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Lattice modulation spectroscopy of one-dimensional quantum gases:
Universal scaling of the absorbed energy
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Lattice modulation spectroscopy is a powerful tool for probing low-energy excitations of interacting many-
body systems. By means of bosonization we analyze the absorbed power in a one-dimensional interacting
quantum gas of bosons or fermions, subjected to a periodic drive of the optical lattice. For these Tomonaga-
Luttinger liquids we find a universal ω3 scaling of the absorbed power, which at very low-frequency turns
into an ω2 scaling when scattering processes at the boundary of the system are taken into account. We
confirm this behavior numerically by simulations based on time-dependent matrix product states. Furthermore,
in the presence of impurities, the theory predicts an ω2 bulk scaling. While typical response functions of
Tomonaga-Luttinger liquids are characterized by exponents that depend on the interaction strength, modulation
spectroscopy of cold atoms leads to a universal power-law exponent of the absorbed power. Our findings can be
readily demonstrated in ultracold atoms in optical lattices with current experimental technology.
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I. INTRODUCTION

Cold atomic systems offer an unprecedented level of con-
trol of the properties of interacting quantum systems [1,2]
and allow for the realization of a plethora of novel phases
and phenomena that were previously inaccessible in other
experiments. They have given access to the “experimen-
tal solution” of certain models and hence can be referred
to as quantum simulators. Among those phenomena, one
paradigmatic example with bosons on a lattice is the tran-
sition between a superfluid and Mott insulator state. Such
a transition was successfully observed in three dimensions
[3], two dimensions [4], and one dimension [5,6]. For the
latter, the transition is found to be in the universality class
of the Berezinskii-Kosterlitz-Thouless transitions. Cold atoms
have thus provided a remarkable way of testing the universal
properties of such models.

In order to analyze quantitatively the properties of the
correlated phases and the transitions between them, it is
important to develop a detailed understanding of different
experimental probes. Among them is lattice modulation spec-
troscopy [7]. This technique consists of modulating the ampli-
tude [8–10] or the phase [11,12] of the optical lattice in which

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the atoms are trapped. After some time, the energy deposited
in the system or the number of doubly occupied states is
measured to characterize the underlying state [13,14]. In
general, driving of the hopping energy provides a novel form
of Floquet engineering, which enables atypical Hamiltonians
and exotic states of matter to be produced and controlled
[15,16].

For bosons this probe can determine energy gaps and
thus locate the Mott-to-superfluid transition [5–7]. Moreover,
specific modes of the superfluid such as the Higgs mode
could be excited [4], which is expected to occur in three- and
two-dimensional superfluids.

Despite this effort, several questions remain to be in-
vestigated for bosons and fermions in one dimension. For
these systems, a symmetry-broken state cannot exist because
of strong phase fluctuations even at zero temperature [17].
Hence, only quasi-long-range order can exist as characterized
by a power-law decay of certain correlation functions. This
result is part of the more general properties of Tomonaga-
Luttinger liquids (TLLs) that are expected to describe most
of the interacting one-dimensional (1D) quantum problems
[17,18]. Given the absence of true long-range superfluid order,
one may wonder whether the response to shaking in a one-
dimensional bosonic system would also show traces of a
Higgs mode as in higher dimensions [4]. More generally,
this prompts an analysis of the response to shaking of a
one-dimensional TLL.

In the present paper we perform such an analysis in both
the gapless (superfluid) and the gapped phase (Mott insulator).

2643-1564/2020/2(3)/033187(14) 033187-1 Published by the American Physical Society

https://orcid.org/0000-0002-7093-9502
https://orcid.org/0000-0002-3405-9508
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033187&domain=pdf&date_stamp=2020-08-03
https://doi.org/10.1103/PhysRevResearch.2.033187
https://creativecommons.org/licenses/by/4.0/


R. CITRO et al. PHYSICAL REVIEW RESEARCH 2, 033187 (2020)

Using a combination of field-theoretic and numerical matrix
product state (MPS) techniques, we obtain the response of
the system to the shaking of the optical lattice. We find that
this response is a power law of the shaking frequency, with
a universal exponent. This is quite remarkable in view of
the fact that the TLL is normally characterized by responses
which show nonuniversal power-law behavior, with expo-
nents depending on the interaction strength. The choice of
modulating the amplitude of the optical lattice is important.
Would one modulate the phase instead, the conductivity would
be obtained [11] (as periodic phase modulation translates
to a periodic force), yielding nonuniversal exponents, while
the amplitude modulation modifies the tunneling and conse-
quently the kinetic energy of the system.

Our results also show that a well-formed Higgs mode does
not exist in one dimension, as the response to shaking is
monotonically increasing up to shaking frequencies of the
order of the bandwidth of the system. In order to connect
to experiments, we also analyze and discuss the effect of
this response to open boundary conditions, as realized, for
example, with a box potential, which constitute a relevant
perturbation at low frequencies. In the presence of impurities
similar effects are observed, provided the concentration of
impurities is small and one can simply add energy absorption
due to different impurities.

While the focus of this paper is on one-dimensional sys-
tems, we note that a similar approach can be used to describe
modulation experiments in higher-dimensional systems that
allow for a hydrodynamic description. Time-periodic modula-
tion of the interaction strength or the transverse confinement
potential will result in the resonant parametric generation of
excitation pairs [19–22], analogous to the 1D case discussed
in this paper. The analysis of the absorbed energy can be done
following the same approach that we discuss here, with the
main difference being the phase space for collective modes. In
Sec. VI we comment on the relevance of our analysis beyond
ensembles of cold atoms and suggest possible applications of
our results to chains of Josephson junctions and pump and
probe experiments in electron systems.

The paper is organized as follows. In Sec. II we intro-
duce the models that we are investigating. In Sec. III we
discuss the analytical calculation of the absorbed power of a
one-dimensional gas subject to a lattice modulation within a
Tomonaga-Luttinger liquid treatment and compare the low-
energy behavior with results obtained from time-dependent
matrix product states. In Sec. IV we discuss the edge effects
treated through an effective boundary potential that couples to
the density of the fluid and also analyze the effect of a single
impurity in the bulk of the system. In Sec. V we consider mod-
ulation spectroscopy in the case of gapped systems such as
would occur for the Bose- and the Fermi-Hubbard model with
repulsive interactions and commensurate filling. In Sec. VI we
present a summary and discuss our findings.

II. MODELS

We consider fermionic or bosonic ultracold atoms confined
to a 1D tube subjected to a deep lattice potential. For deep
enough potentials, such a system can be described in a tight-
binding approximation by a Hubbard model [23]. This leads

to the Bose-Hubbard model for spinless bosons [1]

H0
b =

∑
l

[
−J0(b

†
l+1bl + b†l bl+1) + U

2
nl (nl − 1)

]
, (1)

where b†l (bl ) creates (annihilates) a particle on site l and nl =
b†l bl counts the particles on site l , and the Fermi-Hubbard
model [2] for spin-1/2 fermions

H0
f =

∑
l,σ

[
−J0(c

†
l+1,σ cl,σ + c†l,σ cl+1,σ ) + U

2
nl,σnl,−σ

]
, (2)

where again c†l,σ and cl,σ are the creation and annihilation
operators, respectively.

