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Spin transport in a tunable Heisenberg 
model realized with ultracold atoms

Paul Niklas Jepsen1,2,3 ✉, Jesse Amato-Grill1,2,3, Ivana Dimitrova1,2,3, Wen Wei Ho3,4, 
Eugene Demler3,4 & Wolfgang Ketterle1,2,3

Simple models of interacting spins have an important role in physics. They capture the 
properties of many magnetic materials, but also extend to other systems, such as 
bosons and fermions in a lattice, gauge theories, high-temperature superconductors, 
quantum spin liquids, and systems with exotic particles such as anyons and Majorana 
fermions1,2. To study and compare these models, a versatile platform is needed. 
Realizing such systems has been a long-standing goal in the field of ultracold atoms.  
So far, spin transport has only been studied in systems with isotropic spin–spin 
interactions3–12. Here we realize the Heisenberg model describing spins on a lattice, with 
fully adjustable anisotropy of the nearest-neighbour spin–spin couplings (called the 
XXZ model). In this model we study spin transport far from equilibrium after quantum 
quenches from imprinted spin-helix patterns. When spins are coupled only along two of 
three possible orientations (the XX model), we find ballistic behaviour of spin dynamics, 
whereas for isotropic interactions (the XXX model), we find diffusive behaviour.  
More generally, for positive anisotropies, the dynamics ranges from anomalous 
superdiffusion to subdiffusion, whereas for negative anisotropies, we observe a 
crossover in the time domain from ballistic to diffusive transport. This behaviour is in 
contrast with expectations from the linear-response regime and raises new questions in 
understanding quantum many-body dynamics far away from equilibrium.

Quantum dynamics is an active research area in many-body physics. 
Even the linear-response (near-equilibrium) behaviour of many-body 
systems can be very complex. For example, spin transport in 
one-dimensional Heisenberg XXZ quantum spin chains, despite being 
a topic that is decades old, is still under active investigation because of 
the rich dynamics connected to integrability13–17. Dynamics in highly 
out-of-equilibrium scenarios, such as from continual drives or quantum 
quenches18–22, is even less well understood. It is hence highly desirable to 
have a quantum simulator that can realize well isolated, programmable 
and controllable spin systems. By now, a number of such platforms 
exist21–27, with varying capabilities.

Ultracold atoms in optical lattices offer an especially promising plat-
form with which to realize tunable Heisenberg spin models27: in deep lat-
tices where atoms become localized on individual sites, forming a Mott 
insulator28, the dynamics of the remaining degrees of freedom is gov-
erned by effective spin–spin interactions realizing nearest-neighbour 
Heisenberg XXZ spin models. For bosons, the most commonly used 
atom, 87Rb, has almost equal singlet and triplet scattering lengths, 
implying effectively isotropic spin physics4–7. For fermions, the Pauli 
exclusion principle enforces isotropic antiferromagnetism3. Many 
theoretical proposals have suggested ways to obtain richer spin models 
in optical lattices29–32 over the past 20 years, and we now report here 
the realization of the spin-1/2 Heisenberg model with fully adjustable 
anisotropy in the spin–spin interactions. This enables simulations of 
anisotropic magnetic materials with easy-axis or easy-plane alignment. 

The wide tunability is realized using 7Li atoms, the Feshbach resonances 
of which we have characterized in previous work33. Additionally, lith-
ium, with its light mass, has the advantage of fast spin dynamics (set 
by second-order tunnelling)26, decreasing the relative importance of 
heating and loss processes compared to heavier atoms. We use this fast 
and tunable platform to study far-from-equilibrium spin transport in 
previously unexplored regimes.

For many-body quantum simulation experiments, an ideal starting 
point is a simple benchmark system to which more complexity can be 
added. In this work, we first implement the XX model in one dimension, 
which is exactly solvable by mapping to a system of non-interacting 
fermions. We then tune the anisotropy to arbitrary values, which in the 
fermionic language corresponds to adding nearest-neighbour interac-
tions. To implement the spin model, we use a system of two-component 
bosons in an optical lattice, which is well described by the Bose– 
Hubbard model. The two states, labelled |↑⟩ and |↓⟩, form a spin-1/2 
system. In the Mott insulating regime at unity filling the effective  
Hamiltonian is given by the spin-1/2 Heisenberg XXZ model29–32
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where t∼ is the tunnelling matrix element between neighbouring sites, 
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and U⇈, U⇅, U⇊ are the on-site interaction energies. The transverse cou-
pling Jxy induces spin exchange between neighbouring sites and is the 
origin of spin transport. The longitudinal coupling Jz corresponds to 
a nearest-neighbour spin–spin interaction (Fig. 1a).

The magnitude of superexchange can be varied over two orders 
of magnitude by changing the lattice depth, which scales the entire 
Hamiltonian. We control the anisotropy Δ = Jz/Jxy via an applied magnetic 
field that tunes the interactions through Feshbach resonances in two 
hyperfine states (Fig. 1b) while keeping  Jxy > 0 (antiferromagnetic).  
The ability to tune the anisotropy over a wide range of positive and 
negative values allows us to explore dynamics beyond previous experi-
ments3–7 in which Δ ≈ 1.

An array of one-dimensional (1D) chains is implemented by a deep 
optical lattice (of depth Vx, Vy = 35ER) in the x and y directions. The lat-
tice depth Vz along the z direction controls the superexchange rate 
within the chains (Fig. 1c). Here ER = π2ħ2/(2ma2) denotes the recoil 
energy, where a is the lattice spacing, m the atomic mass and ħ the 
reduced Planck constant. After preparing an identical spin helix7–9 with 
wavelength λ in each chain (see Methods), time evolution is initiated by 
rapidly lowering Vz. The dynamics following this quench is governed 
by the 1D XXZ model (equation (1)) with an anisotropy Δ selected by an 
appropriate applied magnetic field. After an evolution time t of up to 

500ħ/Jxy (well below the heating lifetime, approximately 1 s, of the Mott 
insulator), the dynamics is frozen by rapidly increasing Vz and the atoms 
are imaged in the |↑⟩ state via state-selective polarization-rotation 
imaging with an optical resolution of about 6 lattice sites (see Methods).

Integrating the images along the direction perpendicular to the 
chains yields a 1D spatial profile of the population in the |↑⟩ state, aver-
aged over all spin chains (see Extended Data Fig. 2). This is equivalent 
to a measurement of the local magnetization  S n n⟨ ⟩ = ( − )/2 =i

z
i i↑ ↓  

n − 1/2i↑  which, as in Fig. 1c, shows a sinusoidal stripe pattern. We  
determine the contrast C by a fit f z g z Qz θ( ) = ( )[1 + cos( + )]/2C , where 
Q = 2π/λ is the wavevector, g(z) is a Gaussian envelope function that 
accounts for the spatial distribution of all atoms n = n↑ + n↓, and θ is a 
random phase that varies from shot to shot, owing to small magnetic 
bias field drifts. During the evolution time t the contrast t( )C  decays, 
and we study the dependence of C Cc t t( ) = ( )/ (0)  on lattice depth Vz, 
wavelength λ, and anisotropy Δ.

For all data, we measure spin dynamics at two or three different lat-
tice depths Vz and verify that the decay curves c(t) collapse when time 
is rescaled by the spin-exchange time ħ/Jxy (see for example, Fig. 2a). 
This demonstrates that we observe transport by superexchange and 
not some other process. To study transport behaviour, we measure how 
the decay timescale τ depends on the modulation lengthscale λ. We 
note that for ballistic motion, this decay constant grows linearly with 
distance (τ ∝ λ), whereas for diffusion it grows quadratically (τ ∝ λ2). 
Throughout this Article, we normalize time by the spin-exchange 
time ħ/Jxy, length by the lattice spacing a, and velocities by the Fermi 
velocity vF = a/(ħ/Jxy). These units are obtained from the experimentally 
determined lattice depth using an extended Hubbard model and have 
an estimated systematic calibration error of about ±10%, in addition 
to quoted statistical errors. The accuracy of Δ is estimated to be ±0.1 
(see Methods). Unless noted otherwise, all error bars and uncertainties 
herein are purely statistical and represent 1σ uncertainty of the fits. 
Each data point for the contrast c(t) is obtained by simultaneously 
fitting several images (usually six, but up to 15).

XX model
We first study the case Δ = 0, which can be mapped by the Jordan–Wigner 
transformation34 to non-interacting spinless fermions undergoing 
nearest-neighbour hopping on a lattice. In this mapping, |↑⟩ corre-
sponds to a site occupied by a fermion, and |↓⟩ to an empty site. Small 
excitations around the Fermi sea at half-filling are spin waves with 
wavevector q and a linear dispersion relation ω(q) = vFq.

Figure 2a shows the decay of the contrast c(t) for Δ ≈ 0 (see Methods 
for calibration of Δ). In addition to an overall decay, a local maximum 
corresponding to a partial revival of the initial spin modulation appears 
after about 12 spin-exchange times. We find the decay curves can be 
well described by the sum of a decaying part with time constant τ and a 
(damped) oscillating part with frequency ω, resulting in a fitting func-
tion c(t) = [a0 + b0cos(ωt)]e−t/τ + c0, with a0, b0, c0, ω and τ as adjustable 
parameters (Methods and Extended Data Fig. 4 discuss the offset c0). 
Numerical simulations, also shown in Fig. 2a, reproduce the major 
features of the experimental dynamics very well (decay time τ and 
first oscillation), but differ in details, probably owing to a difference 
in hole fraction, uncertainties in Δ, or non-idealized initial-state prepa-
ration. By varying the wavelength λ = 2π/Q of the helix (Fig. 2b) we 
obtain a dispersion relation ω(Q) for the oscillations (Fig. 2d). A linear 
fit ω(Q) = vQ yields a characteristic velocity v = 0.76(1)vF, similar to the 
near equilibrium dynamics, as expected for a non-interacting system.

