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Abstract—Graph neural network (GNN) has shown superior performance in dealing with structured graphs, which has attracted
considerable research attention recently. Most of the existing GNNs are designed in Euclidean spaces; however, real-world spatial
structured data can be non-Euclidean surfaces (e.g., hyperbolic spaces). For example, biologists may inspect the geometric shape of a
protein surface to determine its interaction with other biomolecules for drug discovery. Although there is growing research on generalizing
GNNs to non-Euclidean surfaces, the works in these fields are still scarce. In this paper, we exploit the graph attention network to learn
robust node representations of graphs in hyperbolic spaces. As the gyrovector space framework provides an elegant algebraic formalism
for hyperbolic geometry, we utilize this framework to learn the graph representations in hyperbolic spaces. Specifically, we first use the
operations defined in the framework to transform the features in a graph; and we exploit the proximity in the product of hyperbolic
spaces to model the multi-head attention mechanism in the non-Euclidean setting; afterward, we further devise a parallel strategy
using logarithmic and exponential maps to improve the efficiency of our proposed model. The comprehensive experimental results
demonstrate the effectiveness of the proposed model, compared with state-of-the-art methods.

Index Terms—Deep Learning, Hyperbolic Space, Representation Learning, Graph neural network.

F

1 INTRODUCTION

THe real-world data usually come together with the
graph structure, such as social networks, citation net-

works, biology networks. Graph neural network (GNN)
[1], [2], as a powerful deep representation learning method
for such graph data, has shown superior performance on
network analysis and aroused considerable research inter-
est. There have been many studies using neural network
to handle the graph data. For example, [1], [2] leveraged
deep neural network to learn node representations based
on node features and the graph structure; [3], [4], [5] pro-
posed the graph convolutional networks by generalizing
the convolutional operation to graph; [6] designed a novel
convolution-style graph neural network by employing the
attention mechanism in GNN. These proposed GNNs have
been widely used to solve many real-world application
problems. [7], [8], [9] proposed recommender systems based
on GNNs. [10], [11] leveraged graph convolution to solve
disease prediction problem.

Essentially, most of the existing GNN models are primar-
ily designed for the graphs in Euclidean spaces. The main
reason is that Euclidean space is the natural generaliza-
tion of our intuition-friendly and visible three-dimensional
space. However, real-world spatial structured data can be
non-Euclidean surfaces (e.g., hyperbolic spaces) [12], [13].
For example, biologists may inspect the geometric shape
of a protein surface to determine its interaction with other
biomolecules for drug discovery; physicists find some statis-
tical mechanics (e.g., heterogeneous degree distributions) of
complex networks can be naturally discovered in hyperbolic
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(a) A triangular hyperbolic tiling (b) A tree with branching factor 3

Fig. 1. Two examples of hyperbolic spaces (Poincaré disk model).

geometry [14]; In such cases, existing models that assume
spatial structure to be on a Euclidean plane may fail to
achieve satisfied performance. On the other hand, several
works [14], [15] have demonstrated that the hyperbolic
spaces could be the latent spaces of graph data, as the hyper-
bolic space may reflect some properties of graph naturally,
e.g., hierarchical and scale-free structure [14], [16]. Inspired
by this insight, the study of graph data in hyperbolic spaces
has received increasing attentions, such as hyperbolic graph
embedding [15], [17], [18], [19].

Compared with Euclidean spaces, one key property
of hyperbolic spaces is that they expand faster, because
Euclidean spaces expand polynomially while hyperbolic
spaces expand exponentially. For instance, each tile in Fig.
1(a) is of equal area in hyperbolic space but diminishes to-
wards zero in Euclidean space towards the boundary. As the
tiles grow exponentially, there is sufficient room to embed
these tiles. So that we have shrunk the tiles in this Euclidean
diagram for visualization. With these properties, hyperbolic
spaces can be thought of as “continue tree”. As shown in Fig.
1(b), considering a tree with branching factor b, the number
of nodes at level l or no more than l hops from the root
are (b + 1)bl−1 and [(b + 1)bl − 2]/(b − 1) respectively. The
number of nodes grows exponentially with their distance to
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the root of the tree, which is similar to hyperbolic spaces
as they expand exponentially. Also, the graphs with tree
structure can be embedded into 2-dimensional hyperbolic
spaces naturally. Given a node at level l, the node can be
placed on a sphere in hyperbolic spaces with distance d ∝ l
to the origin of the sphere, and the branching factor b can be
modeled by the constant curvature of hyperbolic spaces as
K = − ln2 b. Therefore, there is a strong correlation between
tree-likeness graph and hyperbolic spaces [14], [15]. With
this property, hyperbolic spaces have been considered to
model complex network recently [14], [16]. These researches
discover that graphs with hierarchical structure and power-
law distribution are suitable to be modeled in hyperbolic
spaces. Meanwhile, graph data with these properties exist
widely, such as social networks, network community struc-
tures, citation graphs and biology networks [14], [20], which
motivates us to study the GNN in hyperbolic spaces.

Despite the powerful modeling ability on graph data of
hyperbolic spaces, there are two key challenges in designing
the graph attention network in hyperbolic spaces: (1) One
is that there are many different procedures in GNNs, e.g.,
the projection step, the attention mechanism, and the prop-
agation step. However, different from Euclidean spaces,
hyperbolic spaces are not vector spaces, so the vector op-
erations (e.g., including vector addition, subtraction and
scalar multiplication) cannot be carried in hyperbolic spaces.
Although these are some attempts in designing some hy-
perbolic graph operations, e.g., feature transformation [21],
[22], it is unclear how to design the multi-head attention
mechanism in the hyperbolic setting, which is a key step
in GAT (graph attention network) [6]. Also, as hyperbolic
spaces have negative curvatures, choosing a proper curva-
ture is needed to our model. How can we effectively implement
those hyperbolic graph operations of GNN, especially for multi-
head attention, in an elegant way? (2) Another challenge is
that mathematical operations in hyperbolic spaces could
be more complex than those in Euclidean spaces. Some
basic properties of mathematical operations, such as the
commutative or associative of “vector addition”, are not
satisfied anymore in hyperbolic spaces. How can we assure
the learning efficiency in the proposed model?

To address the above challenges, in this paper, we pro-
pose a novel Hyperbolic graph ATtention network (denoted
as HAT). Specifically, inspired by [23], we use the framework
of gyrovector spaces to build the graph attentional layer in
hyperbolic spaces. Gyrovector spaces are the mathematical
concepts proposed by Ungar [24], [25], [26], which study
hyperbolic geometry in an analogy vector spaces way. In
other words, just like vector spaces form algebraic formal-
ism for Euclidean geometry, the framework of gyrovector
spaces provides an elegant algebraic formalism for hyper-
bolic geometry. Therefore, we use the gyrovector opera-
tions in hyperbolic spaces to transform the features of the
graph and exploit the proximity in hyperbolic spaces to
model the multi-head attention mechanism. To improve the
learning efficiency, we further propose a logarithmic map
and exponential map based method to parallel our model,
in the premise of preserving the character in hyperbolic
spaces. In sum, the major contributions of this work can
be summarized as follows:
• We propose a novel hyperbolic graph attention net-

work, named HAT, which is the first to propose the hy-
perbolic multi-head attention mechanism. We employ
the framework of gyrovector spaces to implement the
hyperbolic graph processing.

