.

Thus, the expected delay if we were to traverse the edge
(s, v2) is Pr(s,v2)(10) × (10 + ξv2(50)) + Pr(s,v2)(30) ×
(30 + ξv2(30)) = 1

2 × (10 + 10) + 1
2 × (30 + 30) = 40.

It is important to note the following observation from this
example. The computation above was for d = 60, but all the

computation steps would remain the same for all values of
d in the range [60, 80): for all such values of d, the options
available to us on reaching v are identical to the enumerated
cases (i) and (ii). That is, if the actual delay encountered is 15
then we have the option of taking the edge (v1, v2), while if
the actual delay is 30 then we must take the edge (v1, t).

The above observation yields the insight that helps us decide
which values of d we need to consider in constructing the table
TAB[u] when relaxing an edge (u, v).

1) Let X =
{
x | Pr(u,v)(x) > 0

}
2) Let D =

{
d′ | (d′, π′, e′) ∈ TAB[v]

}
3) Consider all (distinct) integers of the form x+ d where

x ∈ X and d ∈ D, ordered in increasing order in a list.
4) Let di and di+1 denote two contiguous integers in

this sorted list. The probabilities computed according to
Eq. (1) is the same for all d ∈ {di, di+1, . . . , di+1−1}.

Hence, when relaxing on the edge (u, v), we need to use
Eq. (1) to compute expected delays for only those values of
d that are of the form d = x+ d′ where x is a delay that has
a non-zero probability of occurring while traversing the edge
(u, v) and d′ is the first component of some 3-tuple in TAB[v].

Example IV.3. Suppose we were relaxing the edge (s, v1)
with the tables in Figure 2. We apply the above insight:

1) X = {15, 30}, D = {30, 50}
2) Hence, the sorted list of distinct integers is〈

15+30 = 45, 30+30 = 60, 15+50 = 65, 30+50 = 80
〉

3) Using Eq. (1) on the four values of d, we get the Table I.
Similarly, upon relaxing the edge (s, v2), the values of d that
we need to consider are 10+30 = 40, 30+30 = 60, 30+30 =
60, and 30 + 50 = 80. Remove the duplicate 60, we are left
with three values for d. Using Eq. (1), the expected delays for
these values of d are shown in Table II.

MERGE the results of a RELAX operation. As we have seen
above, relaxing along an edge (u, v) yields information about
the expected delay that will be encountered if we were to travel
along that edge, for different values of the remaining end-to-
end deadline. This information, once obtained, is merged in
with the current lookup table TAB[u] at the vertex u, thereby
updating TAB[u]. We illustrate this merge operation on our
running example; pseudo-code detailing precisely how this is
performed is provided in Figure 3 (Section IV-B).

Example IV.4. Here, we illustrate the process of relaxing
edges for TAB[s], by going through the steps of first relaxing
the edge (s, v1) and then (s, v2) for the state in Figure 2.

A. Recall that TAB[s] is initialized to contain no 3-tuples.

B. Suppose that we first relax the edge (s, v1) with the current
TAB[v1] shown in Figure 2, and computed (d, e) ordered pairs
stored in Table I. Merging these ordered pairs into the initially
empty TAB[s], we obtain the updated TAB[s] in Table III. To
understand why these updates are appropriate (and adequate),
let us consider what the presence of an ordered pair (d, e) in
Table I indicates. It indicates that if we were at s and had a
remaining deadline of d, then choosing to travel along (s, v1)
would yield an expected delay of e. We, therefore, insert the
3-tuple (d, v1, e) into TAB[s] (except for the last ordered pair
(45,∞) in Table I, for which e =∞ indicates that there is no
safe path guaranteeing a delay bound of 45 along this edge).

C. Suppose that we relax the edge (s, v2) next. In the follow-
ing, we will individually consider the effect of merging each
of the two (d, e) ordered pairs depicted in Table II. Again, the
last ordered pair, (40,∞), need not be merged.

1) The ordered pair (d = 80, e = 30). This indicates that
there is a path from s to t with maximum delay bound 80 and
expected delay 30 that leaves vertex s along the edge (s, v2).
Since this path is no better than the already-known path with
maximum delay 80 and expected delay 30 leaving vertex s
along the edge (s, v1) that is asserted by the presence of the
3-tuple (80, v1, 30) in TAB[s], we do nothing.

2) The ordered pair (d = 60, e = 40). The presence of
this ordered pair indicates that there is a path from s to t
with maximum delay bound 60 and expected delay 40 that
leaves s along (s, v2). Lookup table TAB[s] already has a 3-
tuple (60, v1, 50) with d-value 60; however, this pre-existing
3-tuple asserts the presence of a path of maximum delay bound
60 and expected delay 50 through v1. Since 40 < 50, the
new path (through v2) is superior to the previous one, and the
(60, v1, 50) in TAB[u] is replaced with the 3-tuple (60, v2, 40).

The lookup table TAB[s] computed after both relax opera-
tions (and subsequent merging) is in the right of Table III.

Observation 1. Note that it is not necessary to generate all
the (d, e) tuples by RELAX for an edge (u, v) before they are
MERGEd into TAB[u] — it is equally reasonable to merge each
tuple once it is generated, which is what we do in Figure 3.