In modulation spectroscopy, the trapped atoms are probed
by modulating the strength of the longitudinal periodic po-
tential. The modulation lowers or raises the potential barrier
between two consecutive minima, and thus to leading order
modifies the strength of the tunneling J0 as well as the
interaction within one well. Modulation of J is expected to
be much larger since it depends exponentially on the barrier
height. We note that modulation of the Hamiltonian as a whole
does not lead to energy absorption and what is important
is the difference in the relative modulation strength of the
two terms in the Hamiltonian. Therefore, we consider the
time-dependent Hamiltonian, in which only the tunneling
amplitude is modulated J0 + δJ (t ), giving rise to

Hν (t ) = H0
ν + δJ (t )Oν, (3)

with ν ∈ b, f and

Ob =
∑
l

(b†l+1bl + b†l bl+1) (4)

for bosons and

O f =
∑
l,σ

(c†l+1,σ cl,σ + c†l,σ cl+1,σ ) (5)

for fermions. The labels f and b refer to fermions and bosons,
respectively.

We work in the linear-response limit, with δJ (t ) =
δJ cos(ωt ) and δJ � J0,U . In the linear response, the ab-
sorbed power is given by [24]

P = ω

2
|δJ|2Imχν (ω), (6)

where

χν (ω) = i
∫ +∞

0
eiωt 〈[Oν (t ),Oν (0)]〉 (7)

is the response function. In Sec. III we calculate this response
function in a low-energy and long-wavelength limit.

III. BOSONIZATION

In the low-energy or long-wavelength limit, interacting
bosons and fermions can be described within an effec-
tive continuum theory called the Tomonaga-Luttinger liquid
[17,18,25–33]. The low-energy excitations are phononic col-
lective excitations with a linear dispersion that describe den-
sity fluctuations (and when applicable spin fluctuations). In
general, spin and density fluctuations propagate with different
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velocities, a phenomenon known as spin-charge separation
[34,35]. In that low-energy limit, the original particles appear
as coherent states of the collective modes. As a result, all the
observables of the original system are expressible in terms
of the collective modes. We will thus use in this section the
bosonized representation to calculate the response function
(7) and hence the resulting absorbed power.

A. Bosonized representation for fermions

In the fermionic case, away from commensurate filling, the
Hamiltonian (2) has the bosonized representation [17,29]

Hf = Hρ + Hσ , (8)

Hρ =
∫

dx

2π

[
uρKρ (π	ρ )

2 + uρ

Kρ

(∂xφρ )
2

]
, (9)

Hσ =
∫

dx

2π

[
uσKσ (π	σ )

2 + uσ

Kσ

(∂xφσ )
2

]

− 2g1⊥
(2πα)2

∫
dx cos

√
8φσ , (10)

where uρ and uσ are the density and spin velocity, respec-
tively, and Kρ and Kσ are the density and spin Tomonaga-
Luttinger exponents, respectively, where for small U
one has uρ = vF

√
1 +U/πvF , uσ = vF

√
1 −U/πvF , Kρ =

1√
1+U/πvF

, Kσ = 1√
1−U/πvF

, g1⊥ = U , and [φν (x),	ν ′ (x′)] =
iδ(x − x′)δν,ν ′ . A general expression can be obtained for arbi-
traryU as discussed in [17,29]. For repulsive interactions, Hσ

is renormalized to a fixed-point Hamiltonian H∗
σ with K∗

σ = 1
and g∗

1⊥ = 0, yielding gapless excitations with linear disper-
sion ω = uσ |k|. For attractive interactions without external
magnetic field the spin Hamiltonian Hσ is gapped while the
density Hamiltonian Hρ remains gapless [17]. At half filling,
umklapp processes are present [17]. They contribute to the
bosonized Hamiltonian (8) a term

Humk = − 4g3
(2πα)2

∫
dx cos

√
8nφρ, (11)

but, as shown in Appendix A, when umklapp processes are
irrelevant in the renormalization group sense [36], they add
only a subdominant contribution to the absorbed power at
low frequency. When the umklapp processes are relevant, they
open a gap in the spectrum.

In the perturbative limit, since O f is proportional to the
kinetic energy in Eq. (2), its bosonized form is simply the
bosonized Hamiltonian of noninteracting spinless fermions
divided by J0. Changing to the spin and charge fields, we find
[17,29]

O f =
∑

ν=ρ,σ

O f ,ν = O f ,ρ + O f ,σ ,

O f ,ν = 2a sin(kFa)
∫

dx

2π
[(π	ν )

2 + (∂xφν )
2]. (12)

Due to spin-charge separation, the absorbed power is the
sum of a spin and a density contribution. To find an expression
of O f applicable away from the perturbative limit, we note
that O f is obtained by differentiating the Fermi-Hubbard
Hamiltonian (2) with respect to J0. Assuming that the identity

carries over to the bosonized description, we have

O f ,ρ =
∫ [

∂ (uρKρ )

∂J0
(π	ρ )

2 + ∂

∂J0

(
uρ

Kρ

)
(∂xφρ )

2

]
dx

2π

(13)

and a similar approximation for O f ,σ . As a further approxi-
mation, in the repulsive case, we take the fixed-point values in
Hσ and write

O f ,σ =
∫

∂uσ

∂J0
[(π	σ )

2 + (∂xφσ )
2]
dx

2π
. (14)

Applying Eqs. (13) and (14) in the perturbative case, Eq. (12)
is recovered. It is important to note that the full expression
of the fermion kinetic energy contains, besides the linear
dispersion valid near the Fermi points, corrections coming
from band curvature. So the expressions (13) and (14) are
really the most relevant terms in an expansion of the operator
O f in a series of operators of increasing scaling dimensions.
The contributions of operators of higher scaling dimensions
are subdominant at low frequency, as shown in Appendix A.

B. Bosonized representation for bosons

In this section we turn to bosons. The Bose-Hubbard
Hamiltonian withU > 0 has the bosonized representation

H =
∫

dx

2π

[
uK (π	)2 + u

K
(∂xφ)

2

]
, (15)

where 	(x) and φ(x) are conjugate operators that describe the
boson density fluctuations, u is their velocity, and K is the
Tomonaga-Luttinger exponent [25] that to the lowest-order
approximation is determined by uK = πρ0

m and u
K = U

π
, where

ρ0 is the boson density, while its dependence on general
values of the interaction can be found in [18,37–39]. In
Appendix B the Luttinger parameters of the Bose-Hubbard
model as a function of the interaction U and system size L
are shown. At integer filling, umklapp processes contribute a
term proportional to cos 2φ to the Hamiltonian (15). Similarly
to the fermionic case, their contribution is subdominant as
long as the system remains in a Tomonaga-Luttinger liquid
ground state. The limit U → 0 of the Hamiltonian (15) is
singular, with the velocity u vanishing to recover the quadratic
dispersion of noninteracting bosons above a condensate and
the Tomonaga-Luttinger exponent going to +∞. Thus, in
contrast to the fermionic case of Sec. III A, it is impossible
to derive a bosonized representation of (4) by considering
the noninteracting limit. However, assuming as in Sec. III A
that the identity Ob = ∂Hb

∂J0
is applicable to the bosonized

Hamiltonian (15), we find

Ob =
∫

dx

2π

[
∂ (uK )

∂J0
(π	)2 + ∂

∂J0

( u
K

)
(∂xφ)

2

]
. (16)

This expression is similar to (12). Moreover, in the hard-core
limit U → +∞, bosons can be mapped to noninteracting
spinless fermions [40] and the fermionic expression (12)
yields an explicit form of Ob which fully agrees with (16).
As we discussed in the fermionic case, the expression (16)
is only the first term in a series of operators of increasing
scaling dimension that represent the various band curvature
terms coming from the dispersion of the lattice model.
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C. Response function in an infinite system