• We design a method to accelerate our model while
preserving the property in the hyperbolic spaces by
using the logarithmic map and exponential map, which
assures the efficiency of our proposed HAT model.

• We conduct extensive experiments to evaluate the per-
formance of HAT on four datasets. The results show the
superiority of HAT in node classification task compared
with the state-of-the-art methods.

The rest of this paper is organized as follows. Section 2
briefly reviews the related work. The node distribution in
graphs and the concept of gyrovector spaces are introduced
in Section 3. Section 4 presents the proposed model HAT as
well as the acceleration strategy. Experiments on three real-
world datasets are presented in Section 5. Finally, Section 6
concludes the paper.

2 RELATED WORK

In this section, we introduce GNNs, as well as the hyperbolic
representation learning methods.

2.1 Graph Neural Network

GNN aims to extend the deep neural network to deal with
arbitrary graph-structured data [1], [2]. Recently, there is a
surge of generalizing convolutions to the graph domain.
This direction can be categorized as spectral approaches
and non-spectral approaches. Spectral approaches work
with a spectral representation of the graphs. [27] extended
convolution to general graph by finding the corresponding
Fourier basis. [3] utilized K-order Chebyshev polynomials to
approximate smooth filters in the spectral domain. [4] lever-
aged a localized first-order approximation of spectral graph
convolutions to learn the node representations. [28] nor-
malized each node and its neighbors, which served as the
receptive field for the convolutional operation. Non-spectral
approaches define convolutions directly on the graph and
operate on groups of spatially close neighbors. [5] proposed
a framework to generate representations by sampling and
aggregating features from the local neighborhoods of a
node. [28] extracted and normalized each node and its
neighborhoods, and the normalized neighborhood served as
the receptive field for the convolutional operation. Besides,
some researchers proposed other propagation methods of
Message Passing process of GNN. [29] proposed the gated
graph neural network which used the Gate Recurrent Units
in the propagation step. [30] proposed the Sentence LSTM
for improving text encoding which converted text into a
graph and utilized the Graph LSTM to learn the represen-
tation. [6] studied the attention mechanism in GNN which
incorporated the attention mechanism into the propagation
step. Based on [6], [31] proposed a graph attention network
with node-level attention as well as semantic-level attention
on heterogeneous graphs. [32] uses the relationship between
GCN and PageRank to derive an improved propagation
scheme based on personalized PageRank. There are some
GNNs applied to recommender systems. [7] developed an
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efficient GCN algorithm for recommendation which com-
bined efficient random walks and graph convolutions to
generate embeddings of nodes. [8] proposed a recommender
system which modeled the social influence with a graph
attention network and user behaviors with a RNN. A com-
prehensive review can be found in [33]. To sum up, most
GNNs model graph in Euclidean spaces.

2.2 Representation Learning in Hyperbolic Spaces
Recently, representation learning in hyperbolic spaces has
received increasing attention, and has been widely applied
to many fields, such as graph embedding, natural lan-
guage processing and recommender systems. For graph
embedding, [15] embedded graph into hyperbolic spaces
to learn the hierarchical feature representation. [17] focused
on discovering pairwise hierarchical relations between con-
cepts via embedding graph in hyperbolic spaces. [18] pro-
posed a novel combinatorial embedding approach as well
as a approach to multi-dimensional scaling in hyperbolic
spaces. [34] considered the power-law distribution in het-
erogeneous information network and learnt the embed-
ding in hyperbolic spaces. For natural language processing,
Inspired by [15], [35] embedded text in Poincaré model
to learn the words and sentences in hyperbolic spaces.
[36] focused on question answering problem, modeling the
relationship between question and answer representations
in hyperbolic spaces. [37] modeled the words in a hyper-
boloid in Minkowski space to learn the word representa-
tions. [38] proposed a novel word embedding method in a
Cartesian product of hyperbolic spaces. For recommender
systems, [39] designs a recommendation algorithm based
on Bayesian personalized ranking in hyperbolic spaces.
[40] presents a large scale recommender system in hyper-
bolic spaces by using Einstein midpoint. Besides, some
researchers began to study the deep learning in hyperbolic
spaces. [23] generalized deep neural models in hyperbolic
spaces, such as recurrent neural networks and gated recur-
rent unit. [41] proposes attention mechanism in hyperbolic
spaces to perform better representation learning. [42] learns
graph representations based on adversarial learning via
training an autoencoder. Recently, some hyperbolic GCNs
are proposed to learn node representations. [21] proposes
graph neural networks in hyperbolic spaces which focuses
on graph classification problem. [22] leverages hyperbolic
graph convolution to learn the node representation in the
hyperboloid model. It worth noting that our model is differ-
ent from these hyperbolic GNNs, because our model focus
on node classification task and design our model in Poincaré
ball model. A detailed comparison of the hyperbolic GNNs
can be found in Section 4.6.

3 PRELIMINARIES

3.1 Hyperbolic Spaces and Graphs
We provide some detail reasons for modeling graphs with
hyperbolic geometry. As mentioned in Section 1, one key
property of hyperbolic spaces is that they expand faster
than Euclidean spaces. Specifically, considering a disk in
a 2-dimensional hyperbolic space with constant curvature
β = −1, the perimeter and area of the disk of hyper-
bolic radius r are given as 2π sinh r and 2π(cosh r − 1),

TABLE 1
Notations and Explanations.

Notation Explanation
Rd d-dimension Euclidean space
Dd
c d-dimension open ball with parameter c

1/
√
c the radius of open ball Dd

β the curvature of a hyperbolic space
TxDd

c the tangent space at point x
λcx conformal factor
fi input feature of node i
pi the feature of node i after exponential map
hi the feature of node i after linear transformation
h′i the final aggregated feature of node i
Hi the feature of node i in product hyperbolic space
M weight matrix

exp(·) exponential map
log(·) logarithmic map
dc(·, ·) the distance in gyrovector spaces
α the attention coefficient
w the normalized attention coefficient
Ni the neighborhoods of node i

respectively, and both of them grow as er with r. 1 In a 2-
dimensional Euclidean space, the length of a circle and the
area of a disk of Euclidean radius r are given as 2πr and πr2,
growing only linearly and quadratically with regard to r.
With this property, some researches discover that hyperbolic
spaces may be the inherent spaces for graphs with hierar-
chal structure and power-law distribution [14], [16]. Hence,
many real graphs with hierarchical structure and power-
law distribution are suitable to be modeled in hyperbolic
spaces [43], [44]. Moreover, it is well known that hierarchical
structure is a universal phenomenon for real-world graphs
[45], including citation networks, social networks, biology
networks [14], [20]. Therefore, the conclusion has been made
that many real world graphs are suitable to be modeled in
hyperbolic spaces.

