Article

Spin transportinatunable Heisenberg
modelrealized with ultracold atoms

https://doi.org/10.1038/s41586-020-3033-y
Received: 18 May 2020
Accepted: 25 September 2020

Paul Niklas Jepsen'**¥, Jesse Amato-Grill">3, Ivana Dimitrova"*?, Wen Wei Ho**,
Eugene Demler®* & Wolfgang Ketterle'*?

Published online: 16 December 2020

M Check for updates

Simple models of interacting spins have animportant role in physics. They capture the
properties of many magnetic materials, but also extend to other systems, such as
bosons and fermionsinalattice, gauge theories, high-temperature superconductors,

quantum spinliquids, and systems with exotic particles such as anyons and Majorana
fermions2. To study and compare these models, a versatile platform is needed.
Realizing such systems has been along-standing goal in the field of ultracold atoms.
Sofar, spintransport has only been studied in systems with isotropic spin-spin
interactions® 2. Here we realize the Heisenberg model describing spins on alattice, with
fully adjustable anisotropy of the nearest-neighbour spin-spin couplings (called the
XXZ model). Inthis model we study spin transport far from equilibrium after quantum
quenches fromimprinted spin-helix patterns. When spins are coupled only along two of
three possible orientations (the XX model), we find ballistic behaviour of spin dynamics,
whereas for isotropicinteractions (the XXX model), we find diffusive behaviour.

More generally, for positive anisotropies, the dynamics ranges from anomalous
superdiffusion to subdiffusion, whereas for negative anisotropies, we observe a
crossover in the time domain from ballistic to diffusive transport. This behaviourisin
contrast with expectations from the linear-response regime and raises new questionsin
understanding quantum many-body dynamics far away from equilibrium.

Quantum dynamics is an active research area in many-body physics.
Eventhelinear-response (near-equilibrium) behaviour of many-body
systems can be very complex. For example, spin transport in
one-dimensional Heisenberg XXZ quantum spin chains, despite being
atopicthatis decadesold, is stillunderactive investigation because of
the rich dynamics connected to integrability”™". Dynamics in highly
out-of-equilibriumscenarios, such as from continual drives or quantum
quenches®™ %, is evenless wellunderstood. Itis hence highly desirable to
have a quantumsimulator that canrealize well isolated, programmable
and controllable spin systems. By now, a number of such platforms
exist” %, with varying capabilities.

Ultracold atoms in optical lattices offer an especially promising plat-
formwithwhichtorealize tunable Heisenberg spin models”:in deep lat-
ticeswhere atoms become localized onindividual sites, forming aMott
insulator®®, the dynamics of the remaining degrees of freedom is gov-
erned by effective spin-spininteractions realizing nearest-neighbour
Heisenberg XXZ spin models. For bosons, the most commonly used
atom, ¥Rb, has almost equal singlet and triplet scattering lengths,
implying effectively isotropic spin physics*”. For fermions, the Pauli
exclusion principle enforces isotropic antiferromagnetism? Many
theoretical proposals have suggested ways to obtain richer spinmodels
in optical lattices?® 32 over the past 20 years, and we now report here
the realization of the spin-1/2 Heisenberg model with fully adjustable
anisotropy in the spin-spin interactions. This enables simulations of
anisotropic magnetic materials with easy-axis or easy-plane alignment.

The wide tunability is realized using ’Li atoms, the Feshbach resonances
of which we have characterized in previous work®. Additionally, lith-
ium, with its light mass, has the advantage of fast spin dynamics (set
by second-order tunnelling)?, decreasing the relative importance of
heating and loss processes compared to heavier atoms. We use this fast
and tunable platform to study far-from-equilibrium spin transportin
previously unexplored regimes.

For many-body quantum simulation experiments, anideal starting
pointis asimple benchmark system to which more complexity can be
added. Inthis work, we firstimplement the XX model inone dimension,
which is exactly solvable by mapping to a system of non-interacting
fermions. We then tune the anisotropy to arbitrary values, whichin the
fermioniclanguage corresponds to adding nearest-neighbourinterac-
tions. Toimplement the spin model, we use a system of two-component
bosons in an optical lattice, which is well described by the Bose-
Hubbard model. The two states, labelled |*) and [V), form a spin-1/2
system. In the Mott insulating regime at unity filling the effective
Hamiltonian is given by the spin-1/2 Heisenberg XXZ model®

H=3 [ (5757 +5757) 41,5757}, (1)
<y

where nearest-neighbour (i) couplings are mediated by superexchange.
Toleadingorder, J, = -4#%/U,, and A =48 /U, - (48 /U, + 487 IU,)
wheref is the tunnelling matrix element between neighbouring sites,
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Fig.1| Tunability of the XXZ model with’Liand implemenation of aspin
helix. a, The Hamiltonian (equation (1)) is characterized by two energy scales:
the transverse spin coupling/,, (spin exchange) and the longitudinal spin
coupling/, (spin-spininteraction). b, Anisotropy 4=/,//,,as afunction of
applied magnetic field. The solid lineis a fit to experimental data points, which
are calculated frommeasured values U,,, U,, U, (see Methods and Extended
DataFig.1).c,Spin helix realized from two hyperfine states (spin [*) and [V)).
ThespinvectorwindsintheS,-S, plane asafunction of positionzin the spin
chain. Deep optical lattices alongxand y create an array ofindependent spin
chains. Thezlattice is shallower and controls spin transportalong each chain.

and U,, U,, U, are the on-site interaction energies. The transverse cou-
pling/,, induces spin exchange between neighbouring sites and is the
origin of spin transport. The longitudinal coupling/, corresponds to
anearest-neighbour spin-spin interaction (Fig. 1a).

The magnitude of superexchange can be varied over two orders
of magnitude by changing the lattice depth, which scales the entire
Hamiltonian. We control the anisotropy A=/,/J,,,viaanapplied magnetic
field that tunes the interactions through Feshbach resonances in two
hyperfine states (Fig. 1b) while keeping J,, > O (antiferromagnetic).
The ability to tune the anisotropy over a wide range of positive and
negative values allows us to explore dynamics beyond previous experi-
ments*” inwhich4=1.

An array of one-dimensional (1D) chains is implemented by a deep
optical lattice (of depth V,, V,=35E;) in the xand y directions. The lat-
tice depth V,along the zdirection controls the superexchange rate
within the chains (Fig. 1c). Here E; = w?h?*/(2ma®) denotes the recoil
energy, where a is the lattice spacing, m the atomic mass and /4 the
reduced Planck constant. After preparing an identical spin helix”? with
wavelengthAin each chain (see Methods), time evolutionis initiated by
rapidly lowering V,. The dynamics following this quench is governed
by the 1D XXZ model (equation (1)) withan anisotropy 4 selected by an
appropriate applied magnetic field. After an evolution time t of up to

404 | Nature | Vol 588 | 17 December 2020

500nh//,, (wellbelow the heating lifetime, approximately1s, of the Mott
insulator), the dynamics is frozen by rapidly increasing V,and the atoms
are imaged in the | 1) state via state-selective polarization-rotation
imaging with anoptical resolution of about 6 lattice sites (see Methods).

Integrating the images along the direction perpendicular to the
chainsyields alD spatial profile of the populationin the | 1) state, aver-
aged over all spin chains (see Extended Data Fig. 2). This is equivalent
to a measurement of the local magnetization (§/) = (n;, - n;,)/2=
n;,—1/2 which, as in Fig. 1c, shows a sinusoidal stripe pattern. We
determine the contrast Cby afit f(z) =g(z)[1+ Ccos(Qz + 6)1/2, where
Q=2m/Ais the wavevector, g(z) is a Gaussian envelope function that
accounts for the spatial distribution of allatomsn=n, +n,,and fis a
random phase that varies from shot to shot, owing to small magnetic
bias field drifts. During the evolution time ¢ the contrast C(¢) decays,
and we study the dependence of c(t) = C(¢)/C(0) on lattice depth V,,
wavelength A, and anisotropy A.