With repulsive interactions, both for fermions and for
bosons, the calculation of the response function (7) reduces to
the calculation of the response function of an operator of the
form

∫
dx[A	2 + B(∂xφ)2] for a Hamiltonian quadratic in 	

and ∂xφ. That calculation is further simplified by rewriting the
bosonized form of the operatorOb,f as a linear combination of
the Hamiltonian and an operator proportional to

∫
(∂xφ)2. In

the bosonic case,

Ob = 1

uK

∂ (uK )

∂J0
H −

∫
dx

π

u

K2

∂K

∂J0
(∂xφ)

2, (17)

and in the fermionic case, for the perturbative limit,

O f ,ν = 2a sin(kFa)

[
Hν

uνKν

+
(
1 − 1

K2
ν

)∫
dx(∂xφν )

2

]
,

(18)

while in the nonperturbative limit,

O f ,ν = ∂

∂J0
(uνKν )

[
Hν

uνKν

−
∫

uν

K2
ν

∂Kν

∂J0
(∂xφν )

2

]
. (19)

Since the Hamiltonian is time independent, the response
function reduces, up to a proportionality factor, to the one of∫
dx(∂xφ)2. We note that this is the same response function

as in the case where the on-site interaction is modulated.
Furthermore, according to Eq. (19), the response function (7)
vanishes for noninteracting fermions since Kρ = Kσ = 1 for
any J0 in that case. This can be established more directly from
the lattice Hamiltonian by noting that for U = 0, O f is pro-
portional to the Hamiltonian. More importantly, Eq. (19) also
shows that the contribution of the spin excitations calculated
at the fixed point K∗

σ = 1 is vanishing. This indicates that for
interacting fermions the dominant contribution comes from
the density response. Due to the fact that the drive is coupling
only to the density and not to the spin, this is expected to be
the case on general grounds. Similarly, in the bosonic case,
in the limit U → +∞, where K = 1 for all J , the response
function (7) is also vanishing. Again, this is more directly
established by noting that Ob is directly proportional to the
hard-core boson Hamiltonian in that limit.

We calculate χ (ω) by taking the analytic continuation
χ (ω) = χM (iωn → ω + i0+) of the Matsubara correlation
function

χM (iωn) =
∫

dτ eiωnτ 〈TτOν (τ )Oν (0)〉. (20)

For the sake of definiteness, we perform the calculation for
bosons. Using translational invariance, we find that

1

L
χM (iωn) =

(
u

πK2

∂K

∂J0

)2 ∫
dx dτ

× eiωnτ 〈Tτ (∂xφ)
2(x, τ )(∂xφ)

2(0, 0)〉. (21)

Details on the evaluation of χ (ω) can be found in Appendix C
and for zero temperature the final result is

1

L
Imχ (ω) = F(K )ω2e−|ω|α/usgn(ω), (22)

where α is a short distance cutoff (of the order of the
lattice spacing) and F(K ) = 1

16u
1
K2 ( ∂K

∂J0
)2. Only the behavior
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FIG. 1. Response function χ (ω) to a modulation of the lattice
at the frequency ω and temperature T evaluated from Eq. (20) for
F (K ) = 1 and α/u = 1.

for |ω| � u/a ∼ δJ is reliably predicted by bosonization.
For frequencies of order of the bandwidth, the linearized
approximation for the dispersion certainly breaks down and
high-energy excited states not described by bosonization can
contribute as well to the energy absorption.

At finite temperature, Eq. (22) becomes

1

L
Imχ (ω) = F(K )ω2e−|ω|α/u coth

(
ω

4T

)
, (23)

so the response function behaves as ∼ωT when ω � T and
as ω2 when T � ω (see Fig. 1). Thus the absorbed power is

Pb = L

32u
|ω|3
(

δJ

K

∂K

∂J0

)2

coth

(
ω

4T

)
e−|ω|α/u (24)

for bosons and

P f = L

32uρ

|ω|3
(

δJ

Kρ

∂Kρ

∂J0

)2

coth

(
ω

4T

)
e−|ω|α/uρ (25)

for fermions.
It has a universal power-law dependence on frequency,

with an exponent independent of interactions. This universal
behavior has to be contrasted with the conductivity [17,41]
where the power-law exponent varies with the Tomonaga-
Luttinger parameter and thus depends on the microscopic
interaction strength. Here only the prefactor depends on the
logarithmic derivative of the Tomonaga-Luttinger parameter
with respect to the hopping amplitude. In Appendix B the
dependence of this prefactor on system size and interaction
U is reported.

D. Numerical results

In order to elucidate the universal frequency exponent of
the absorbed power density Pb/L ∼ δJ2ω3 predicted from the
Tomonaga-Luttinger theory, we numerically evaluate the en-
ergy absorption in the Bose-Hubbard model (1) using matrix
product states [42,43]. In particular, we consider systems with
120 sites and noninteger boson density ρ = 1.2, to fully avoid
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FIG. 2. Absorbed power density. Using matrix product states,
we have evaluated the absorbed power in a periodically driven
Bose-Hubbard model on an open chain of L = 120 sites and density
ρ = 1.2 for two values of the interaction strength (see the legend).
The absorbed power density, renormalized by the drive strength
δJ2, shows a universal ω3 scaling, as predicted from the Tomonaga-
Luttinger theory. Deviations at low frequencies are decreasing with
increasing system size and are expected to arise from the residual
contributions of system edges which add an ω2/L contribution that
is leading in frequency but vanishing in the thermodynamic limit.

umklapp processes. We have checked the convergence of our
results with the bond dimension of the matrix product state
which ranges from χ = 400 to 800.

Our objective is to simulate an experimental protocol to
measure the absorption. To this end, we first compute the
ground state of our model and then apply a periodic modula-
tion of the kinetic energy of the form J (t ) = J0 + δJ sin(ωt ).
We choose the driving strength δJ = 0.1J0, small enough
such that the absorbed energy increases linearly in time,
as required from the linear-response theory. We evolve the
system for a few drive periods and extract the absorbed power
density for a range of modulation frequencies (see Fig. 2). The
power density scales as ω3, in agreement with the Tomonaga-
Luttinger liquid prediction. At low frequencies there are small
deviations from the predicted scaling, as expected from a
contribution from boundaries (see Sec. IVA).

IV. BROKEN TRANSLATIONAL SYMMETRY

So far, our considerations have been restricted to an infinite
system without defects. This section focuses instead on the
case of systems with broken translational symmetry caused
by either boundaries or impurities.

A. Effects of boundaries

Since trapped atoms are systems of finite length, the ef-
fect of boundaries on their response must in principle be
considered. We examine in this section the effect of edge
potentials that pin the density and this can potentially modify
the response to shaking.