3.2 Differential Geometry
To study graph attention network in hyperbolic spaces,
differential geometry should be used. Here, we will briefly
introduce some basic related concepts, and more elaborate
details of differential geometry can be found in [46], [47].

Manifold. A n-dimensional manifold M is a topological
space that can be locally approximated by a n-dimensional
Euclidean space Rn.

Riemannian metric. A Riemannian metric on M is a
collection of inner products: TxM× TxM → R, for every
x ∈M.

Riemannian manifold. A smooth manifold equipped with
a Riemannian metric is called a Riemannian manifold. The
hyperbolic space can be described by some different models,
which are defined by different Riemannian manifolds.

Tangent space. The tangent space ofM at a point x ∈ M
is defined as the n-dimensional vector space approximating
M around x at a first order and denoted by TxM. Also,
tangent vectors are the elements of TxM. The tangent space
is useful when we need to conduct graph operations in
hyperbolic spaces.

Exponential map. The exponential map expx : TxM →
M is a map from a subset of a tangent space TxM of a

1. Because of sinh r = 1
2
(er − e−r), cosh r = 1

2
(er + e−r)
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Riemannian manifoldM toM itself. In Euclidean space, the
exponential map have the formulation as expx(s) = x+ s.

3.3 The Poincaré Ball and Gyrovector Spaces
Vector spaces form the algebraic formalism in Euclidean
spaces, so we can use vector operations such as vector
addition, subtraction and scalar multiplication in Euclidean
spaces. These operations are widely used to design algo-
rithms in Euclidean space. However, they cannot be car-
ried in hyperbolic spaces. Fortunately, the framework of
gyrovector spaces provides an algebraic formalism for hy-
perbolic geometry [24], [25], [26]. The gyrovector spaces are
defined in the Poincaré ball, which is a isometric model of
hyperbolic geometry [48] and enable some operations, such
as vector addition and scalar multiplication, to be carried
in hyperbolic spaces. We can use gyrovector operations to
design the algorithms in hyperbolic spaces. Therefore, we
briefly introduce the Poincaré ball model and gyrovector
spaces here.

Gyrovector spaces are the tools for the formulation of
special relativity, allowing to add speed vectors belonging
to the Poincaré ball of radius c (i.e., the speed of light), so
that the speed vectors remain in the ball and not exceeding
the speed of light [23], [26]. The operations in gyrovector
spaces are very useful in design hyperbolic deep learning
methods, and the gyrovector spaces are building upon an
open d-dimensional Poincaré ball:

Dd
c := {x ∈ Rd : c‖x‖2 < 1},

with the Riemannian metric: gx = (λcx)
2gR, where λcx =

2/(1 − c‖x‖2), gR = Id, and c ≥ 0 is corresponding to
the radius of the ball. If c = 0, then the ball equals to the
Euclidean space, i.e., Dd

c = Rd; if c > 0, then Dd
c is the open

ball of radius 1√
c

; if c = 1, then we recover the usual ball Dd.
Also, the curvature of hyperbolic space is denoted as β and
β = −c. The notations we will use throughout the article
are summarized in Table 1.

4 THE PROPOSED MODEL

In this section, we present our hyperbolic graph attention
network model, named HAT, whose framework is shown
in Fig. 2. Hence, our model can be summarized as two
procedures: (1) The hyperbolic feature projection. Given
the original input node feature, this procedure projects it
into a hyperbolic space through the exponential map and
the hyperbolic linear transformation, so as to obtain the
latent representation of the node in hyperbolic space. (2) The
hyperbolic attention mechanism. This procedure designs
an attention mechanism based on the hyperbolic proximity
to aggregate the latent representations. Also, we devise an
acceleration strategy to speed up the proposed model by
using logarithmic and exponential mapping, since opera-
tions in hyperbolic spaces are usually more complex and
time consuming than that in Euclidean spaces. Moreover,
we leverage the product of hyperbolic spaces to achieve
the multi-head attention. Finally, we feed the aggregated
representations to a loss function for the downstream task.
Here we mainly describe a single graph attentional layer, as
the sole layer is used throughout all of our proposed HAT
architectures in our experiments.
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Linear Transform
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Fig. 2. The framework of HAT model.

4.1 The HAT Model
In this section, we present our HAT model and detail its
main procedures.

The hyperbolic feature projection. The procedure mainly
focuses on dealing with an input node and projects it into the
hyperbolic spaces as a latent representation.

The input of GNN is the node feature, which usually
lives in Euclidean spaces. To make the node feature avail-
able in hyperbolic spaces, we use the exponential map to
project the feature into the hyperbolic spaces [21], [22].
Specifically, let fi be the feature of node i, and then for
fi ∈ TxDd

c\{0} 2 , where x is a point in hyperbolic spaces
and TxDd

c is the tangent space at point x, the exponential
map expcx : TxDd

c → Dd
c is given for x 6= 0 by:

expcx(fi) = x⊕c

(
tanh(

√
c
λcx‖fi‖

2
)

fi√
c‖fi‖

)
, (1)

when x = 0, the exponential map is defined as:

expc0(fi) = tanh(
√
c‖fi‖)

fi√
c‖fi‖

, (2)

where λcx := 2
(1−c‖x‖2) is a conformal factor. The operation

⊕c is the Möbius addition and it will be interpreted in Eq.
(6). Here we assume that the feature fi lies in the tangent
spaces at the point x = 0, so we can get the new feature
pi ∈ Dd

c in hyperbolic spaces via pi = expc0(fi).
We then transform pi into a higher-level latent represen-

tation hi to obtain sufficient representation power. To this
end, we use a shared linear transformation parametrized by
a weight matrix M ∈ Rd′×d (where d′ is the dimension of
the final representation). The challenge is that we cannot
simply use the Euclidean matrix-vector multiplication, and
instead, here we employ the Möbius matrix-vector multipli-
cation [23]. If Mpi 6= 0, we have:

hi=M⊗cpi=
1√
c
tanh

(‖Mpi‖
‖pi‖

tanh−1(
√
c‖pi‖)

)
Mpi

‖Mpi‖
,

(3)

2. \{0} means the point 0 is not included.
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and if Mpi = 0, M⊗cpi = 0. This operation satisfies the
matrix associativity: (MM′)⊗cpi = M⊗c (M

′⊗cpi). Here
hi ∈ Dd′

c is the representation of node i in the hyperbolic
space, which can be considered as a latent representation in
the hidden layer of HAT.

The hyperbolic attention mechanism. The procedure aims
to learn the attention coefficient based on the latent representation
using hyperbolic similarity and to obtain the aggregated represen-
tation in hyperbolic spaces.

