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A polarization encoded photon-to-spin interface
K. C. Chen 1,2✉, E. Bersin 1,2 and D. Englund 1

We propose an integrated photonics device for mapping qubits encoded in the polarization of a photon onto the spin state of a
solid-state defect coupled to a photonic crystal cavity: a “polarization-encoded photon-to-spin interface” (PEPSI). We perform a
theoretical analysis of the state fidelity’s dependence on the device’s polarization extinction ratio and atom–cavity cooperativity.
Furthermore, we explore the rate-fidelity trade-off through analytical and numerical models. In simulation, we show that our design
enables efficient, high fidelity photon-to-spin mapping.
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INTRODUCTION
Quantum networks are being developed to distribute entangle-
ment across distant nodes. A central requirement common to
most quantum network approaches is the development of
efficient interfaces between spins and photonic qubits1. Among
the various photonic degrees of freedom, encoding in the
polarization basis { Hj i; Vj i} (horizontal and vertical) is attractive
over number-state encoding because photon loss becomes a
heralded error2.
To couple the polarization-encoded photon qubit ψPj i ¼ α Hj i þ

β Vj i to an atomic memory in a network node, Duan and Kimble3

proposed the scheme illustrated in Fig. 1a. The incoming photon
passes through a polarizing beam splitter (PBS) so that only the V
polarization is reflected off a single-sided cavity whose mode
couples with the #j i $ #0j i transition. The H polarization is
reflected off a mirror, and recombines with the V polarization to
form an entangled spin-photon state: ψent;out

�� � ¼ �α H; #j iþ
β V ; #j i � α H; "j i � β V ; "j i. Subsequent measurement of the
photonic state heralds the transfer of the polarization qubit to
the atom, as demonstrated in recent experiments using trapped
neutral atoms4 and diamond color centers5.
However, in a free-space setup, a major technical challenge

concerns the need to maintain stability of the phase difference
between two spatially separated meters-long polarization paths4.
In this paper, we propose a monolithic, micron-scale photonic
structure that combines the H and V paths into one phase-stable
architecture (Fig. 1b). We estimate that this system will enable
state transfer fidelity exceeding 99%. This polarization-encoded
photon-to-spin interface (PEPSI) greatly simplifies quantum
networking with polarization-encoded photons coupled to atomic
memories.

RESULTS
Device
Qubits based on single atoms such as solid-state color centers,
neutral atoms, and trapped ions have emerged as promising
systems for quantum networking applications. In particular,
group-IV color centers in diamond are attractive candidates due
to their excellent optical and spin coherence6–9. In this paper, we
focus on the negatively charged silicon-vacancy center (SiV)
coupled to a diamond nanocavity, though the approach

generalizes to other stationary qubits such as neutral atoms4,
trapped ions10,11, and quantum dots12,13.
As illustrated in Fig. 1b, the structure comprises (i) a

polarization-dependent reflector (PDR) for the H (TE) mode and
(ii) an over-coupled single-sided cavity for the V (TM) mode. The
PEPSI collapses both interferometric arms into one co-propagating
path that greatly suppresses phase instability stemming from
environmental noise. In contrast, bulk optics suffer from thermal
and vibrational fluctuations that incur phase noise, which requires
phase stabilization costly in operation time5.
The PDR shown in Fig. 1c uses a corrugated photonic crystal

design with periodicity a= 184 nm, width W= 2.07a, modulation
amplitude dW= 3.97a. An adiabatic taper transfers photons to a
1D photonic crystal nanocavity coupled to the SiV. The remainder
of this paper analyzes the performance this phase-stable device.
Specifically, we investigate the impact of PEPSI device parameters
on state transfer fidelity (see “Effects of device imperfections”), the
rate-fidelity trade-off in a quantum network link (see “Quantum
state transfer rate”), and extensions to a scalable photonic
integrated circuit (PIC) platform (see “Discussion”).