The bosonized Hamiltonian in the presence of forward-
scattering edge potentials becomes [17,44–47]

H =
∫ L

0

dx

2π

[
uK (π	)2 + u

K
(∂xφ)

2

]

− V

π
[∂xφ(0) + ∂xφ(L)], (26)

with the Dirichlet boundary conditions φ(0) = 0 and φ(L) =
−πN . Those boundary conditions ensure that no current can
leak through the edges of the system. As ρ(x) = −∂xφ/π , the
terms V simply represent a forward scattering in the vicinity
of the system edges. Note that with the Dirichlet boundary
conditions, a backscattering term −Vb cos 2φ(0) can be re-
duced to a forward-scattering term [17], so there is no loss
of generality in Eq. (26). Since in bosonization the particle-
hole symmetry is φ → −φ and 	 → −	, V vanishes in a
particle-hole symmetric system [46]. In the absence of such
symmetry however, those terms can be nonzero. When one
considers only the static properties, the edge potential can be
eliminated by modifying the Dirichlet boundary conditions
[47]. However, when we modulate the lattice, the edge poten-
tial can be time dependent V = V (J (t )), and for that reason,
it is better to retain the original boundary conditions. When
we differentiate the Hamiltonian (26) with respect to J0, as
in Eq. (16), the edge potential in (26) gives an extra edge
contribution proportional to ∂J0V to the operator Ob,

Ob =
∫ L

0

dx

2π

[
∂

∂J0
(uK )(π	)2 + ∂

∂J0

( u
K

)
(∂xφ)

2

]

− 1

π

∂V

∂J0
[∂xφ(0) + ∂xφ(L)]. (27)

The response coming from the edge potential is calculated in
Appendix D. It contributes

Pedge =
(
V

u

)2[
δJ

∂

∂J0

(
ln

VK

u

)]2
ω2

π
(28)

to the absorbed power. The total absorbed power is therefore
Ptot = Pedge + Pbulk ∼ ω2 + Lω3. The edge response domi-
nates below a crossover frequency ω∗ ∼ 1/L. The boundary
potential V remains to be determined. A possible approach
is to see how the Friedel oscillations are affected by these
scattering potentials at the boundary.

B. Friedel oscillations and determination of the edge potentials

The edge potential V in Eq. (26) can be deduced from
the Friedel oscillations [48–50] in the density profile of the
ground state. The explicit calculation of the density profile in
Appendix E leads us to an expression valid sufficiently far
from edges

〈ρ(x)〉 ∼ cos(2k′
Fx − ϕ)[

sin
(

πx
L

)]K , (29)

where 2k′
F = 2kF + 4KV

uL and ϕ = 2KV
u , with kF = πN0/L the

nominal Fermi wave vector of the Friedel oscillations in a sys-
tem of length L containing N0 bosons. From (29), consecutive
zeros of the Friedel oscillations are separated by the distance
π
2k′

F
= L

2N0
− L

N2
0

KV
πu + O(L/N3

0 ), instead of L
2N0

, revealing the
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presence of the edge potential. In the thermodynamic limit,
2k′

F reduces to 2kF . However, the phase shift ϕ = 2KV/u
persists and the fitted expression of the Friedel oscillations
obtained by MPS techniques reveals the presence or absence
of a potential near the edge.

C. Effects of a single impurity

Let us finally consider a single impurity located at x0
whose potential energy is given by Himp = Vρ(x)δ(x − x0).
Within the bosonization approach this term gives rise to two
terms in the Luttinger liquid Hamiltonian: a term − 1

π
∂xφ(x0),

which corresponds to a forward-scattering process, and a term
proportional to cos[2φ(x0)], which corresponds to backscat-
tering. Using the same treatment as above, the first term
will be leading to a dominant ω2 scaling function for the
absorbed power, while the backscattering will contribute a
term proportional to ω2(K−1) with K > 1 and thus less relevant
at low frequency. Thus the presence of a single impurity would
lead to a dominant ω2 contribution to the absorbed power.

V. GAPPED SYSTEMS

In the case of fermions with attractive interactions or in
the case of fermions or bosons with repulsive interactions at
commensurate filling, the spectrum can become gapped. The
response in that gapped regime can be calculated either in
the Luther-Emery limit [17,51] or in the more general case
using the form-factor expansion [52]. Both methods predict a
threshold in absorption power at the gap.

For the Bose-Hubbard model, below that gap the power
absorption will be zero. In the Fermi-Hubbard case with
repulsive interactions, we have seen that the spin response was
suppressed, so only the density response contributed. In the
gapped state, the density response also does not contribute at
frequency lower than the gap, making the threshold observ-
able as well. In the case of the Fermi-Hubbard model with
attractive interaction, since the density modes are gapless, the
response at low frequency will be the ∼|ω|3 contribution.
The threshold at the gap then appears as a cusp-shaped
rapid increase of absorption. The physical interpretation of
such threshold is quite simple. At frequencies lower than the
binding energy of two fermions of opposite spins, the pairs of
fermions behave as an interacting boson gas [27], yielding the
∼|ω|3 contribution to the absorbed power. As the frequency
becomes comparable to the binding energy of the pair, another
absorption channel from dissociation of the pairs becomes
available, leading to the rapid increase of absorption.

For concreteness, let us first consider the Fermi-Hubbard
model in the Mott insulating phase for the particular case of
the Luther-Emery limit where Kρ = 1/2. In that limit, the
resulting absorbed power is given by (see Appendix F for a
detailed calculation)

PLE = L�2

u

(
5aδJ

2u
sin(kFa)

)2√(ω

2

)2
− �2, (30)

where 2� < ω < 4�, leading to a cusp singularity at ω =
2�.

This analysis can be extended away from the Luther-
Emery point to any value of the Luttinger parameter by the

form-factor expansion for the sine-Gordon model [52–55], as
detailed in Appendix G (see also [56]). The main result for the
absorbed power (with 1/2 < Kρ < 1) is

PFF = L

(
2Kρ

K2
ρ + 1

)2
2M2

s |2a sin(kFa)δJ|2
πu3ρν

2

√
ω2 − 4M2

s ,

(31)

where we have found a threshold at twice the mass of the soli-
ton Ms and ν = Kρ/(1 − Kρ ) for the Fermi-Hubbard model.
For Kρ < 1/2, besides the threshold behavior (31), discrete
peaks coming from resonant absorption by soliton-antisoliton
bound states become possible. This behavior could be readily
observed in current experiments with cold atoms in the Mott
insulating regime [6,57].

The same threshold behavior as in Eqs. (30) and (31) was
also obtained in the opposite limit of a weak lattice [56] in
which the depth of the periodic potential was modulated. One
may thus speculate whether such threshold behavior is also
observed for intermediate lattice strengths.

VI. SUMMARY AND OUTLOOK

We have analyzed in the linear response the power ab-
sorbed by one-dimensional fermions and bosons in the
Tomonaga-Luttinger liquid [25] or Luther-Emery liquid [51]
phase, for the amplitude modulation of an optical lattice.
In the Tomonaga-Luttinger liquid, we have found that the
absorbed power possesses a universal ω3 power-law onset,
which has been confirmed by numerical simulations based on
matrix product states. We have also shown that this power law
crosses over to ∼ω2 at low frequency in finite systems, when
edge effects are taken into account. A similar ω2 behavior is
found for systems with a single impurity located in the bulk.

Such universal behavior is surprising since in the
Tomonaga-Luttinger liquid theory, response functions usually
show nonuniversal exponents determined by the interaction
strength [58]. The universal ω3 scaling of the absorbed power
can be readily measured for ultracold atoms in optical lattices
confined to one dimension by measuring the energy change
over time. In Luther-Emery liquid phases, which can be ob-
tained for commensurate densities or with spin-1/2 fermions
having an attractive interaction, the absorbed power vanishes
below a gap and shows a marked onset above, thus making it
possible to identify this energy scale.

The discussion in this paper focused on experiments with
spinless ultracold atoms. Before concluding this section we
briefly review other systems in which ideas developed in this
paper can be tested experimentally.