We then perform a self-attention mechanism on the
nodes. The attention coefficient αij , which indicates the
importance of node j to node i, is as follows:

αij = f(hi,hj), (4)

where f represents the function of computing the attention
coefficient. Here we only compute αij for nodes j ∈ Ni,
where Ni is the neighbors of node i in the graph. Consider-
ing a large attention coefficient αij for the high similarity of
nodes j and i, we define f based on the distance in hyper-
bolic spaces, which is able to measure the similarity between
nodes. Specifically, given two node latent representations
hi,hj ∈ Dd

c , the distance is given by:

dc(hi,hj) =
2√
c
tanh−1(

√
c‖ − hi ⊕c hj‖), (5)

where the operator ⊕c is the Möbius addition in Dd
c as:

hi ⊕c hj :=
(1 + 2c〈hi,hj〉+ c‖hj‖2)hi + (1− c‖hi‖2)hj

1 + 2c〈hi,hj〉+ c2‖hi‖2‖hj‖2
.

(6)
Notably, when c = 0, the Eq. (6) recovers the Euclidean
addition of two vectors in Rd. Thus, the Eq. (5) recovers
Euclidean geometry in the limit, i.e., limc→0 dc(hi,hj) =
2‖hi−hj‖ and the factor 2 comes from the conformal factor.
For a general c > 0, this operation is neither commutative
nor associative, but it satisfies hi ⊕c 0 = 0⊕c hi. Moreover,
this operation satisfies left-cancellation law: (−hi) ⊕c hi =
hi ⊕c (−hi) = 0 and (−hi) ⊕c (hi ⊕c hj) = hj . Then, we
perform the self-attention coefficient as:

αij = −dc
(
hi,hj

)
. (7)

Because the hyperbolic spaces are metric spaces, there are
two advantages of using distance in hyperbolic spaces to
obtain the self-attention coefficient. (1) Different from inner
product in Euclidean spaces, the hyperbolic distance satis-
fies the triangle inequality, so the self-attention can preserve
the transitivity among nodes. (2) The attention coefficient of
a given node i with itself is αii = −dc(hi,hi) = 0, which is
always the largest over its neighbors. As the representation
should mainly maintain its own characteristics, this atten-
tion coefficient can meet this requirement in mathematics,
while some other graph attention networks, e.g., GAT [6],
cannot guarantee this.

For all the neighbors of node i (including itself), we
should make their attention coefficients easily comparable,
so we normalize them using the softmax function:

wij =
exp(αij)∑

l∈Ni
exp(αil)

. (8)

The normalized attention coefficient wij is used to com-
pute a linear combination of the latent representations of all

the nodes j ∈ Ni. So the final aggregated representation h′i
for node i is as follows:

h′i = σ⊗c

(∑⊕c

j∈Ni

wij ⊗c hj

)
, (9)

where the
∑⊕c is the accumulation of Möbius addition.

σ⊗c is hyperbolic nonlinearity, and the detail of it will
be shown in Section 4.4. The operation wij ⊗c hj can be
realized by the Möbius scalar multiplication. The Möbius
scalar multiplication of hj ∈ Dd

c\{0} by wij ∈ R is defined
as:

wij ⊗c hj :=
1√
c
tanh

(
wij tanh

−1(
√
c‖hj‖)

) hj

‖hj‖
, (10)

and wij ⊗c 0 := 0. Please notice that we have limc→0 wij ⊗c

hj = wijhj , meaning that the operation recovers the
Euclidean scalar multiplication when c goes to zero. This
operation satisfies the scalar distributivity ((r1 + r2)⊗c h =
r1 ⊗c h + r2 ⊗c h) and scalar associativity ((r1r2) ⊗c h =
r1 ⊗c (r2 ⊗c h)) for scalar r1, r2 and vector h.

4.2 Multi-head Attention

Multi-head attention can make model get better results [6].
We aim to extend our self attention mechanism to multi-
head attention. However, it is unclear how to design the
multi-head attention in hyperbolic spaces. The main chal-
lenge of designing hyperbolic multi-head attention is to
realize the concatenation operation in an elegant way.

In Euclidean spaces, the multi-head attention leverages
several self-attentions and concatenates their outputs:

v =
K∥∥

k=1

v(k), (11)

where ‖ is concatenation operation, v(k) indicates the out-
put of k-th self-attention, K is the total number of self-
attentions. Assuming that the output of each self-attention
lives in a m-dimensional Euclidean space Rm, so the output
of the multi-head attention lives in the concatenation of
these m-dimensional Euclidean spaces [38]. Actually, the
concatenated Euclidean space is the Cartesian product of
the Euclidean spaces in mathematics. Moreover, the prod-
uct of K m-dimensional Euclidean spaces Rm × Rm · · · is
equal to a K ×m-dimensional Euclidean space RK×m [38].
As a result, the graph operations in Euclidean multi-head
attention is same with those in self attention.

Different from Euclidean spaces, the product of hyper-
bolic spaces is unequal to a higher dimensional hyperbolic
space [38], which means Euclidean multi-head attention
cannot be applied in hyperbolic spaces directly, so some
operations in hyperbolic self-attentions should be replaced
with the multi-head attention version. To bridge this gap,
we should design the multi-head attention in the product of
hyperbolic spaces. Specifically, for HAT with K-head atten-
tion, some operations, including input feature, hyperbolic
projection (as shown in Fig. 2), are carried independently for
each attention without any change. For hyperbolic attention
part, as the node feature lives in the product of K m-
dimensional hyperbolic spaces Dm ×Dm · · · , we denote the
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Fig. 3. The acceleration of HAT via tangent aggregation. The node representations are mapped between hyperbolic and Euclidean spaces by using
logarithmic and exponential map, so the representations of neighbors can be aggregated in the tangent space.

latent representation of node i as Hi, which is composed of
K m-dimensional features h(1)

i ,h
(2)
i , · · · ,h(K)

i :

Hi =
K∥∥

k=1

h
(k)
i . (12)

The attention coefficient of hyperbolic multi-head attention
α′ij can be computed as:

α′ij = −dp(Hi, Hj), (13)

where dp(·, ·) is the distance in the product of hyperbolic
spaces. Given node latent representations Hi, Hj , this dis-
tance is defined as:

dp(Hi, Hj) =

√√√√ K∑
k=1

d2c(h
(k)
i ,h

(k)
j ), (14)

which is also a metric distance. The proof is shown in the
appendix. Also, we normalize the attention coefficients for
all the neighbors of node i via softmax function:

w′ij =
exp(α′ij)∑

l∈Ni
exp(α′il)

. (15)

Next, we aggregate the node representation via the acceler-
ation strategy for each attention independently:

h
′(k)
i = σ⊗c

(∑⊕c

j∈Ni

w′ij ⊗c h
′(k)
j

)
. (16)

Thus, the final output of HAT with multi-head attention is
given as:

H ′i =
K∥∥

k=1

h′
(k)
i . (17)

4.3 Acceleration of HAT
In our proposed model HAT, the calculation of Eq. (9) and
Eq. (16) is very time-consuming, which seriously affects
the efficiency of HAT. As mentioned before, the Möbius
addition in Eq. (9) and Eq. (16) is neither commutative nor
associative, meaning that we have to calculate the results by
order. Specifically, taking Eq. (9) as an example, we denote
wij ⊗c hj as vij , so the accumulation term in Eq. (9) can be
rewritten as follows:∑⊕c

j∈Ni

vij = vi1 ⊕c vi2 ⊕c vi3 ⊕c · · ·

=
((

(vi1 ⊕c vi2)⊕c vi3

)
⊕c · · ·

)
.