Effects of device imperfections
To analyze the state transfer process, we consider a single photon
( ψPj i) incident on a cavity-coupled spin qubit
ψs;i

�� � ¼ ð "j i þ #j iÞ= ffiffiffi
2

p
. Using a Schrödinger picture evolution,

we calculate the resulting spin state ψs;f ðiÞ
�� �

after detection of the
reflected photon in the polarization diagonal basis { Dj i; Aj i}. Its
overlap with the desired state transferred from the polarization
qubit defines the state fidelity F , of which we take the average14:

F ¼ 1
4

X
i

F i ¼ 1
4

X
i

j ϕih jψs;f ðiÞ
�j2; (1)

where ϕ1;2

�� � ¼ ð #j i± "j iÞ= ffiffiffi
2

p
, ϕ3;4

�� � ¼ ð #j i± i "j iÞ= ffiffiffi
2

p
(see Sup-

plementary Note 2).
When a device is perfect such that a lossless PDR has infinite

polarization extinction ratios and a nanocavity has perfect
waveguide–cavity coupling (κwg/κ= 1), the cavity reflection solely
determines the fidelity that scales as (C− 1)/(C+ 1) in the large
cooperativity limit4 (see “Methods” and Supplementary Note 3).
However, when the PDR has finite extinction ratios and scattering
losses, and the single-sided cavity has a reduced
waveguide–cavity coupling efficiency κwg/κ < 1, the need to
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balance losses becomes especially important to achieving high
fidelity. For example, considering the desired state ϕ1j i where
α= β= 1, balancing losses entails matching the two coefficients
∣rH,on− rV,on∣= ∣rH,off+ rV,off∣, which are both functions of PDR
transmissivity/reflectivity and the cavity reflectivity (see “Methods”).
Figure 2a shows F as a function of the PDR’s width and

modulation amplitude given a low scattering loss and fixed cavity
parameters corresponding to our design: waveguide–cavity
coupling κwg/κ ≈ 0.83 and cooperativity C= 100, which has
already been experimentally demonstrated in ref. 5. We find the
upper bound of the fidelity is maximized at 99.978% (assuming
perfect gate and detection fidelities) when W= 380nm and dW=
730 nm, corresponding to transmission and reflection extinction
ratios of 17.72 and 18.93 dB for 20 periodicities. In order to

controllably balance losses to maximize the state transfer fidelity,
we also include an H attenuator that only diminishes the incoming
H light (see Supplemental Note 1). For each set of parameter
values {dW, W}, we calculate the H attenuation factor ηH that
maximizes F in Fig. 2b. For the particular design with W= 380 nm
and dW= 730 nm, the optimal upper bound F ¼ 99:978% is
reached when ηH= 66%. In fact, by tuning ηH appropriately, we
observe that F well exceeds 99% for any dW between 700 and
750 nm and similarly for any W between 360 and 420 nm,
providing the PEPSI tolerance to fabrication errors.
Additionally, the state transfer fidelity intimately relates to the

cavity parameters. Figure 2c shows that the state fidelity
monotonically improves with the atom–cavity cooperativity since
the cavity reflectivity r∝ (C− 1)/(C+ 1) approaches +1. For our
device, the atom–cavity cooperativity of C= 100 gives
F ¼ 99:978%. We also analyze the fidelity’s dependence on the
waveguide–cavity coupling strength. As a result of balanced
losses, Fig. 2d indicates that the fidelity is maximized when
κwg/κ= 0.82 and decreases as the waveguide–cavity coupling
deviates from the optimal point. An under-coupled or critically
coupled cavity would result in a severely degraded state transfer
due to insufficient cavity reflection. On the other hand, over-
coupling past κwg/κ= 0.82 would curtail the atom–cavity interac-
tion and consequently lowers the fidelity. However, our calculation
shows that the fidelity can still exceed 99% as long as κwg/κ falls
between 0.73 and 0.93, granting again partial immunity to
fabrication errors.

Quantum state transfer rate
We now analyze the performance of the PEPSI in facilitating
quantum state transfer across a lossy network link by looking at
the rate-fidelity trade-off for a device realized in simulation,
parameterized in the section “Device”. We denote the probability
of a photon entering and returning through the PDR as
ηHη

2
PDRRcav, where Rcav is the cavity reflection coefficient and

1− Rcav is the cavity decay rate into the environment (assume
negligible transmission through the single-sided cavity). ηPDR is
the transmission efficiency of the PDR. As shown in Fig. 3a, the
protocol begins by initializing the spin qubit in a superposition
state ð "j i þ #j iÞ= ffiffiffi