Bosonic spin mixtures in optical lattices can be used
to realize lattice spin Hamiltonians and spinor condensates
[59–61]. Recent experiments by Jepsen et al. [62] used
the magnetic field dependence of the interspecies scattering
length to realize XXZ spin chains with tunable anisotropy
of interactions. In the regime of easy plane anisotropy XXZ
chains are in the gapless regime, while the easy axis case
corresponds to the gapped regime. Periodic modulation of
Jz/J⊥ can be achieved in this system through periodic mod-
ulation of the magnetic field and should have an effect equiv-
alent to modulation of the interaction strength for spinless
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bosons. These experiments have high local resolution, which
will allow one to spatially resolve spin patterns induced by
modulation of the interaction anisotropy. Hence predictions of
our paper for both gapless and gapped regimes can be checked
experimentally.

Recent progress in superconducting nanotechnology
makes it possible to engineer arrays of coupled Josephson
junctions whose parameters can be controlled dynamically.
Lähteenmäki et al. [63] demonstrated a dynamical Casimir
effect in a one-dimensional chain of Josephson junctions, in
which the Josephson energy of the junctions was modulated
by periodically changing the background magnetic flux. Para-
metric generation of photons at half the modulation frequency
observed in these experiments is the direct analog of energy
absorption in the Luttinger liquid discussed in our paper.
Recent experiments by Kuzmin et al. [64] demonstrated the
possibility of tuning a chain of Josephson junctions through
the superconductor to insulator transition and explored evolu-
tion of the collective phase mode across the transition. Hence
1D superconducting metamaterials make it possible to study
modulation spectroscopy of 1D systems in both gapless and
gapped phases.

Although the focus of this paper has been on one-
dimensional systems, a similar analysis can be applied to
study periodic driving of higher-dimensional systems pro-
vided their lower-energy excitations allow a field-theoretic
description. Modulation of the kinetic energy of bosons in
optical lattices has been considered in the context of the Higgs
mode in systems with broken U(1) symmetry [4,65,66]. In
the superfluid phase in d = 2, 3 close to the critical point
the imaginary part of the response function of the operator
of kinetic energy develops a broad peak at the energy equal
to the Higgs mode frequency and has a universal scaling
form proportional to ωd+1 at smaller frequencies. The latter
is determined by the process of resonant excitation of pairs
of Goldstone modes with opposite momenta mediated by
the virtual excitation of the Higgs mode. This process is
equivalent to the mechanism of exciting pairs of Luttinger
liquid phonons considered in our paper for one-dimensional
systems. Thus energy absorption rate at low frequencies has
a general scaling form ωd+2. We also note that our formalism
should be useful for analyzing pump and probe experiments in
interacting electron systems [67–71]. Recent experiments by

von Hoegen et al. [72] have observed parametric excitation of
Josephson plasmons in YBCO superconductors following res-
onant excitation of apical oxygen phonons. The microscopic
mechanism of phonon-plasmon coupling is modulation of
the superfluid density in copper-oxide planes by the phonon-
induced motion of oxygen atoms. Analogously to what we
have discussed in this paper, resonant parametric excitation of
plasmon pairs has been a crucial component of experiments by
von Hoegen et al. One important difference, however, is that
three-wave mixing between phonons and plasmons involves
two different types of plasmons, the so-called lower and
upper Josephson plasmons. The formalism developed in our
paper can be extended to the case of parametric instabilities
involving different types of collective excitations. We expect
that resonant parametric interactions between phonons and
collective excitations of many-body electron systems should
be a ubiquitous phenomenon. Excited phonons can modulate
several parameters of electron systems, including effective
mass, interactions, and carrier density. Thus pump and probe
experiments can be used to achieve parametric driving of
a broad range of collective modes, including plasmons in
superconductors, spin waves in magnets, and phasons in in-
commensurate charge-density-wave systems.
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APPENDIX A: IRRELEVANT PERTURBATIONS

We want now evaluate the corrections to the response function (21) in the presence of an irrelevant perturbation Hp =
( g
2π )
∫
dx
∫
dτ cos[2φ(x, τ )]. To do this we apply second-order perturbation theory and thus we need to evaluate the average of

the time-ordered product of operators

�(x, τ ) = 〈Tτ ∂
2
x φ(x, τ ) cos[2φ(1)] cos[2φ(2)]∂

2
x φ(0, 0)

〉
, (A1)

where we used the compact notation 1 ≡ (x1, τ1) and similarly for 2. This average can be estimated from the correlator

〈Tτ e
iλ∂xφ(x,τ )eiμ∂xφ(0,0) cos[2φ(1)] cos[2φ(2)]〉, (A2)

taking the second derivative with respect to λ and μ in the limit λ,μ → 0 and keeping in mind the identity

〈Tτ	 je
iq j f (φ(x j ,τ j ))〉 = exp

⎛
⎝−

∑
i> j

q j〈Tτ f (φ(xi, τi )) f (φ(x j, τ j ))〉
⎞
⎠, (A3)
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where f (φ(x, τ )) = ∂xφ(x, τ ) or φ(x, τ ). This leads to the expression

�(x, τ ) = 64
∫

d1
∫

d2 e−2〈Tτ [φ(1)−φ(2)]2〉〈Tτ ∂xφ(x, τ )∂xφ(0, 0)〉〈Tτ ∂xφ(x, τ )∂xφ(0, 0)〉
× [〈Tτ ∂xφ(x, τ )φ(1)〉〈Tτ φ(1)∂xφ(0)〉 − 〈Tτ ∂xφ(x, τ )φ(1)〉〈Tτ φ(2)∂xφ(0)〉]. (A4)

This expression correspond to Hartree and Fock diagrams. Explicitly one has

e−2〈Tτ [φ(1)−φ(2)]2〉 =
(

α2

(α + u|τ1 − τ2|)2 + (x1 − x2)2

)K

, (A5)

while

〈Tτ ∂xφ(x, τ )φ(x1, τ1)〉 = ∂xG(x − x1, τ − τ1) = −K

2

(x − x1)

(x − x1)2 + (u|τ − τ1| + α)2
,

(A6)

〈Tτ ∂xφ(0, 0)φ(x1, τ1)〉 = ∂xG(x1, τ1) = K

2

x1
x21 + (u|τ1| + α)2

,

and similarly for the term with 1 → 2. In (A4) one can factorize the term∫
dx
∫

dτ

(
α2

(α + u|τ |)2 + x2

)K

=
∫

dτ
α2K

(α + u|τ |)2K−1

∫
dy

(1 + y2)K
= 2α2

u
I (K ), (A7)

which for K > 1 gives no power-law correction, and recognize the convolution integral∫
dτ1

∫
dx1∂xG(x − x1, τ − τ1)∂xG(x1, τ1) =

∫
dq

2π

∫
dω

2π
q2|G(q, ω)|2ei(qx−ωτ ). (A8)

Thus the Hartree correction of �(x, τ ) reduces to

�H (x, τ ) = α2

u
I (K )

∫
dq

2π

∫
dω

2π
q2|G(q, ω)|2ei(qx−ωτ )∂2

x G(x, τ )

= α2

u
I (K )

∫
dq

2π

∫
dν

2π
q4G(q, ν)G(−q,−ν)G(q, ω − ν), (A9)

where G(q, ν) = uK
ν2+(uq)2 . One can easily show that this integral does not increase with ω, so the Hartree correction can be

neglected.
The Fock correction instead reduces to the integral∫

d1
∫

d2

(
α2

(α + u|τ1 − τ2|)2 + (x1 − x2)2

)K

∂xG(x − x1, τ − τ1)∂xG(x2, τ2)∂
2
x G(x, τ ). (A10)