The decay time constant τ also shows a linear scaling with inverse 
wavevector: a power-law fit τ ∝ Q−α yields an exponent of α = 1.00(5), indi-
cating ballistic transport (Fig. 3b, red). Indeed, if we plot c(t) in time units 
rescaled by λ, all curves for different helix wavelengths collapse into a single 
curve (Fig. 2c), showing that all aspects of the observed spin dynamics in 
the XX model are ballistic and governed by one characteristic velocity.
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Fig. 1 | Tunability of the XXZ model with 7Li and implemenation of a spin 
helix. a, The Hamiltonian (equation (1)) is characterized by two energy scales: 
the transverse spin coupling Jxy (spin exchange) and the longitudinal spin 
coupling Jz (spin–spin interaction). b, Anisotropy Δ = Jz/Jxy as a function of 
applied magnetic field. The solid line is a fit to experimental data points, which 
are calculated from measured values U⇈, U⇅, U⇊ (see Methods and Extended 
Data Fig. 1). c, Spin helix realized from two hyperfine states (spin |↑⟩ and |↓⟩). 
The spin vector winds in the Sz–Sx plane as a function of position z in the spin 
chain. Deep optical lattices along x and y create an array of independent spin 
chains. The z lattice is shallower and controls spin transport along each chain.
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XXX model
For finite Δ, the Jordan–Wigner transformation results in fermions with 
nearest-neighbour interactions. The isotropic case Δ = 1 corresponds to 
strong interactions, which should generically turn fast ballistic trans-
port into slow diffusive transport. Indeed, the decay slows down for 
increasing wavelength λ much more dramatically than in the Δ ≈ 0 case 
(also illustrated in Extended Data Fig. 3a–c). A power-law fit of the decay 
constant τ versus Q yields an exponent of α = 1.87(4), which is close to 2, 
indicative of a diffusive process (Fig. 3b, blue). If time units are rescaled 
by λ2, then all contrast curves c(t) collapse very well into a single curve 
(Fig. 2e). However this collapse is not perfect, because of a (small) oscil-
lating part that still obeys a linear dispersion relation ω(Q) = vQ (Fig. 2f).

Using 1/τ = DQ2, a diffusion constant can be determined as D =  
0.242(7)a2/(ħ/Jxy). Interpreting D x t= δ /δ1

2
2   as arising from a random 

walk of step size δx (the mean free path) and time δt between steps, 
and using v = δx/δt = 0.35(1)vF (obtained from the dispersion relation 
in Fig. 2f), we find δx = 1.39(5)a. A mean free path on the order of the 
lattice constant is analogous to the Mott–Ioffe–Regel limit for resistiv-
ity where simple quasi-particle pictures break down35,36, implying that 
the isotropic Heisenberg model is strongly interacting.

Our observation of diffusive behaviour and the value for the diffusion 
coefficient are consistent with previous  results7 (for zero hole frac-
tion) on the 1D isotropic Heisenberg model with Jxy < 0. Our system is 
antiferromagnetic (Jxy > 0), and so this indicates that the overall sign of 
the Hamiltonian is irrelevant, as expected from theoretical arguments 
involving time-reversal symmetry (see Methods). However the small 
(ballistic) oscillatory component has not been previously reported. 
We note that a two-dimensional Fermi–Hubbard system can also show 
diffusive decay and ballistic oscillations37.

By tuning the interactions over a large range of Δ, we can study how 
the transport behaviour changes. For an interacting gas of classical 
particles or quasiparticles, one would expect ballistic behaviour on 
timescales shorter than the collision time and diffusion for longer 
times. We indeed find this for Δ < 0, whereas for Δ ≥ 0 we observe 
qualitatively very different behaviour (also illustrated in Extended 
Data Fig. 5).

Positive anisotropies (Δ ≥ 0)
All measured decay curves c(t) are well described by the fitting func-
tion previously used. The observed oscillation frequencies ω follow 
linear dispersion relations ω(Q) = vQ (Extended Data Fig. 3), whereas 
the decay time constants τ show power-law scaling τ ∝ Q−α (Fig. 3) in the 
following way: as the anisotropy is increased from Δ = −0.12 to Δ = 0.55, 
the exponent stays close to α = 1 (‘ballistic regime’) and the charac-
teristic velocity of oscillations decreases by a factor of about 1.6, to 
v = 0.47(1)vF. Between Δ ≈ 0.5 and 1 the exponent increases smoothly 
from α = 1 to α ≈ 2 (‘superdiffusive regime’), for example, α = 1.48(4) at 
Δ = 0.78 (Fig. 3b, yellow). For Δ > 1 transport slows down even more, 
and the exponent also continues to increase smoothly to values α > 2 
(‘subdiffusive regime’), for example, α = 2.83(14) at Δ = 1.58 (Fig. 3b, 
green). For each Δ ≥ 0, the measured decay curves collapse into a single 
curve, if time units are rescaled by λα (Extended Data Fig. 6).

Power-law exponents between 1 and 2 (superdiffusion) are often 
associated with Lévy flights or fractional Brownian motion where step 
sizes are correlated38,39. Power-law exponents larger than 2 (subdiffu-
sion) typically arise for transport through a disordered medium40,41 and 
have also been recently observed in a tilted Fermi–Hubbard system42. 
However, the XXZ Heisenberg Hamiltonian we study has no disorder.

Negative anisotropies (Δ < 0)
Here the behaviour is qualitatively very different compared to positive 
Δ of similar magnitude. We find a crossover in the time domain from 
ballistic to diffusive behaviour. For example, at Δ = −1.43 the initial decay 
of c(t) is fast and, in fact, coincides well with the non-interacting (bal-
listic) case Δ ≈ 0 (Fig. 4a), in stark contrast to the positive case Δ = +1.58 
(Extended Data Fig. 5). At t = t0 ≈ 2.8ħ/Jxy (dotted line) the decay suddenly 
slows down. We therefore parameterize the decay curve c(t) by a piece-
wise fit with two timescales: (I) a linear function (1 − t/τI) at short times 
and (II) an exponential e t τ− / II at longer times, with respective time con-
stants τI, τII. When the wavevector Q is varied, both τI and τII follow a 
power law (Fig. 3a), but with different exponents: αI = 1.08(6) (ballistic) 
and αII = 2.15(16) (diffusive), respectively (Fig. 3c). In both experimental 
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Fig. 2 | Ballistic and diffusive spin transport. a–d, XX model, ballistic 
behaviour (Δ ≈ 0, non-interacting fermions). a, Spin-helix contrast c(t) for 
λ = 10.4a measured at three different lattice depths 9ER (orange), 11ER (blue) and 
13ER (yellow). Decay curves collapse when times are expressed in units of 
ħ/Jxy = 0.64 ms, 1.71 ms and 4.30 ms, respectively. The fit (black line) shows a 
decay with time constant τ = 5.5(2)ħ/Jxy and a damped oscillation with period 
T = 2π/ω = 13.7(2)ħ/Jxy. The fit is typically applied to data points from all lattice 
depths simultaneously, but analysing each lattice depth separately yields 
identical results. Numerical simulations are also shown for the XX model 
(dashed line) and bosonic t∼–J model with 5% holes (dash-dotted line) and 10% 
holes (dotted line). b, Decay curves for different wavelengths λ = 15.7a, 13.4a, 
11.7a, 9.4a, 7.8a and 6.7a (offset for clarity). c, The decay curves in b collapse 

into a single curve, if time is rescaled by λ (indicating ballistic transport) and 
offsets c0 are subtracted. d, Oscillation frequencies (filled symbols) follow a 
linear dispersion relation ω(Q) = vQ with velocity v = 0.76(1)vF and agree at the 
10% level with numerical simulations (open symbols) yielding v = 0.85(1)vF. 
Theoretical frequencies are obtained as the inverse of the first revival time. 
Owing to damping, this may be an overestimate of 10%. e, f, XXX model, 
diffusive behaviour (Δ ≈ 1, strongly interacting fermions). Oscillations are 
strongly suppressed and time has to be rescaled by λ2 (indicating diffusive 
transport) for collapse. However this collapse is not perfect, because of the 
presence of small oscillations (see Extended Data Fig. 3) that follow a linear 
dispersion relation (f) with a velocity v = 0.35(1)vF.
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(Fig. 4b) and numerical results (Fig. 4c), all decay curves collapse for 
short times before ‘peeling off’ at later times, if time is rescaled by λ.