2
p

in a time τreset= 30 μs as demonstrated in
ref. 5. A photonic qubit ψPj i launched across the link with
transmissivity ηlink reaches the PDR shown in Fig. 3b. If the
reflected photon is detected as described above with probability
pdet ¼ ηlinkηHη

2
PDRRcavηdet, the spin qubit is projected to the state

Fig. 1 Polarization-encoded photon-to-spin interface. a The
Duan–Kimble scheme for polarization-spin mapping. The require-
ments of a high extinction polarizing beam splitter (PBS), strong
cavity-atom coupling, and stabilization of the phase mismatch
between arms Δϕ(t) all make implementation with bulk optics
challenging. b Our proposal for a phase-stable monolithic device
(PEPSI) that implements the protocol in a. A polarization-dependent
reflector (PDR, red dashed lines) then reflects H light while passing V
light through to interact with the cavity-emitter system (blue dashed
lines). c A zoom-in depiction of the PDR with geometry parameters a
(periodicity), W (width), and dW (modulation amplitude). The scale
bar corresponds to 1 μm.

Fig. 2 Fidelity as a function of device imperfections. a F is plotted as a function of the two PDR geometry parameters: the width W and the
modulation amplitude dW. W= 380 nm and dW= 730 nm are chosen for our particular device with an optimum F ¼ 99:978%. b The optimal
H polarization attenuation factor for balancing losses as a function of W and dW. c, d The state fidelity as functions of the atom–cavity
cooperativity and waveguide–cavity coupling. The atom–cavity cooperativity is calculated using Eq. (15). The PDR is designed specifically for a
single-sided cavity with C= 100. The waveguide–cavity coupling is tuned to κwg/κ ≈ 0.83 to maximize fidelity within the allowable design
space. The red dashed line indicates the threshold F ¼ 99%, which is satisfied in the range κwg/κ= [0.73, 0.93].
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α #j i þ β "j i (see “Methods”) with fidelity given by Eq. (1). If no
photon is detected, the protocol is repeated.
However, when ηlink≪ 1, most transmission attempts do not

interact with the spin, and time can be saved by not re-initializing
on every transmission attempt. In particular, we consider a series
of N photons injected into the link after spin re-initialization. These
photons are interspersed by dynamical decoupling pulses (π-
pulses in Fig. 3a) to maintain memory coherence. If the detector
registers a click for the mth attempt, the receiver blocks the
subsequent N−m pulses. The complication is that any photon
that reaches the cavity but is subsequently lost produces an
unheralded error with probability pe = ηlinkηHηPDR(1− Rcav), since
the environment projects the spin to a mixed state ρmixed ¼ 1

2 I.
Thus, the optimum fidelity for a given device is achieved by re-
initializing the spin qubit in advance of every photon transmission.
However, the photon can also be either lost in the link before
reaching the spin with probability plost= 1− pe− pdet or heralded
by the detector with probability pdet. Conditioned on not
detecting a click, the probability of photon loss without
contaminating the spin is plost/(1− pdet), and therefore the
probability of photon never reaching the spin after m− 1 ≤ N
channel uses is ðplost=ð1� pdetÞÞm�1.

Given a detector click on the mth attempt, the probability that
at least one error has occurred in the preceding m− 1 bins is

Perror mð Þ ¼ 1� plost
1� pdet

� �m�1

: (2)

The average error probability is found by summing over all
possible sequences up to a total of N attempts, each sequence
weighted by P mth clickð Þ, the probability of detecting a click on
the mth attempt:

Perror ¼
PN
m¼1

PerrorðmÞPðmth click Þ

¼ 1� 1� pdetð ÞN � pdet
1� pNlost
1� plost

: (3)

The average state fidelity after the protocol that uses sequences of
length N before resetting the memory is then:

F ¼ ψidealh j 1� Perrorð Þρ0;eff þ Perrorρmixed ψidealj i; (4)

where ψidealj i is the ideal transferred quantum state and ρ0,eff is
the effective density matrix incorporating device imperfections
and detection error (see “Methods”). We can solve Eq. (4) for the
maximum number of channel uses before spin re-initialization
Nmax under a given fidelity constraint, e.g. F ¼ 99%.
Each sequence (duration Tseq as denoted in Fig. 3a) of Nmax

transmission attempts has a probability Psuccess ¼ 1�
ð1� pdetÞNmax to detect at least one click. The number of failed
sequences (i.e. each sequence of Nmax attempts without clicks
followed by a memory reset) before a successful one is given by
the geometric distribution. Thus, the average time of failed
sequences per detector click is