For all data, we measure spin dynamics at two or three different lat-
ticedepths V,and verify that the decay curves c(¢) collapse when time
is rescaled by the spin-exchange time £/J,, (see for example, Fig. 2a).
This demonstrates that we observe transport by superexchange and
notsome other process. To study transport behaviour, we measure how
the decay timescale 7 depends on the modulation lengthscale A. We
note that for ballistic motion, this decay constant grows linearly with
distance (t =< 1), whereas for diffusion it grows quadratically (z =< 2%).
Throughout this Article, we normalize time by the spin-exchange
time f/J,,, length by the lattice spacing a, and velocities by the Fermi
velocity vg=a/(h//,,). These units are obtained from the experimentally
determined lattice depth using an extended Hubbard model and have
an estimated systematic calibration error of about £10%, in addition
to quoted statistical errors. The accuracy of 4 is estimated to be +0.1
(see Methods). Unless noted otherwise, all error bars and uncertainties
herein are purely statistical and represent 1o uncertainty of the fits.
Each data point for the contrast c(t) is obtained by simultaneously
fitting several images (usually six, but up to15).

XX model

Wefirst study the case A=0, which canbe mapped by the Jordan-Wigner
transformation® to non-interacting spinless fermions undergoing
nearest-neighbour hopping on alattice. In this mapping, | ) corre-
spondsto asite occupied by afermion, and |[¥) to an empty site. Small
excitations around the Fermi sea at half-filling are spin waves with
wavevector g and a linear dispersion relation w(q) = v;q.

Figure 2ashows the decay of the contrast c(¢) for 4 = 0 (see Methods
for calibration of 4). In addition to an overall decay, a local maximum
correspondingto a partial revival of theinitial spin modulation appears
after about 12 spin-exchange times. We find the decay curves can be
well described by the sum of adecaying part with time constantrand a
(damped) oscillating part with frequency w, resulting in afitting func-
tion c(t) = [a, + bycos(wt)]e " + ¢, with a,, b, ¢,, w and T as adjustable
parameters (Methods and Extended Data Fig. 4 discuss the offset c,).
Numerical simulations, also shown in Fig. 2a, reproduce the major
features of the experimental dynamics very well (decay time rand
first oscillation), but differ in details, probably owing to a difference
inholefraction, uncertaintiesin 4, or non-idealized initial-state prepa-
ration. By varying the wavelength 1=21/Q of the helix (Fig. 2b) we
obtainadispersionrelation w(Q) for the oscillations (Fig. 2d). Alinear
fitw(Q) =vQyields acharacteristic velocity v=0.76(1)v, similar to the
near equilibrium dynamics, as expected for anon-interacting system.

The decay time constant 7 also shows a linear scaling with inverse
wavevector: apower-law fit 7e< Q *yields an exponent of a=1.00(5), indi-
catingballistic transport (Fig. 3b, red). Indeed, if we plot c(¢) in time units
rescaled by, all curvesfor different helix wavelengths collapseintoasingle
curve (Fig. 2c), showing that all aspects of the observed spin dynamicsin
the XX model are ballistic and governed by one characteristic velocity.
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Fig.2|Ballistic and diffusive spin transport. a-d, XX model, ballistic
behaviour (4 =0, non-interacting fermions). a, Spin-helix contrast c(¢) for
A=10.4ameasured at three different lattice depths 9F, (orange), 11£, (blue) and
13E; (yellow). Decay curves collapse when times are expressed in units of
h/J,=0.64ms,1.71msand 4.30 ms, respectively. Thefit (black line) shows a
decay with time constant 7=5.5(2)A//,,and adamped oscillation with period
T=2n/w=13.7(2)h/J,,. Thefitis typically applied to data points fromall lattice
depthssimultaneously, but analysing each lattice depth separately yields
identical results. Numerical simulations are also shown for the XX model
(dashed line) and bosonic £~y model with 5% holes (dash-dotted line) and 10%
holes (dotted line). b, Decay curves for different wavelengths1=15.7a,13.4q,
11.7a,9.4a,7.8a and 6.7a (offset for clarity). ¢, The decay curvesinb collapse

XXX model

For finite 4, the Jordan-Wigner transformation results in fermions with
nearest-neighbour interactions. Theisotropic case4=1correspondsto
strong interactions, which should generically turn fast ballistic trans-
portinto slow diffusive transport. Indeed, the decay slows down for
increasing wavelength A much more dramatically thaninthe4 =0 case
(alsoillustratedin Extended DataFig. 3a—c). A power-lawfit of the decay
constant tversus Qyields anexponent of =1.87(4), whichis closeto 2,
indicative of a diffusive process (Fig. 3b, blue). If time units are rescaled
by A% thenall contrast curves c(t) collapse very well into asingle curve
(Fig.2e). However this collapse is not perfect, because of a (small) oscil-
lating part that stillobeys alinear dispersion relation w(Q) = vQ (Fig. 2f).

Using 1/t = DQ?, a diffusion constant can be determined as D =
0.242(7)a*/(h/J,,). Interpreting D= %6}(2/61‘ as arising fromarandom
walk of step size 6x (the mean free path) and time &¢ between steps,
and using v =6x/6t=0.35(1)v; (obtained from the dispersion relation
in Fig. 2f), we find 6x=1.39(5)a. A mean free path on the order of the
lattice constantis analogous to the Mott-loffe-Regel limit for resistiv-
ity where simple quasi-particle pictures break down®?¢, implying that
the isotropic Heisenberg model is strongly interacting.

Our observation of diffusive behaviour and the value for the diffusion
coefficient are consistent with previous results’ (for zero hole frac-
tion) on the 1D isotropic Heisenberg model with J,, < 0. Our system is
antiferromagnetic (/,, > 0), and so thisindicates that the overall sign of
the Hamiltonianisirrelevant, asexpected from theoretical arguments
involving time-reversal symmetry (see Methods). However the small
(ballistic) oscillatory component has not been previously reported.
We note that atwo-dimensional Fermi-Hubbard system can also show
diffusive decay and ballistic oscillations¥.

By tuning the interactions over alarge range of 4, we can study how
the transport behaviour changes. For an interacting gas of classical
particles or quasiparticles, one would expect ballistic behaviour on
timescales shorter than the collision time and diffusion for longer
times. We indeed find this for 4 < 0, whereas for A > 0 we observe
qualitatively very different behaviour (also illustrated in Extended
DataFig.5).

Rescaled time, t (x(/J,,)/(A/a)) Rescaled time, t (x(h/JXy)/a/a)z)

intoasinglecurve, iftimeisrescaled by A (indicating ballistic transport) and
offsets c,are subtracted. d, Oscillation frequencies (filled symbols) follow a
linear dispersion relation w(Q) =vQwith velocity v=0.76(1)v; and agree at the
10% level with numerical simulations (open symbols) yielding v=0.85(1)v;.
Theoretical frequencies are obtained as the inverse of the first revival time.
Owingto damping, this may be an overestimate of 10%. e, f, XXX model,
diffusive behaviour (4 =1, strongly interacting fermions). Oscillations are
strongly suppressed and time has to be rescaled by A2 (indicating diffusive
transport) for collapse. However this collapseis not perfect, because of the
presence of small oscillations (see Extended DataFig. 3) that follow alinear
dispersionrelation (f) witha velocity v=0.35(1)v;.