(18)

As we can see, the calculation of Eq. (18) has to be in a serial
manner. It is well known that there are always some hubs

which have many edges in a large graph, so the calculation
becomes very impractical.

The Möbius version of operation [23] provide a feasible
way to solution this problem. Actually, some operations in
gyrovector spaces can be derived with logarithmic map and
exponential map [23]. Taking the Möbius scalar multipli-
cation as an example, it first uses the logarithmic map to
project the representation into a tangent space, and then
multiply the projected representation by a scalar in the
tangent space, and finally project it back on the manifold
with the exponential map [23]. The logarithmic and expo-
nential map can project the node representations between
the two manifolds in a correct manner. Specifically, for two
points vi ∈ Dd

c and vj ∈ Dd
c\{0}, the logarithmic map

logcvi
: Dn

c → Tvi
Dn
c is given for vj 6= vi by:

logcvi
(vj) =

2√
cλcvi

tanh−1(
√
c‖ − vi ⊕c vj‖)

−vi⊕cvj

‖ − vi⊕cvj‖
,

(19)
when vi = 0, we have:

logc0(vj) = tanh−1(
√
c‖vj‖)

vj

‖vj‖
. (20)

The logarithmic map enables us to get the representation
logc0(vj) in a tangent space. As the tangent spaces are vector
spaces, we can combine the representations, just as we do it
in the Euclidean spaces,

∑
j∈Ni

logc0
(
wij ⊗c hj

)
. After the

linear combination, we use the exponential map to project
the representations back to the hyperbolic spaces, giving rise
to the final representation as [21], [22]:

h′i = σ⊗c

(
expc0

(∑
j∈Ni

logc0
(
wij ⊗c hj

)))
. (21)

The diagram of this operation is shown in Fig. 3. Different
from Eq. (9) and Eq. (16), the accumulation operation in
the Eq. (21) is commutative and associative, so it can be
computed in a parallel way. Thus, our model becomes more
efficient.

In practice, we implemented HAT via Eq. (9) and Eq.
(21) in TensorFlow [49], respectively. Taking the Cora graph
(2708 nodes and 5429 edges) [50] as an example, conducted
on a GPU (NVIDIA GTX 1080 Ti), HAT only costs about 266
seconds to converge with Eq. (21), while cannot converge
within 2 hours with Eq. (9).

4.4 Trainable Curvature and Nonlinearity Activation
As we known, hyperbolic spaces are spaces with negative
curvature, i.e., β = −c. Some researchers found that some
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graphs have hyperbolic spaces with different curvature un-
derneath [14], [22]. For a input graph, HAT can also learn the
curvature of hyperbolic spaces. Moreover, each layer in HAT
has different curvature, so how to smoothly vary curvature
at each layer is very important.

Here we leverage the hyperbolic nonlinearity activation
to smoothly vary curvature at each layer. As mentioned in
Eq. (9), the hyperbolic nonlinearity activation is given as
[22]:

σ⊗c(·) = expc
′

0

(
σ
(
logc0(·)

))
, (22)

where β = −c and β′ = −c′ are curvatures of the current
layer and next layer respectively. For two hyperbolic spaces
with different curvatures, as they share a same tangent space
at 0, i.e., T0Dd

c , we can smooth the curvatures of two layers
in the process of nonlinearity activation.

The overall process of HAT is shown in Algorithm 1.
We can apply the final representations to specific tasks and
optimize them with different loss functions. In this paper,
we consider the semi-supervised node classification task,
and use cross-entropy loss function to train our model.

Algorithm 1 The overall process of HAT.
Input: Graph G = (V, E), node features f ;
Output: The predicted labels of nodes ŷ

1: Map the input node features into the hyperbolic space
via pi = expc0(fi) (Eq. (2));

2: Transform pi into a higher-level latent representation hi

(Eq. (3));
3: Calculate the distance dc(hi,hj) between node i and its

neighborhood node j (Eq. (5) or Eq. (14));
4: Calculate the self-attention coefficient αij of node i and

node j (Eq. (7));
5: Normalize the self-attention coefficient using the soft-

max function (Eq. (8));
6: Calculate the final aggregated representation h′i for node
i (Eq. (21));

7: Calculate the cross-entropy;
8: Back propagation and update parameters;
9: return Predicted labels of nodes;

4.5 Complexity Analysis
The time complexity of HAT is O(|V | ·d ·d′+ |E| ·d′), where
d and d′ are the dimension of input and output features,
respectively. |V | and |E| are the numbers of nodes and
edges in the graph, respectively. The complexity is on par
with other GNN methods, such as GAT [6], GCN [4]. More
importantly, our model can be parallelized. For example, the
operations of the self-attention can be parallelized across all
edges, and the computation of the aggregated representa-
tion can also be parallelized across all nodes.

4.6 Discussion on Related Works
Here we compare HAT with some existing hyperbolic
GNNs, i.e., HGNN [21] and HGCN [22]. We analyze these
methods w.r.t. some technologies, including manifold, the
object to be represented, trainable curvature, multi-head
attention, and we denote them as “Manifold”, “Rep-obj”,
“Train-curv”, “Multi-att”, respectively. Also, we denote the

TABLE 2
Hyperbolic graph neural networks discussion.

Method Manifold Rep-obj Train-curv Multi-att
HGNN D&H Graph 7 7

HGCN H Node ! 7

HAT D Node ! !

TABLE 3
Summary of the datasets.

Dataset Cora Citeseer Pubmed Amazon Photo
# Nodes 2708 3327 19717 7650
# Edges 5429 4732 44338 143663

# Features 1433 3703 500 745
# Classes 7 6 3 8

Poincaré ball manifold and hyperboloid manifold as D and
H, respectively.

