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Abstract

In the future, when traffic streams comprise a mix of conventional and automated vehicles
(AVs), AVs may be employed as mobile actuators to regulate or manage traffic flow across an
urban road network to enhance its performance. This paper develops a path-control scheme
to achieve the system optimum (SO) of the network by controlling a portion of cooperative
AVs (CAVs) as per the SO routing principle. A linear program is formulated to delineate the
scheme and determine the minimum control ratio (MCR) of CAVs to achieve SO. The proper-
ties of the MCR are mathematically and numerically investigated. Numerical examples based
on real-world networks reveal that the SO of most of the tested networks can be achieved with
an MCR below 23%. Considering the low market penetration of AVs at early stages of their
deployment, we further investigate a joint path-based control and pricing scheme to replicate
SO. Numerical examples demonstrate the remarkable synergy of these combined instruments
on reducing the MCR with little collected tolling revenue.

Keywords: Automated Vehicle, Mobile Actuator, Path Control, Minimum Control Ratio, Sys-
tem Optimum, Path-Differentiated Pricing

1 Introduction

Automated vehicles (AVs) are expected to offer transformative improvements to existing mobility
systems. Although recent developments suggest that the adoption of AV technology is fast-
approaching, it will be many years before the adoption is widespread. In the foreseeable future,
the traffic stream on road networks will still be heterogeneous, mixed with both conventional
vehicles and AVs. It is thus critical to investigate how to leverage AVs in the traffic stream to
better manage and operate our road networks. A few studies have been conducted to examine
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the feasibility of using AVs as mobile actuators to regulate traffic flow or distribute travel demand
across road networks. In particular, regulation can be achieved by either manipulating AVs’ travel
choices, such as route and departure time choices, or adjusting AVs’ driving behaviors, such as
speed profiles.

For the former regulation, Zhang and Nie (2018) investigated an optimal-ratio control
scheme to control a certain portion of AVs to mitigate the traffic congestion. In their study,
the controlled AVs are required to adopt the system optimum (SO) routing principle, while
the uncontrolled vehicles still follow the user equilibrium (UE) routing principle to minimize
their individual travel times (Wardrop, 1952). For convenience, we refer to them as cooperative
AVs (CAVs) and selfish vehicles (SVs), respectively. More specifically, the authors model the
optimal-ratio control scheme problem as a bi-level problem, in which the lower level is a mixed
equilibrium model (Harker, 1988; Yang et al., 2007; Zhang et al., 2008) considering both CAVs
and SVs, and the upper level determines the optimal ratio of these two types of vehicles in a
way to minimize the system total cost that includes the total travel cost and control cost. More
recently, considering the same routing principles for CAVs and SVs as Zhang and Nie (2018),
Li et al. (2018) investigated the stability of a dynamic system and proposed continuous time
stability-first and efficiency-first control strategies. The former control strategy aims to stabilize a
given disequilibrium at a minimum time, while the latter one minimizes the cumulative system
cost over a given transition period. Numerical experiments show that a larger number of CAVs
can lower the cumulative system cost, but not necessarily shorten the convergence time. In a
parallel effort to this paper, Sharon et al. (2018) presented a linear model to compute the minimal
number of CAVs to achieve SO. Their proposed model can be further used to validate whether a
given set of CAVs is sufficiently large to achieve SO.

For the latter regulation, utilizing the beyond-line-of-sight motion information collected from
neighboring conventional vehicles, Jin et al. (2018) proposed a class of connected cruise control
algorithms for AVs to achieve the head-to-tail string stability. Simulation and real-world exper-
iments have been conducted to highlight that the presence of AVs equipped with the proposed
control algorithms can improve the safety and energy efficiency of both AVs and conventional
vehicles. With the assist of vehicle-to-infrastructure communication technology, Wang (2018)
developed an adaptive driving strategy for connected AVs to stabilize downstream speed dis-
turbances of a platoon with non-connected AVs by manipulating the control parameters - e.g.,
desired time gap and feedback gains - of the connected AVs. Stern et al. (2018) conducted field
experiments on a circular track involving 20 conventional vehicles and an AV. Results uncover
that the stop-and-go waves can be efficiently dampened by controlling the velocity of the AV.
Based on the findings, the authors claimed that it is possible to smooth the traffic flow with less
than 5% of AVs. Furthermore, Wu et al. (2018) proposed optimization models to show that, even
for typical highway traffic conditions, properly controlling an AV can stabilize a string of up to
16 conventional cars. Based on simulation, Wu et al. (2017) indicated that controlling the accel-
erations and lane-changing decisions of AVs can stabilize the mixed traffic flow on a multi-lane
ring road.