§3. Detect Termination. Observe that relaxing an edge (u, v)
obtains all the relevant updates in TAB[u] that can be calcu-
lated from TAB[v]. Hence, having performed this relaxation
operation once, there is no point in performing it again unless
the information in TAB[v] has changed. We describe a simple
method, based upon this observation, for selecting the order
in which edges are relaxed and for determining termination.
The method is centered upon maintaining a list Q of vertices
v whose current TAB[v] values have not been used to update
the TAB[u] values for all the edges (u, v) ∈ E. If the graph
G = (V,E) is a directed acyclic graph (DAG), Q is initialized
to contain all the vertices in V in reverse topological order. If
G is not a DAG, then Q is initialized to contain only the
destination vertex t (since the only non-empty table upon

GENERATETABLES(
〈
G = (V,E),Pr,s, t,D

〉
)

1 for each vertex v ∈ V : TAB[v]← empty
2 TAB[t] = (0,−, 0)
3 if G = (V,E) is a Directed Acyclic Graph
4 Q← all vertices in V (in reverse topo. order)
5 else Q← only the vertex t
6 repeat
7 Remove a vertex v from the front of Q
8 for each edge (u, v) ∈ E that leads into v
9 RELAX(u, v)

10 if (TAB[u] changes and the graph is cyclic)
11 then insert u in Q
12 until Q is empty

RELAX(u, v)

1 for each do such that (do, πo, eo) ∈ TAB[v]
2 for each xo such that Pr(u,v)(xo) > 0
3 d = do + xo

4 e =
∑

{x| Pr(u,v)(x)>0}
Pr(u,v)(x) (x+ ξv(d− x))

5 if (e <∞) // e ==∞ implies no safe path
6 then MERGE(d, e, u, v)

MERGE(d, e, u, v)// Merge (d, e) into TAB[u]

1 if no 3-tuple in TAB[u] has first component equal to d
2 then Add the 3-tuple (d, v, e) to TAB[u]
3 else let (d, π′, e′) denote the 3-tuple in TAB[u]

with first component equal to d
4 if (e < e′) //Find new edge with smaller e
5 then Replace this 3-tuple with (d, v, e)
6 Remove all 3-tuples (d′, π′, e′) from TAB[u] with

d′ > d and e′ ≥ e

Fig. 3: Pseudo-code of the pre-processing algorithm.

initialization is TAB[t]). The entire lookup table generation
consists of three iterative steps until Q is empty:

1) Remove the vertex v from the front of Q;
2) Relax each edge (u, v) that leads to this vertex v;
3) Add the vertex u to Q if the process of relaxing the

edge (u, v) caused a change in TAB[u]. We note that
for DAGs, a vertex that has been removed from Q is
never subsequently added back again by definition of
reverse topological order (since by definition of reverse
topological order it follows that there can be no edges
from vertices in Q to vertices that have previously been
removed from Q).

B. Pseudo-Code Representation

Figure 3 gives the pseudo-code of the pre-processing al-
gorithm. It starts with the procedure GENERATETABLES(),
which (i) initiates all the lookup tables (Lines 1-2) and the list
Q of vertices (Lines 3-5); and then (ii) repeatedly (Lines 6-12)

removes a vertex from Q and relaxes all the edges leading into
this vertex, until termination is detected (Line 12).

The procedure RELAX(u, v) iterates through all the delay
bound values do in TAB[v] at vertex v; for each do, it iterates
through all values of x, which represents the possible actual
delays that may be experienced on edge (u, v), to determine
all values of d that may need to be updated in TAB[u] at vertex
u; for each d, the corresponding expected delay e is computed
using Equation (1) (Line 4). Each such (d, v, e) (if needed) is
merged into the lookup table TAB[u] (Line 6).

The procedure MERGE(d, e, u, v) performs the merging of
the newly “discovered” tuple (d, v, e) into TAB[u] (Lines 2
and 5); if doing so renders some pre-existing tuples in TAB[u]
redundant, the redundant tuples are removed (Lines 6).

C. Properties: Correctness and Run-Time Efficiency

To prove the algorithm is correct, we first argue that the
pre-processing step correctly computes the 3-tuples for each
vertex and it converges. We then prove that the path taken by
the runtime algorithm minimizes the expected delay and is safe
— it never exceeds the end-to-end deadline. In this subsection,
instead of saying that we “correctly compute the tuples”, we
will say that we “correctly compute ξv(d) for all values of v
and d” for better clarity. Since ξv(d) is computed from the
tuples stored in TAB[v], these are equivalent statements.

We first define a couple of random variables. Random
variable ζu,v(d) denotes the actual delay in going from vertex
u to t using our runtime algorithm, when the maximum delay
allowed from u to t is d and the first edge we take is the edge
(u, v). Random variable ζu(d) denotes the delay from u to t
using our runtime algorithm, if the maximum allowed delay
from u to t is d. According to MERGE, E[ζu(d)] selects the
minimum E[ζu,v(d)] among all outgoing edges (u, v) from u.

E[ζu(d)] = min
(u,v)∈E

{E[ζu,v(d)]} (2)

Note that, in general, expectation does not distribute over
minimums; however, when at vertex u, our runtime algorithm
always chooses the edge that provides the minimum expected
delay for a given value of d. So the above equation is correct.

We want to show that, after the pre-processing step, for all u
and d, we have ξu(d) = E[ζu(d)] — that is, if TAB[u] contains
a tuple (d′, π, e) where d′ ≤ d and there is no d′ < d′′ ≤ d
then ξu(d) = e = E[ζu(d)]. We first show the correctness of
Eq. (1) and, therefore, the RELAX operation.

Lemma 1. If we have an edge (u, v), then

E[ζu,v(d)] =
∑

{x| Pr(u,v)(x)>0}
Pr(u,v)(x)× (x+ E[ζv(d− x)]) (3)

Proof. Consider the definition of expectation: E[ζu,v(d)] =∑
all y Prob{ζu,v(d) = y} · y. Recall that Pru,v(x) is the

probability that the delay experienced on edge (u, v) is x
and Prob{ζv(d − x) = y − x} is the probability that the
delay experienced from v to t is y − x, while remaining safe
(guaranteeing that the delay cannot exceed d − x) — since

delays experienced on different edges are independent, these
two events are independent. Therefore, for any value of y

Prob{ζu,v(d) = y} =∑
{x|Pr(u,v)(x)>0}

Pr(u,v)(x) · Prob{ζv(d− x) = y − x}

We can substitute this in the definition of expectation:

E[ζu,v(d)] =
∑
all y

Prob{ζu,v(d) = y} × y

=
∑
all y

∑
{x|Pr(u,v)(x)>0}

Pr(u,v)(x) · Prob{ζv(d− x) = y − x} · y

=
∑

{x|Pr(u,v)(x)>0}
Pr(u,v)(x)

∑
all y−x

Prob{ζv(d− x) = y − x} · (y − x+ x)

=
∑

{x|Pr(u,v)(x)>0}
Pr(u,v)(x) (E[ζv(d− x)] + x)

where the last equation is by the definition of expectation.