Similar behaviour is observed for other negative anisotropies (Fig. 3a; 
also Extended Data Fig. 7), with the initial ballistic temporal decay (regime 
I) almost independent of Δ. However, for larger |Δ|, we find that t0 (the 
range of regime I) is smaller, and the diffusion timescales τII in regime II 
are longer. The diffusion coefficient decreases from D = 1.27(6)a2/(ħ/Jxy) 
to 0.25(2)a2/(ħ/Jxy) between Δ = −1.02 and −1.79 (Extended Data Fig. 8c). 
Figure 3c summarizes the different transport behaviours uncovered for the 
anisotropic Heisenberg model and represents the main result of this paper.

Theoretical simulations
To validate our platform as a quantum simulator, we have carried out 
numerical simulations of quench dynamics starting from a spin helix, using 
a combination of exact diagonalization and tensor network methods 
(see Methods). We simulate the dynamics of the system without holes (XXZ 
Hamiltonian), as well as with a small probability of holes (bosonic ∼t–J  
model), and compare the simulated contrast to experimental results. The 
timescales of decay generally agree fairly well. A qualitative difference in 
the decay curves is illustrated in Fig. 2a: the simulations always show an 

initial quadratic decay (as expected from time-reversal symmetry, see Meth-
ods), and revivals are generally more pronounced. The initial quadratic 
decay happens in the pure-spin simulations on the timescale of ħ/Jxy, 
whereas an addition of 5% to 10% holes reduces this to the timescale ∼ħ t/  
(where ∼t  is the  tunnelling amplitude in the ∼t–J model)7 and reduces  
the amplitude of revivals. However, the presence of holes does not affect 
the overall behaviour of the decay times of the spin contrast: the simulations 
of both the XXZ and the t∼–J model yield power-law scalings of time constants, 
with exponents that agree reasonably well with experimental ones (see 
Fig. 3c and Methods section ‘Power-law scalings in the continuum limit’).

Discussion
Our work on spin transport illustrates the strength of a combined exper-
imental and theoretical quantum simulation. Our quantum simulator 
platform enables us to probe dynamical regimes that are difficult to 
achieve in numerical simulations, such as large system sizes or long 
times (Extended Data Figs. 6, 7), which require prohibitively large 
computational resources. On the other hand, numerical simulations 
provided valuable insight into effects that could not be studied experi-
mentally, such as that of holes (Figs. 2a, 3c), different phases of the 
helix, and the role of boundary conditions (Extended Data Figs. 9, 10).

Our observations are consistent with some theoretical predictions 
for spin transport in the anisotropic Heisenberg model, but differ 
sharply from others. For example, studies of quantum quenches from 
pure states involving a single domain wall43–46 have suggested ballistic 
dynamics at Δ = 0 and diffusive dynamics at Δ = 1 (albeit with logarithmic 
corrections), similar to our findings. In addition to diffusive transport, 
a ballistic light-cone has been observed46 in numerics at Δ = 1, which 
may be related to the small ballistic oscillatory component we have 
observed experimentally. In contrast to our findings, theoretical stud-
ies of long-time linear response of spin transport at high temperatures 
(that is, mixed states) have indicated a sharp transition from ballistic 
(Δ < 1) to diffusive (Δ > 1), with superdiffusive behaviour (α = 3/2) exactly 
at the transition point Δ = 115,16, which can be understood from gen-
eralized hydrodynamics involving local equilibriation of conserved 
quantities47,48. The situation we have studied is different, because the 
initial spin-helix state is a pure state far from equilibrium. An accurate 
description of coherent dynamics using the exact eigenstates from the 
Bethe ansatz49 is a very challenging problem. Ultimately, the spin-helix 
state will relax into a thermal state (or quasi-thermal generalized Gibbs 
state), but probably outside the time window studied here. The rich 
phenomenology observed in our experiments and dramatic differences 
with the cases studied in the literature calls for a deeper understand-
ing of this dynamical regime, both theoretically and experimentally.

Our studies can be extended in many different directions: the role of 
integrability, which the XXZ Hamiltonian possesses, should be explored, 
for example by adding next-nearest-neighbour integrability-breaking 
terms realized through appropriate Rydberg dressing of atoms. We can 
explore different initial conditions, including single domain walls43–46 
and finite temperatures (by using partially polarized (mixed) states) 
and study the decay of transverse spin via transport and dephasing. 
An interesting question is whether the power-law scalings change for 
very large wavelengths that approach the continuum limit (see pre-
liminary theoretical analysis in Methods and Extended Data Fig. 8). 
We can furthermore realize Heisenberg models in two or three spatial 
dimensions, or with purely ferromagnetic couplings by changing the 
sign of Jxy using a constant force to tilt the lattice50.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-3033-y.
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https://doi.org/10.1038/s41586-020-3033-y


Nature  |  Vol 588  |  17 December 2020  |  407

1.	 Lee, P. A. From high temperature superconductivity to quantum spin liquid: progress in 
strong correlation physics. Rep. Prog. Phys. 71, 012501 (2007).

2.	 Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
3.	 Nichols, M. A. et al. Spin transport in a Mott insulator of ultracold fermions. Science 363, 

383–387 (2019).
4.	 Brown, R. C. et al. Two-dimensional superexchange-mediated magnetization dynamics in 

an optical lattice. Science 348, 540–544 (2015).
5.	 Fukuhara, T. et al. Quantum dynamics of a mobile spin impurity. Nat. Phys. 9, 235–241 

(2013).
6.	 Fukuhara, T. et al. Microscopic observation of magnon bound states and their dynamics. 

Nature 502, 76–79 (2013).
7.	 Hild, S. et al. Far-from-equilibrium spin transport in Heisenberg quantum magnets. Phys. 

Rev. Lett. 113, 147205 (2014).
8.	 Koschorreck, M., Pertot, D., Vogt, E. & Köhl, M. Universal spin dynamics in 

two-dimensional Fermi gases. Nat. Phys. 9, 405–409 (2013); corrigendum 10, 170 (2014).
9.	 Trotzky, S. et al. Observation of the Leggett–Rice effect in a unitary Fermi gas. Phys. Rev. 

Lett. 114, 015301 (2015).
10.	 Palzer, S., Zipkes, C., Sias, C. & Köhl, M. Quantum transport through a Tonks–Girardeau 

gas. Phys. Rev. Lett. 103, 150601 (2009).
11.	 Sommer, A., Ku, M., Roati, G. & Zwierlein, M. W. Universal spin transport in a strongly 

interacting Fermi gas. Nature 472, 201–204 (2011).
12.	 Krinner, S. et al. Mapping out spin and particle conductances in a quantum point contact. 

Proc. Natl. Acad. Sci. USA 113, 8144–8149 (2016).
13.	 Vasseur, R. & Moore, J. E. Nonequilibrium quantum dynamics and transport: from 

integrability to many-body localization. J. Stat. Mech. 2016, 064010 (2016).
14.	 Bertini, B. et al. Finite-temperature transport in one-dimensional quantum lattice models. 

Preprint at https://arxiv.org/abs/2003.03334 (2020).
15.	 Ljubotina, M., Žnidarič, M. & Prosen, T. Spin diffusion from an inhomogeneous quench in 

an integrable system. Nat. Commun. 8, 16117 (2017).
16.	 Gopalakrishnan, S. & Vasseur, R. Kinetic theory of spin diffusion and superdiffusion in XXZ 

spin chains. Phys. Rev. Lett. 122, 127202 (2019).
17.	 Ilievski, E., De Nardis, J., Medenjak, M. & Prosen, T. Superdiffusion in one-dimensional 

quantum lattice models. Phys. Rev. Lett. 121, 230602 (2018).
18.	 Else, D. V., Monroe, C., Nayak, C. & Yao, N. Y. Discrete time crystals. Annu. Rev. Condens. 

Matter Phys. 11, 467–499 (2020).
19.	 Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum 

materials. Nat. Mater. 16, 1077–1088 (2017).
20.	 Langen, T., Gasenzer, T. & Schmiedmayer, J. Prethermalization and universal dynamics in 

near-integrable quantum systems. J. Stat. Mech. 2016, 064009 (2016).
21.	 Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit 

quantum simulator. Nature 551, 601–604 (2017).
22.	 Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 

551, 579–584 (2017).
23.	 Barends, R. et al. Digital quantum simulation of fermionic models with a superconducting 

circuit. Nat. Commun. 6, 7654 (2015).
24.	 Davis, E. J. et al. Protecting spin coherence in a tunable Heisenberg model. Phys. Rev. 

Lett. 125, 060402 (2020).
25.	 Signoles, A. et al. Glassy dynamics in a disordered Heisenberg quantum spin system. 

Preprint at https://arxiv.org/abs/1909.11959 (2019).
26.	 Trotzky, S. et al. Time-resolved observation and control of superexchange interactions 

with ultracold atoms in optical lattices. Science 319, 295–299 (2008).
27.	 Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 

357, 995–1001 (2017).

28.	 Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical 
lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

29.	 Kuklov, A. B. & Svistunov, B. V. Counterflow superfluidity of two-species ultracold atoms 
in a commensurate optical lattice. Phys. Rev. Lett. 90, 100401 (2003).

30.	 Duan, L.-M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold 
atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

31.	 García-Ripoll, J. J. & Cirac, J. I. Spin dynamics for bosons in an optical lattice. New J. Phys. 
5, 76 (2003).

32.	 Altman, E., Hofstetter, W., Demler, E. & Lukin, M. D. Phase diagram of two-component 
bosons on an optical lattice. New J. Phys. 5, 113 (2003).