The statistics of these methods are shown in Table 2. We
can find that these methods leverages different manifold
to design the graph convolutional layers. Specifically, HAT
leverages the Poincaré ball manifold, while HGCN uses the
hyperboloid manifold. HGNN is designed in both Poincaré
ball and hyperboloid manifolds. Also, HGNN focuses on
learning the representations of graphs in the hyperbolic
spaces, while HGCN and HAT focus on learning the rep-
resentations of nodes. Moreover, the curvatures of spaces
in HGCN and HAT is trainable, while HGNN can only
be trained in the hyperbolic space with a fixed curvature.
Furthermore, HAT first leverages the multi-head attention
in the hyperbolic spaces, which can better model the rela-
tionship between the center node with its neighbors.

5 EXPERIMENTS AND ANALYSIS

5.1 Experiments Setup
5.1.1 Datasets
We employ three widely used real-world graphs for evalua-
tions, including Cora, Citeseer, Pubmed [50] and Amazon
Photo [51]. In Core, Citeseer, and Pubmed, nodes repre-
sent documents and edges represent citation relations. Each
document has a label and a bag-of-words representation.
Amazon Photo is a segment of the Amazon co-purchase
graph. In this dataset, nodes represent goods while edges
indicate that two goods are frequently bought together.
Node features are bag-of-words encoded product reviews,
and class labels are given by the product category. Their
detailed descriptions are summarized in Table 3. For each
dataset, we use only 20 nodes per class for training, 500
nodes for validation, 1000 nodes for test, and the training
algorithm could access all nodes’ features. These settings
are same with former literature [52]3, [4]4, [6]5.

In order to quantify which dataset are suitable to
be modeled in hyperbolic spaces. We also compute δ-
hyperbolicity [53] to quantify the tree-likeliness of these
datasets. However, the complexity of δ-hyperbolicity is
O(|V |4), which is very time consuming. Fortunately, δavg

3. https://github.com/kimiyoung/planetoid
4. https://github.com/tkipf/gcn
5. https://github.com/PetarV-/GAT
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[54] provides a more efficient way to compute the tree-
likeness of a graph, because δavg can be approximated via
sampling. A low δavg-hyperbolicity of a graph indicates
that it has an underlying hyperbolic geometry. Moreover, if
hyperbolic spaces would constitute a good choice to embed
a graph, then most likely the product of hyperbolic spaces
would as well [38]. Here we compute δavg-hyperbolicity
of the datasets and the results are shown in Table 4. The
detailed results would be analyzed in Section 5.2.

5.1.2 Baselines

We compare our method with the following state-of-the-art
methods, including the network embedding methods and
GNN based methods.
• DeepWalk [55] learns the node representation in Eu-

clidean spaces by modeling the random walks via a skip-
gram objective function.

• Node2vec [56] can be considered as the generalized Deep-
Walk. It models the biased random walks via a skip-gram
objective function.

• PoincaréEmb [15] is a graph embedding method in hy-
perbolic spaces, which preserves proximities of node pairs
via embedding a graph into a Poincaré ball.

• GCN [4] is a semi-supervised graph convolutional net-
work designed in Euclidean spaces to learn the node
representations.

• GAT [6] is a semi-supervised GNN in Euclidean spaces,
which incorporated the attention mechanism into the
propagation step.

• GraphSAINT [57] is a graph sampling based inductive
learning method. It trains the graphs in a mini-batch
manner.

• HGNN [21] is a semi-supervised GNN in hyperbolic
spaces. Here we leverages the same loss with HAT for
HGNN to conduct the node-level experiments.

• HGCN [22] is also a hyperbolic GNN. It leverages the
hyperboloid model of hyperbolic spaces to learn the node
representations.

5.1.3 Parameter Settings

For all the methods, we carry the experiments in the em-
bedding dimension of 8, 16, 32, 64 (i.e., the number of
hidden units in GNN). For DeepWalk and Node2vec, we
set window size as 5, walk length as 80, walks per node
as 40. Also, for Node2vec, we choose p, q in {0.5, 1, 1.5}.
For PoincaréEmb, we set the number of negative samples
as 10. For GAT and HAT, we set a single attention head
as 8-dimension and the number of attention mechanism
is associated to the embedding dimension. For instance,
if the embedding dimension is 64, we set the number of
multi-head attention as 8. For GraphSAINT, since it is a
sampling based supervised learning method, we should
modified its sampler to ensure it can be trained in our semi-
supervised learning setting. Specifically, instead of picking
nodes from the whole graph, we randomly pick some
nodes which have labels and expand their neighborhoods
as the samplings to ensure GraphSAINT can be trained in a
proper way. For all the GNNs (i.e., GCN, GAT, HGCN and
HAT), we choose the learning rate in {0.005, 0.008, 0.01},
l2 normalization in {0.0001, 0.0005, 0.001}, dropout in

P1728P2599 P1728P1728P1358P961 P2257P1728 P2555

P1728

(a) Neighbors of P1728
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0.18

0.19

0.20

(b) Attention values of P1728’s
neighbors

Fig. 4. Neighbors of node P1728 and corresponding attention values.
Different colors mean different classes.

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Moreover, all the GNNs leverage
early stop. We tune the parameters for all methods via
validation data.

5.2 Node Classification
Node classification is a basic task widely used to evaluate
the embedding effectiveness. For GCN, GAT, and HAT, they
are the semi-supervised models which can be directly used
to classify the nodes. For DeepWalk and Node2vec, we
employ KNN classifier with k = 5 to perform the node
classification. Because the KNN classifier cannot be directly
applied to hyperbolic spaces, for PoincaréEmb, we project
the representations in the tangent space at 0 via logc0, and
then feed the representations into classifier. This operation is
inspired by [23], which projects the hyperbolic parameters
into the tangent space at 0 via logarithmic map, and then
feeds these parameters into Euclidean algorithms. We report
the average Macro-F1 and Micro-F1 of 10 runs with random
weight initialization.

The results are shown in Table 4. It is obvious that
HAT achieves the best performance in most cases, and its
superiority is more significant for the low dimension setting.
Specifically, as we can infer from Table 4, compared with the
second best results, HAT achieves better results on these
4 datasets with 8 dimensions. These results validate the
claim in Section 1: some graphs can be modeled into low
dimensional hyperbolic spaces naturally. Also, as mentioned
in Section 5.1.1, we compute δavg for the 4 datasets. A lower
δavg-hyperbolicity of a graph indicates that this graph is
more suitable to be embedded in the hyperbolic spaces.
The performance of the hyperbolic GNNs (i.e., HGNN,
HGCN and HAT) roughly meet this point. Compared with
the Euclidean GNNs (i.e., GCN, GAT and GraphSAINT),
the hyperbolic GNNs perform better in Amazon Photo,
that because Amazon Photo has a low δavg-hyperbolicity.
One the other hand, because Citeseer has a higher δavg-
hyperbolicity, HAT performs not well in Citeseer with 64-
dimension. Nonetheless, HAT also has competitive results.
Moreover, we can find that the GNN based methods usu-
ally preform better than other baselines (i.e., DeepWalk,
Node2vec and PoincaréEmb), because of combining the
graph structure and node features in their models. Com-
pared to GCN and HGCN, GAT and HAT achieve better
results in most cases, by reason of the multi-head attention
mechanism in GAT and HAT. We notice GraphSAINT per-
forms not well on Cora and Citeseer datasets, that is because
GraphSAINT is designed for large-scale graphs while Cora
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TABLE 4
Quantitative Results on the Node Classification Task.