Corollary 1 follows, since the RELAX operation uses Eq. (1).

Corollary 1. For any edge (u, v), RELAX correctly com-
putes e = E[ζu,v(d)] if all the relevant table values for v
have already been computed correctly — that is, if, for all
{x| Pr(u,v)(x) > 0}, we have ξv(d− x) = E[ζv(d− x)].

We show that while the pre-processing algorithm is running,
all tables store over-approximations of expected delays.

Lemma 2. While the pre-processing algorithm is executing,
∀v, d: (1) ξv(d) monotonically reduces; (2) ξv(d) ≥ E[ζv(d)].

Proof. We will induct on the order in which the algorithm
relaxes edges. In the initialization step, we set up TAB[t] such
that ξt(d) are correct and all other vertices have ξv(d) =∞ ≥
E[ζv(d)] for all d. If RELAX calculates for a tuple (d, π, e),
MERGE always keeps the smaller value of e for any value of
d. In particular, if there is no tuple (d′, π, e′) in TAB[v] such
that d′ ≤ d, then old ξv(d) is implicitly ∞ and the new tuple
is stored. If there is a relevant tuple, then MERGE keeps the
tuple with the smaller e. Therefore, after any relaxation and
merging step, the values of ξv(d) cannot increase.

We prove the second statement by contradiction. Suppose
after RELAX(u, v) and its corresponding merges, we have
ξu(d) < E[ζu(d)] and this is the first such violation. Be-
fore this step, by assumption, we have ξv(d) ≥ E[ζv(d)].
Observing Line 4 in RELAX and Corollary 1, we have e ≥
E[ζu,v(d)] ≥ E[ζu(d)] (Eq. (2)). Again, by assumption, we
have ξu(d) ≥ E[ζu(d)] before the merge step. The merge
step sets ξu(d) = min{ξu(d), e}. Since both quantities in the
minimum are lower bounded by E[ζu(d)], we cannot get the
new value of ξu(d) < E[ζu(d)]. Hence, a contradiction.

1) Correctness and running time of pre-processing when
G is a DAG. We now prove that the algorithm is correct.

Theorem 1. The pre-processing algorithm terminates after |E|
relaxations and the final values ξv(d) = E[ζv(d)], ∀v, d.

Proof. We prove by induction on vertices of the DAG in the
reverse topological order S = 〈t ≡ v0, v1, ..., vn ≡ s〉 —
the order where the vertices are relaxed in. Our inductive
hypothesis is that after all edges (u, vk) are relaxed (when
popping vk from Q), we have ξvi(d) = E[ζvi(d)], ∀i ≤ k.

The base case v0 = t is trivial, as ξv0(d) = E[ζv0(d)] =
0. Say that this is true for vertex vk. We now show it for
vertex u ≡ vk+1. Due to reverse topological sorting, all edges
(u, v) go to vertices that are before u in S — that is u ≡ vi
where i < k + 1. Therefore, by our hypothesis, for all edges
(u, v), we know that ξv(d′) is correct for all d′. Therefore,
from Corollary 1, we see that when we relax edge (u, v),
all E[ζu,v(d)] are correctly computed for all d. The merge
procedure keeps the smallest value of e for every d. Therefore,
by Eq. (2), after all the merges, ξv(d) = E[ζv(d)] for all d.

Since every edge is relaxed at most once, the total number
of calls to RELAX is |E|. However, the actual running time
of the algorithm is not bounded by any polynomial in the
problem size. Specifically, the time taken by a relaxation is
τ ×|{x|Pr(u,v)(x) > 0}|2, where τ is the number of tuples at
u and |{x|Pr(u,v)(x) > 0}| is the number of distinct delays
with non-zero probabilities at (u, v).

Observation 2. Theorem 1 proves that the time complexity for
the pre-processing algorithm is pseudo-polynomial in terms of
network size. Note that even in the case where there are no
probabilities and the graph only has one typical value and one
worst-case value, one can construct DAGs where the number
of entries in the table is not a polynomial in the network
size [17]. Thus, we cannot hope to bound the running time
by a polynomial.

2) Correctness and running time for pre-processing when
G has cycles. Proving correctness and convergence is more
complicated for graphs with cycles, since we no longer have
any order that allows us to relax an edge (u, v) only after all
values of ξv(d) are correct. Instead, we first observe that the
algorithm terminates, since, for a particular value of maximum
delay d and a vertex v, Lemma 2 states that our estimate (upper
bound) on the expected delay ξv(d) from v to t only decreases.
In addition, we only have a finite number of values of d for
each vertex (0 to D), since the value of d is an integer.

Let T denote the number of final tuples (in the tables of all
vertices) that were computed by the pre-processing algorithm
once it terminates. The following theorem bounds the number
of relaxations needed for termination and also proves that the
final tuples are correct when the algorithm terminates.

Theorem 2. The pre-processing algorithm terminates after at
most |TE| relaxations and the final values are correct.