In the same vein, this paper attempts to demonstrate the potential of AVs as control actuators
for improving traffic network performance. When combined with another policy or instrument,
we show that AVs as control actuators can yield remarkable results. Specifically, we first inves-
tigate the control of travelling path of AVs to affect the path choices of conventional vehicles or
other uncontrolled AVs in order to achieve SO, i.e, the minimum system travel time. We seek
for the the minimum control ratio (MCR) of cooperative AVs or CAVs, and thus call this scheme
as a minimum-ratio control scheme (MRCS). In the scheme, CAVs are required to obey the SO
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routing principle, similar to Zhang and Nie (2018) and Sharon et al. (2018). The proposed MRCS
will be of interest to the traffic management authority, as the obtained MCR can be regarded as
the minimum AV penetration rate that the authority should target in order to achieve SO of a
road network with mixed traffic stream. Alternatively, it specifies the minimum portion of AVs
that the authority should aim to control in a network with high penetration of AVs, given that
many AVs will be possessed by private owners or private service providers, who will likely route
their AVs in a selfish routing manner (Yang et al., 2008).

The process to calculate the MCR can be naively modeled by the bi-level programming
framework. The upper level is for the control center to determine the minimum ratio of CAVs
it takes to achieve the minimum total travel time; while the lower level problem is a mixed
equilibrium problem involving both CAVs and SVs (conventional vehicles or uncontrolled AVs).
Specifically, SVs attempt to minimize their individual travel time when choosing routes while
CAVs seek to minimize the system total travel time. However, as the proposed MRCS aims to
achieve the minimum total travel time, the aggregate flow distribution resulting from the mixed
equilibrium problem must be the SO flow distribution. Given such a property, similar to Sharon
et al. (2018), the MRCS problem can be formulated as a linear program, whose global optimal
solution can be guaranteed and easily acquired even for large-scale networks. Nevertheless, the
MRCS considered in this paper differs from Sharon et al. (2018) in the following two aspects.
First, our formulation is path-based, which is more straightforward and easier to follow. Sec-
ond, in addition to calculating the MCR, we conduct an investigation of the upper bound of
the MCR and the key factors affecting MCR, which sheds light on policy making towards the
implementation of related AV control schemes.

Moreover, given that the MCR could be high for some networks, and the fact that it will be
a long time before the widespread adoption of AV technologies, we combine the proposed path
controlling scheme with another market-based instrument, such as congestion pricing and trad-
able credit (Yang and Wang, 2011), so as to downsize the MCR. The central idea is controlling a
portion of CAVs while applying another market-based instrument to manage the route choices of
some SVs in a way to jointly achieve SO. While some other schemes also work, this paper selects
the path-differentiated pricing scheme proposed by Zangui et al. (2013) for three reasons: 1) the
tolling is path based and is thus compatible with the path control of CAVs; 2) path-differentiated
pricing can substantially lessen the financial burden on travelers as demonstrated by Zangui et al.
(2015); and 3) path differentiation is being enabled by, among others, fast-developing connectiv-
ity technologies. We investigate such a path-based control and pricing scheme and formulate
it as a bi-objective nonlinear optimization problem aimed to minimize both the control ratio of
CAVs and the tolling burden on travelers. The formulation is then linearized and simplified, and
solved efficiently by a proposed solution algorithm.

This paper is organized as follows. In the next section, the MRCS problem is formulated
as a linear program. The properties of MCR are then mathematically and numerically analyzed
in Section 3. In Section 4, based on real-world transportation networks, numerical examples are
conducted to unveil their MCRs, and the characteristics of the corresponding MCRs are explored.
The joint control and pricing scheme is proposed and tested in Section 5. Section 6 concludes the
paper.

For the convenience of readers, Table 1 presents the list of abbreviations used throughout
the paper.
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Table 1: List of abbreviations

Abbreviate Description
AV Automated vehicle
BPR Bureau of Public Roads
CAV Cooperative automated vehicle
ETT Equal-travel-time

FFTT Free-flow travel time
JCP Joint control and pricing

JCP-ZR Joint control and pricing problem with zero revenue
MCR Minimum control ratio