Positive anisotropies (4=0)

All measured decay curves c(t) are well described by the fitting func-
tion previously used. The observed oscillation frequencies w follow
linear dispersion relations w(Q) = vQ (Extended Data Fig. 3), whereas
the decay time constants rshow power-law scaling 7= Q*(Fig.3) inthe
following way: as the anisotropyisincreased fromA4=-0.12to4=0.55,
the exponent stays close to a =1 (‘ballistic regime’) and the charac-
teristic velocity of oscillations decreases by a factor of about 1.6, to
v=0.47(1)v.. Between 4 = 0.5 and 1 the exponent increases smoothly
froma=1to a=2 (‘superdiffusive regime’), for example, a =1.48(4) at
A=0.78 (Fig. 3b, yellow). For A > 1 transport slows down even more,
and the exponent also continues to increase smoothly to values a >2
(‘subdiffusive regime’), for example, a = 2.83(14) at 4 =1.58 (Fig. 3b,
green).Foreach4 >0, the measured decay curves collapse into asingle
curve, if time units are rescaled by 1* (Extended Data Fig. 6).
Power-law exponents between 1 and 2 (superdiffusion) are often
associated with Lévy flights or fractional Brownian motion where step
sizes are correlated®*. Power-law exponents larger than 2 (subdiffu-
sion) typically arise for transport through a disordered medium*** and
have also beenrecently observedin a tilted Fermi-Hubbard system*.
However, the XXZ Heisenberg Hamiltonian we study has no disorder.

Negative anisotropies (4<0)

Here the behaviour is qualitatively very different compared to positive
A of similar magnitude. We find a crossover in the time domain from
ballistic to diffusive behaviour. For example, at 4 =-1.43 theinitial decay
of c(t) is fast and, in fact, coincides well with the non-interacting (bal-
listic) case 4= 0 (Fig. 4a), instark contrast to the positive case 4 =+1.58
(Extended DataFig. 5). Att=t,~2.8h/J,, (dotted line) the decay suddenly
slows down. We therefore parameterize the decay curve c(t) by a piece-
wise fit with two timescales: (I) alinear function (1 - ¢/7;) at short times
and (I1) an exponential e /™ at longer times, with respective time con-
stants 7;, 7. When the wavevector Qs varied, both 7,and 7, follow a
power law (Fig. 3a), but with different exponents: ¢,=1.08(6) (ballistic)
and a,,=2.15(16) (diffusive), respectively (Fig. 3c).In both experimental
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Fig.3|Power-lawscalings. a, b, The power-lawscalings of the decay time
constants 7 foranisotropies A ranging from negative (a) to positive (b).
Experimental results are shownin aforA=-1.02 (blue), -1.43 (green) and

-1.79 (purple) for the two timescales r;and 7;;; and inb for4=-0.12 (red),

0.35 (orange), 0.78 (yellow),1.01 (blue) and 1.58 (green). Lines are power-law
fits.c, Fitted power-law exponents from experiments (filled symbols) and
theory (open symbols), obtained from simulations of the defect-free XXZ
model (blue) and £-/model with 5% hole fraction (orange).a-ccanbe
summarized as follows. For 4 > 0 (circles), we observe anomalous diffusion: the
exponentincreases smoothly from ballistic (red and orange) to superdiffusive
(yellow) to diffusive (blue) to subdiffusive (green). For4 <0, we observe
behaviour reminiscent of aclassical gas: transportis ballisticat short times

(I; triangles) and diffusive at longer times (II; squares). (For diffusion
coefficientsand theory see Extended DataFig. 8.).

(Fig. 4b) and numerical results (Fig. 4c), all decay curves collapse for
short times before ‘peeling off” at later times, if time is rescaled by A.
Similar behaviour is observed for other negative anisotropies (Fig. 3a;
alsoExtended DataFig.7), with theinitial ballistic temporal decay (regime
I) almost independent of A. However, for larger |4], we find that ¢, (the
range of regime I) is smaller, and the diffusion timescales 7, in regime Il
are longer. The diffusion coefficient decreases from D =1.27(6)a’/(h/},,)
to 0.25(2)a2/(h/jxy) between 4 =-1.02 and -1.79 (Extended Data Fig. 8c).
Figure 3c summarizesthedifferent transportbehaviours uncoveredfor the
anisotropic Heisenbergmodel and represents the mainresult of this paper.

Theoretical simulations

To validate our platform as a quantum simulator, we have carried out
numerical simulations of quench dynamicsstarting fromaspin helix, using
a combination of exact diagonalization and tensor network methods
(seeMethods). We simulate the dynamics of the system without holes (XXZ
Hamiltonian), as well as with a small probability of holes (bosonic £/
model), and compare the simulated contrast toexperimentalresults. The
timescales of decay generally agree fairly well. A qualitative differencein
the decay curvesisillustrated in Fig. 2a: the simulations always show an
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initial quadratic decay (asexpected fromtime-reversal symmetry, see Meth-
ods), and revivals are generally more pronounced. The initial quadratic
decay happens in the pure-spin simulations on the timescale of A/J,,,
whereas an addition of 5% to 10% holes reduces this to the timescale //¢
(where £ is the tunnelling amplitude in the £~/ model)” and reduces
the amplitude of revivals. However, the presence of holes does not affect
theoverallbehaviour of the decay times of the spin contrast: the simulations
ofboththe XXZ and the£-/modelyield power-lawscalings of time constants,
with exponents that agree reasonably well with experimental ones (see
Fig.3cand Methods section ‘Power-law scalings in the continuum limit’).

Discussion

Ourworkonspintransportillustrates the strength of acombined exper-
imental and theoretical quantum simulation. Our quantum simulator
platform enables us to probe dynamical regimes that are difficult to
achieve in numerical simulations, such as large system sizes or long
times (Extended Data Figs. 6, 7), which require prohibitively large
computational resources. On the other hand, numerical simulations
provided valuableinsightinto effects that could not be studied experi-
mentally, such as that of holes (Figs. 2a, 3¢), different phases of the
helix, and the role of boundary conditions (Extended Data Figs. 9, 10).

Our observations are consistent with some theoretical predictions
for spin transport in the anisotropic Heisenberg model, but differ
sharply from others. For example, studies of quantum quenches from
purestates involving a single domain wall****¢ have suggested ballistic
dynamics atA=0and diffusive dynamics at A=1(albeit with logarithmic
corrections), similar to our findings. Inaddition to diffusive transport,
aballistic light-cone has been observed*® in numerics at 4 =1, which
may be related to the small ballistic oscillatory component we have
observed experimentally. In contrast to our findings, theoretical stud-
iesof long-time linear response of spin transport at high temperatures
(that is, mixed states) have indicated a sharp transition from ballistic
(4<1)todiffusive (4 >1), with superdiffusive behaviour (a«=3/2) exactly
at the transition point 4 =1, which can be understood from gen-
eralized hydrodynamics involving local equilibriation of conserved
quantities*”*3, The situation we have studied is different, because the
initial spin-helix stateisa pure state far from equilibrium. Anaccurate
description of coherent dynamics using the exact eigenstates from the
Bethe ansatz*’is a very challenging problem. Ultimately, the spin-helix
state will relaxinto a thermal state (or quasi-thermal generalized Gibbs
state), but probably outside the time window studied here. The rich
phenomenology observed in our experiments and dramatic differences
with the cases studied in the literature calls for a deeper understand-
ing of this dynamical regime, both theoretically and experimentally.