Proof. We first define an auxiliary graph Γ (for analytical
purposes only) based on the final T tuples that were computed
by the pre-processing algorithm once it terminates. We label a
tuple (d, π, e) at vertex u in G as ud and add a vertex for each
ud in the auxiliary graph Γ. To define edges in Γ, consider the
call to RELAX that led to the final tuple ud. That is, at some

point, some edge (u, v) was relaxed, which led to the creation
of tuple (d, v, e) in TAB[u]. We add an edge from ud to vd′ if
vd′ was involved in computing ud.

The proof follows from the following observations: (1) The
pre-processing algorithm terminates; (2) The auxiliary graph
Γ is a DAG, so we can do a reverse topological sort S and
reason about when a particular tuple in Γ will be computed
correctly, similar to the proof of Theorem 1; and (3) After
(k− 1)E relaxations, we have the correct values of all tuples
represented by all vertices up to vk−1 ∈ S. Thus, after at most
TE relaxations, all tuples in Γ converge to their final correct
values. We omit the details due to the space limit.

3) Runtime Safety. We now show that the runtime behavior
is correct using the correctly computed tables for all vertices.

Theorem 3. At run-time, we start at s with an instantiated
delay of D. If the problem instance is feasible, then the runtime
algorithm always reaches t within the maximum delay bound.

Proof. For any path, the average delay is at most the maximum
delay. Since the problem instance is feasible, there is a path
p from s to t with the maximum delay at most D. Since
our algorithm correctly computes the expected delays for each
value of the maximum delay, it will compute ξs(D) to be
smaller than ∞ — therefore, it will not declare failure at s.

We now prove, via contradiction, that it never declares
failure on any vertex once it leaves s. Assume for contradiction
that we transition from a safe to an unsafe state. Say (v, w)
is the first edge at which this happens. That is, we were at
vertex v with a remaining deadline ∆ and ξv(∆) = e < ∞.
We then took the edge πv(∆) to vertex w and experienced
a delay of x on this edge. At this point, the system became
unsafe in that ξw(∆−x) =∞. Consider the 3-tuple in TAB[v]
that lets us compute ξv(∆) — the tuple (d, e, w) such that
d ≤ ∆ and e = ξv(∆). The value of e for this tuple was
computed by calling RELAX during the pre-processing step
(line 4). Hence, for all values of x where x is the delay we can
experience on edge (v, w), we had ξw(d−x) <∞. Otherwise,
we would have computed the value of ∞ for e. Therefore,
ξw(∆− x) ≤ ξw(d− x) ≤ ∞, which is a contradiction.

Observation 3. Note that, as long as there is a path from every
vertex v to the destination t in the network, Theorem 1 to 3
can be generalized to instances from any vertex v to t with any
instantiated deadline D. In other words, the calculated lookup
tables can be directly used at run-time to find the safe path
from v to t that has the minimum expected delay.

V. A Q-LEARNING BASED APPROACH

The effectiveness of the routing tables generated by the
algorithm in Section IV depends upon the accuracy of the
estimations of the delay probability distributions Pr on the
edges: if they are precise, then our solution is optimal with
respect to the total expected delay. We now consider situations
where the distributions are imprecise, dynamic, or unknown.

Reinforcement Learning [1] is a framework that can grad-
ually learn the best policy — the best action to take at each

system state, with respect to a designed reward function —
after some exploration in an uncertain/complicated system.
Thus, it naturally fits the online problem well. Q-learning [2]–
[4] is a Reinforcement Learning mechanism that represents the
policy as a Q-table. For a problem under consideration, a Q-
learning formulation includes the following: (1) the system
states S and valid actions A at every state; (2) the Q-table
that represents the designed reward (cost) function Q as the
expected value, called Q-value, of taking an action at a state;
(3) the training process that iteratively explores/samples the
system space and updates the Q-table using the observed
reward (cost) of the sample. During run-time, at every state,
selecting the action with the maximum (minimum) Q-value in
the converged Q-table gives the best policy that leads to the
maximum reward (minimum cost) in the formulation. Since
different Q-learning formulations lead to different converged
policies with different performances on the considered prob-
lem, it is crucial to formulate a good Q-table representation
that is capable of effective and efficient learning.

Leveraging the insights obtained in the optimal table-driven
algorithm in Section IV, we propose a Q-learning formulation
for this online problem. We construct our Q-table to approx-
imate the routing tables in Section IV, such that it properly
reflects the expected delay to destination and can be directly
initialized using the table-driven algorithm. Thus, our complete
solution is comprehensive — it seamlessly connects the online
Q-learning approach with the offline table-driven one (without
the need for a lengthy training process) and can continuously
adapt to dynamic changes in the delay distributions.

Q-Learning Formulation. We model the real-time routing
problem as a Markov process on the set of states S def

= V ×M,
where V is the set of vertices in the network andM is the set
of possible integer deadlines. At any state (u,D) ∈ S , there is
a set of valid edges that do not violate the safety requirement
of the real-time routing problem, i.e., choosing an edge (u, v)
in the set will not cause missing the remaining deadline D
from u. These valid edges comprise the set of actions Au,D:

Au,D = {v | (u, v) ∈ E, dumin ≤ D}
where dumin = min{d | (d, π, e) ∈ TAB[u]}. Every action
v ∈ Au,D taken at state (u,D) has an associated cost σu,v ,
which is independent of the deadline D but depends on the
(unknown) delay distribution Pr(u,v). The Q-value of the state-
action pair 〈u,D, v〉 is formulated to represent the expected
cost from u to destination t given a remaining deadline D:

Qu,D,v = σu,v + γ ·min{Qv,D−σu,v,w | (v, w) ∈ Av,D−σu,v
}

where γ ∈ (0, 1] is the discount factor [23] in Q-learning.
Note that when γ = 1 (as the default), the formulated Q-value
converges to the expected delay from u to t given D.