MMTT Minimum marginal travel time
MRCS Minimum-ratio control scheme

OD Origin-destination
UE User equilibrium
SO System optimum
SV Selfish vehicle

ZCRR Zero-control-ratio revenue
ZRCR Zero-revenue control ratio

2 Minimum Ratio Control Scheme

2.1 Modeling framework

Consider a general traffic network G(N, A), where N and A are the sets of nodes and links in the
network, respectively. Let W be the set of origin-destination (OD) pairs for the network, and Rw
represent the set of paths between OD pair w ∈ W. Let d̄w, dU

w , and dC
w, define the total, SV, and

CAV travel demands between OD pair w ∈W, respectively. Further, we use f U
r and f C

r to denote
the SV and CAV traffic flow on path r ∈ Rw between OD pair w ∈ W, respectively. Similarly, we
use vU

a and vC
a to define the SV and CAV traffic flow of link a ∈ A, respectively. Define ta(va) as

the travel time function of link a ∈ A, where va = vU
a + vC

a is the aggregate flow on link a ∈ A,
and we assume ta(va) to be a convex and strictly increasing function. Accordingly, the SO flow
distribution can be uniquely determined by solving the SO assignment problem, and we denote
it as v̄. Let R̂w ⊆ Rw and R̄w ⊆ Rw denote the sets of shortest paths and the paths with the
minimum marginal travel time (MMTT) between OD pair w ∈W under the SO flow distribution
v̄, respectively. Apparently, these two sets are not necessarily mutually exclusive. However, if
they are, i.e., R̂w ∩ R̄w = ∅, then MCR = 1, as all the flows on the shortest paths have to be
controlled to switch to adopt the MMTT paths at this scenario. If R̄w ⊆ R̂w, then MCR = 0, as it
implies UE is the same as SO.

Given the above setting, the MRCS can be mathematically formulated as the following prob-
lem, dubbed as CP:

min
f U , f C ,dU ,dC ,vU ,vC

∑
w∈W

dC
w

s.t. vU
a = ∑

w∈W
∑

r∈R̂w

f U
r δa,r ∀a ∈ A (1)
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Figure 1: Nine Node network

∑
r∈R̂w

f U
r = dU

w ∀w ∈W (2)

f U
r ≥ 0 ∀r ∈ R̂w, w ∈W (3)

vC
a = ∑

w∈W
∑

r∈R̄w

f C
r δa,r ∀a ∈ A (4)

∑
r∈R̄w

f C
r = dC

w ∀w ∈W (5)

f C
r ≥ 0 ∀r ∈ R̄w, w ∈W (6)

vU
a + vC

a = v̄a ∀a ∈ A (7)

dU
w + dC

w = d̄w ∀w ∈W (8)

In the above problem, constraints (1)-(3) ensure that all SVs will only utilize the shortest
paths. It implies that SVs aim to minimize their individual travel time. Constraints (4)-(6) guar-
antee that the flow of CAVs will only be assigned to the MMTT paths. In other words, the CAVs
seek to minimize the system travel time. Moreover, constraint (7) indicates that CAVs are guided
to replicate the SO flow distribution (i.e., v̄). Taking into account the flow distribution of CAVs
and SVs delineated by constraints (1)-(7), the objective function is to minimize the number of
CAVs or the MCR, by optimally splitting the total travel demand for each OD pair (see constraint
(8)). Note that, in the CP problem, we adopt the path-based formulation rather than its link-
based counterpart. With the latter, special treatment is needed to avoid the cyclic flows (Sharon
et al., 2018).

As the SO flow distribution (i.e., v̄) is predetermined, the shortest path set (i.e., R̂w) and
the MMTT path set (i.e., R̄w) for each OD pair can be efficiently enumerated even for large-scale
networks (see, e.g., Zangui et al. (2015)). Given R̂w and R̄w, commercial solvers, such as CPLEX,
can be directly applied to solve the CP problem. Another column-generation-based solution
algorithm is presented in Appendix A, which does not require such a path enumeration. It is
worth highlighting that, the optimal solution regarding the MCR or the minimum number of
CAVs (i.e., ∑w∈W dC

w) is unique, but the number of CAVs for each OD pair (i.e., dC
w) may not be

unique. For example, for the Nine Node network in Hearn and Ramana (1998) (see Fig. 1), the
MCR is calculated to be 78.70%, while both {10, 20, 8.697, 40} and {10, 20, 20.043, 28.654} are the
corresponding CAV demands for OD pair 1-3, 1-4, 2-3, and 2-4.

5



Figure 2: A parallel network

3 Properties of MCR

In this section, we explore the properties of MCR for different types of networks.

3.1 Case of parallel network

In this subsection, we consider a single-OD parallel network shown in Figure 2. Specifically, the
OD pair is connected by N parallel links, and the corresponding travel demand is denoted by
d. The link travel time function for link a ∈ {1, 2, . . . , N} is of Bureau of Public Roads (BPR)

type form, i.e., ta(va) = t0
a

[
1 + α

(
va
ca

)β
]

, where α > 0, β ≥ 1, and t0
a and ca are the free-flow

travel time (FFTT) and the capacity of link a, respectively. Without loss of generality, we assume
t0
1 < t0

2 ≤ · · · ≤ t0
N ; the first inequality is assumed to be strict because if t0

1 = t0
2 = ... = t0

L for
some L ≤ N, we can equivalently treat them as one link with free-flow travel time t0

1 and capacity
∑L

i=1 ci.