Turning to the Fourier transform representation, we find

∫
dx
∫

dτ
e−iqx+iωτ

[x2 + (u|τ | + α)2]
=
[√(

q2 + ω2

u2

)
α2

]K−1
1

2K−1�(K + 1)
KK−1

[√(
q2 + ω2

u2

)
α2

]
, (A11)

where K is the Bessel function of the second kind. It can be expanded for small q, ω, and K − 1 a noninteger: While the
zeroth-order term is q and ω independent, the first nonanalytic correction will be of the order (q2 + ω2

u2 )
K−1, which is subdominant

compared to q2 + ω2

u2 when K > 1. In the integral (A11) we recognize (up to a factor g2) the self-energy correction from a
diagrammatic point of view and thus we can write that qualitatively

�(q, ω) � �(0, 0) +C

(
q2 + ω2

u2

)K−1

, (A12)

neglecting holomorphic terms of order (q2 + ω2

u2 )α
2 and higher. We can thus evaluate the Fock correction (A10), which is∫

dν

2π

∫
dq

2π
q4[�(q, ν)G2(q, ν)G(−q, ω − ν) + �(−q, ω − ν)G2(−q, ω − ν)G(q, ν)]

= g2
∫

dν

2π

∫
dq

2π
q4
(
q2 + ν2

u2
α2

)K−1(
q2 + ν2

u2

)−2(
q2 + (ω − ν)2

u2

)−1

. (A13)
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FIG. 3. Luttinger liquid parameters. We evaluate (a) the Luttinger parameter K , (b) the Luttinger velocity u, and (c) the derivative of the
Luttinger parameter with respect to the kinetic energy dK/dJ0 as a function of the inverse system size L for various values of the interaction
strengthU and fixed density ρ0 = 1.2. Lines (dashed and solid) are guides to the eyes.

By simple power counting this integral behaves as ω2(K−1) and for K > 2 it is subdominant compared to the term ω2 as ω → 0.
So when K > 2 and the umklapp scattering is irrelevant, the intensity of the modulation spectroscopy behaves as

Imχ (ω) ∼ ω2 + g2ω2(K−1) + O(ω2K−2). (A14)

APPENDIX B: LUTTINGER PARAMETERS OF
THE BOSE-HUBBARD MODEL

We evaluate the Luttinger parameters for the Bose-
Hubbard model at filling ρ = 1.2 using matrix product states.
The Luttinger parameter K is obtained from the density-
density correlation function and the Luttinger velocity u from
the compressibility κ−1 = ∂2E

∂N2 = K
πu . The Luttinger param-

eters are shown as a function of the inverse system size
in Fig. 3. From the Luttinger parameters we can evaluate
the prefactor of the absorbed power, as stated in Eq. (22)
(see Fig. 4). We compare the analytically predicted prefactor
obtained from Luttinger liquid theory (closed circles) with the
prefactor of the absorbed power in the time-evolved many-
body state (stars), which is on the same order of magnitude.

APPENDIX C: EVALUATION OF THE RETARDED
CORRELATION FUNCTION

For the sake of definiteness, we present the calculation in
the case of bosons. The fermionic case proceeds along the

FIG. 4. Prefactor of the absorbed power. The analytically pre-
dicted prefactor F (K ) obtained in Eq. (22) (closed circles) is com-
pared to the numerically obtained prefactor from the full time evolu-
tion (stars). The data are shown for various values of the interaction
strength U and for a fixed density ρ0 = 1.2 as a function of the
inverse system size 1/L.

same line, with a simple change of prefactor. Using Wick’s
theorem, the correlator in Eq. (21) is rewritten

〈Tτ (∂xφ)
2(x, τ )(∂xφ)

2(0, 0)〉

= 2[〈Tτ ∂xφ(x, τ )∂xφ(0, 0)〉]2 = K2

2

[(u|τ | + α)2 − x2]2

[(u|τ | + α)2 + x2]4
,

(C1)

leading to

1

L
χM (ω) = π

8

(
u

πK

∂K

∂J0

)2 ∫ ∞

−∞

eiωτ

(u|τ | + α)3
dτ. (C2)

We need the integral

I (ω) =
∫ ∞

−∞

eiωτ

(uτ + α)3
dτ (C3)

and its analytic continuation. We write

1

(u|τ | + α)3
= 1

2

∫ ∞

0
k2e−k(u|τ |+α)dk (C4)

and obtain

I (ω) = 1

2

∫ +∞

0
dkk2e−kα

[
1

iω + uk
− 1

iω − uk

]
. (C5)

We find the analytic continuation iω → ω + i0+ of Eq. (C5)
using the identity

1

x + i0+
= P

(
1

x

)
− iπδ(x), (C6)

which gives

Imχ (iω → ω + i0+)

= L

16

(
u

K

∂K

∂J0

)2 ∫ +∞

0
dk k2

× e−kα[δ(ω − uk) − δ(ω + uk)] (C7)

= L

16u

(
1

K

∂K

∂J0

)2

ω2e−|ω|α/usgn(ω). (C8)

This leads to Eq. (19).
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APPENDIX D: CALCULATION OF THE RESPONSE
FUNCTION IN THE CASE OF A SYSTEM

WITH BOUNDARIES

In the case of a system with boundaries described by the
Hamiltonian (23) with the operator Ob given by (24), we first
rewrite

Ob = ∂

∂J0
(uK )

H

uK
−
∫

dx

π

u

K2

∂K

∂J0
(∂xφ)

2

+ V

π

∂

∂J0

[
ln

(
uK

V

)]
[∂xφ(0) + ∂xφ(L)] (D1)

and as before we only have to calculate the response function
of the bulk term proportional to (∂xφ)2 and the edge term
proportional to ∂xφ(0) + ∂xφ(L). To perform the calculation,
we first rescale the fields φ = √

Kφ̃ and 	 = 	̃/
√
K and

introduce the Fourier decomposition (E7) and (E8) to rewrite
the Hamiltonian (26) in terms of shifted harmonic oscillators

H = u

2

+∞∑
n=1

[
π	̃2

n +
(πn

L

)2 φ̃2
n

π

]

− V

π

√
2K

L

+∞∑
n=1

[1 + (−1)n]
πn

L
φ̃n (D2)

and the operator Ob, without the contribution proportional to
the Hamiltonian,

Ob = − u

πK

∂K

∂J0

∑
n

(πn

L

)2
φ̃2
n

+ V

π

∂

∂J0

[
ln

(
uK

V

)]√
2K

L

+∞∑
n=1

[1 + (−1)n]
πn

L
φ̃n.

(D3)

We now introduce φ̄n such that

φ̄n = φ̃n − L

πn

√
2K

L
[1 + (−)n]

V

u
(D4)

to have a Hamiltonian purely quadratic in φ̄n. In terms of the
new operators,

Ob = − u

πK

∂K

∂J0

∑
n

(πn

L

)2
φ̄2
n

+ V

π

∂

∂J0

[
ln
( u

VK

)]√2K

L

+∞∑
n=1

[1 + (−1)n]
πn

L
φ̄n.