Optimal Q-Values. When the delay distributions on edges are
known, the routing tables TAB[u] as calculated in Section IV
with an entry (d, π, e) store the expected delay e from a vertex
u to destination t via an edge (u, π) with a remaining deadline
d. Since the Q-values reflect these expected delays, we can

LEARN()

1 dmax = maxDeadline
2 for each vertex u ∈ V
3 dumin = min{d | (d, π, e) ∈ TAB[u]}
4 for each deadline D ∈ [dumin, dmax]
5 for each edge (u, v) ∈ E that leads from u
6 Qu,D,v = min{e | (d, π, e) ∈ TAB[u],

π = = v ∧ d ≤ D}

ADAPT(D, ε, α)

1 done = False, u = s //deadline D of the instance
2 while not done
3 Au,D = {v | (u, v) ∈ E ∧ dvmin ≤ D}
4 for each edge (u, v) ∈ E that leads from u
5 if v 6∈ Au,D: P (v|u) = 0
6 else P (v|u) = ε/|Au,D|
7 v = arg minw {Qu,D,w | ∀(u,w) ∈ E}
8 P (v|u) = P (v|u) + 1− ε
9 Next vertex v is sampled from distribution P (v)

10 σu,v is the actual cost of traversing (u, v)
11 Qu,D,v = (1− α) ·Qu,D,v + α · σu,v

+ α ·min{Qv,D−σu,v,w | (v, w) ∈ Av,D−σu,v
}

12 D = D − σu,v , u = v
13 if v = = t: done = True

Fig. 4: Q-Learning procedures

directly use the optimal table-driven algorithm to initialize the
Q-values (rather than obtaining them via a learning process):

Qu,D,v = min{e | (d, π, e) ∈ TAB[u], π = = v ∧ d ≤ D} (4)

The procedure LEARN() in Figure 4 shows the complete
pseudo-code to get the optimal Q-values from the optimal rout-
ing table. The deadline dumin denotes the minimum deadline
required to safely transmit the instance to the destination.

Updating Q-Values. When the delay distribution is imprecise
or dynamic, the optimal Q-values change over time. On every
iteration of an instance through the network, the incurred cost
σ varies and is used to update the Q-values. Using a temporal-
difference learning algorithm [3], the Q-value is updated via:

Qu,D,v = (1− α) ·Qu,D,v + α · σu,v
+ α ·min{Qv,D−σu,v,w | ∀ (v, w) ∈ Av,D−σu,v

}

where α ∈ (0, 1] is the learning rate. For each instance
through the network, the procedure ADAPT(D, ε, α) is used
to update the Q-values. The ADAPT() procedure starts with
an instance at the source u = s with a deadline D. The
corresponding initial state is (u,D), and the set of valid actions
are calculated in Line 3. The exploration factor 0 ≤ ε ≤ 1
denotes the probability of exploring a random action. As
shown in Lines 4 to 10, according to the exploration factor
ε, the probability of each action is calculated, based on which
action is taken with an incurred cost σu,v . The Q-value Qu,D,v
is then updated based on σu,v (Line 11). With the updated

current vertex u and deadline D (Line 12), the process is
repeated until the instance reaches the destination t.

Limitations of existing work. Seetanadi et al. recently pro-
posed a Q-Learning approach named safe RL [19], [20] that
can be applied to our problem. safe RL constructs a Q-table
specifying the accumulated expected reward for each routing
decision when the end-to-end deadline at the source vertex s
is D. To our knowledge, this is the first work that leverages
machine learning for real-time routing problems. However,
because safe RL does not use any domain knowledge (e.g.,
the theoretical analysis of the problem) to guide the Q-table
formulation, it has several major drawbacks. First, the deadline
is only used for identifying safe paths during training (and
run-time), so its constructed Q-table only works for a fixed
deadline D. In other words, safe RL cannot be trained by
instances with different deadlines. Moreover, during run-time,
the path chosen by safe RL trained with a deadline D
may not be optimal (i.e., with the minimum expected delay)
for an instance with a deadline D′ < D. We illustrate this
limitation in Example V.1 below. Hence, to obtain the optimal
solution for instances with a wide range of deadlines, the
training process of safe RL must be performed for every
possible deadline to obtain their individual Q-tables, which is
impractical. Moreover, safe RL initializes the Q-table to 0,
which may lead to a very long convergence time in training.
Finally, unlike the optimal table obtained by the algorithm
proposed in Section IV, the Q-table of safe RL cannot be
used for routing an instance from a vertex v to the destination
t, where the vertex v is not the source s.

Example V.1. Consider the network in Figure 2. The con-
verged Q-table trained using Algorithm 2 in [20] with deadline
D = 80 is shown in the left of Figure 5. Now, consider an
instance with deadline D′ = 65 at vertex s. From the table
in Figure 5, the edge (s, v2) with the maximum Q-value at
s will be taken by safe RL with an expected delay of 40
and a worst-case delay of 60; while the best choice is (s, v1)
with an expected delay of 36.67 and a worst-case delay of 65,
from Table III. This is because safe RL has not yet been
trained for D′ = 65 and the converged Q-table in Figure 5
only works for D = 80.