Our studies canbe extended in many different directions: the role of
integrability, whichthe XXZ Hamiltonian possesses, should be explored,
forexample by adding next-nearest-neighbour integrability-breaking
termsrealized through appropriate Rydberg dressing of atoms. We can
explore differentinitial conditions, including single domain walls*~*¢
and finite temperatures (by using partially polarized (mixed) states)
and study the decay of transverse spin via transport and dephasing.
Aninteresting question is whether the power-law scalings change for
very large wavelengths that approach the continuum limit (see pre-
liminary theoretical analysis in Methods and Extended Data Fig. 8).
We canfurthermorerealize Heisenberg modelsin two or three spatial
dimensions, or with purely ferromagnetic couplings by changing the
sign of /., using a constant force to tilt the lattice®.
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Fig.4 | Temporal crossover fromballistic to diffusive transport for negative
anisotropies4<0.a, Spin-helix contrast c(¢) forA1=10.4aand 4 =-1.43 (filled
circles) measured at lattice depths 11£, (blue) and 13 (yellow). A piecewise fit
(solidline) islinear at short times (I) and exponential at longer times (II) witha
crossoveratt=t¢,(vertical dottedline). For t<¢,the decay coincides well with the
non-interacting case 4 =0 (open circles and dashed line). b, Decay curves for
differentwavelengths1=23.5a,18.84a,13.4a,10.4a,8.5aand 6.3a (average of
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Methods

Extended Hubbard model
To determine the parametersJ,, andJ, in equation (1)

WU U U Uy

we use measurements of the lattice depths V,, V,, V,and of the three
scattering lengths a,,, a,, a,.. From the calibrated lattice depths, the
Hubbard parameters £ (in the non-interacting limit) and U (in the
single-band approximation) are calculated as®®

#0= Idzw*(z a){

2

d? 2
2m dz —— +V,sin (kz)}w(z)

and
UQ=g,,, [ &riw),

whereg,, =4mnh%*a,,/mando,o’ =1, v and w(r) =w,(x) w
the calculated lowest-band Wannier functions w,(x), w.
for each lattice depth®.

For the precision needed to compare experiment to theory, three
corrections are applied”*>*,

(V) w,(2) using
,(0) and w,(2)

Correction 1. Tunnelling is modified by the so-called single-band bond
charge®, which for single-occupancy is

b=t g, [ Prw - snw Owmwr),

where 6r=(0, 0, a) is a displacement by one lattice constant a in the
tunnelling direction. Through this correction, the tunnelling matrix
elementst,, £, and £, are now slightly spin-dependent.

Correction 2. For the on-site interaction, we include admixtures of
higher bands****. The dominant partis captured by a perturbative cor-
rection due to the first and second excited bands

0
Umr - U(mr) ggg
ny,ny

Id3rw (O)w) (Ow(r)w(r),
Fog :

where n, and n, are the three-dimensional band indices of the two
atoms and E,,, is the sum of the bandgap energies. Corrections to the
tunnelling rate f owing to population of higher bands is negligible for
a Mott insulator with occupation n = 1, because higher bands are
admixed only through virtual doubly occupied sites. These modifica-
tions of £ and Uboth contribute to a modification of superexchange
Jyy and J, (Extended Data Fig. 1). The relative correction to
JQ) == 4@ /U, givenby ¢ ~J0)/J), is almost independent of
lattlce depth (for the range oflattlce depths studied here), and inthe
experiment/,, is typically reduced by 10% to 15%. Note that the cor-
rection has the opposite sign as in ref.’, because J,, > O is antiferro-
magnetic in the present work.

Correction 3. Toaccurately determine/,, one must also consider off-site
interactions of the form**

Voo =8, I &r w (- Sw (N w(r - dr)w(r),

where 8ris defined asbefore. One finds that/,is modified by the addi-
tion of 2(V,, + V,,— 2V,). Depending on the signs and magnitudes of
the three interactions, the off-site terms can add to or subtract from
the two previously discussed corrections to/, (Extended Data Fig. 1).

Determination of the Heisenberg parameters

We calibrate the lattice depth using amplitude modulation spectros-
copy®. Werecord the excitation spectrum of a Bose-Einstein conden-
satein a 1D lattice when the depth of the lattice is modulated by 3%
providing the cloud-averaged lattice depth with a statistical uncertainty
of 0.2%. Owing to an asymmetric excitation profile, we estimate a sys-
tematic error of 1%.

The lowest and second-lowest hyperfine states of "Li realize the
[¥) and |1) states. We use our previous measurements of U, and U,
(lattice-depth modulation) as well as measurements of U,, - U,, and
U, - U, (interaction spectroscopy)® to determine the three scattering
lengths a, a,, and a,, (under inclusion of higher-band corrections) for
several magnetic fields B. The determined anisotropies 4 are shown
inFig. 1b (points). Hyperbolic fits to a,,(B), a,,(B) and a,,(B) are used to
interpolate the values for the anisotropy (solid line). Extended Data
Fig.1showsa,, a,and a,, as well as/,,,/, and 4 with (and without) cor-
rections. A recent detailed theoretical analysis*® of the interaction
spectroscopy data also provided precise scattering lengths across
several Feshbach resonances. However, this analysis slightly disagreed
with our lattice-depth modulation datain the range of magnetic fields
studied here, and therefore we relied on the experimental data.

The Gaussian intensity profile of the lattice beams (1/e? radius of
125 um) causesinhomogeneity of the lattice depth by up to1.7% across
aMottinsulator of 44 lattice sites in diameter. The 1.0% variation of U
across the atom cloud can be neglected. The tunnelling coefficient ¢
within the spin chainsis defined by the lattice depth V,along the chains.
Althoughitis constant within each spin chain, it varies among the chains
by up to 4.4%, which increases superexchangeJ,, by up to 9.0%. The
curvature of the transverse lattice beams (wnth V,, V,=35E) causes
harmonic confinement ma)"apz *KZ along the chains with
Wyrap=2T1x 770 Hz OF curvature k= h x 116 6Hza?, where histhePlanck
constant. The curvature leads to a varying energy offset 6 between
neighbouring lattice sites, which is largest at the ends z = +22qa of the
longest spin chains. It modifies the energy of the intermediate statein
the superexchange process U U+ 6 (refs.?**°) and therefore increases
the superexchange rate at the ends of the longest chains by 24% (4 = 0)
and 11% (4 =1), with an average value over all atoms of 4.2% (4 = 0) and
2.0% (4 =1), respectively.

Thelattice depth calibration and the experimental determination of
the scattering length a,, lead to an uncertainty for the spin-exchange
times i//,, of about £10%. The accuracy of the determined anisotropies
Aislimited by the experimental determination of all scattering lengths
a,, a,, a,. The uncertainty of 4 is estimated to be about +0.1.

Inthe experiment (see Fig.1b), 4 = 0 was realized by tuning the mag-
netic field to B, = 882.63 G. Here the measured Hubbard parameters
resultin 4 =-0.12 including higher-order corrections (and 4 =-0.02
without corrections). We find that the spin dynamics in this regime is
only weakly dependent on 4, so we refer to measurements here as
A=0.By=842.95 Gisasecond magneticfield value, which also realizes
A=0(4=-0.13including corrections and 4= 0.01 without corrections).
We directly compare these two points By and Bjin Extended DataFig. 5,
and observe quantitative agreement. Arbitrary anisotropies were real-
ized by using the magnetic field region in between: B <B< B, In par-
ticular, for values 4 > 0 (4 < 0) we used magnetic fields B < 850 G
(B>850G). Theisotropic point4=1wasrealized at B,=847.30 G (actu-
ally A=1.01and corrections here are negligible).

Inthe following we give typical absolute values for Hubbard param-
eters at alattice depth of V,=11F; and V,, V, = 35E;. The recoil energy
is Ex/h=25.12kHz.

XX model. 4 = O is realized by the scattering lengths a,, = +307q,,
a, =-50a,and a, = —44a,, resulting in the following values for the
on-site interactions U,/h = +30.6 kHz, U,/h = -5.8 kHz and
U,/h = -5.1kHz. The bare single-particle tunnelling coefficient is



given by £9/h=380Hz, but interactions make tunnelling
spin-dependent:£,,/h =480 Hz,£,,/h=370 Hz,and,,/h =370 Hz. That
results in the following Heisenberg parameters: J,,/h = 93.3 Hz and
JJh=-109 Hz.