(D5)

The first line gives the contribution calculated in Appendix C.
The second gives the contribution coming from the edge
potential. The necessary Matsubara correlator is

{
V

π

∂

∂J0

[
ln
( u

VK

)]}2 2K
L

+∞∑
n=1

(πn

L

)2
[1 + (−1)n]2

×〈Tτ φ̄n(τ )φ̄n(0)〉. (D6)

After taking the Fourier transform and making the analytic
continuation, we find

Imχedge(ω + i0+)

=
{
2V

π

∂

∂J0

[
ln

(
u

VK

)]}2
πK

L

+∞∑
n=1

+∞∑
n=1

2nπ

L
π

×
[
δ

(
ω − 2πnu

L

)
− δ

(
ω + 2πnu

L

)]
. (D7)

In the limit of L → +∞, we end up with

Imχedge(ω + i0+) =
{
2V

u

∂

∂J0

[
ln
( u

VK

)]}2 ωK

2π
, (D8)

yielding the edge contribution (25), to be added to the bulk
contribution.

APPENDIX E: FRIEDEL OSCILLATIONS

We consider a Bose-Hubbard chain of M sites with open
boundary conditions. Its Hamiltonian is

H = −J0

M−1∑
l=1

(b†l bl+1 + b†l+1bl ) + U

2

M∑
l=1

nl (nl − 1). (E1)

We introduce the fictitious sites 0 and M + 1 to write

H = −J0

M∑
l=0

(b†l bl+1 + b†l+1bl ) +U
M∑
j=1

nl (nl − 1), (E2)

and b0 = bM+1 = 0. The bosonized Hamiltonian reads

H =
∫ L

0

dx

2π

[
uK (π	)2 + u

K
(∂xφ)

2

]

− V1
π

∂xφ(0) − V2
π

∂xφ(L), (E3)

with L = (M + 1)a, and we have included some forward-
scattering potentialsV1 andV2 at the edges. Our original boson
Hamiltonian is symmetric under the reflection bl → bM+1−l .
Using the bosonized expressions of the boson annihilation
operators [17,25], we find that under reflection

Pφ(x)P† = −φ(L − x) − πN, (E4)

P	(x)P† = −	(L − x), (E5)

so that V1 = V2. The boundary conditions are derived in the
fermion case from consideration of the noninteracting limit
[45]. In the boson case, we have to consider the expression of
the density

ρ(x) = ρ0 − 1

π
∂xφ + A cos(2φ(x) − 2πρ0x), (E6)

which implies through the continuity equation that j =
∂tφ/π . Since no current can leak through the edges of the sys-
tem, we must have ∂tφ(0) = ∂tφ(L) = 0. So we must impose
the Dirichlet boundary conditions φ(0, t ) = ϕ0 and φ(L, t ) =
ϕ1. Moreover, since the number of particles in the system is
an integer, by integrating (E6) we find that (ϕ1 − ϕ0)π is an
integer. We can choose, for instance, ϕ0 = 0 and ϕ1 = −πN ,
where N is the number of particles added to the initial number
of particles in the ground state NGS with ρ0 = NGS/L. We note
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that ∂xφ can still be nonvanishing as an operator, so we can a
priori have edge scattering potentials V1 and V2 in (E3).

Now we introduce the Fourier decomposition

φ(x) = −πNx

L
+

+∞∑
n=1

√
2

L
sin
(nπx

L

)
φne

−nε/2, (E7)

	(x) =
+∞∑
n=1

√
2

L
sin
(nπx

L

)
	ne

−nε/2, (E8)

which allows us to rewrite

H = uL

2πK

(
πN

L

)2

+ πN

L

V1 +V2
π

+ u

2

+∞∑
n=1

πK	2
n + 1

πK

(πn

L

)2
φ2
n

−
+∞∑
n=1

√
2

L

n

L
[V1 + (−)nV2]φn. (E9)

Until now, we have made no assumption concerning the
symmetry of our bosonized Hamiltonian under parity. Using
the Fourier expansion (E7), we can show that under a parity
transformation PφnP† = (−1)nφn. In the Hamiltonian (E9)V1
and V2 are exchanged by the parity transformation. So we
recoverV1 = V2 for a parity invariant Hamiltonian. To find the
ground state, we have to minimize the first line with respect to
N and determine the shift of oscillators imposed by the edge
potentials. The minimization with respect to N yields

N = E

(
1

2
− K

πu
(V1 +V2)

)
, (E10)

while the shift of oscillators is

〈φn〉 = K

πu

√
2L

V1 + (−)nV2
n

. (E11)

The expectation value of φ(x) in the ground state is then

〈φ(x)〉 = −πx

L
E

(
1

2
− K

πu
(V1 +V2)

)

+ 2K

πu

+∞∑
n=1

V1 + (−)nV2
n

sin
(nπx

L

)
e−nε/2. (E12)

We thus have

〈φ(x)〉 = 2K

πu

[
V1 arctan

(
sin
(

πx
L

)
eε/2 − cos

(
πx
L

)
)

− V2 arctan

(
sin
(

πx
L

)
eε/2 + cos

(
πx
L

)
)]

− πx

L
E

(
1

2
− K

πu
(V1 +V2)

)
. (E13)

Taking the limit of ε → 0, for x far enough from an edge, we
find the simplified expression

〈φ(x)〉 = KV1
u

−K (V1 +V2)

u

x

L
−πx

L
E

(
1

2
− K

πu
(V1 +V2)

)
,

(E14)

which is a periodic function of K (V1 +V2)/πu of period 1.
So we can restrict ourselves to |K (V1 +V2)/(πu)| < 1/2 and
drop the integer part in Eq. (E14). Using Luttinger liquid
theory and the expression (E6), we derive

〈ρ(x)〉 = 1

L

[
Ntot + K (V1 +V2)

πu

]
+ A cos

[
2KV1
u

− 2πx

L

(
Ntot + K (V1 +V2)

πu

)](
πa

L sin( πx
L )

)K

,

(E15)

and we see that far from the edges, the Friedel oscillations be-
haves as if the number of particles was N ′

tot = Ntot + K (V1+V2 )
πu .

The expression (E15) applies only when α � x and α � L −
x. It corresponds to the effective Dirichlet boundary condi-
tions φ(0) = KV1

u and φ(L) = −KV2
u that result from the phase

shift on φ(x) imposed by the edge potentials. When 0 < x <

α = εL, we cannot take the limit ε → 0 in Eq. (E13). There
〈φ(x)〉 = O(x/α) → 0, ensuring that the original Dirichlet
boundary conditions are satisfied.

APPENDIX F: LUTHER-EMERY LIMIT

Let us consider the case of the Fermi-Hubbard model in
the Mott insulating phase. When looking at the bosonized
expression of the operator O f Eq. (12), we can rescale the
fields 	ρ → 	ρ/

√
Kρ and φρ → √

Kρφρ such that the oper-
ator O f ,ρ becomes

O f ,ρ = 2a sin(kFa)
∫

dx

2π

[
(π	ρ )2

Kρ

+ Kρ (∂xφρ )
2

]
. (F1)

The bosonized Hamiltonian for the fermions can also be
written in terms of the rescaled fields and at the Luther-Emery
point [51] Kρ = 1

2 it becomes

Hρ =
∫

dx

2π
uρ[(π	ρ )

2 + (∂xφρ )
2] − 2g3

(2πα)2

∫
dx cos 2φρ.