33.	 Amato-Grill, J., Jepsen, N., Dimitrova, I., Lunden, W. & Ketterle, W. Interaction 
spectroscopy of a two-component Mott insulator. Phys. Rev. A 99, 033612 (2019).

34.	 Jordan, P. & Wigner, E. Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631–651 
(1928).

35.	 Ioffe, A. F. & Regel, A. R. Non-crystalline, amorphous and liquid electronic 
semiconductors. Prog. Semiconduct. 4, 237–291 (1960).

36.	 Mott, N. F. Conduction in non-crystalline systems IX. the minimum metallic conductivity. 
Philos. Mag. A 26, 1015–1026 (1972).

37.	 Brown, P. T. et al. Bad metallic transport in a cold atom Fermi–Hubbard system. Science 
363, 379–382 (2019).

38.	 Dubkov, A. A., Spagnolo, B. & Uchaikin, V. V. Lévy flight superdiffusion: an introduction. 
Int. J. Bifurc. Chaos 18, 2649–2672 (2008).

39.	 Andreev, A. È. et al. Correlation theory of processes with stationary random increments of 
order n. Am. Math. Soc. Transl. 8, 87 (1958).

40.	 Agarwal, K., Gopalakrishnan, S., Knap, M., Müller, M. & Demler, E. Anomalous diffusion and 
Griffiths effects near the many-body localization transition. Phys. Rev. Lett. 114, 160401 (2015).

41.	 Vosk, R., Huse, D. A. & Altman, E. Theory of the many-body localization transition in 
one-dimensional systems. Phys. Rev. X 5, 031032 (2015).

42.	 Guardado-Sanchez, E. et al. Subdiffusion and heat transport in a tilted two-dimensional 
Fermi–Hubbard system. Phys. Rev. X 10, 011042 (2020).

43.	 Antal, T., Rácz, Z., Rákos, A. & Schütz, G. M. Transport in the XX chain at zero temperature: 
emergence of flat magnetization profiles. Phys. Rev. E 59, 4912–4918 (1999).

44.	 Gobert, D., Kollath, C., Schollwöck, U. & Schütz, G. Real-time dynamics in spin- 1
2
 chains 

with adaptive time-dependent density matrix renormalization group. Phys. Rev. E 71, 
036102 (2005).

45.	 Misguich, G., Pavloff, N. & Pasquier, V. Domain wall problem in the quantum XXZ chain 
and semiclassical behavior close to the isotropic point. SciPost Phys. 7, 025 (2019).

46.	 Ljubotina, M., Žnidarič, M. & Prosen, T. A class of states supporting diffusive spin 
dynamics in the isotropic Heisenberg model. J. Phys. A Math. Theor. 50, 475002 
(2017).

47.	 Castro-Alvaredo, O. A., Doyon, B. & Yoshimura, T. Emergent hydrodynamics in integrable 
quantum systems out of equilibrium. Phys. Rev. X 6, 041065 (2016).

48.	 Bertini, B., Collura, M., De Nardis, J. & Fagotti, M. Transport in out-of-equilibrium XXZ 
chains: exact profiles of charges and currents. Phys. Rev. Lett. 117, 207201 (2016).

49.	 Caux, J.-S. & Mossel, J. Remarks on the notion of quantum integrability. J. Stat. Mech. 
2011, P02023 (2011).

50.	 Dimitrova, I. et al. Enhanced superexchange in a tilted Mott insulator. Phys. Rev. Lett. 124, 
043204 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

101 200 302010
0

0.2

0.4

0.6

0.8

1.0

Time, t (×  /Jxy) Rescaled time, t (×(  /Jxy)/( /a))

C
on

tr
as

t,
 c

(t)
 = 23.5a

 = 6.3a

 ≈ 0

cba

Δ  ≈ 0Δ

Fig. 4 | Temporal crossover from ballistic to diffusive transport for negative 
anisotropies Δ < 0. a, Spin-helix contrast c(t) for λ = 10.4a and Δ = −1.43 (filled 
circles) measured at lattice depths 11ER (blue) and 13ER (yellow). A piecewise fit 
(solid line) is linear at short times (I) and exponential at longer times (II) with a 
crossover at t = t0 (vertical dotted line). For t < t0 the decay coincides well with the 
non-interacting case Δ ≈ 0 (open circles and dashed line). b, Decay curves for 
different wavelengths λ = 23.5a, 18.8a, 13.4a, 10.4a, 8.5a and 6.3a (average of 

measurements at lattice depths 11ER and 13ER) collapse into a single curve at 
early times if time is rescaled by λ (as for ballistic behaviour) and follow the 
non-interacting case (thick dashed line). At later times, the decay is diffusive 
with different scaling (see Fig. 3a). c, Numerical simulations for Δ = −1.5 and the 
same wavelengths λ as in b show similar behaviour, although the range of time 
probed is more limited. Simulations could not be extended to longer times, 
owing to the exponential increase in computation time.
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Methods

Extended Hubbard model
To determine the parameters Jxy and Jz in equation (1)

J
t
U

J
t
U

t
U

t
U

= −
4

, =
4

−
4

+
4

xy z

2

⇅

2

⇅

2

⇊

2

⇊













∼ ∼ ∼ ∼

we use measurements of the lattice depths Vx, Vy, Vz and of the three 
scattering lengths a⇈, a⇅, a⇊. From the calibrated lattice depths, the 
Hubbard parameters t~(0) (in the non-interacting limit) and U(0) (in the 
single-band approximation) are calculated as28
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where gσσ′ = 4πħ2aσσ′/m and σ, σ′ = ↑, ↓ and w(r) = wx(x) wy(y) wz(z) using 
the calculated lowest-band Wannier functions wx(x), wy(y) and wz(z) 
for each lattice depth51.

For the precision needed to compare experiment to theory, three 
corrections are applied7,52–54.

Correction 1. Tunnelling is modified by the so-called single-band bond 
charge54, which for single-occupancy is

∼ ∼ ∗ ∗r r r r r∫t t g r w w w w= − d ( − δ ) ( ) ( ) ( ),σσ σσ′
(0)

′
3

where δr = (0, 0, a) is a displacement by one lattice constant a in the 
tunnelling direction. Through this correction, the tunnelling matrix 
elements t⇈

∼ , ∼t⇅ and ∼t⇊ are now slightly spin-dependent.

Correction 2. For the on-site interaction, we include admixtures of 
higher bands53,54. The dominant part is captured by a perturbative cor-
rection due to the first and second excited bands

r r r r
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where n1 and n2 are the three-dimensional band indices of the two 
atoms and Ebg is the sum of the bandgap energies. Corrections to the 
tunnelling rate t∼ owing to population of higher bands is negligible for 
a Mott insulator with occupation n = 1, because higher bands are 
admixed only through virtual doubly occupied sites. These modifica-
tions of ∼t  and U both contribute to a modification of superexchange 
Jxy and Jz (Extended Data Fig.  1). The relative correction to 
J t U= − 4( ) /xy

(0) (0) 2
⇅
(0)∼ , given by J J J( − )/xy xy xy

(0) (0), is almost independent of 
lattice depth (for the range of lattice depths studied here), and in the 
experiment Jxy is typically reduced by 10% to 15%. Note that the cor-
rection has the opposite sign as in ref. 7, because Jxy > 0 is antiferro-
magnetic in the present work.

Correction 3. To accurately determine Jz, one must also consider off-site 
interactions of the form54

r r r r r r∗ ∗∫V g r w w w w= d ( − δ ) ( ) ( − δ ) ( ),σσ σσ′ ′
3

where δr is defined as before. One finds that Jz is modified by the addi-
tion of 2(V⇈ + V⇊ − 2V⇅). Depending on the signs and magnitudes of 
the three interactions, the off-site terms can add to or subtract from 
the two previously discussed corrections to Jz (Extended Data Fig. 1).

Determination of the Heisenberg parameters
We calibrate the lattice depth using amplitude modulation spectros-
copy55. We record the excitation spectrum of a Bose–Einstein conden-
sate in a 1D lattice when the depth of the lattice is modulated by 3% 
providing the cloud-averaged lattice depth with a statistical uncertainty 
of 0.2%. Owing to an asymmetric excitation profile, we estimate a sys-
tematic error of 1%.

The lowest and second-lowest hyperfine states of 7Li realize the 
|↓⟩ and |↑⟩ states. We use our previous measurements of U⇈ and U⇊ 
(lattice-depth modulation) as well as measurements of U⇈ − U⇅ and 
U⇅ − U⇊ (interaction spectroscopy)33 to determine the three scattering 
lengths a⇈, a⇅ and a⇊ (under inclusion of higher-band corrections) for 
several magnetic fields B. The determined anisotropies Δ are shown 
in Fig. 1b (points). Hyperbolic fits to a⇈(B), a⇅(B) and a⇊(B) are used to 
interpolate the values for the anisotropy (solid line). Extended Data 
Fig. 1 shows a⇈, a⇅ and a⇊, as well as Jxy, Jz and Δ with (and without) cor-
rections. A recent detailed theoretical analysis56 of the interaction 
spectroscopy data also provided precise scattering lengths across 
several Feshbach resonances. However, this analysis slightly disagreed 
with our lattice-depth modulation data in the range of magnetic fields 
studied here, and therefore we relied on the experimental data.