In the right of Figure 5, we “froze” the training process
to highlight the range of deadlines where safe RL is sub-
optimal while ours is optimal. Specifically, it shows the
average-case and worst-case delay experienced by 10, 000
instances at each deadline D when routing decisions are based
on safe RL [20] and our approach. Both approaches are correct
in the sense that none exceeds the deadlines during graph
traversal, while our proposed approach follows the expected
delay more closely. The average delay experienced when
routed using safe RL deviates, and most importantly, is higher,
compared to the expected delay (which is determined using
the optimal offline algorithm). Although both our proposed
approach and safe RL have only been trained for D = 80,
our Q-learning formulation allows it to learn how to minimize
the average delay for all different deadlines. To obtain the min-

S A Q
s v1 38.163
s v2 39.889
v1 v3 42.421
v1 t 17.465
v2 v4 44.166
v2 t 16.665
v3 t 47.262
v4 t 49.111 60 65 70 75 80

Deadline (D)

20

40

60

80

T
ot

al
d

el
ay

Avg. using Proposed approach
Max. using Proposed approach
Avg. using Safe RL [19]

Max. using Safe RL [19]

Expected delay
Deadline

Fig. 5: Left: the converged Q-table using safe RL [20] for
the network in Figure 2 with deadline D = 80; Right: the
expected and maximum delays under safe RL trained with
deadline D = 80 and our proposed approach for the network
in Figure 2 with increasing deadlines up to 80.

imum average delays for different deadlines, one would need
to perform the training of safe RL to all possible deadlines,
which could take tremendous time and is impractical.

Discussion. The key idea in our proposed approach is that
we leverage the structure and property of the optimal routing
table in Section IV to construct our Q-table. After the Q-
learning algorithm converges, the converged Q-table would be
approximately identical to the optimal routing table that can
be calculated by our table-driven algorithm if given the accu-
rate delay distributions. In fact, any learning-based algorithm
that can be constructed to have the same property, such as
SARSA [24], can benefit from our table-driven solution.

If the initial distributions used for generating the optimal
offline table is inaccurate or deviate gradually, our Q-learning
approach takes a certain number of iterations, where each
iteration uses the incurred delays (i.e., the samples from
distributions) of one instance through the network to update its
Q-table. In addition, our empirical experiments in Section VII
show that the time cost for one iteration of updating the
Q-table is relatively low. Hence, the convergence of our Q-
learning approach depends mostly on the number of sam-
ples needed from the distributions to (re-)establish accurate
distribution estimations. Hence, when systems have higher
dynamics, it is harder for our approach to adapt, which is
similar to any statistical/learning-based method. Therefore, we
believe that it is the most important to guarantee hard deadlines
while the expected delay can be minimized sub-optimally
when distribution estimations are not 100% accurate.

VI. EXPERIMENTAL EVALUATION

We have implemented the proposed algorithms described
in Section IV and evaluated their performance on randomly-
generated synthetic workloads by comparing the expected
delays achieved by our proposed algorithm against those
achieved by (preëxisting) “baseline” algorithms.

§1. Workload Generation. We adapted the modified version
of the Erdos-Renyi method [25] proposed by Yang et al. [26]
to generate our graphs. When generating acyclic graphs, we
avoid cycles by only adding edges that direct from a lower-
indexed vertex to a higher-indexed one — the edge (vi, vj)

may exist only if i < j. To ensure that all paths from the
source to the destination contain a reasonably large number
of edges (thereby yielding a richer set of feasible paths), we
place an additional constraint on an edge (vi, vj) where:

j − i ≤ β
√
N (5)

for some specified constant β, say 2, and N is the number of
vertices — see below. Condition (5) eliminates the possibility
of “shortcut” edges that are obvious shortest paths (e.g., a
direct edge from the source to the destination with small
average delays and worst-case delays).

To cover a rich subset of scenarios, we control the following
parameters (default options are in bold):
• Number of vertices: N ∈ {5, 10, 15,20, 30, 40};
• Probability of a directed edge connecting any pair of

vertices: p ∈ {0.1, 0.3, 0.5,0.7} 6;
• For each edge (vi, vj), we set its expected delay to be

proportional to (3×) |j − i|, with an additional multi-
plicative factor that lies uniformly within the range of
[1 − σ, 1 + σ] to ensure a certain degree of randomness
(σ ∈ {0.1, 0.3,0.5, 0.7}).

• For each edge (vi, vj), with the generated expected
and maximum delays, we randomly generate K ∈
{2 (Bernoulli), 4, 8} possible delays with probabilities
that sum to 1.

§2. Baseline Approaches. We compare our proposed algo-
rithm (denoted as Algorithm opt) with two baseline algo-
rithms, Algorithm W , Algorithm T , and safe RL:

Algorithm W performs routing considering only the maxi-
mum delay (the dW) parameters. The optimal deterministic
Dijkstra’s shortest-path algorithm [22] is used. Note that
solutions of similar classical (deterministic) routing problems,
such as Dijkstras shortest-path algorithm, do not work since
the goal of our problem is minimizing the expected delay
while guaranteeing that the worst-case delay does not exceed
the hard deadline. Using only the maximum delay (the dW)
parameters by the deterministic shortest-path algorithm can
ensure that the hard deadlines can be met, but the obtained
“shortest-path” in terms of the maximum delay may not be
the path with the shortest expected delay.

Algorithm T performs routing using both the maximum
delay dW and the expected delay dE parameters. The algo-
rithms proposed in [16], [17] are used, with the expected delay
parameter playing the role of the typical delay parameter that is
needed by them. We point out that for Algorithm T , the TAB[s]
calculated in [16], [17] may not provide a precise expected
delay from the source to the destination. Take the graph in
Figures 1 and 2 as an example, where typical delays are the
expectations of all possible delays. The e′T values in Table
IV shows the “typical” delays calculated by Algorithm T that
only uses the expected and maximum delays of edges and not

6To ensure the generated graph is strongly connected, after adding edges
with the probability p, if a vertex has in-degree of 0 (or out-degree of 0) and
is not the source (or destination), then a random edge that satisfies Condition
(5) is added into (or from) that vertex.

d π e′T eT eopt

80 v1 30 30 30
65 v1 30 36 2

3
36 2

3
60 v1 50 50 50

d π e′T eT eopt

80 v1 30 30 30
65 v1 30 36 2

3
36 2

3
60 v2 50 40 40

TABLE IV: Left: TAB[s] after relaxing (s, v1); Right: TAB[s]
after relaxing (s, v2)

the full distribution — some (shown with underline) clearly do
not reflect the actual expected delays (eT) even when routing
decisions are identical. Here the optimized expected delays
(eopt) by our approach (Algorithm opt) are adopted from Table
III and are accurate.