(F2)
That Hamiltonian is rewritten by introducing the pseud-
ofermions

�R(x) = ei[θ (x)−φ(x)]

√
2πα

, (F3)

�L(x) = ei[θ (x)+φ(x)]

√
2πα

(F4)

in the form of a gapped noninteracting Hamiltonian

Hρ = −iuρ

∫
dx(�†

R∂x�R−�L∂x�L ) − �(�†
R�L+�

†
L�R),

(F5)

where � = 2g3
4πα

. In terms of the pseudofermions we can
rewrite the operator Oρ as

Oρ = O1 + O2, (F6)

O1 = −5a

2
i sin(kFa)

∫
dx(�†

R∂x�R − �L∂x�L ), (F7)

O2 = 3πa sin(kFa)
∫

dx ρRρL, (F8)
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where ρL,R = �
†
L,R�L,R is the density operator of the L,R

fermions. We have to evaluate the Matsubara correlator

χ (τ ) =
∑
i=1,2

∑
j=1,2

χi j (τ ), (F9)

with χi j (τ ) = 〈TτOi(τ )Oj (0)〉. This correlator can be ex-
pressed in terms of the creation and annihilation operators
through the representation �ν = 1√

L

∑
k e

ikxck,ν , in terms of
which the Hamiltonian (F5) is written as

Hρ =
∑
k

uρk(c
†
kRckR − c†kLckL ) − �(c†kRckL + H.c.). (F10)

This Hamiltonian can be diagonalized by standard
Bogoliubov transformations and expressed in the

form

H ′
ρ =

∑
k

Ek (c
†
k+ck+ − c†k−ck−), (F11)

with Ek = √(uρk)2 + �2, ckR = cosϕkck+ − sin ϕkck−, and
ckL = sin ϕkck+ + cosϕkck−. Then the calculations of the cor-
relators (F9) proceeds by applying Wick’s theorem once the
single-particle Green’s function are known:

〈Tτ ckR(L)(τ )c
†
kR(L)(0)〉 = 1

2

[
sgn(τ ) ± uρk

E (k)

]
e−|τ |E (k),

〈Tτ ckR(L)(τ )c
†
kL(R)(0)〉 = �

2E (k)
e−|τ |E (k). (F12)

The results for the correlators are

χ11(τ ) = 25

4
a2 sin2(kFa)�

2
∑
k

k2

E (k)2
e−2|τ |E (k),

χ22(τ ) = 9π2a2 sin(kFa)2

L2

∑
k1,...,k4

δk1+k2,k3+k4 exp

⎛
⎝−|τ |

4∑
j=1

E (k j )

⎞
⎠

× 1

16

[(
sgn(τ ) + uk4

E (k4)

)(
sgn(τ ) + uk3

E (k3)

)
− �2

E (k3)E (k4)

]

×
[(

sgn(−τ ) + uk1
E (k1)

)(
sgn(−τ ) + uk2

E (k2)

)
− �2

E (k1)E (k2)

]
,

χ12(τ ) = χ21(τ ) = 0. (F13)

The correlator χ22 can be simplified close to the threshold
where an expansion up to order O(k2) can be performed
such that χ22(τ ) ∼ ( �

|τ | )
7/2e−4|τ |�. In the complex frequency

plane the correlator χi j (iω) = ∫∞
−∞ dτ 〈TτOi(τ )Oj (0)〉 can be

analytically extended to evaluate the imaginary part. The
result of the calculation gives

Imχ11(iω → ω + i0) = 25a2 sin(kFa)2

2
L

�2

ωu3

√
ω2

4
− �2,

(F14)

which shows a threshold at ω = 2� while Imχ22 has a
threshold at ω = 4�. The resulting absorbed power in the
Luther-Emery limit is

PLE = L�2

u

(
5aδJ

2u
sin(kFa)

)2√(ω

2

)2
− �2 (F15)

for 2� < ω < 4�. This analysis can be extended away from
the Luther-Emery point to any value of K = Kρ by using the
form-factor expansion for the sine-Gordon model [52–55], as
detailed in Appendix G (see also [56]).

APPENDIX G: FORM-FACTOR APPROACH

In the present Appendix we want to extend the results
derived using the Luther-Emery limit to any value of Kρ . For
Kρ > 1/2 the excitations are massive solitons and antisolitons
of mass Ms, while for K < 1/2 we also have breathers of
massMn = 2Ms sin(nπ

2
K

1−K ) with 1 � n < 1
Kρ

− 1 an integer.
Working in the vicinity of the Luther-Emery point, the low-
energy Hamiltonian is

H = −i
uρ

2

(
2Kρ + 1

2Kρ

)∫
dx(�†

R∂x�R − �L∂x�L )

− g

2πα
(�†

R�L+�
†
L�R)

−πuρ

(
2Kρ − 1

2Kρ

)∫
dx ρ̂Rρ̂L, (G1)

where the operator ρ̂a = �†
a�a, a = L,R. It is the Hamilto-

nian of a massive Thirring model [73],

H = −iv̄
∫

dx(�†
R∂x�R − �L∂x�L )

−M
∫

dx(�†
R�L + �

†
L�R) − ḡ

∫
dx ρ̂Rρ̂L, (G2)

where v̄ = u
2 (2K + 1

2K ),M = g
2πα

, and ḡ = πuρ (2K − 1
2K ).
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The kinetic energy operator is related to the component T 11

of the momentum-energy tensor (see [74]), so

uρ

2a sin(kFa)
O = 2Kρ

2K2
ρ + 1

∫
dx T 11(x)

+ 2πuρ

K2
ρ − 1

K2
ρ + 1

∫
dx ρ̂Rρ̂L. (G3)

Since ρ̂Rρ̂L = ψ̂
†
Rψ̂

†
Lψ̂Rψ̂L, that operator can only have matrix

elements between the ground state of the massive Thirring
model and a state containing two solitons and two antisolitons,
i.e., a state with energy at least 4Ms. So that term will not
contribute for frequencies ω < 4Ms and we will have

Imχρ (ω) = L

(
4Kρa sin(kFa)

uρ (K2
ρ + 1)

)2

Imχ ss̄(ω), (G4)

where the contribution Imχ ss̄(ω) of the T 11 component of
the momentum-energy tensor is obtained from the form-factor
expansion [53–55]. For the lowest excited state formed of a
single soliton-antisoliton pair, we have

Imχ ss̄(ω) = 2π
∫

dθ d θ̄

(2π )2
|〈0|T 11|θ, θ̄〉ss̄|2

× δ

(
Ms

uρ

(sinh θ + sinh θ̄ )

)

× δ(ω − Ms(cosh θ + cosh θ̄ )), (G5)

where, according to [55], the form factor of the energy-
momentum tensor is

〈0|T 11|θ1, θ2〉ss̄ = −2i
M2

u
cosh2

(
θ1 + θ2

2

)

× sinh

(
θ1 − θ2

2

)
F+(θ1 − θ2)

ν
, (G6)

F+(θ ) = i cosh(θ/2)

sinh( iπ−θ
2ν )

Fmin(θ ), (G7)

Fmin(θ ) = exp

[∫ +∞

0

dt

t

sinh 1
2 (1 − ν)t

sinh νt
2 cosh t

2

1 − cosh
(
1 − θ

iπ

)
t

2 sinh t

]
.

(G8)

Here ν = Kρ/(1 − Kρ ) for the Fermi-Hubbard model and
ν = K/(2 − K ) for the Bose-Hubbard model. When θ → 0,
F+(θ ) → 1, giving, for ω → 2M+,

Imχ ss̄(iω → ω + i0) = 4M3
s

πωuρν2

√(
ω

2Ms

)2

− 1. (G9)

Now we have a threshold at twice the mass of the soliton.
A similar threshold behavior was also obtained in the case of
modulation of a weak optical lattice [56]. Technically, this can
be understood as follows. We can always subtract an operator
proportional to the Hamiltonian (G2) from the operator O. So
we would obtain an equivalent result if T 11 were replaced by
a term proportional to �

†
R�L + �

†
L�R, which is precisely the

perturbing term in [56].
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