The Gaussian intensity profile of the lattice beams (1/e2 radius of 
125 μm) causes inhomogeneity of the lattice depth by up to 1.7% across 
a Mott insulator of 44 lattice sites in diameter. The 1.0% variation of U 
across the atom cloud can be neglected. The tunnelling coefficient t∼ 
within the spin chains is defined by the lattice depth Vz along the chains. 
Although it is constant within each spin chain, it varies among the chains 
by up to 4.4%, which increases superexchange Jxy by up to 9.0%. The 
curvature of the transverse lattice beams (with Vx, Vy = 35ER) causes 
harmonic confinement mω z κz=1

2 trap
2 2 1

2
2  along the chains with 

ωtrap = 2π × 770 Hz or curvature κ = h × 116.6 Hz a−2, where h is the Planck 
constant. The curvature leads to a varying energy offset δ between 
neighbouring lattice sites, which is largest at the ends z = ±22a of the 
longest spin chains. It modifies the energy of the intermediate state in 
the superexchange process U ↦ U ± δ (refs. 26,50) and therefore increases 
the superexchange rate at the ends of the longest chains by 24% (Δ ≈ 0) 
and 11% (Δ ≈ 1), with an average value over all atoms of 4.2% (Δ ≈ 0) and 
2.0% (Δ ≈ 1), respectively.

The lattice depth calibration and the experimental determination of 
the scattering length a⇅ lead to an uncertainty for the spin-exchange 
times ħ/Jxy of about ±10%. The accuracy of the determined anisotropies 
Δ is limited by the experimental determination of all scattering lengths 
a⇈, a⇅, a⇊. The uncertainty of Δ is estimated to be about ±0.1.

In the experiment (see Fig. 1b), Δ ≈ 0 was realized by tuning the mag-
netic field to B0 = 882.63 G. Here the measured Hubbard parameters 
result in Δ = −0.12 including higher-order corrections (and Δ = −0.02 
without corrections). We find that the spin dynamics in this regime is 
only weakly dependent on Δ, so we refer to measurements here as  
Δ ≈ 0. B′ = 842.95 G0  is a second magnetic field value, which also realizes 
Δ ≈ 0 (Δ = −0.13 including corrections and Δ = 0.01 without corrections). 
We directly compare these two points B0 and B′0 in Extended Data Fig. 5, 
and observe quantitative agreement. Arbitrary anisotropies were real-
ized by using the magnetic field region in between: B′0 < B < B0. In par-
ticular, for values Δ > 0 (Δ < 0) we used magnetic fields B < 850 G 
(B > 850 G). The isotropic point Δ ≈ 1 was realized at B1 = 847.30 G (actu-
ally Δ = 1.01 and corrections here are negligible).

In the following we give typical absolute values for Hubbard param-
eters at a lattice depth of Vz = 11ER and Vx, Vy = 35ER. The recoil energy 
is ER/h = 25.12 kHz.

XX model. Δ ≈ 0 is realized by the scattering lengths a⇈ = +307a0, 
a⇅ = −50a0 and a⇊ = −44a0, resulting in the following values for the 
on-site interactions U⇈/h  =  +30.6  kHz, U⇅/h  =  −5.8  kHz and 
U⇊/h = −5.1 kHz. The bare single-particle tunnelling coefficient is  



given by t h/ = 380 Hz(0)∼ , but interactions make tunnelling 
spin-dependent: ∼t h/ = 480 Hz⇈ , ∼t h/ = 370 Hz⇅ , and t h/ = 370 Hz⇊

∼ . That 
results in the following Heisenberg parameters: Jxy/h = 93.3 Hz and 
Jz/h = −10.9 Hz.

XXX model. Δ ≈ 1 is realized by the scattering lengths a⇈ = −107a0, 
a⇅ = −71a0 and a⇊ = −53a0, resulting in U⇈/h = −12.7 kHz, U⇅/h = −8.4 kHz 
and U⇊/h = −6.1 kHz; and ∼t h/ = 380 Hz

(0)
, ∼t h/ = 350 Hz⇈ , t h/ = 360 Hz⇅

∼  
and t h/ = 370 Hz⇊

∼ ; and Jxy/h = 62.6 Hz and Jz/h = 63.5 Hz.
Superexchange coupling ( J h/ ≈ 20 mHzxy

⊥ ) between chains is negli-
gible, owing to the deep transverse optical lattices (Vx, Vy = 35ER) and 
is 3 to 4 orders of magnitude smaller than Jxy/h within the chains.

Experimental setup
In the experiment, we prepare 4.5 × 104 7Li atoms in an optical lattice 
with spacing a = 532 nm in the Mott insulating regime with one atom 
per site50. A Bose–Einstein condensate (with barely detectable thermal 
fraction Nth/N ≤ 0.05) with all atoms in the |↑⟩ state is loaded into the 
optical lattice, with the scattering length set to strong repulsive inter-
actions a⇈ = +307a0. This suppresses doubly occupied sites50, which we 
counted directly by interaction spectroscopy33 to be ≤0.5% of the total 
atom number. (Even a long spin chain of length L = 44a has then only a 
probability ≤20% to contain a doubly occupied site.) The hole fraction is 
estimated to be between 5% and 10% through comparison of spin dynam-
ics with theory (Fig. 2a). The density degree of freedom is frozen out 
after loading into the deep optical lattice, and the on-site interactions 
U⇈, U⇅ and U⇊ can then be varied freely without affecting the global atom 
distribution, as long as the atoms stay in the Mott insulating regime50.

We then prepare a far-from-equilibrium initial spin state and probe 
the spin dynamics in one dimension. The lattice beams in the x and 
y directions are kept at a large constant depth of Vx, Vy = 35ER separating 
the atoms into an array of independent 1D chains, with a typical maxi-
mum length of Lmax = 44a (given by the diameter of the Mott insulator), 
and with an average length of ⟨L⟩ = 33a (Extended Data Fig. 10). The 
depth of 35ER is sufficient to prevent superexchange coupling in the 
x and y directions (ħ J/ ≈ 10 sxy

⊥ ) on experimental timescales. Initially, 
the z-lattice depth is also 35ER. The magnetic field is then ramped to 
the value required for a desired anisotropy Δ. Using radio frequency 
pulses and a magnetic field gradient, a helical spin pattern is created 
where the spin component along the chain winds in the xz plane of the 
Bloch sphere with a wavevector Q = 2π/λ, where λ is the wavelength of 
the spin helix (see Fig. 1c and Methods section ‘Preparation of the spin 
helix’). For λ smaller than the system size, the total magnetization of 
this state is close to zero.

The power of the lattice beam in the z direction controls the super-
exchange rate within the chains. Time evolution is initiated by ramping 
down the z-lattice depth Vz to a value between 9ER and 13ER. The ramp 
time is 0.5 ms, fast compared to superexchange ħ/Jxy, but slow compared 
to tunnelling ∼ħ t/ . The ensuing coherent dynamics along each chain is 
governed by a 1D Heisenberg XXZ model with anisotropy Δ, equation (1). 
This is a quantum quench to a far-from-equilibrium initial state. After 
a variable evolution time t the dynamics is frozen by rapidly increasing 
the lattice depth back to 35ER. The atoms are then imaged in the |↑⟩ 
state via state-selective polarization-rotation imaging (see below).

Preparation of the spin helix
A global π/2 pulse of 75 μs rotates the spin |↑⟩i on each site i into the 
xy plane of the Bloch sphere φ| ⟩ = [|↑⟩ + |↓⟩ ]/ 2i i i . An applied magnetic 
field gradient in the z direction causes spin precession at rates that 
depend linearly on position zi of the spin thus creating a spin helix 
φ| ⟩ = [|↑⟩ + e |↓⟩ ]/ 2i i

Qz
i

−i i  where the spin winds in the xy plane7–9.  
The strength and duration of the gradient determine the wavevector 
Q = 2π/λ where λ is the wavelength of the spin helix. After turning  
off the gradient, an additional π/2  pulse rotates the spin helix  
into a state where the spin winding occurs in the xz  plane 

φ Qz Qz| ⟩ = cos( /2)|↓⟩ − sin( /2)|↑⟩i i i i i, so that the full many-body xz spin- 
helix state is ψ Q φ| ( )⟩ = ∏ | ⟩i i . In practice, the phase of the winding, θ, 
varies from realization to realization, which amounts to replacing 
Qzi ↦ Qzi + θ. This is caused by small magnetic bias field drifts on the 
10−5 level. The range of λ used in the experiment was limited on  
the short side by optical resolution to λ ≥ 5.6a and on the long side by 
the length of the chains Lmax = 44a.

When turning off the magnetic field gradient, special care was taken 
to cancel any residual gradients to better than |B′| ≤ 0.4 mG cm−1. The 
differential magnetic moment is typically Δμ/h = (μ↑ − μ↓)/h ≈ 30 kHz G−1 
(it varies by approximately 10% depending on the bias field B). This 
translates to a maximum energy difference of ΔμB′Lmax/h = 0.3 Hz across 
the chain length, completely negligible compared to the spin-exchange 
coupling Jxy/h, which is 2 to 3 orders of magnitude larger.