Denote the MCR by λ, and the corresponding number of CAVs by dC, then we have the
following proposition.

Proposition 1. λ ≤ 1− c1
c̄N , where c̄ = max1≤a≤N ca.

Proof. Consider the case where M(≤ N) links are utilized under SO. Denote gα,β(v; c) = 1 +

α
( v

c

)β, then by the definition of SO, we have:

t0
a

[
gα,β(va; ca) + va

∂gα,β(va; ca)

∂va

]
= T ∀1 ≤ a ≤ M (9)

where T is a positive number. Here we note that at SO, if there are M(≤ N) links with positive
flow, we can easily prove that they are link 1 to link M, i.e., the M links with relatively small
values of t0

a. Eq. (9) can be equivalently written as:

6



t0
a

[
1 + α(1 + β)

(
va

ca

)β
]
= T ∀1 ≤ a ≤ M (10)

By our setting that t0
a ≤ t0

b, ∀1 ≤ a < b ≤ M, we know 1 + α(1 + β)
(

va
ca

)β
≥ 1 + α(1 +

β)
(

vb
cb

)β
, thus va

ca
≥ vb

cb
. Hence, we obtain the following inequalities:

t0
a

t0
b
=

1 + α(1 + β)
(

vb
cb

)β

1 + α(1 + β)
(

va
ca

)β
≤

1 + α
(

vb
cb

)β

1 + α
(

va
ca

)β
=

gα,β(vb; cb)

gα,β(va; ca)
(11)

Therefore, t0
agα,β(va; ca) ≤ t0

bgα,β(vb; cb), i.e., ta(va) ≤ tb(vb), ∀1 ≤ a < b ≤ M. In particular, as
t0
1 < t0

2, we have t1(v1) < t2(v2). This result suggests that, under SO, only those vehicles on link
1 are guaranteed to be control-free. Combining the result with the fact that v1

c1
≥ v2

c2
≥ · · · ≥ vM

cM
,

we know:

λ = 1− v1

∑M
a=1 va

≤ 1−
∑M

a=1
c1
ca

va

M ∑M
a=1 va

≤ 1−
c1
c̄ ∑M

a=1 va

M ∑M
a=1 va

≤ 1− c1

c̄M
≤ 1− c1

c̄N
(12)

Proof completes.

Implication of Proposition 1:

a) The MCR (i.e., λ) can be very small when c1
c̄ is large, which may happen when an arterial

or highway with high capacity connects two major locations.

b) Building more parallel links to the network, i.e., larger N, may yield higher upper bound
for the MCR.

Proposition 2. λ is nondecreasing with d.

Proof. We first show that, when there are two scenarios with different demand levels d1 < d2,

and under both cases the SO states are with M(≤ N) used links, then λ1 =
dC

1
d1
≤ λ2 =

dC
2

d2
. The

result holds immediately when M = 1, so we only consider the case when M ≥ 2. By Eq. (11),
we define:

ua =
t0
1

t0
a
=

1 + α(1 + β)
(

va
ca

)β

1 + α(1 + β)
(

v1
c1

)β
≤ 1, ∀a ∈ {2, 3, . . . , M} (13)

Eq. (13) can be rewritten as below:

va = ca

[
ua

(
v1

c1

)β

− 1− ua

α(1 + β)

] 1
β

(14)
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With the demand conservation condition, we obtain the following equation:

v1 +
M

∑
a=2

ca

[
ua

(
v1

c1

)β

− 1− ua

α(1 + β)

] 1
β

= d (15)

Denote ζ = v1
d , Eq. (15) is then converted to:

ζ +
M

∑
a=2

ca

[
ua

cβ
1

ζβ − 1− ua

α(1 + β)dβ

] 1
β

= 1 (16)

Denote J(ζ, d) = ζ + ∑M
a=2 ca

[
ua

cβ
1

ζβ − 1−ua
α(1+β)dβ

] 1
β

, then we compute the partial derivative by

∂J(ζ,d)
∂ζ = 1 + ua

cβ
1

ζβ−1 ∑M
a=2 ca

[
ua

cβ
1

ζβ − 1−ua
α(1+β)dβ

]− β−1
β

> 0, ∂J(ζ,d)
∂d = 1−ua

α(1+β) ∑M
a=2 ca[

ua

cβ
1

ζβ − 1−ua
α(1+β)dβ

]− β−1
β

d−β−1 > 0, so by the implicit function theorem, we have:

∂ζ

∂d
= −

(
∂J(ζ, d)

∂ζ

)−1 ∂J(ζ, d)
∂d

< 0

which means v1 varies in a decreasing way with d. Thus we prove our first statement: dC
1

d1
=

1− v1
d1
≤ 1− ṽ1

d2
=

dC
2

d2
. Under both cases the SO states are with M(≤ N) used links, where ṽ1 is

the flow on link 1 when the demand is d2.