To compare the impact of initial training in the dynamic
case, we consider a Q-table generated using safe RL [20].
As we vary the graph parameters, the complexity of the graph
(and thereby the number of state-action pairs in Q-learning)
varies, which affects the number of iterations required for the
Q-table to be stable. To allow for stabilization, we follow
Algorithm 2 in [20] to train the Q-table for 10, 000 iterations
by setting a fixed deadline sufficient to cover the longest path
in the graph. After this training period, the total expected delay
eQ for each graph is calculated by averaging the total delay
over the next 1000 iterations (for testing).

Note that all algorithms select safe paths and will never
exceed the end-to-end deadline.
§3. Metrics. Note that when deadline d is too small, no path
is safe for guaranteeing to meet the deadline in the worst case.
In contrast, when d is too large, all paths become safe, and
any shortest path algorithm would suffice. Thus, for deadline
d within a meaningful range, we evaluate the variation in the
total expected delay e from the source to the destination.
§4. Experimental Results. We use the procedure described
in §1 to randomly generate 200 graphs for each setting.
Figure 6 reports the distribution (by aggregating with box-
plots) of the expected total delays (from the source to the
destination) for the four approaches, while varying several
key parameters one at a time. For each graph, the expected
delays (eopt, eT , eW , eQ) from the source to the destination is
calculated for each “meaningful” deadline d.

Figure 6(a) reveals that when the size of the graph (N)
increases, the absolute values of expected delays increase
with more edges and vertices on the paths from the source
to destination. Moreover, the relative improvements of our
proposed algorithm from the baseline approaches increase as
well. This is expected because there are more safe paths from
the source to the destination when the graphs are larger. While
our proposed algorithm can find the path with the minimum
expected delay, the baseline approaches have a higher chance
of choosing the other paths with larger expected delays.

Figure 6(b) shows the delay distributions when the proba-
bility of generating an edge (p) varies. We can see that delays
of all approaches tend to be larger when the graph is sparse
(small p), since the number of safe paths is relatively small.
Our proposed algorithm constantly outperforms the baseline
ones and has higher relative improvements when the number
of edges is larger. Intuitively, a graph with more edges has

5 10 15 20 30 40

Number of nodes (N)

0

100

200

300

400

500

600

T
ot

al
ex

p
ec

te
d

d
el

ay

Proposed approach (eopt)
Algorithm T (eT)
Algorithm W (eW)
Safe RL (eQ)

(a) Varying graph size (N).

0.1 0.3 0.5 0.7

Edge probability (p)

0

50

100

150

200

250

300

350

T
ot

a
l

ex
p

ec
te

d
d

el
ay

Proposed approach (eopt)
Algorithm T (eT)
Algorithm W (eW)
Safe RL (eQ)

(b) Varying edge probability (p).

0.1 0.3 0.5 0.7

Degree of delay randomness (σ)

0

50

100

150

200

250

300

350

T
ot

a
l

ex
p

ec
te

d
d

el
ay

Proposed approach (eopt)
Algorithm T (eT)
Algorithm W (eW)
Safe RL (eQ)

(c) Varying delay randomness (σ).

Fig. 6: Comparison of distributions of delays d, where all parameters for graph generation take default values (see §1) unless
being varied. The solid triangles represent the mean of each boxplot and the horizontal bar represents its median. The box
covers the middle 50% of the data points, and the lower (and upper) limit of the box represents the 25th (75th) percentile.

more safe paths, where the baseline approaches have higher
chances to make the wrong choice.

Finally, figure 6(c) shows that when the range of random-
ness (σ) on edges’ actual delays increases, the expected delay
slightly increases for all the approaches. This is because with
higher randomness the worst-case delay of an edge (and hence
a path) becomes larger. This would make certain paths switch
from safe to unsafe, which makes the expected delay increases
for the approaches.

Under all three settings, the expected delay of Safe RL
is sub-optimal and the deviation from optimal grows with
the graph size N and edge probability p parameters. This
is likely due to the increase in state-action pairs as N and
p increases, as well as the fact that it is only trained for the
largest deadline and cannot generalized well to other deadlines.
Additionally, Algorithm T that uses both the maximum and
the expected delay parameters performs better than Algorithm
W that uses only the maximum delay. This is as expected,
since the objective here is to minimize the expected delay and
more information on the actual delays can help make better
decisions. Furthermore, our proposed approach eopt that is able
to make use of the full delay distributions achieves the smaller
expected delays on average and is optimal for all settings when
the delay distributions are known and precise. The variations
of different approaches are similar under different settings.

§5. Running time of our approach. Although our offline
optimal table-driven solution has a pseudo-polynomial time
complexity in the network size, the computation time of
calculating the optimal table is relatively low in practice. For
example, for a graph with 20 nodes, it takes only 65ms on
average to obtain the optimal table on a single CPU core.

For our online Q-learning approach, each iteration of updat-
ing the Q-table (i.e., running the ADAPT in Figure 4 for one
time) is actually not time-consuming as well. The average time
cost of each such iteration for a network with 20 nodes is only
3.7ms on average running on a single CPU core, which can
be further reduced by running it in parallel or on a GPU.

VII. CONTEXT AND PERSPECTIVES

The central issue explored in this paper is the safe and
effective use of probabilistic information in the design and im-
plementation of safety-critical systems. In the safety-validation
of safety-critical systems prior to their deployment, it has
been a long-standing principle that only information that can
be trusted to the highest level of assurance should be used.
As safety-critical systems have become increasingly more
complex, their run-time behavior has come to encompass
greater uncertainty. Hence, the degree of conservatism and
pessimism inherent in such high-assurance information has
increased tremendously: the actual run-time behavior tends
to be far superior to what can be guaranteed solely based
on the high-assurance information available prior to runtime.
This begs the question: can we use additional information
that cannot be trusted to the very high levels of assurance
required for safety-verification in order to improve run-time
performance without compromising safety?