Imaging
The optical density of the atomic ensemble is too high (>14) to allow for 
in situ observation of the modulation of ⟨Sz⟩ via absorption imaging. 
Instead, we use dispersive imaging, which uses the phase accumu-
lated by the transmitted light to form an image of the atomic density 
distribution. When light at frequency ωL is detuned from the atomic 
resonance ω0 by many natural linewidths Γ, it picks up an approximate 
phase θ ≈ −2Δω/Γ × OD(y, x, Δω), where OD is the optical density at 
detuning Δω = ωL − ω0, while absorption is suppressed by a sufficiently 
large detuning Δω. To form an image, the phase-shifted light must be 
interfered with a reference beam. In this work, we make use of the fact 
that the optical transition we use for imaging is driven only by a single 
polarization component; after passing through the atoms, the shifted 
and unshifted components are combined on a polarizer. A judicious 
choice of input and output polarizers yields an interference signal I on 
the camera57,58 that is I = I0(1 − sinθ)/2.

The optical resolution of our imaging system (with a numerical aper-
ture of NA ≈ 0.2) was determined to have a cut-off at modulation wave-
length λ ≈ 3.0 μm = 5.6a (330 line pairs per mm). The reduction of  
the modulation transfer function MTF(Q) near the cut-off reduces  
the observed contrast C t Q c t( ) = MTF( ) ( ) compared to the real contrast 
c(t). This does not affect the decay times τ. Assuming that the experi-
mental preparation sequence for the initial spin-helix state achieves 
full contrast c(0) = 1 for any wavevector Q (based on careful pulse cali-
bration and characterization), we can use C(0) as a direct measurement 
of MTF(Q) and determine the real contrast as C Cc t t( ) = ( )/ (0).

Constant background contrast
For long evolution times t, the contrast c(t) does not fully decay, but 
reaches a background value c0, for example c0 = 0.08(1) in Fig. 2a. The 
numerical simulations, however, show a decay to zero. Therefore we add 
here the fit value for c0 to the simulations for better comparison with 
experimental results. The experimental offset is caused by the inho-
mogeneous density of the atom cloud: only 90% of the atoms are in the 
Mott insulator state, which realizes an array of 1D spin chains. A small 
fraction of atoms are in dilute spatial wings, separated by holes that are 
immobile, owing to the gradient of the trapping potential (which sup-
presses first-order tunnelling, as shown in our previous work)50. These 
atoms preserve an imprinted spin-modulation pattern for long times. 
We have checked this mechanism by increasing the amount of thermal 
atoms and clearly observe an increase of the background c0 (Extended 
Data Fig. 4). Furthermore, a position-sensitive measurement of the 
contrast confirms that the main contribution is indeed from atoms 
in the spatial wings (Extended Data Fig. 4f–g). In agreement with this 
model, numerical simulations always show a decay to zero for long spin 
chains (see Extended Data Figs. 6, 7, 9, 10). Experiments throughout this 
Article were performed with the lowest thermal fraction Nth/N ≤ 0.05, 
where the contrast decays (almost) uniformly across the whole atom 
cloud, and offsets are small, so that it was not necessary to restrict the 
fits to the central part of the cloud (see Extended Data Fig. 2).
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Time-reversal invariance of spin dynamics
For an xz  spin-helix initial state and time evolution via the XXZ  
Hamiltonian, the contrast is time-reversal symmetric: c(t) = c(−t), which 
follows because the state, Hamiltonian and observable (the local mag-
netization Si

z) can be all expressed as real. This also implies invariance 
against the overall sign of the Hamiltonian H ↦ −H. The same argument 
holds for the system with holes evolving under the bosonic ∼t–J model. 
The initial dynamics of the contrast (in the ideal scenario) in both cases 
is therefore quadratic, c(t) = 1 + Γ2t2 + …, with

∑Γ
ħ

a
L

Qz θ ψ Q H H S ψ Q= −
1 2

cos( + )⟨ ( )|[ , [ , ]]| ( )⟩.
i

i i
z2

2

Therefore the timescale of the initial quadratic decay |Γ|−1 is the super-
exchange timescale ħ/Jxy (XXZ model) or the tunnelling timescale  

∼ħ t/  (t∼–J model). The fact that, experimentally, we do not observe an 
initial quadratic behaviour indicates either (i) the presence of holes, but 
that we are not resolving the fast timescale ∼ħ t/ ; or (ii) that the initial state 
is not time-reversal invariant (that is, cannot be expressed as real, in the 
same basis that the Hamiltonian is written in). The latter could arise from 
pulse imperfections, or the fact that the ramp-down of the optical lattice 
takes place over a finite duration of time, leading to deviations from the 
ideal initial state. Nevertheless, we expect that the overall behaviour of 
the decay of the contrast—for example, the scaling behaviour of dynam-
ics with wavevector Q—is not strongly affected by (i) or (ii).

Power-law scalings in the continuum limit
In the experiments we measured the exponents α of the power laws 
τ ∝ Q−α in the short-wavelength regime Q = 2π/(30a) to 2π/(6a) (Fig. 3). 
Now we investigate how the exponents depend on the range of wavevec-
tors Q, in particular in the continuum limit Q → 0 (where the wavelength 
λ of the modulation becomes large compared to the lattice spacing a 
and the discreteness of the underlying lattice is no longer relevant).

The short-time (t  ≪  ħ/Jxy) Taylor expansion of the contrast 
c(t) = 1 + Γ2t2 + … enables us to define a ‘time constant’ τ = |Γ|−1, which we 
can compute analytically even in the thermodynamic limit L/a → ∞. This 
is because the object ψ Q H H S ψ Q⟨ ( )|[ , [ , ]]| ( )⟩i

z  is a strictly local quantity 
as the spin-helix state |ψ(Q)⟩ is a product state and the commutator of 
the Hamiltonian with the local term Si

z only produces terms near site i. 
Evaluating (with θ = 0 for simplicity), we obtain

Γ
J

ħ
Δ Qa Qa Δ Qa=

1
16

[7 − − 8 cos( ) + 2 cos(2 ) + ( − 1)cos(3 )].
xy2

2

The limiting behaviour of τ as Q → 0 is therefore τ Q a ħ J≈ ( /4) / xy
2 2 −1  for 

Δ = 1 and τ Qa Δ ħ J≈ [(3 2 /8) 1 − ] / xy
−1  for Δ < 1.

This implies a sharp crossover from ballistic scaling to diffusive 
scaling as Δ approaches 1 from below in the regime of small enough 
wavevectors, as shown in Extended Data Fig. 8d, e. In the same figure, 
we show the exponents determined for a range of finite wavevectors 
(Q = 2π/(20a) to 2π/(6a)) as used in experiments and numerics, and find 
a smooth crossover from a superdiffusive regime to diffusive regime, 
in agreement with numerical simulations in Fig. 3.

Although this short-time analysis for t ≪ ħ/Jxy predicts the scalings 
seen in the numerical simulations, it is not clear how much of this 
analysis is applicable to the intermediate to long times t at which the 
experiments were performed. It also remains an open question as to 
why numerics predict a superballistic exponent α < 1 for the XX model 
(Δ = 0), but the experiment measures a ballistic exponent α ≈ 1.  
The discrepancy is possibly caused by the presence of holes, as sug-
gested by the t∼–J model simulation (Fig. 3c).

Numerical simulations
In the numerical simulations we consider: (i) a spin-helix quench under 
XXZ Hamiltonian (equation (1)) dynamics, and (ii) a spin helix with  

5% to 10% hole probability evolving under the bosonic ∼t–J model (that 
is, assuming no doubly occupied sites), given by

∼
∼

∼ ∼

∑

∑ ∑
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where spin σ = ↑, ↓. Here aσi and aσi
†  are bosonic lowering and raising 

operators at site i, respectively, S S≡i i
↑ + is defined as a ai i↑

†
↓ , and S S≡i i

↓ − 
is defined as a ai i↓

†
↑ . We use parameters from experiments and focus 

on a lattice depth of 11ER, in which case we have U⇅/U⇈ = 1.206, 1.406, 
1.401, 1.398, 1.397 and 1.392, U⇅/U⇊ = −0.188, 0.264, 0.459, 0.575, 
0.659 and 0.862, and U t/⇅

∼ = −17.94, −24.32, −24.17, −24.08, −24.05 and 
−23.94 for anisotropies Δ = 0.020, 0.670, 0.860, 0.973, 1.055 and 1.256, 
respectively. In the absence of holes, the action of the term Hd vanishes, 
and the Hamiltonian reduces to the XXZ Hamiltonian.

In both cases we use the real-time time-evolving block decimation 
(TEBD) method with matrix product states (MPS) on a spin chain with 
open boundary conditions. In case (i): local Hilbert space dimension = 2, 
length L = 40a and bond dimensions up to 800; case (ii): local Hilbert 
space dimension = 3, L = 40a for Δ = 0, or L = 20a for all other Δ. Simu-
lations are cut-off in simulated time, owing to the rapid increase in 
entanglement of the state, requiring ever-increasing computational 
times. For the special case Δ = 0, without holes, we alternatively use 
free fermionic methods, considerably speeding up the calculations. For 
technical reasons, instead of simulating the full distribution of holes 
we simply average over the situations in which there are either exactly 
one or two (or four) holes in the chain. For L = 20a (40a), a single hole 
corresponds to an average of 5% (2.5%) holes.