Next we show that, when there are two scenarios with different demand levels d1 < d2,
under each case the SO states are with M1 and M2 used links respectively; it is straightforward

that M1 < M2. To prove dC
1

d1
≤ dC

2
d2

, we consider a series of dM1+1, dM1+2, . . . , dM2−1, dM2 , where dS
is the demand level satisfying that:

Under the associated SO state, t0
S

[
gα,β(vS; cS) + vS

gα,β(vS;cS)
∂vs

]
= t0

a

[
gα,β(va; ca) + va

gα,β(va;ca)
∂va

]
,

∀a < S and vS = 0.

In other words, when demand is dS, there will be S used links in the SO state, but the flow
on link S is zero; it is a “middle state” between those with S − 1 used links and S used links.
With the above result, we have the following inequality:

dC
1

d1
≤

dC
M1+1

dM1+1
≤

dC
M1+2

dM1+2
≤ · · · ≤

dC
M2

dM2

≤ dC
2

d2

Thus Proposition 2 is proved completely.

Implication of Proposition 2: The increasing demand magnitude, i.e., larger d, can yield non-
decreasing MCR on parallel networks. In other words, under such a network topology, the MCR
will increase as traffic congestion becomes more severe.
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3.2 Case of equal-travel-time network

In this subsection, we derive properties of MCR for a special set of networks, which we call
”equal-travel-time” (ETT) networks. The exact definition of ETT networks is given below.

Definition 1. A road network is called an equal-travel-time network if the following two conditions are
met:

i) All paths between the same OD pair share the same FFTT.

ii) For travel time function of each link, the flow-dependent component is homogeneous of the same degree,
i.e., ta(va) = t0

a + τavk
a, τa > 0, k > 0.

For ETT networks, we have the following proposition.

Proposition 3. λ = 0 for ETT networks.

Proof. We show at EET networks the SO state is exactly the UE state. In SO, for any two paths
r1, r2 between OD pair w ∈W with positive path flows, we have:

∑
a∈A

δar1 [t
0
a + (1 + k)τavk

a] = ∑
a∈A

δar2 [t
0
a + (1 + k)τavk

a] (17)

Note that the definition of ETT network indicates that:

∑
a∈A

δar1 t0
a = ∑

a∈A
δar2 t0

a (18)

We denote T0
w = ∑a∈A δar1 t0

a. Subtracting Eq. (18) from Eq. (17) we obtain:

∑
a∈A

δar1 τavk
a = ∑

a∈A
δar2 τavk

a (19)

By adding Eq.(19) with T0
w, we obtain:

∑
a∈A

δar1(t
0
a + τavk

a) = ∑
a∈A

δar2(t
0
a + τavk

a) (20)

Eq. (20) suggests the travel times on paths r1 and r2 are identical. On the other hand, for
paths r1 and r2 in Rw such that fr1 > 0 and fr2 = 0, by the property of SO state we have:

∑
a∈A

δar1 [t
0
a + (1 + k)τavk

a] ≤ ∑
a∈A

δar2 [t
0
a + (1 + k)τavk

a] (21)

By the fact that ∑a∈A δart0
a = T0

w, ∀r ∈ Rw, we know that:

9



∑
a∈A

δar1 τavk
a ≤ ∑

a∈A
δar2 τavk

a (22)

Again we add it by T0
w to acquire:

∑
a∈A

δar1(t
0
a + τavk

a) ≤ ∑
a∈A

δar2(t
0
a + τavk

a) (23)

Now, denoting µw = ∑a∈A δar1(t
0
a + τavk

a), combining Eqs. (20) and (23), we conclude that:

∑
a∈A

δar(t0
a + τavk

a) = µw fr > 0, ∀r ∈ Rw, w ∈W

∑
a∈A

δar(t0
a + τavk

a) ≥ µw fr = 0, ∀r ∈ Rw, w ∈W

This is exactly the UE condition. Therefore, the SO state is the same as the UE state in the
ETT networks that we consider. Proof completes.

One example of ETT network is the one-way grid network shown in Figure 3, in which
there are M× N grids. We assume that the flow-dependent components of all link performance
functions are homogeneous of the same degree, and horizontal links on the same column are
with the same FFTT, as are vertical links on the same row, while the capacities for different links
can be different. With this setting, it is straightforward to derive that for any OD pair in the
one-way grid network, the FFTTs for associated paths are identical, and by Proposition 3, the
one-way grid network exhibits a MCR of zero.