T failures ¼ ð1� pdetÞNmax

1� ð1� pdetÞNmax
Nmaxτpulse þ τreset
� �

; (5)

where 4τpulse is an effective pulse time accounting for repetition
rate and dynamical decoupling π pulses (see Supplemental Note
4). After these failures, there is a successful sequence where the
mth bin yields a click, which takes an average time of:

T success ¼ τreset þ
PNmax

m¼1
Pðmth click Þmτpulse

¼ τreset þ τpulse
Psuccess
pdet

� Nmaxð1� pdetÞNmax

	 
 : (6)

The average quantum state transfer rate is then the inverse of the
time per success:

Γ ¼ 1
T failures þ T success

: (7)

In Fig. 3c, we explore the trade-off between the heralded state
fidelity F and the average rate accounting for both polarizations
(see “Methods”). We verify our analytical solutions with Monte
Carlo simulations, and show that the PEPSI can achieve transfer
rate exceeding 1 kilo-qubits per second even at high link loss
~30 dB.
We divide the rate into three regimes. In Regime 1 (shaded red)

where Nmax is low, high-fidelity state transfer prohibits increasing
Nmax to offset losses in the channel, causing an exponential rate
loss that intensifies for higher fidelity constraint, e.g. F ¼ 99%. On
the other hand, for a more relaxed fidelity constraint, e.g.
F ¼ 95%, the spin does not need to be re-initialized as frequently
and the rate does not fall off as drastically.
As the link loss increases in Regime 2 (shaded blue), the number

of transmission attempts per memory reset also increases.
However, the time per success is still dominated by memory
reset time in this regime where τreset > Nmaxτpulse. As a result, the
rate of increase for the number of sequences prior to detecting a
click stays constant, and the rate consequently remains
relatively flat.

Fig. 3 Rate-fidelity trade-off as a function of link loss. a Pulse
sequences for conducting quantum state transfer between a
polarization qubit and a spin qubit. b A diagram depicting where
scattering losses occur. c Transfer rate (kilo-qubits per second,
operated at 5.81 MHz clock rate) as a function of link loss 1− ηlink for
four fidelity constraints: F ¼ 95; 97; 98; and 99%. We plot both the
analytical solutions (solid) and the Monte Carlo simulations
(dashed). We categorize the rate as a function of link loss into
Regime 1 (red), Regime 2 (blue), and Regime 3 (green). The black
dashed line denotes the repeaterless bound for quantum key
distribution protocols15.
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However, in Regime 3 (shaded green) when the number of
transmission attempts per sequence increases such that Nmaxτpulse >
τreset, ηlink becomes the rate-limiting factor. In this regime, the rate
thus approaches the channel-limited bound (black dashed) given by
∝ηlink/τpulse15.

DISCUSSION
Practical quantum repeater nodes will likely require multiplexing
over a large number of qubits. To this end, we consider the PEPSI
PIC illustrated in Fig. 4. An incoming photonic qubit ψPj i enters
through a PDR followed by a Mach–Zehnder interferometer (MZI)
tree network, which routes the photon to a quantum memory. The
PIC with >GHz modulation of the MZIs16 can perform state
mapping across the memory array simultaneously by sending
multiplexed photons to different atom-coupled cavities. As a
result, the transfer rate improves by a factor of Ncav equivalent to
the number of memories connected to the tree network. The
architecture can also produce heralded entanglement by sending
a photon that enters an MZI 50:50 beam splitter immediately
before entering any two neighboring memories. Repeated
heralding then produces a cluster of entangled nodes useful for
quantum key distribution protocols.
Furthermore, an active PIC provides tunability essential for

efficient quantum state transfer. For example, aluminum nitride
photonic circuits have integrated 128 diamond waveguide-
coupled color centers17 and can enable piezoelectric spectral
tuning of photonic crystal cavities18 and diamond color center
emission19,20. Integration by pick-and-placing allows post-
selecting high-performing devices, and additional on-chip wave-
plates and polarizers in conjunction with the PDR (collectively
termed as a tunable PDR in Fig. 4) can then optimally balance
losses to achieve high transfer fidelity. Multiple emitters may also
be implanted21 to increase the number of devices containing SiV−