In this paper, we have considered the use of probabilistic
information for this purpose. There has been a large body
of research in recent years on the application of probabilistic
techniques to the analysis of hard-real-time systems (see [27]
for a recent survey on the topic, citing 136 references).
However, the safety-critical systems community has remained
somewhat skeptical regarding the applicability of such tech-
niques, the main sticking point being the challenge of assuring
the trustworthiness of the probabilistic models that are used.
The approach we are proposing here circumvents this issue by
not using the probabilistic information for safety-verification:
our algorithms assure safety using only the worst-case models
(the worst-case delay bounds), so the safety holds even if
the probabilistic models are completely inaccurate. We have
shown that the probabilistic information, if (somewhat) cor-
rect, can considerably improve performance: this is shown both
via theoretical results (that the expected delay is minimized)
and simulations on synthetically generated workloads, where
it is shown to outperform prior algorithms that do not use the
probabilistic information.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[2] C. J. C. H. Watkins, “Learning from delayed rewards,” PhD thesis,
King’s College, University of Cambridge, 1989.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018. [Online]. Available: http://incompleteideas.net/book/
RLbook2020.pdf

[4] A. Violante, “Simple Reinforcement Learning: Q-learning,”
Jul. 2019. [Online]. Available: https://towardsdatascience.com/
simple-reinforcement-learning-q-learning-fcddc4b6fe56

[5] P. J. Bickel and E. L. Lehmann, “Frequentist interpretation of probabil-
ity,” in Selected Works of E. L. Lehmann, J. Rojo, Ed. Springer US,
2012, pp. 1083–1085.

[6] H. Ortega-Arranz, D. R. Llanos, and A. Gonzalez-Escribano, The
Shortest-Path Problem: Analysis and Comparison of Methods. Morgan
and Claypool, 2014.

[7] J. F. Bard and J. L. Miller, “Probabilistic shortest path problems with
budgetary constraints,” Computers & Operations Research, vol. 16,
no. 2, pp. 145 – 159, 1989.

[8] H. Frank, “Shortest paths in probabilistic graphs,” Operations Research,
vol. 17, no. 4, pp. 583–599, 1969.

[9] M. Hua and J. Pei, “Probabilistic path queries in road networks:
traffic uncertainty aware path selection,” in Proceedings of the 13th
International Conference on Extending Database Technology, 2010, pp.
347–358.

[10] E. Nikolova, J. A. Kelner, M. Brand, and M. Mitzenmacher, “Stochastic
shortest paths via quasi-convex maximization,” in European Symposium
on Algorithms. Springer, 2006, pp. 552–563.

[11] J. Boyan, M. Mitzenmacher, and M. Mitzenmacher, “Improved results
for route planning in stochastic transportation,” in Proceedings of the
12th annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 2001, pp. 895–902.

[12] Y. Fan, R. Kalaba, and J. Moore, “Arriving on time,” Journal of
Optimization Theory and Applications, vol. 127, no. 3, pp. 497–513,
2005.

[13] R. P. Loui, “Optimal paths in graphs with stochastic or multidimensional
weights,” Communications of the ACM, vol. 26, no. 9, pp. 670–676,
1983.

[14] E. Nikolova, M. Brand, and D. R. Karger, “Optimal route planning under
uncertainty.” in ICAPS, vol. 6, 2006, pp. 131–141.

[15] G. H. Polychronopoulos and J. N. Tsitsiklis, “Stochastic shortest path
problems with recourse,” Networks: An International Journal, vol. 27,
no. 2, pp. 133–143, 1996.

[16] S. Baruah, “Rapid routing with guaranteed delay bounds,” in Real-Time
Systems Symposium (RTSS), 2018 IEEE, Dec 2018.

[17] K. Agrawal and S. Baruah, “Adaptive real-time routing in polynomial
time,” in Real-Time Systems Symposium (RTSS), 2019 IEEE, Dec 2019.

[18] S. Quinton, M. Hanke, and R. Ernst, “Formal analysis of sporadic
overload in real-time systems,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE). EDA Consortium,
2012, pp. 515–520.

[19] G. Nayak Seetanadi and K.-E. Årzén, “Routing using safe reinforcement
learning,” in 2nd Workshop on Fog Computing and the IoT (Fog-IoT
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[20] G. Nayak Seetanadi, M. Maggio, and K.-E. Årzén, “Adaptive routing
with guaranteed delay bounds using safe reinforcement learning,” in Pro-
ceedings of the 28th International Conference on Real-Time Networks
and Systems (RTNS). ACM, 2020.

[21] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[22] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[23] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[24] G. A. Rummery and M. Niranjan, On-line Q-learning using connec-
tionist systems. University of Cambridge, Department of Engineering
Cambridge, UK, 1994, vol. 37.

[25] D. Cordeiro, G. Mounié, S. Pérarnau, D. Trystram, J.-M. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in
3rd International ICST Conference on Simulation Tools and Techniques
(SIMUTools 2010). ICST, Mar. 2010.

[26] K. Yang, M. Yang, and J. H. Anderson, “Reducing Response-Time
Bounds for DAG-Based Task Systems on Heterogeneous Multicore
Platforms,” in Proceedings of the 24th International Conference on Real-
Time Networks and Systems (RTNS). ACM, 2016, pp. 349–358.

[27] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic schedula-
bility analysis techniques for real-time systems,” LITES, vol. 6, no. 1,
pp. 04:1–04:53, 2019.