Figure 3: A one-way grid network

The following observation can further relax the condition of the ETT network for achieving
SO without any control. Consider an ETT network with an additional path r′ between OD pair
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w ∈ W with different FFTT from other paths between the same OD pair, and its FFTT is large
enough such that:

∑
a∈A

δar′ t0
a > ∑

a∈A
δar(t0

a + τavk
a) ∀r ∈ Rw, r 6= r′

namely, the FFTT of path r′ is larger than UE/SO travel time for this OD pair in the original ETT
network. Then naturally, at UE there will be no flow on path r′, and the modified network is
equivalent to the original ETT one. This observation suggests that, if a network is composed of
an ETT subnetwork and a set of paths with very large detours, we can still achieve SO without
controlling any vehicle; this may apply to a two-way grid network for relatively low demand
cases. We must point out that the above conclusion is demand-related; in other words, if the
demand is sufficiently large such that the above inequality does not hold anymore, we cannot
guarantee UE to be the same as SO

It is worth noting that in certain circumstances, UE can approximate SO with high precision
(Colini-Baldeschi et al., 2017; Colini-Baldeschi et al., 2019), but this does not necessarily imply a
near-zero or small MCR. For example, consider a parallel network with two links with identical
flow-dependent component in the link travel time functions, but with a slight difference in FFTT.
In this case, the two links will bear similar amount of traffic in both UE and SO, implying that
UE is approximately the same as SO; however, the MCR is around 50% because the flow on at
least one link would be under control in achieving SO.

3.3 Case of general network

For general networks, we provide some numerical analyses to illustrate the following properties
of MCR. Particularly,

Observation 1. Increasing demand magnitude may not necessarily yield higher MCR.

Observation 2. The demand pattern may have a significant impact on the MCR.

Observation 3. All vehicles may need to be controlled to achieve SO.

Observation 4. A change in the network topology may have a profound effect on the MCR.

The evidence of Observation 2 can be found in Section 4.1. Below We demonstrate Obser-
vations 1, 3, and 4 by an illustrative example based on the Braess network whose topology is
shown in Fig. 4, consisting of one OD pair 1-2 with demand d(> 0). Particularly, linear travel
time performance functions are adopted as follows:

t13 = 10v13

t14 = 50 + v14

t32 = 50 + v32

t34 = 10 + v34

t42 = 10v42
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Figure 4: Braess Network

Let f132, f142, and f1342 represent the path flows along paths 1 → 3 → 2, 1 → 4 → 2, and
1 → 3 → 4 → 2. It is easy to verify that the corresponding unique SO flow distribution is given
by Table 2. Fig. 5(a) further specifies the path flows along the shortest paths, and Fig. 5(b)
presents the calculated MCRs corresponding to different demand magnitudes. As we can see,
when d ≤ 80

9 , the increase of d yields non-decreasing MCR, which is consistent with Proposition
1. However, when d becomes greater than 80

9 , the MCR drops from 1 to 0. That is because when
d changes from 80

9 to 80
9 + ε (ε is a sufficiently small positive number), paths 1 → 3 → 2 and

1→ 4→ 2 prove to be the shortest paths (see Fig. 5(a)). Therefore, all the flows along these two
paths (i.e., f132 + f142) can be SVs, and the MCR becomes 0. In other words, it is the change of
the shortest path set that leads to the considerable decrease in MCR. If we compare the above
observation with the proof of Proposition 2, we will see that in the latter, the shortest path set
always consists of link 1 (in Fig. 2) no matter how the demand magnitude varies. Accordingly, it
may imply that Proposition 2 will hold for general networks if their corresponding shortest path
set can remain unchanged when the demand magnitude changes.

In addition, from Fig. 5(b), when d ∈
[ 40

9 , 80
9

]
, all the vehicles must be controlled (i.e., λ = 1)

in order to achieve SO. Therefore, Observations 1 and 3 have been supported.

In order to highlight Observation 4, we consider the revised Braess networks by removing
link 1 → 4, 3 → 2, or 3 → 4 individually. Fig. 6 displays their corresponding MCRs. Compared
with Fig. 5(b), it can be found that even with the same demand magnitude, the MCRs will
change as the network topology changes. Nevertheless, the changing pattern seems ambiguous.
For example, comparing Fig. 6(a) with Fig. 5(b), we can see that removing a link (link 1 → 4
or 3 → 2) from the original network may yield lower MCR when d ∈

( 20
11 , 80

9

]
, but higher MCR

when d ∈
( 80

9 ,+∞
]
. However, the comparison between Fig. 6(b) and Fig. 5(b) suggests that

removing a link (link 3 → 4) from the original network may yield non-increasing MCR under
whatever demand magnitude.
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Table 2: SO flow distribution

d f132 & f142 f1342(
0, 20

11

]
0 d( 20

11 , 40
9

] 11d−20
13

40−9d
13( 40

9 ,+∞
] d

2 0

(a) (b)