oriented along the applied magnetic field’s direction.
In summary, we introduced a phase-stable architecture for high-

fidelity quantum state transfer between photonic polarization and
spin qubits: the fundamental elements of a quantum repeater
network. Our simulations and calculations show that the PEPSI can
achieve state fidelity exceeding 99% at kilo-qubits per second
transfer rate by carefully balancing losses. We note that the source
of infidelity considered in the analyses addresses only the mode-
mismatch error. Namely, the loss imbalance that arises from non-
optimal transmissivities and reflectivities of the PDR and the
nanocavity. Additional qubit errors concerning dephasing, spectral
diffusion, and charge-state instability will require further investi-
gation22,23. Therefore, the calculated fidelity of 99.978% is
realistically an upper bound. Nevertheless, beyond color centers
in diamond, our scheme applies to other quantum memories
including rare-earth ions24–26 and neutral atoms27 that may

exhibit lower qubit errors. Lastly, we proposed a multiplexing
PIC platform for state mappings across a quantum memory array
via an MZI tree network. As PIC platforms have scaled beyond tens
of individually controllable components28, our nanophotonic spin-
photon interface should extend these gains to large-scale
multiplexed quantum repeaters29 and even photonic cluster
states30.

METHODS
State transfer fidelity calculations
An incoming qubit is encoded on the polarization of a photon:

ψPj i ¼ α Hj i þ β Vj i: (8)

With the spin qubit prepared in an even superposition state
ψAj i ¼ #j i þ "j ið Þ= ffiffiffi

2
p

, the joint spin-photon state would be

ψjoint;i

�� � ¼ α H; #j i þ α H; "j i þ β V; #j i þ β V; "j i: (9)

This photon then hits an imperfect PDR with field reflection
(transmission) coefficients ri (ti) for the polarization i∈ {H, V}. The
transmitted output is incident on a nanophotonic cavity coupled to a
spin qubit. Since only the #j i () #0j i (see Fig. 1a) transition is resonant
with the cavity mode, the photon experiences a spin-dependent cavity
reflection rcav∈ {ri,uncoupled, ri,coupled}. The output joint photon-spin system
after the HWP (that transform H→ H+ V, V→ V− H) is in the state:

ψfj i ¼ Hj i � ðαrH;on � βrV;onÞ #j i�
þðαrH;off � βrV;offÞ "j i�
þ Vj i � ðαrH;on þ βrV;onÞ #j i�
þðαrH;off þ βrV;offÞ "j i�;

(10)

where

rH;on ¼ rH þ rH;coupledt2H
1� rH;coupledrH

; (11)

rH;off ¼ rH þ rH;uncoupledt2H
1� rH;uncoupledrH

; (12)

rV;on ¼ rV þ rV;coupledt2V
1� rV ;coupledrV

; (13)

rV;off ¼ rV þ rV;uncoupledt2V
1� rV ;uncoupledrV

: (14)

The state-dependent cavity reflection coefficients can be derived from
using the input–output formalism31,32:

rðωÞ ¼ 1� κwg
i ðωc � ωÞ þ κ

2

1

1þ g2

i ðωc�ωÞþκ
2ð Þ i ðωa�ωÞþγ

2ð Þ
; (15)

¼ C � 1
C þ 1

ð large C limit Þ; (16)

where κ, γ, and g are the cavity total decay, atom relaxation, and
atom–cavity coupling rates. κwg is the cavity decay rate into the
waveguide. (ωc−ω) and (ωa−ω) are the cavity and atom detuning,

respectively. C ¼ 4g2

κγ is the atom–cavity cooperativity. In the uncoupled
case, g= 0 and a bare reflection off the cavity gives the photon a− 1
phase. On the other hand, the coupled state results in a+ 1 phase. The
relative phase conditioned on the atomic state forms the basis behind the
state transfer protocol detailed in ref. 3.
Finally, a detection of an Dj i or Aj i photon heralds mapping of the input

photonic state onto the spin with an additional Hadamard rotation on the
spin (and a conditional π rotation). We can calculate the state fidelity by
Eq. (1).