Dataset metric dimension Deepwalk Node2vec PoincaréEmb GCN GAT GraphSAINT HGNN HGCN HAT

Cora
δavg = 0.353

macro

8 64.7±1.1 65.3±1.2 55.0±0.4 79.6±0.7 80.2±0.9 71.5±1.0 79.7±0.9 78.2±0.8 81.0±0.8
16 65.5±1.5 65.7±1.1 65.4±0.4 81.0±0.5 79.6±0.8 75.1±0.8 80.1±0.8 80.1±0.5 81.9±0.7
32 65.9±1.4 65.9±1.4 65.6±0.3 81.4±0.4 80.1±0.7 76.4±0.6 80.4±0.6 80.5±0.6 82.1±0.5
64 67.0±1.0 67.3±0.9 67.6±0.4 81.7±0.4 81.8±0.6 77.9±0.5 81.0±0.5 80.3±0.6 82.0±0.5

micro

8 64.5±1.2 65.7±1.1 57.5±0.6 80.3±0.8 80.4±0.8 72.4±0.9 80.4±1.2 80.0±0.7 82.6±0.7
16 65.2±1.6 66.0±1.3 64.4±0.3 81.9±0.6 81.7±0.7 76.4±0.7 81.6±0.8 81.3±0.6 83.3±0.6
32 65.9±1.5 65.9±1.5 64.9±0.4 81.5±0.4 82.6±0.7 77.2±0.5 81.3±0.6 81.7±0.7 83.6±0.5
64 66.5±1.7 66.9±1.2 68.6±0.4 81.6±0.4 83.1±0.6 78.5±0.4 81.9±0.7 81.4±0.6 83.4±0.5

Citeseer
δavg = 0.461

macro

8 46.6±1.3 46.6±1.3 37.8±0.4 66.1±0.9 66.1±0.7 53.7±1.1 66.2±1.2 66.6±0.8 67.5±0.7
16 45.4±1.4 46.2±1.1 39.4±0.5 67.3±0.6 67.3±0.7 55.3±0.8 67.2±0.9 67.6±0.6 68.9±0.3
32 42.3±1.5 45.2±1.2 41.9±0.3 68.5±0.5 67.8±0.6 59.6±0.7 68.4±0.8 68.6±0.5 69.1±0.5
64 43.9±1.5 45.9±1.2 41.9±0.2 68.1±0.5 68.1±0.6 61.3±0.6 68.3±0.5 68.4±0.5 68.9±0.5

micro

8 47.8±1.6 47.8±1.6 38.6±0.4 68.9±0.7 69.5±0.8 56.9±0.9 70.6±0.9 70.9±0.6 71.3±0.7
16 46.2±1.5 46.5±1.3 40.4±0.5 69.8±0.5 70.4±0.7 58.2±0.8 71.0±0.8 71.2±0.5 72.2±0.6
32 43.6±1.9 45.8±1.3 43.5±0.5 70.4±0.5 71.9±0.7 62.2±0.6 71.8±0.5 71.9±0.4 72.2±0.4
64 46.6±1.4 46.6±1.2 43.6±0.4 70.8±0.4 72.4±0.7 63.5±0.7 71.5±0.5 71.7±0.5 72.1±0.4

Pubmed
δavg = 0.355

macro

8 71.1±0.7 71.1±0.7 63.6±0.7 76.9±0.5 76.2±0.7 75.0±1.0 76.8±0.4 77.2±0.6 77.7±0.8
16 72.2±0.5 72.9±0.7 67.5±0.3 78.6±0.5 77.7±0.6 75.7±0.6 77.5±1.0 78.3±0.4 78.9±0.4
32 70.8±0.8 71.5±0.8 66.3±0.5 78.1±0.4 77.9±0.6 76.1±0.5 78.2±0.4 78.5±0.5 79.1±0.5
64 71.6±0.8 71.6±0.8 67.7±0.6 78.6±0.5 78.5±0.5 76.7±0.3 78.0±0.5 78.6±0.5 79.2±0.5

micro

8 73.2±0.7 73.2±0.7 66.0±0.8 78.6±0.4 71.9±0.7 75.7±0.8 75.6±0.4 77.9±0.6 78.9±0.8
16 73.9±0.8 74.3±0.8 68.0±0.4 79.1±0.5 75.9±0.7 76.3±0.5 78.3±0.6 78.4±0.4 79.3±0.5
32 72.4±1.0 73.3±0.7 68.4±0.5 78.7±0.5 78.2±0.6 76.4±0.4 78.7±0.4 78.6±0.6 79.6±0.5
64 73.5±1.0 73.5±1.0 69.9±0.6 79.1±0.5 78.7±0.4 76.8±0.4 78.7±0.5 79.3±0.5 79.5±0.5

Amazon Photo
δavg = 0.268

macro

8 77.1±0.7 77.9±0.9 75.3±1.1 82.8±1.1 80.6±0.8 80.4±1.1 83.3±1.2 85.4±0.7 87.6±0.3
16 78.2±0.5 78.2±0.5 76.3±0.9 84.8±0.9 82.6±0.8 81.8±0.7 84.5±0.7 85.0±0.5 88.5±0.3
32 80.8±0.8 81.6±0.9 75.9±0.9 85.4±0.8 83.5±0.6 84.9±0.7 85.0±1.0 86.7±0.6 88.8±0.3
64 78.1±0.8 78.7±0.6 76.5±0.8 85.9±0.7 83.3±0.7 85.3±0.5 86.6±0.8 87.8±0.5 88.6±0.3

micro

8 76.2±0.7 78.5±0.8 77.9±0.9 84.1±0.9 81.9±0.9 83.1±1.0 84.2±1.3 86.7±0.8 88.7±0.5
16 78.9±0.8 78.9±0.8 78.6±0.9 86.0±0.7 83.4±0.8 84.9±0.6 85.9±0.8 86.3±0.5 89.3±0.5
32 81.7±1.0 82.1±0.9 76.2±0.8 86.7±0.7 84.3±0.7 84.5±0.7 86.5±0.5 87.9±0.4 89.7±0.5
64 77.5±1.0 79.2±1.1 78.6±0.6 86.9±0.6 84.5±0.7 85.9±0.6 87.9±0.8 88.9±0.4 89.4±0.4

TABLE 5
Results on the Node Clustering Task.