Figure 5: (a) Flow distributions (the red color indicates the path flows on the shortest paths, while
the blue color indicates flows on non-shortest paths); and (b) MCRs corresponding to different
demand magnitudes

(a) (b)

Figure 6: (a) MCRs corresponding to the revised Braess network without link 1 → 4 or 3 → 2;
and (b) MCRs corresponding to the revised Braess network without link 3→ 4

4 Numerical Example

In this section, the proposed frameworks are applied to a variety of real-world networks to
identify their corresponding MCRs. Furthermore, we explore how the demand magnitude as
well as the demand pattern will affect their MCRs.
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Table 3 presents the MCRs for 11 networks by solving the CP problem. In particular, the net-
work topology, demand, and link performance functions of the networks can be found in Trans-
portation Networks for Research Core Team (2016). As we can see, the MCR varies from network
to network, ranging from 14.03% to 56.56%. However, except for three networks (Barcelona, Ter-
rassa, and Winnipeg), the MCRs are all below 23%, suggesting that it is likely to achieve the SO
in real-world networks by controlling only a small portion of AVs. In Sharon et al. (2018), the au-
thors suggested that a larger network may require a greater fraction of CAVs to achieve SO as the
number of paths grow. However, the comparison of the MCRs in Anaheim, Berlin-Friedrichshain,
and Berlin-Mitte-Prenzlauerberg-Friedrichshain-Center networks in Table 3 suggests otherwise.
There seems no distinct pattern for the relationship between the MCR and the size of the network.

Table 3: MCRs of various real-world networks

Network # Zones # Nodes # Links MCR (%)
Anaheim 38 416 914 20.52
Barcelona 110 1020 2522 35.96
Berlin-Friedrichshain (BF) 23 224 523 22.76
Berlin-Mitte-Center (BMC) 36 398 871 18.13
Berlin-Mitte-Prenzlauerberg-Friedrichshain-Center (BMPFC) 98 975 2184 14.03
Berlin-Prenzlauerberg-Center (BPC) 38 352 749 18.92
Berlin-Tiergarten (BT) 26 361 766 18.04
Eastern-Massachusetts (EM) 74 74 258 19.72
Sioux Falls (SF) 24 24 76 14.11
Terrassa 55 1609 3264 56.56
Winnipeg 147 1052 2836 41.78

4.1 Impact of demand magnitude

In this subsection, we explore the impact of demand magnitude on the MCRs corresponding to
different networks. In particular, Fig. 7 shows the MCRs under various demand magnitudes.
Specifically, the x-axis value “change of demand magnitude” indicates the percentage by which
all the OD demands are reduced or increased. As observed, increasing the demand magnitude
can result in increasing MCR for most of the tested networks, which is consistent with Proposition
1. However, for some tested networks, such as Sioux Falls and Terrassa, such a tendency does
not hold. Instead, the increase of demand magnitude may decrease the MCR. The reason may be
similar to the one discussed in Section 3.3. More specifically, the increase of demand magnitude
may lead to a significant change of the shortest path set in these networks.

4.2 Impact of demand pattern

In addition to the demand magnitude, the demand pattern may also affect the MCR. To explore
such an impact, we first define a n × n matrix Qξ = ξQC + (1− ξ)QS, where n indicates the
number of OD zones; ξ ∈ [0, 1]; and QC and QS are complete and star networks, respectively.
More specifically,
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QC =


0 1

n−1 . . . 1
n−1

1
n−1 0 . . . 1

n−1
...

...
. . .

...
1

n−1
1

n−1 . . . 0

 QS =


0 1

n−1 . . . 1
n−1

1 0 . . . 0
...

...
. . .

...
1 0 . . . 0


Therefore, Qξ is a convex combination of QC and QS. Denote d̂i as the total demand from

origin i. That is, d̂i = ∑w:o(w)=i d̄w, where o(w) indicates the origin of OD pair w. We then
consider a class of demand patterns specified by the following n× n matrix Dξ :

Dξ =


d̂1 0 . . . 0
0 d̂2 . . . 0
...

...
. . .

...
0 0 . . . d̂n

Qξ

Specifically, Dξ
ij denotes the travel demand from OD zone i to zone j. As we can see, when

ξ = 1, all destinations have the same attraction for all origins, i.e., Dξ
ij =

d̂i
n−1 , ∀i, j, i 6= j. When ξ =

0, travel demand from the center zone or the first origin, i.e., zone 1, will be equally distributed
to all destinations j 6= 1; while demands from other origins i 6= 1 will all be attracted to zone 1.
Therefore, changing the value of ξ, we can obtain different demand patterns.