Transfer rate calculations
In the state transfer rate calculations, we consider the detection,
scattering loss, and error paths for both polarization modes and
compute the average rate. Here we consider the transmission efficiency
ηA,V/H through the H attenuator to be 79.8% for the V polarization and
52.6% for the H polarization (see Supplementary Note 4). We denote the

Fig. 4 Implementation in a PIC. A PIC incorporating diamond
nanocavities. The V polarization passes through a tunable PDR (a
combination of a PDR, active on-chip waveplates and polarizers) and
enters an MZI tree network, which routes the photon to an atom-
coupled cavity for quantum state transfer. Simulation (see Supple-
mental Note 7) indicates that an adiabatic taper can provide near-
unity coupling efficiency between the PIC and the diamond
waveguides.
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power transmission and reflection coefficients of the PDR as TV/H and
RV/H. The cavity reflectivity Rcav,V/Rcav,H is the average reflectivity
between on- and off-resonance cases for the V/H polarization,
respectively: Rcav,V = (∣rcavity-V∣2 + ∣rcoup-V∣2)/2= 82.2%, Rcav,H= 95.8%
basing on our simulated device and C= 100.
In order to detect a V (H) photon, it has to either undergo a roundtrip as

denoted by Fig. 3b with probability ηlinkηa,VTVRcav,VTVηdet (ηlinkηa,HTHRcav,
HTHηdet) or reflect off the PDR upon the first pass with probability ηlinkηa,
VRVηdet (ηlinkηa,HRHηdet), where ηdet= 93.6% is the detection efficiency
accounting for the PBS, the HWP, and the photon detector (see
Supplementary Note 4). The average detection probability is then

pdet ¼
ηlink
2

ηa;VT
2
VRcav;V þ RV þ ηa;HT

2
HRcav;H þ RH

� �
ηdet: (17)

The photon can also scatter off en route to the PDR with probability 1−
ηlink, or by the PDR, contributing to the probability of photon loss without
erroring:

plost ¼ 1� ηlink þ ηlink 1� ηa;V þ ηa;H
2

� �
þ ηlink

2
ζV þ ζHð Þ; (18)

where ζV= 1− TV− RV and ζH= 1− TH− RH.
Lastly, as addressed in the section “Quantum state transfer rate”, the

photon can be lost after interacting with the atom–cavity system, hence
yielding an unheralded error. Specifically, we consider errors arising from
the V photon scattering after cavity interaction and the small amount of H
photon leaking into the cavity:

pe ¼ 1� pdet � plost: (19)

The probabilities are used to compute Perror, which is the probability of
at least one unheralded error occurring after detecting the first and only
click on the mth attempt within N attempts. After which, we can calculate
the average state fidelity:

F ¼ ψidealh j 1� Perrorð Þρ0 þ Perrorρmixed ψidealj i; (20)

where ρ0 is the density matrix corresponding to a single attempt
considering only device imperfections.

Monte Carlo simulations
Numerical simulations were performed in MATLAB (MathWorks Inc.). For
each attempt, a probability value prandom is chosen out of a uniform
distribution U(0, 1). prandom then determines if the photon is lost in the
device before reaching the spin (plost), lost in the device after the spin (pe),
or detected (pdet). Each simulation trial terminates once the photon is
detected, and the total experimental time is recorded. A trial can consist of
multiple sequences, and each sequence has the number of attempts up to
Nmax, which depends on the fidelity constraint and the link loss. Each
Monte Carlo data point presented in Fig. 3c is the average rate of
100 simulation trials.
The oscillation in the Monte Carlo simulations (dashed lines in Fig. 3c) is

an artifact from discretizing the number of attempts required to achieve a
certain fidelity constraint given a fixed link loss (see Supplementary Note
4). The allowable Nmax is first analytically calculated assuming a continuous
variable, then fed into the Monte Carlo simulations to validate the transfer
rate calculations. The origin of the artifact can be understood by
considering the trade-off between fidelity and the number of attempts.
Recall that every undetected photon can be scattered before reaching the
emitter–cavity system. Hence, time can be saved by not re-initializing the
spin qubit as Nattempts increases. In other words, as link loss increases, it is
advantageous to increase the number of attempts. If an integer number of
attempts Z is fixed, increasing the link loss consequently lowers the
transfer rate until the number of attempts increases to the next integer
Z+ 1. After which, the rate increases suddenly and manifests in a
sinusoidal behavior in simulations.
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