XXX model. 4 = 1is realized by the scattering lengths a,, = -107q,,
a,=-7la,and a,=-53a,, resultingin U,/h=-12.7 kHz, U,/h=-8.4 kHz
and U,/h=-6.1kHz; and £©/h =380 Hz, £,/h = 350 Hz, £, /h = 360 Hz
and{,/h=370 Hz; andJ,/h=62.6 Hzand J,/h=63.5Hz.

Superexchange coupling (ji /h=20 mHz) between chains is negli-
gible, owing to the deep transverse optical lattices (V,, V, = 35E;) and
is 3 to 4 orders of magnitude smaller than/,,/h within the chains.

Experimental setup

In the experiment, we prepare 4.5 x 10*’Li atoms in an optical lattice
with spacing a = 532 nm in the Mott insulating regime with one atom
persite*®. ABose-Einstein condensate (with barely detectable thermal
fraction Ny, /N < 0.05) with all atoms in the | ) state is loaded into the
optical lattice, with the scattering length set to strong repulsive inter-
actions a,=+307a,. This suppresses doubly occupied sites*®, which we
counted directly by interaction spectroscopy® to be <0.5% of the total
atom number. (Even along spin chain of length L =44a has thenonly a
probability <20%to containadoubly occupiedsite.) The hole fractionis
estimated tobe between 5% and 10% through comparison of spin dynam-
ics with theory (Fig. 2a). The density degree of freedomis frozen out
after loading into the deep optical lattice, and the on-site interactions
U,, U,and U, canthenbe varied freely without affecting the global atom
distribution, as long as the atoms stay in the Mott insulating regime®.

We then prepare afar-from-equilibrium initial spin state and probe
the spin dynamics in one dimension. The lattice beams in the x and
ydirectionsare keptatalarge constantdepth of V,, V,=35E; separating
theatomsintoanarray of independent 1D chains, with a typical maxi-
mumlengthof L, =44a(givenby the diameter of the Mott insulator),
and with an average length of (L) = 33a (Extended Data Fig. 10). The
depth of 35 is sufficient to prevent superexchange coupling in the
x andydirections (h/ji ~10 s) on experimental timescales. Initially,
the z-lattice depth is also 35F;. The magnetic field is then ramped to
the value required for a desired anisotropy 4. Using radio frequency
pulses and a magnetic field gradient, a helical spin pattern is created
where the spin component along the chain windsin the xzplane of the
Bloch sphere with awavevector Q=21/A, where Ais the wavelength of
the spin helix (see Fig.1cand Methods section ‘Preparation of the spin
helix’). For Asmaller than the system size, the total magnetization of
this stateis close to zero.

The power of the lattice beam in the z direction controls the super-
exchange rate within the chains. Time evolutionisinitiated by ramping
down the z-lattice depth V,to a value between 9E; and 13E;. The ramp
timeis 0.5ms, fast compared to superexchange //J,,, but slow compared
to tunnelling i/£. The ensuing coherent dynamics along each chain is
governed by a1D Heisenberg XXZ model with anisotropy 4, equation (1).
Thisisaquantum quenchto afar-from-equilibriuminitial state. After
avariable evolution time ¢t the dynamics is frozen by rapidly increasing
the lattice depth back to 35E;. The atoms are then imaged in the 1)
state via state-selective polarization-rotation imaging (see below).

Preparation of the spin helix

A global t/2 pulse of 75 ps rotates the spin |1); on each site i into the
xyplaneof the Bloch sphere|g); =[| "), + |V ),-]/ﬁ. Anapplied magnetic
field gradient in the z direction causes spin precession at rates that
depend linearly on position z; of the spin thus creating a spin helix
lp); =[11),+e%|¥)]/-/2 where the spin winds in the xy plane’”.
The strength and duration of the gradient determine the wavevector
Q=2m/Awhere 1is the wavelength of the spin helix. After turning
off the gradient, an additional /2 pulse rotates the spin helix
into a state where the spin winding occurs in the xz plane

l); = cos(Qz;/2) IV ); — sin(Qz;/2)| 1 );, so that the full many-body xz spin-
helix state is|(Q)) =[]; l);. In practice, the phase of the winding, 6,
varies from realization to realization, which amounts to replacing
Qz;~ Qz;+ 0. This is caused by small magnetic bias field drifts on the
107 level. The range of A used in the experiment was limited on
the short side by optical resolution to 1>5.6a and on the long side by
the length of the chains L ,,,,, = 44a.

When turning off the magnetic field gradient, special care was taken
to cancel any residual gradients to better than |B’| < 0.4 mG cm™. The
differential magnetic momentis typically Au/h=(u,—pu,)/h=30kHz G
(it varies by approximately 10% depending on the bias field B). This
translates to amaximum energy difference of AuB’L,,,.,/h=0.3 Hz across
the chainlength, completely negligible compared to the spin-exchange
coupling/,,/h, whichis 2to 3 orders of magnitude larger.

Imaging

The optical density of the atomic ensemble is too high (>14) to allow for
in situ observation of the modulation of (§?) via absorption imaging.
Instead, we use dispersive imaging, which uses the phase accumu-
lated by the transmitted light to form an image of the atomic density
distribution. When light at frequency w, is detuned from the atomic
resonance w, by many natural linewidths I, it picks up an approximate
phase 0 =-2Aw/Ix OD(y, x, Aw), where OD is the optical density at
detuning Aw =w, — w,, while absorptionis suppressed by a sufficiently
large detuning Aw. To form an image, the phase-shifted light must be
interfered with areference beam. In this work, we make use of the fact
that the optical transition we use forimaging is driven only by a single
polarization component; after passing through the atoms, the shifted
and unshifted components are combined on a polarizer. A judicious
choice of input and output polarizers yields aninterference signal/on
the camera®*® that is /=1,(1 - sin6)/2.

The optical resolution of ourimaging system (with anumerical aper-
ture of NA=0.2) was determined to have a cut-off at modulation wave-
length A= 3.0 um = 5.6a (330 line pairs per mm). The reduction of
the modulation transfer function MTF(Q) near the cut-off reduces
the observed contrast C(t) = MTF(Q)c(t) compared to the real contrast
c(t). This does not affect the decay times 7. Assuming that the experi-
mental preparation sequence for the initial spin-helix state achieves
full contrast c(0) =1for any wavevector Q (based on careful pulse cali-
bration and characterization), we can use C(0)as a direct measurement
of MTF(Q) and determine the real contrast as c(t) = C(t)/C(0).

Constant background contrast

For long evolution times ¢, the contrast c(¢) does not fully decay, but
reaches abackground value ¢, for example ¢, = 0.08(1) in Fig. 2a. The
numerical simulations, however, show adecay to zero. Therefore we add
here the fit value for ¢, to the simulations for better comparison with
experimental results. The experimental offset is caused by the inho-
mogeneous density of the atom cloud: only 90% of the atoms arein the
Mottinsulator state, which realizes an array of 1D spin chains. A small
fraction of atoms are in dilute spatial wings, separated by holes that are
immobile, owing to the gradient of the trapping potential (which sup-
presses first-order tunnelling, as shown in our previous work)*. These
atoms preserve animprinted spin-modulation pattern for long times.
We have checked this mechanism by increasing the amount of thermal
atoms and clearly observe anincrease of the background ¢, (Extended
Data Fig. 4). Furthermore, a position-sensitive measurement of the
contrast confirms that the main contribution is indeed from atoms
in the spatial wings (Extended Data Fig. 4f-g). In agreement with this
model, numerical simulations always show a decay to zero for long spin
chains (see Extended Data Figs. 6,7,9,10). Experiments throughout this
Article were performed with the lowest thermal fraction N,;/N < 0.05,
where the contrast decays (almost) uniformly across the whole atom
cloud, and offsets are small, so thatit was not necessary torestrict the
fits to the central part of the cloud (see Extended Data Fig. 2).
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Time-reversal invariance of spin dynamics

For an xz spin-helix initial state and time evolution via the XXZ
Hamiltonian, the contrast is time-reversal symmetric: c(¢) = c(-t), which
follows because the state, Hamiltonian and observable (the local mag-
netization S7) canbe all expressed as real. This also implies invariance
against the overall sign of the Hamiltonian H~ —H. The same argument
holds for the system with holes evolving under the bosonic £~/ model.
Theinitial dynamics of the contrast (in the ideal scenario) inboth cases
is therefore quadratic, c(t) =1+ /2 + ..., with

1 2a
n?