To obtain the contrast, we determine the local magnetization 
S t n t n t⟨ ( )⟩ = [⟨ ( )⟩ − ⟨ ( )⟩]/2i
z

i i↑ ↓  and determine the Fourier component  
at wavevector Q via c t S t Qz θ( ) = ∑ ⟨ ( )⟩cos( + )a

L i i
z

i
4 , assuming that the 

initial spin helix has wavevector Q with a given phase θ (see Methods 
section ‘Creation of the spin helix’); we then compare this to the exper-
imental contrast. However, as noted in Methods section ‘Time-reversal 
invariance of spin dynamics’, the numerically simulated contrast always 
has an initial quadratic decay, unlike that seen in the experiments. We 
therefore determine the decay timescales and its power-law scaling 
with Q using one of the following methods. For positive anisotropies 
Δ ≥ 0, we define the decay time constant as the time it takes for the 
contrast c(t) to decay from 1 to 0.6, divided by −ln(0.6) to convert to a 
‘1/e’ time (see Extended Data Fig. 6). For negative anisotropies Δ < 0, 
for regime I we take the time to decay from 1 to 0.9, multiplied by 10 to 
extrapolate to zero, whereas for regime II we fitted a simple exponential- 
decay profile to obtain the decay timescales once the curves start ‘peel-
ing off’ when plotted with time units rescaled by λ (see Fig. 4c and 
Extended Data Fig. 7). The resulting power-law scalings (Extended Data 
Fig. 8) and resulting exponents (Fig. 3c) are in reasonable agreement 
with the experimental results.

Finite-size effects
Numerical simulations can study the effect of different chain lengths 
L and initial phases θ of the spin helix on the dynamics. This is relevant 
because in the experiment, the atoms are distributed uniformly over a 
sphere with a typical diameter of Lmax = 44a in three dimensions, lead-
ing to an ensemble of 1D chains of varying lengths. The experimentally 
measured contrast c(t) is an average over all chain lengths with a prob-
ability distribution shown in Extended Data Fig. 10. Furthermore, owing 
to drifts of the applied magnetic field, the initial phase θ of the spin-helix 
state varies from shot to shot. Here we study numerically both effects.



We concentrate on the XX model (Δ = 0) without holes. Extended 
Data Fig. 9 shows that the strong dependence of the contrast c(t) on the 
initial phase θ is due to reflection of magnetization off the boundaries 
of the chain. This suggests that averaging over various chain lengths 
or averaging over initial phases should give similar results, which is 
confirmed in Extended Data Fig. 10. It is even sufficient to average over 
only two phases, θ = 0 and π/2, to achieve insensitivity to initial and 
boundary conditions. The distribution of chains, and the simulation 
of a magnetization profile averaged over this distribution of chains, 
are illustrated in Extended Data Fig. 10b–d.

The conclusion is that the experiment is naturally performing an 
average over different phases and different chain lengths, washing out 
the sensitive dependence of the spin dynamics on initial conditions. 
For comparison with simulations, it is sufficient to use a system with 
a fixed chain length L = 40a, and average over only the two phases 
θ = 0 and π/2.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Determination of the Heisenberg parameters.  
a, Corrections for tunnelling ∼ ∼ ∼t t t( − )/(0) (0) (green), on-site interactions 
(U −U(0))/U(0) (blue), superexchange ( J − J(0))/J(0) (purple) and off-site interactions 
−2V/J(0) (orange), where ∼t (0), U(0) and J t U= 4( ) /(0) (0) 2 (0)∼  are the uncorrected 
values and t∼, U and ∼J t U= 4 /

2
 include corrections, at a lattice depth of 13ER 

(solid line) and 9ER (dotted line). b, As a function of magnetic field B we show the 
scattering lengths a⇈ (blue), a⇅ (purple) and a⇊ (orange) measured in our 

previous work (points)33. Here a0 is the Bohr radius. c, d, We interpolate the data 
in b using hyperbolic fits (solid lines) and calculate values for the transverse 
coupling constant Jxy (purple), the longitudinal coupling constant Jz (yellow) 
and the anisotropy Δ = Jz/Jxy (black), without corrections (dashed line) and 
including corrections (solid line) for a lattice depth of 11ER. The excluded region 
(|a⇈| > 700a0) is around a Feshbach resonance in the |↑⟩ state near 845.4 G.
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Extended Data Fig. 2 | Contrast measurement. a–d, The distribution of 
atoms in the |↑⟩ state. Every pixel is a local measurement of the column density 
(number of atoms per unit area). The y and z axes are displayed in units of 
the lattice spacing a = 0.532 μm. The images are projected (integrated) along 
the y direction from y = −30a to +30a to obtain the linear density (number of 
atoms per unit length). The resulting 1D distributions are fitted with 

Cf z g z Qz θ( ) = ( )[1 + cos( + )]/2 (solid line), where g(z) is a Gaussian envelope 

(dashed line), between z = ±54a. The data in a–d were measured at different 
evolution times t = 0 (a), 2.3ħ/Jxy (b), 6.3ħ/Jxy (c) and 12.0ħ/Jxy (d), for anisotropy 
Δ ≈ 0 and wavelength λ = 10.4a. The obtained contrast C t( ) is shown in Fig. 2a.  
In general, we also normalize by the initial contrast C(0) to correct for finite 
optical imaging resolution. This is important for shorter wavelengths λ close to 
the optical resolution of 3 μm, where the measured contrast C t( ) is reduced 
compared to the real contrast C Cc t t( ) = ( )/ (0).
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Extended Data Fig. 3 | Dispersion relations. For all positive anisotropies 
Δ ≥ 0, the time evolution of the contrast c(t) shows a damped oscillatory 
component, in addition to the overall exponential decay. For larger Δ, the 
oscillations become smaller. a–c, Decay and weak oscillation at the isotropic 
point Δ ≈ 1 measured for different wavelengths λ, at three different lattice 
depths 9ER (orange), 11ER (blue) and 13ER (yellow). Solid lines are fits  
c(t) = [a0 + b0cos(ωt)]e−t/τ + c0 and dashed lines show the overall decay  
a0e−t/τ + c0, around which the oscillations take place. The oscillations become 
more pronounced for short wavelengths λ, because the decay time (τ ∝ λ2) 
decreases with smaller wavelength more strongly than the oscillation period 
(T ∝ λ). d, The oscillation frequencies follow linear dispersion relations 
ω(Q) = vQ shown for Δ = −0.12 (red), 0.35 (orange), 0.78 (yellow), 1.01 (blue)  
and 1.27 (light blue). e, The obtained velocities v decrease with increasing 

anisotropy Δ. For Δ = 1.58 (open symbol), oscillations are small and the 
measurement was limited to large values of Q, which precluded recording a  
full dispersion relation. We note that although the oscillations are difficult to 
discern by eye (for example, in a), especially for large anisotropies Δ and small 
wavevectors Q, the fitted oscillation frequencies ω all fall very well on linear 
dispersion relations, which demonstrates that those barely visible oscillations 
are real. The linear scaling ω(Q) = vQ persists even in the superdiffusive, 
diffusive and subdiffusive regimes, where the power-law scaling of the decay 
time constant τ ∝ Q−α is strongly nonlinear. This small ballistic (oscillatory) 
component may be related to our initial condition of a spin helix, which in the 
mapping to lattice fermions is a 100% density modulation, which reduces 
scattering at early times.
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Extended Data Fig. 4 | Effect of finite hole concentration. By varying the 
thermal fraction Nth/N of the Bose–Einstein condensate before it is loaded into 
the optical lattice, we vary the energy and entropy of the atoms in the spin 
chain, and therefore the concentration of holes. (For our conditions, doubly 
occupied sites have higher energies than holes). Measurements are shown here 
for Δ ≈ 0 and λ = 10.4a, at a lattice depth of 11ER. a, Decay curves c(t) for varying 
hole concentrations ranging from low (blue) to high (orange) thermal fraction. 
Solid lines are fits c(t) = [a0 + b0cos(ωt)]e−t/τ + c0. b, The background contrast c0 
increases monotonously with thermal fraction Nth/N. A linear fit (solid line) 
extrapolates to c0 = 0.01(2), consistent with zero, for Nth/N = 0. This suggests 
that all of the background contrast is due to hole excitations. c, Higher hole 
concentrations suppress the oscillating fraction b0/(a0 + b0). d, Holes do not 
affect the oscillation period T = 2π/ω. e, Holes decrease the decay time τ, albeit 
slightly. b–e show that almost all of our measurements are not sensitive to a 
small thermal fraction, which is usually Nth/N ≤ 0.05 throughout this work. The 
behaviour shown in c and e is most probably caused by mobile holes in the 
central part of the Mott insulator. Indeed, numerical simulations of the  
∼t–J model reproduce such effects (Fig. 2a). Note though that for the isotropic 