Method Cora Citeseer Pubmed Amazon Photo
DeepWalk 0.404 0.179 0.231 0.681
Node2vec 0.415 0.209 0.286 0.710

PoincaréEmb 0.441 0.264 0.284 0.626
GCN 0.517 0.424 0.305 0.254
GAT 0.567 0.427 0.359 0.667

GraphSAINT 0.501 0.387 0.325 0.673
HGNN 0.553 0.413 0.387 0.721
HGCN 0.572 0.421 0.372 0.692
HAT 0.585 0.439 0.399 0.735

and Citeseer are too small to show its ability. Also, how to
design a more powerful sampler for GraphSAINT in semi-
supervised learning is an interesting problem, and we leave
it as a future work. Furthermore, compared to Euclidean
GNNs, HAT preforms better in most cases, especially in low
dimension, suggesting the superiority of modeling graph in
hyperbolic spaces.

5.3 Node Clustering

Here we conduct the node clustering task to evaluate the
representations learned from different methods. For the
GNN based methods, we obtain the feature representations
of test nodes from the hidden layer. The dimension of
feature representations is set as 16 for a fair comparison.
Here we utilize K-means to perform node clustering, and
the number of clusters is set to the number of labels. For hy-
perbolic representation learning methods, we project their
feature representations to the tangent spaces via logc0(·), and
then feed these feature representations into K-means. We
report the average results of normalized mutual information
(NMI) of 10 runs with random weight initialization.
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Fig. 5. The performance of HAT when changing the number of attention
heads. The multi-head attention recovers self-attention when the num-
ber is 1.

The results are displayed in Table 5. As we can see,
HAT performs consistently better than all the baselines,
indicating the superior performance of HAT. Moreover, for
Amazon Photo, some graph embedding methods achieve
better results than Euclidean GNNs, while hyperbolic GNNs
also achieve good results, demonstrating the superiority of
designing graph neural network in hyperbolic spaces.

5.4 Analysis of Attention Mechanism
In this section, we closely examine the learned attention
value in HAT w.r.t the effectiveness of hyperbolic attention
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mechanism as well as the superiority of hyperbolic multi-
head attention.

We first validate the effectiveness of hyperbolic attention
value. Intuitively, because the output representation should
mainly maintain its own characteristics, the attention value
with itself should be the largest. The important neighbors
tend to have larger values, while the non-relevant neighbors
should have smaller attention values. Specifically, we take
the paper “P1728” in Cora dataset as an illustrative example.
As shown in the Fig. 4(a), the paper P1728 has 5 neighbors.
Among these neighbors, P961, P2555 and P2599 have the
same label with P1728, while P1358 and P2257 have different
labels. We compute the attention value for 64-dimensional
feature (i.e., 8-head attention, and 8 dimension for each
attention). From Fig. 4(b), we can see that the paper P1728
gets the highest attention value, which means the node itself
plays the most important role in its representation. It is
reasonable because all information supported by neighbors
are usually viewed as a kind of supplementary information.
P2599, P961 and P2555 get the second, third, forth highest
attention values, respectively. This is because that the three
papers belong to the same class with P1728, and they can
make significant contribution to identify the class of P1728.
The rest neighbors, P1358 and P2257, get the smallest atten-
tion values. It is also reasonable, since, belonging to different
classes from P1728, they hardly provide useful information
to identify the class of P1728. Based on the above analysis,
we can see that our proposed attention mechanism can
automatically distinguish the difference among neighbors
and assign the higher weights to the meaningful neighbors.

We also validate the impact of the proposed hyperbolic
multi-head attention. For fair comparison, we set the di-
mension of node representation as 64 for all the cases and
explore the performance of HAT with various number of
attention head. The results are shown in Fig. 5. It worth
noting that the multi-head attention recovers single self-
attention when the number of attention head is 1. Compar-
ing single self-attention (i.e., the number of attention head is
1), multi-head attention generally have better performance.
Moreover, we can find that the more number of attention
head can generally improve the performance of HAT.

5.5 Graph Visualization

Graph visualization, aiming to layout a graph on a two-
dimensional space, is another important graph application.
If we use the color to indicate the label of a node, a good
visualization result is that the points with same color are
close with each other. Here, we take Pubmed as a case to
visualize the learned representations. Followed [15], [17],
[39], we directly visualize the learned two-dimensional rep-
resentations of the nodes.

From Fig. 6, we can find that the representations learned
by DeepWalk, Node2vec, GraphSAINT and HGCN are
mixed with each other. PoincaréEmb performs relatively
better than the above methods, which demonstrates the
superiority of modeling graph in hyperbolic spaces. More-
over, we can find that some GNN methods (i.e., HAT,
HGNN, GCN and GAT) relatively clearly distinguish three
categories of nodes. Compared to other GNNs, HAT distin-
guishes all three categories with more clear boundary and

(a) DeepWalk (b) Node2vec (c) PoincaréEmb

(d) GCN (e) GAT (f) GraphSAINT

(g) HGNN (h) HGCN (i) HAT

Fig. 6. Visualization of 2-dimension representations on Pubmed. Each
point indicates one paper and its color indicates the label.
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Fig. 7. The changing of curvature β in training process. HAT can learn
a underlying hyperbolic geometry with a specific curvature for each
dataset.

larger discrimination, which verifies the effectiveness of our
proposed model.

5.6 Analysis of Trainable Curvature
We also analyze the trainable curvature β of HAT. As shown
in Fig. 7, we analyze the changing process of curvature in
the training process for four datasets. The curvature β = −c
in training processes is increasing in the beginning and then
decreasing. Finally, the curvature would be converged to
a fix value. Also, the curvatures for different datasets are
converged to different values. It indicates HAT can learn
a underlying hyperbolic geometry with different curvature
for each dataset.

6 CONCLUSION

In this paper, we make the effort toward investigating the
graph neural network in hyperbolic spaces and propose a
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novel hyperbolic graph attention network HAT. With the
framework of gyrovector spaces, we redesign the graph
operations in graph attention network in hyperbolic spaces,
and propose a multi-head attention mechanism based on
the hyperbolic proximity. We further accelerate our model
through the logarithmic map and exponential map to im-
prove the efficiency of HAT. The extensive experiments on
four tasks demonstrate the superiority of HAT, compared
with the state-of-the-arts.
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the poincaré ball model of hyperbolic geometry,” Computers &
Mathematics with Applications, vol. 41, no. 1-2, pp. 135–147, 2001.

[25] A. A. Ungar, “A gyrovector space approach to hyperbolic geom-
etry,” Synthesis Lectures on Mathematics and Statistics, vol. 1, no. 1,
pp. 1–194, 2008.

[26] A. A. Ungar, Analytic hyperbolic geometry and Albert Einstein’s special
theory of relativity. World scientific, 2008.

[27] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in ICLR, 2014.

[28] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in ICML, 2016, pp. 2014–2023.

[29] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” in ICLR, 2016.

[30] Y. Zhang, Q. Liu, and L. Song, “Sentence-state lstm for text
representation,” in ACL, 2018, pp. 317–327.

[31] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in WWW, 2019, pp.
2022–2032.

[32] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then
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