I?==—5" X cos(Qz + O)P(QIIH, [H, STIY(QD.

L

Therefore the timescale of the initial quadratic decay |1 is the super-
exchange timescale //,, (XXZ model) or the tunnelling timescale
h/t (f-J model). The fact that, experimentally, we do not observe an
initial quadratic behaviourindicates either (i) the presence of holes, but
that weare not resolving the fast timescale 1/¢; or (ii) that the initial state
isnottime-reversalinvariant (thatis, cannotbe expressed asreal, in the
samebasis that the Hamiltonianis written in). The latter could arise from
pulseimperfections, or the fact that the ramp-down of the optical lattice
takes place over afinite duration of time, leading to deviations fromthe
idealinitial state. Nevertheless, we expect that the overall behaviour of
the decay of the contrast—for example, the scaling behaviour of dynam-
ics with wavevector Q—is not strongly affected by (i) or (ii).

Power-law scalings in the continuum limit
In the experiments we measured the exponents a of the power laws
7= Q “intheshort-wavelengthregime Q=2m/(30a) to 2n/(6a) (Fig. 3).
Now we investigate how the exponents depend onthe range of wavevec-
tors Q, inparticularinthe continuumlimit Q> O (where the wavelength
Aofthe modulation becomes large compared to the lattice spacing a
and the discreteness of the underlying lattice is no longer relevant).
The short-time (¢ < h/J,,) Taylor expansion of the contrast
c(t)=1+r*+...enablesustodefine a‘time constant’ 7=|/1", whichwe
cancompute analytically evenin the thermodynamic limitL/a - «. This
is because the object(¢(Q)I[H, [H, SF 11l (Q)) is astrictly local quantity
asthespin-helix state [(Q)) is a product state and the commutator of
the Hamiltonian with the local term S7 only produces terms near site i.
Evaluating (with 8= 0 for simplicity), we obtain

Jy 1

2 _
= 7216

—[7-A4-8cos(Qa) +2cos(2Qa) + (4 -1)cos(3Qa)].
The limiting behaviour of Tas Q> Oiis therefore r = (Q2a?/4) 1h/j for
A=land7r=[(3+2/8)Qa-/1-41 1h/j forA<l.

This implies a sharp crossover from ballistic scaling to diffusive
scaling as A approaches 1 from below in the regime of small enough
wavevectors, as shown in Extended DataFig. 8d, e. In the same figure,
we show the exponents determined for a range of finite wavevectors
(Q=21/(20a) to 21/(6a)) as used in experiments and numerics, and find
asmooth crossover from asuperdiffusive regime to diffusive regime,
in agreement with numerical simulations in Fig. 3.

Although this short-time analysis for t < A//,, predicts the scalings
seen in the numerical simulations, it is not clear how much of this
analysis is applicable to the intermediate to long times ¢ at which the
experiments were performed. It also remains an open question as to
why numerics predict asuperballistic exponent a <1for the XX model
(4 = 0), but the experiment measures a ballistic exponent a = 1.
The discrepancy is possibly caused by the presence of holes, as sug-
gested by the £~/ model simulation (Fig. 3c).

Numerical simulations
Inthe numerical simulations we consider: (i) aspin-helix quench under
XXZ Hamiltonian (equation (1)) dynamics, and (ii) a spin helix with

5%to10% hole probability evolving under the bosonic £-/model (that
is, assuming no doubly occupied sites), given by

H=Y [, (S5 +S7S)) 41,5753 | + Hy,
<ij)

_ ) _
> taga, >
0.4ij) o ,Cijky

~2 ~2
t t
T go T
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where spino=1, V. Here a,;and a,; are bosonic lowering and raising
operators atsite i, respectively, ] = S} isdefined asa},a,; and S} = S;
is defined as a{;a,;. We use parameters from experiments and focus
on a lattice depth of 11£;, in which case we have U, /U,,=1.206,1.406,
1.401,1.398, 1.397 and 1.392, U, /U, = -0.188, 0.264, 0.459, 0.575,
0.659 and 0.862, and U,,/t =-17.94,-24.32,-24.17,-24.08, -24.05 and
-23.94 for anisotropies 4=0.020, 0.670,0.860,0.973,1.055and 1.256,
respectively. Inthe absence of holes, the action of the term H, vanishes,
and the Hamiltonian reduces to the XXZ Hamiltonian.

In both cases we use the real-time time-evolving block decimation
(TEBD) method with matrix product states (MPS) ona spin chain with
openboundary conditions. In case (i): local Hilbert space dimension=2,
length L =40a and bond dimensions up to 800; case (ii): local Hilbert
space dimension=3,L=40aforA=0, or L =20a for all other 4. Simu-
lations are cut-off in simulated time, owing to the rapid increase in
entanglement of the state, requiring ever-increasing computational
times. For the special case 4 = 0, without holes, we alternatively use
free fermionic methods, considerably speeding up the calculations. For
technical reasons, instead of simulating the full distribution of holes
we simply average over the situations inwhich there are either exactly
one or two (or four) holes in the chain. For L =20a (40a), a single hole
corresponds to an average of 5% (2.5%) holes.

To obtain the contrast, we determine the local magnetization
(SE(D)) = [n;,(6)) — <, (£))]/2 and determine the Fourier component
at wavevector Qviac(t) = 4L—“ Y (S7(t))cos(Qz; + 6), assuming that the
initial spin helix has wavevector Q with a given phase 6 (see Methods
section ‘Creation of the spin helix’); we then compare this to the exper-
imental contrast. However, as noted in Methods section ‘Time-reversal
invariance of spin dynamics’, the numerically simulated contrast always
hasaninitial quadratic decay, unlike that seen in the experiments. We
therefore determine the decay timescales and its power-law scaling
with Q using one of the following methods. For positive anisotropies
A >0, wedefine the decay time constant as the time it takes for the
contrast c(¢) to decay from1to 0.6, divided by —In(0.6) to convert to a
‘1/e’ time (see Extended Data Fig. 6). For negative anisotropies 4 <0,
forregime I we take the time to decay from1to 0.9, multiplied by 10 to
extrapolatetozero, whereasfor regime Il we fitted a simple exponential-
decay profile to obtainthe decay timescales once the curves start ‘peel-
ing off” when plotted with time units rescaled by A (see Fig. 4c and
Extended DataFig. 7). The resulting power-law scalings (Extended Data
Fig. 8) and resulting exponents (Fig. 3c) are in reasonable agreement
with the experimental results.

Finite-size effects

Numerical simulations can study the effect of different chain lengths
L andinitial phases 8 of the spin helix on the dynamics. Thisisrelevant
becauseinthe experiment, the atoms are distributed uniformly overa
sphere with a typical diameter of L ,,,=44ain three dimensions, lead-
ing toanensemble of 1D chains of varying lengths. The experimentally
measured contrast c(¢) isan average over all chain lengths with a prob-
ability distribution shownin Extended Data Fig. 10. Furthermore, owing
todrifts of the applied magneticfield, theinitial phase 6 of the spin-helix
state varies fromshot to shot. Here we study numerically both effects.