case Δ ≈ 1, a previous work7 found a ~50% change in decay time when the hole 
concentration changed from 0 to 5%. Our numerical simulations (Extended 
Data Fig. 8b) do not show such strong sensitivity (for any anisotropy, even at 
Δ = 1), possibly owing to asymmetry in the on-site interactions (U⇈ ≠ U⇅ ≠ U⇊) in 
our system. On the other hand, a finite background contrast (b) is probably 
caused by immobile holes located in the outer parts of the atom distribution 
where first-order tunnelling is suppressed by the gradient of the (harmonic) 
trapping potential50. Immobile holes disrupt spin transport, and so we expect 
that the imprinted spin modulation in these regions will not (or only very 
slowly) decay. f, g, The region with immobile holes is visible as a shell of low 
atomic density surrounding the Mott insulator in the in situ images for large 
hole concentration (f) and is absent for low hole concentration (g). The three 
curves in both f and g show the local contrast as a function of distance r from 
the centre of the atom cloud for the evolution times t = 0 (top), 2.7ħ/Jxy (middle) 
and 21.7ħ/Jxy (bottom). The two in situ images in both f and g are for t = 0 (top) 
and 21.7ħ/Jx (bottom). The dashed lines indicate contours of constant radius, 
r = 30a (f) and r = 20a (g).
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Extended Data Fig. 5 | Decay behaviour as a function of anisotropy.  
a, b, Decay behaviour ranging from negative (a) to positive (b) anisotropy, for a 
fixed wavelength λ = 10.4a. Using Δ ≈ 0 as a reference point, we show how the 
temporal profile of the decay curve c(t) changes when we introduce positive or 
negative interactions. Every data point is an average of two measurements at 
lattice depths 11ER and 13ER. In a, from bottom to top: Δ = −0.12 (red), 
−0.59 (pink), −0.81 (yellow), −1.02 (blue), −1.43 (green) and −1.79 (purple). In b, 
from bottom to top: Δ = −0.13 (red), 0.08 (purple), 0.35 (pink), 0.55 (orange), 
0.78 (yellow), 1.01 (blue), 1.27 (light blue) and 1.58 (green). Regardless of sign, 

for increasing |Δ| the decay always slows down and the revivals damp more 
quickly. However, there is a big difference in how this slowdown happens:  
for increasing positive interactions Δ > 0, the initial rate of decay decreases 
continuously (b); by contrast, for all negative interactions Δ < 0, the initial rate 
of decay stays constant (and is ballistic), coinciding with the Δ ≈ 0 case (a). It is 
only after a critical time t0 that the decay suddenly starts slowing down (and 
becomes diffusive) for times t > t0. This critical time t0 decreases with 
increasing negative interaction strength |Δ|.



Extended Data Fig. 6 | Collapse of decay curves for positive anisotropies. All 
decay curves c(t) for wavelengths λ = 15.7a, 13.4a, 11.7a, 10.4a, 9.4a, 8.5a, 7.8a, 
7.2a and 6.7a collapse very well into a single curve for all evolution times t, when 
time units are rescaled by λα, where the exponent α is a function of anisotropy Δ, 
both for experiment (points) and theory (solid lines). Experimental points were 
measured for lattice depths 9ER (red), 11ER (blue) and 13ER (yellow). a, b, Ballistic 
regime (α = 1). c, Superdiffusion (α = 1.5). d, Diffusion (α = 2). e, f, Subdiffusion 
(α = 2.5, 3 for experiment and α = 3.5, 4.5 for numerical simulations; in  

f, experiments covered a reduced range λ ≤ 10.4a). For all anisotropies Δ ≥ 0  
(a–f) the experimentally measured oscillation frequencies ω follow linear 
dispersion relations (Extended Data Fig. 3) and have a scaling behaviour 
different from the decay rates. However, such oscillations are small outside the 
ballistic regime α ≈ 1, and therefore only lead to a small deviation from the 
collapse behaviour. Note also the different timescales in experiments and 
simulations for Δ > 1.
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Extended Data Fig. 7 | Collapse at short times for negative anisotropies. All 
decay curves c(t) for different wavelengths λ collapse into a single curve at early 
times, when time units are rescaled by λ (indicating ballistic behaviour). For 
later times the decay is diffusive with different scaling. a–c, Theory (from top 
to bottom: λ = 31.3a, 23.5a, 18.8a, 15.7a, 13.4a, 11.7a, 10.4a, 9.4a, 8.5a, 7.8a, 7.2a, 

6.7a and 6.3a). The dotted lines are exponential fits e t τ− / II to the diffusive 
regime and the time constants τII are shown in Extended Data Fig. 8a.  
d–f, Experiment (from top to bottom: λ = 18.8a, 13.4a, 10.4a, 8.5a, 7.2a and 
6.3a). Every data point is an average of two measurements at lattice depths 11ER 
and 13ER. The black dashed line indicates the ballistic case Δ ≈ 0 (see Fig. 2c).



Extended Data Fig. 8 | Power-law scalings (theory) and diffusion 
coefficients. a, b, Decay time constants τ for different anisotropies Δ ranging 
from negative (a) to positive (b). Numerical results are shown in a for 
Δ = −1 (blue), −1.5 (green) and −2 (purple) and in b for Δ = 0 (red), 0.5 (orange), 
0.85 (yellow), 1 (blue) and 1.5 (green). Solid lines are power-law fits (to the filled 
symbols). Open symbols are excluded from the fit owing to finite-size effects. 
Crossed symbols are results from ∼t–J model simulations including 5% hole 
fraction. Fitted power-law exponents are shown in Fig. 3c. For positive 
anisotropies Δ ≥ 0 the decay time τ is defined as τ = τ′/ln(1/0.60) with 
c(τ′) = 0.60. For negative anisotropies Δ < 0, the decay time τI for short times (I) 
is defined as τ τ= 10 ′I I with c τ( ′) = 0.90I . For longer times (II), the decay time τII is 
obtained from exponential fits e t τ− / II to the diffusive long-time tail (see dotted 
curves in Extended Data Fig. 7a–c). c, Diffusion coefficients for the diffusive 
long-time regime (II) obtained from theory (open symbols) and experiment 
(filled symbols). For negative anisotropies Δ < 0, values were determined from 
quadratic power-law fits 1/τ = DQ2 to the data points in a (theory) and Fig. 3a 
(experiment) for the diffusive regime (II). Note that for Δ ≥ 0 the system is only 
diffusive for Δ = +1, as shown in b (theory) and Fig. 3b (experiment). From 

the experimental diffusion coefficients, we estimate mean free paths δx using 
the velocity v = 0.76(1)vF from the ballistic short-time regime (I), and obtain 
δx = 3.35(15)a, 1.07(7)a and 0.66(4)a for Δ = −1.02, −1.43 and −1.79, respectively. 
d, Short-time (t ≪ ħ/Jxy) decay constant τ = |Γ|−1 obtained from Taylor expansion 
of the contrast c(t) = 1 + Γ2t2 + … as a function of Q, for Δ = 0 (red), 0.55 (orange), 
0.85 (yellow), 0.95 (purple) and 1 (blue). For Δ < 1 all curves in the log–log plot 
asymptote to the same slope as Q → 0 (continuum limit), whereas there are 
deviations for larger wavevectors Q. For Δ = 1 the slope is instead different. This 
indicates that the power-law exponent α in τ ∝ Q−α depends on the range of 
wavevectors Q used to determine it. e, Power-law exponents α determined for 
the short-wavelength regime between λ = 6a and 20a (filled symbols) as in 
experiments and numerics, and for the long-wavelength regime between 
λ = 150a and 200a (open symbols) approaching the continuum limit. In the 
former case, the exponents show a smooth crossover from superballistic to 
diffusive as Δ → 1 similar to that in the experiments and numerics, whereas in the 
latter case the exponents show a sharp jump from ballistic to diffusive 
occurring exactly at Δ = 1.
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Extended Data Fig. 9 | Finite-size effects from the initial phase of the spin 
helix. a, The time evolution of the contrast c(t) depends strongly on the initial 
phase θ, illustrated here by simulations for Δ = 0 and λ = 10.4a. b, c, The 
dynamics of the local magnetization S t⟨ ( )⟩i

z  for phases θ = 0 (b) and π/2 (c)  

reveals that this arises owing to the reflection of ballistically propagating 
magnetization off the ends of the chain. Depending on the initial phase of the 
spin helix, the reflected magnetization interferes constructively or 
destructively with the pattern of the bulk magnetization.
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Extended Data Fig. 10 | Finite-size effects from the chain length. a, Contrast 
c(t) obtained after a weighted average over all different chain lengths  
between L = 0 and 44a (shown in b), for Δ = 0 and λ = 10.4a. The averaged 
dynamics (orange, yellow, blue) shows almost no dependence on the phase θ,  
in contrast to the dynamics determined from a single chain length L = 40a 
(Extended Data Fig. 9a). Also overlaid are the contrasts for a fixed chain length 
(L = 40a) averaged over all initial phases 0 ≤ θ < 2π (black solid line), and 
averaged over only the two phases θ = 0 and π/2 (black dashed line). The close 
agreement implies that averaging over either chain lengths or phases 
suppresses the dependence on initial or boundary conditions. b, A cut through 

the spherical Mott insulator with diameter Lmax = 44a (as in the experiment) 
illustrates the distribution of different chain lengths (oriented along the  
z direction). Averaging the local magnetization Sz over the x and y directions 
provides a 1D magnetization profile (bottom panel), which is an average over all 
chains. c, The number of chains with length L is given by (π/2)(L/a). The total 
number of chains is πLmax/(2a)2 ≈ 1,500. d, The number of atoms in chains with 
length L is given by (π/2)(L/a)2. The contribution of each chain to the imaging 
signal is proportional to the atom number in the chain, and so the relevant 
average over chain lengths is weighted by the atom number and is 
⟨L⟩ = (3/4)Lmax = 33a.
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