We concentrate on the XX model (4 = 0) without holes. Extended
DataFig. 9 showsthat the strong dependence of the contrast c(¢) on the
initial phase @is due to reflection of magnetization offthe boundaries
of the chain. This suggests that averaging over various chain lengths
or averaging over initial phases should give similar results, which is
confirmed in Extended Data Fig. 10. It is even sufficient to average over
only two phases, 8 =0 and 11/2, to achieve insensitivity to initial and
boundary conditions. The distribution of chains, and the simulation
of amagnetization profile averaged over this distribution of chains,
areillustrated in Extended Data Fig. 10b-d.

The conclusion is that the experiment is naturally performing an
average over different phases and different chain lengths, washing out
the sensitive dependence of the spin dynamics on initial conditions.
For comparison with simulations, it is sufficient to use a system with
afixed chainlength L = 40a, and average over only the two phases
6=0and /2.

Data availability

The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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Extended DataFig.1|Determination of the Heisenberg parameters.

a, Corrections for tunnelling (£ - £ 9/ © (green), on-site interactions
WU-U9)/U° (blue), superexchange (J-/?)//” (purple) and off-site interactions
-2V/J® (orange), where£ @, U® and J© = 4(f ©)?/U‘? are the uncorrected
valuesandf,Uand J = 4t /U include corrections, atalattice depthof13E,
(solid line) and 9, (dotted line). b, As a function of magnetic field Bwe show the
scatteringlengths a, (blue), a, (purple) and a,, (orange) measured in our
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previous work (points)®. Here a, is the Bohrradius. ¢, d, We interpolate the data
inbusinghyperbolicfits (solid lines) and calculate values for the transverse
coupling constant/,, (purple), the longitudinal coupling constant/, (yellow)
and the anisotropy 4 =/.//,, (black), without corrections (dashedline) and

including corrections (solid line) for alattice depth of 11£,. The excluded region
(la,l>700a,) is around aFeshbachresonanceinthe |t) state near 845.4 G.
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(number of atoms per unitarea). The yand zaxes are displayed in units of A=0andwavelengthA=10.4a. The obtained contrastC(t)is shownin Fig.2a.
thelattice spacinga=0.532 pm. Theimages are projected (integrated) along Ingeneral, we also normalize by the initial contrast C(0) to correct for finite
theydirectionfromy=-30ato+30atoobtain the linear density (number of opticalimagingresolution. Thisisimportant for shorter wavelengths A close to
atoms per unitlength). The resulting 1D distributions are fitted with the optical resolution of 3 um, where the measured contrast C(¢)is reduced

f(z)=g(2)[1+C cos(Qz+80)]/2(solid line), where g(z) is a Gaussian envelope compared to thereal contrastc(t) = C(¢)/C(0).
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Extended DataFig. 3 | Dispersion relations. For all positive anisotropies

A >0, thetimeevolution of the contrast c(t) shows adamped oscillatory
component,inaddition to the overall exponential decay. For larger 4, the
oscillationsbecome smaller.a-c, Decay and weak oscillation at the isotropic
point4~=1measured for different wavelengths A, at three different lattice
depths 9, (orange), 11E; (blue) and 13E, (yellow). Solid lines are fits

c(t) =[a,+b,cos(wt)]e ™’ +c,and dashed lines show the overall decay

a.e "+ c,,around which the oscillations take place. The oscillations become
more pronounced for short wavelengths A, because the decay time (7 <A1?)
decreases with smaller wavelength more strongly than the oscillation period
(T<2).d, Theoscillation frequencies follow linear dispersion relations
w(Q)=vQshownfor4=-0.12 (red), 0.35 (orange), 0.78 (yellow), 1.01 (blue)
and1.27 (lightblue). e, The obtained velocities v decrease with increasing

Wavevector, Q (2n/a) Anisotropy, A

anisotropy 4. For 4=1.58 (open symbol), oscillations are small and the
measurement was limited to large values of Q, which precluded recording a
full dispersionrelation. We note that although the oscillations are difficult to
discernby eye (for example, in a), especially for large anisotropies 4 and small
wavevectors Q, the fitted oscillation frequencies w all fall very well on linear
dispersionrelations, which demonstrates that those barely visible oscillations
arereal. Thelinear scaling w(Q) =vQ persists evenin the superdiffusive,
diffusive and subdiffusive regimes, where the power-law scaling of the decay
time constant 7 Q *isstrongly nonlinear. This small ballistic (oscillatory)
component may be related to our initial condition of aspin helix, whichin the
mappingtolattice fermionsis a1l00% density modulation, which reduces
scattering atearly times.
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Extended DataFig. 4 |Effect of finite hole concentration. By varying the
thermal fraction N,;,/N of the Bose-Einstein condensate beforeitisloaded into
the opticallattice, we vary the energy and entropy of the atomsin the spin
chain, and therefore the concentration of holes. (For our conditions, doubly
occupiedsites have higher energies than holes). Measurements are shown here
forA=0andA=10.4q,atalattice depth of 11£,.a, Decay curves c(t) for varying
hole concentrations ranging fromlow (blue) to high (orange) thermal fraction.
Solid lines are fits c(f) = [a, + bycos(wt)]e "+ c,. b, The background contrast ¢,
increases monotonously with thermal fraction N,,/N. A linear fit (solid line)
extrapolates toc,=0.01(2), consistent with zero, for N,,/N=0. This suggests
that all of the background contrast is due to hole excitations. ¢, Higher hole
concentrations suppress the oscillating fraction bo/(a, + b,). d, Holes do not
affectthe oscillation period T=2m/w. e, Holes decrease the decay time 7, albeit
slightly. b-e show that almost all of our measurements are not sensitive to a
small thermal fraction, whichis usually N, /N < 0.05 throughout this work. The
behaviour shownin cand eis most probably caused by mobile holesin the
central part of the Mottinsulator. Indeed, numerical simulations of the
f-/model reproduce such effects (Fig. 2a). Note though that for the isotropic

d foq ; P B
< 15 3 WEET : 18
5 g @ AU
= ! 3 PR
10 £ ok
- Eospes™™ ||
S s © &y \
o ° HEE:- J
W | \\ //
0 0 : —
T
9; g 1 G00000000000000000 e
3 6 H 3 | /4 ; 1
£ 3 | s §
3 5 4 ! bl g ‘ s
() = [
£ 505 cprxﬁ»ﬁl’%
= S P,
{ 8 o © I /N
o \
A '..o"% O /)
0 0 [$00g,0 1
0.4 0 0.2 0.4 0 10 20 30
Thermal fraction, Ny/N Radius, r (a)

case A =~1,aprevious work’ found a~50% change in decay time when the hole
concentration changed from 0 to 5%. Our numerical simulations (Extended
DataFig.8b) do not show such strongsensitivity (for any anisotropy, even at
A=1),possibly owingtoasymmetry in the on-siteinteractions (U, # U, # U,) in
our system. Onthe other hand, a finite background contrast (b) is probably
caused by immobile holeslocatedin the outer parts of the atom distribution
wherefirst-order tunnellingis suppressed by the gradient of the (harmonic)
trapping potential®*. Immobile holes disrupt spin transport, and so we expect
thattheimprinted spinmodulationin these regions will not (or only very
slowly) decay.f, g, Theregion withimmobile holes is visible as a shell of low
atomic density surrounding the Mottinsulatorin theinsituimages for large
hole concentration (f) and is absent for low hole concentration (g). The three
curvesinbothfand gshow thelocal contrastasafunctionofdistancerfrom
the centre of the atom cloud for the evolution times ¢ =0 (top), 2.7A//,,, (middle)
and 21.7h/J,, (bottom). The two insituimagesinbothfand gare for t=0 (top)
and 21.7h//,(bottom). The dashed linesindicate contours of constant radius,
r=30a(f)andr=20a(g).
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Extended DataFig.5|Decay behaviour as afunction of anisotropy.

a, b, Decay behaviour ranging from negative (a) to positive (b) anisotropy, fora
fixed wavelengthA1=10.4a.Using4 =0 as areference point, we show how the
temporal profile of the decay curve c(t) changes when we introduce positive or
negative interactions. Every data pointis an average of two measurements at
lattice depths 11£; and 13E;.Ina, frombottomto top: 4=-0.12 (red),

-0.59 (pink), —0.81 (yellow), -1.02 (blue), -1.43 (green) and -1.79 (purple).Inb,
frombottomtotop:4=-0.13 (red), 0.08 (purple), 0.35 (pink), 0.55 (orange),
0.78 (yellow), 1.01 (blue),1.27 (light blue) and 1.58 (green). Regardless of sign,

Time, t (F/dyy)

forincreasing|4| the decay always slows down and the revivals damp more
quickly. However, there is a big difference in how this slowdown happens:
forincreasing positiveinteractions4 >0, theinitial rate of decay decreases
continuously (b); by contrast, for all negative interactions A <0, the initial rate
of decay stays constant (and is ballistic), coinciding with the A = O case (a). It is
only afteracritical time ¢, that the decay suddenly starts slowing down (and
becomes diffusive) for times ¢ > ¢,. This critical time ¢, decreases with
increasing negative interactionstrength|4].
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Extended DataFig. 6 | Collapse of decay curves for positive anisotropies. All
decay curves c(t) for wavelengths A=15.7a,13.4a,11.7a,10.4a,9.4a, 8.5a,7.8a,
7.2aand 6.7a collapse very wellinto asingle curve for all evolution times ¢, when
time units arerescaled by A%, where the exponent ais afunction of anisotropy 4,
both for experiment (points) and theory (solid lines). Experimental points were
measured for lattice depths 9£; (red), 11E, (blue) and 13£; (yellow). a, b, Ballistic
regime (a=1).c, Superdiffusion (a=1.5).d, Diffusion (a =2). e, f, Subdiffusion
(a=2.5,3forexperimentand a=3.5, 4.5 for numerical simulations; in

f,experiments covered areduced rangeA<10.4a). For all anisotropies4>0
(a-f) the experimentally measured oscillation frequencies w follow linear
dispersion relations (Extended Data Fig. 3) and have ascaling behaviour
different from the decay rates. However, such oscillations are small outside the
ballistic regime a =1, and therefore only lead to a small deviation from the
collapse behaviour. Note also the different timescales in experiments and
simulations for4>1.



Article

a
1

081

0.61

0.4r

021

Contrast, c(t)

N\,
=0 _o —0— 4

*00\

~

So— —o— —¢
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6.7aand 6.3a). The dotted lines are exponential fitse /Mo the diffusive
regime and the time constants 7, are shown in Extended Data Fig. 8a.
d-f,Experiment (fromtop tobottom:1=18.8a,13.44,10.4qa, 8.5a,7.2a and
6.3a).Every data pointis an average of two measurements at lattice depths 11F,
and 13£;. The black dashed lineindicates the ballistic case A = 0 (see Fig. 2c).
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Extended DataFig. 8| Power-law scalings (theory) and diffusion
coefficients. a, b, Decay time constants 7 for different anisotropies 4 ranging
fromnegative (a) to positive (b). Numerical results are shownin afor
A=-1(blue),-1.5(green)and -2 (purple) andinbfor4=0 (red), 0.5 (orange),
0.85 (yellow),1(blue) and 1.5 (green). Solid lines are power-law fits (to the filled
symbols). Open symbols are excluded from the fit owing to finite-size effects.
Crossed symbols are results from f-Jmodel simulations including 5% hole
fraction. Fitted power-law exponents are shown in Fig. 3c. For positive
anisotropies4>0the decay time ris defined as r=7/In(1/0.60) with
c(1’)=0.60.For negative anisotropies 4 < 0, the decay time 7, for short times (1)
isdefined as 7;=107; with c(z]) = 0.90. For longer times (1I), the decay time 7, is
obtained from exponential fits e™*/"to the diffusive long-time tail (see dotted
curvesinExtended DataFig. 7a-c). ¢, Diffusion coefficients for the diffusive
long-time regime (I) obtained from theory (open symbols) and experiment
(filled symbols). For negative anisotropies 4 <0, values were determined from
quadratic power-law fits 1/7=DQ?*to the datapointsina (theory) and Fig. 3a
(experiment) for the diffusive regime (II). Note that for A > O the systemis only
diffusive for 4=+1,asshowninb (theory) and Fig. 3b (experiment). From

Anisotropy, A

the experimental diffusion coefficients, we estimate mean free paths 6x using
the velocity v=0.76(1)v; from the ballistic short-time regime (I), and obtain
6x=3.35(15)a,1.07(7)aand 0.66(4)a for 4=-1.02,-1.43 and -1.79, respectively.
d, Short-time (¢« #/J,,) decay constant r=|/" obtained from Taylor expansion
ofthe contrast c(t) =1+/2t*+...asafunction of Q, for4=0 (red), 0.55 (orange),
0.85 (yellow), 0.95 (purple) and 1 (blue). For A <1all curvesin thelog-log plot
asymptote to the same slope as Q> O (continuum limit), whereas there are
deviations for larger wavevectors Q. For A =1the slopeisinstead different. This
indicates that the power-law exponent ain < Q *depends on the range of
wavevectors Qused to determineit. e, Power-law exponents a determined for
the short-wavelength regime betweenA=6aand 20a (filled symbols) asin
experiments and numerics, and for the long-wavelength regime between
A=150aand 200a (open symbols) approaching the continuum limit. In the
former case, the exponents show asmooth crossover from superballistic to
diffusive as4 > 1similar to thatin the experiments and numerics, whereasin the
latter case the exponents show asharp jump from ballistic to diffusive
occurringexactlyat4=1.
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Extended DataFig.9|Finite-size effects from theinitial phase of the spin reveals that this arises owing to thereflection of ballistically propagating
helix. a, The time evolution of the contrast c(¢) depends strongly on theinitial magnetization offthe ends of the chain. Depending on theinitial phase of the
phase 6, illustrated here by simulationsforA=0andA1=10.4a.b,c, The spin helix, thereflected magnetization interferes constructively or

dynamics of the local magnetization(S;(¢)) for phases 6=0 (b) and 1t/2 (c) destructively with the pattern of the bulk magnetization.
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Extended DataFig.10 | Finite-size effects fromthe chainlength. a, Contrast
c(t) obtained after aweighted average over all different chain lengths
between.=0and44a(showninb),forA=0andA=10.4a. Theaveraged
dynamics (orange, yellow, blue) shows almost no dependence on the phase 6,
incontrast to the dynamics determined from asingle chainlength L =40a
(Extended DataFig. 9a). Also overlaid are the contrasts for a fixed chainlength
(L=40aq) averaged over allinitial phases 0 <8 <2m (black solid line), and
averaged over only the two phases =0 and /2 (black dashed line). The close
agreementimplies thataveraging over either chainlengths or phases
suppresses the dependence oninitial or boundary conditions. b, A cut through

the spherical Mottinsulator with diameter L, =44a (asinthe experiment)
illustrates the distribution of different chain lengths (oriented along the
zdirection). Averaging the local magnetization S*over thexandydirections
providesalD magnetization profile (bottom panel), whichis anaverage over all
chains. ¢, Thenumber of chains with length L is given by (1/2)(L/a). The total
number of chainsisL,,,,/(2a)*~1,500.d, The number of atoms in chains with
length L is given by (1/2)(L/a). The contribution of each chain to the imaging
signalis proportional to the atom number in the chain, and so the relevant
average over chainlengthsis weighted by theatom number andis
(Ly=(3/4)L . =33a.
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