Fig. 8 plots the MCRs corresponding to various demand patterns. As we can observe, when
ξ increases from 0 to 1, the MCRs for most of the networks are shown to decrease. Nevertheless,
there seems to be no clear tendency for Anaheim and BPC networks. It is worth highlighting
that, as we have tested in some networks, the choice of the center zone in the star network may
also have a great impact on the changing tendency of MCRs, but the specific effect may vary
from one network to another.

5 Joint Control and Pricing

5.1 Motivations

The discussions in previous sections demonstrate that AVs can be utilized as mobile actuators for
managing network traffic. However, such a control scheme may require a widespread adoption
of the AV technology, e.g., 56.56% for the Terrassa network, which is still a distant reality. More
importantly, as AVs can be privately owned, not every AV will be a CAV, i.e., willing to be
controlled. On the other hand, congestion pricing has been widely recognized to be an efficient
instrument for incentivizing travel behavior changes, but it is often criticized for, among others,
increasing the financial burden of the public. In this section, we explore combining market-
based and technology-based instruments to overcome their respective weaknesses. Specifically,
the introduction of congestion pricing may distinctively decrease the control ratio required for
CAVs, while controlling a portion of vehicles can largely reduce the tolling burden on travelers.
We show the synergy of these two instruments yields remarkable results in achieving SO in
transportation networks.
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Figure 7: MCRs corresponding to various demand magnitudes

Figure 8: MCRs corresponding to various demand patterns

Among various congestion pricing schemes, we select the path-based pricing (Zangui et al.,
2015) primarily because conceptually it matches well with the path controlling of AVs, and the
level of connectivity will soon be ready to support the differentiation of paths traveled by dif-
ferent vehicles. It is worth highlighting that, as the routing of CAVs is controlled, only SVs will
be imposed with the path-differentiated toll. The objectives are two-fold: we require both the
proportion of CAVs and the revenue generated from the pricing scheme to be minimized. The
above two objectives generally conflict with each other; therefore, we formulate the problem into
a bi-objective optimization problem and generate its corresponding Pareto frontier below.
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5.2 Model formulation

Before presenting the model, we first define the set of feasible path flows replicating SO for
notational brevity. We say f ∈ F if the following constraints are satisfied:

vU
a = ∑

w∈W
∑

r∈R̄w

f U
r δa,r ∀a ∈ A (24)

∑
r∈R̄w

f U
r = dU

w ∀w ∈W (25)

f U
r ≥ 0 ∀r ∈ R̄w, w ∈W (26)

vC
a = ∑

w∈W
∑

r∈R̄w

f C
r δa,r ∀a ∈ A (27)

∑
r∈R̄w

f C
r = dC

w ∀w ∈W (28)

f C
r ≥ 0 ∀r ∈ R̄w, w ∈W (29)

vU
a + vC

a = v̄a ∀a ∈ A (30)

dU
w + dC

w = d̄w ∀w ∈W (31)

Constraints (24)-(31) are similar to constraints (1)-(8) except that f U
r is defined on MMTT

paths here; as the path-based pricing is implemented to replicate SO, every utilized path must
be with the MMTTs with the presence of tolling scheme. Thus, we can write the joint control and
pricing (JCP) problem as follows:

min
f U , f C ,dU ,dC ,vU ,vC ,γ,µ,X

(
∑

w∈W
∑

r∈R̄w

f U
r γr, ∑

w∈W
dC

w

)
s.t. f U

r ≤ d̄wXr ∀r ∈ R̄w, w ∈W (32)
t̄r + γr − µw ≤ K(1− Xr) ∀r ∈ R̄w, w ∈W (33)
t̄r + γr − µw ≥ 0 ∀r ∈ R̄w, w ∈W (34)
γr ≥ 0 ∀r ∈ R̄w, w ∈W (35)
Xr ∈ {0, 1} ∀r ∈ R̄w, w ∈W (36)

( f U , f C, dU , dC, vU , vC) ∈ F

In the above model, t̄r = ∑a∈A ta(v̄a)δa,r is the SO travel time for path r ∈ R̄w, w ∈ W, γr
is the associated path toll amount, and µw is the minimum generalized travel cost between OD
pair w ∈ W. The objective function contains two components: the first component is the total
revenue, i.e., ∑w∈W ∑r∈R̄w

f U
r γr, and the second is the total number of CAVs, i.e., ∑w∈W dC

w. We
introduce a binary variable Xr to identify usable paths for SVs, where Xr = 1 implies the SV
can use this path and Xr = 0 otherwise. Constraints (32) and (33) imply SV drivers will only
choose the paths with the minimum generalized travel cost, i.e., t̄r + γr, where K is a sufficiently
large number. Here we note that such constraints are only necessary for paths in R̄w because we
can always set a large toll amount to prevent SVs from using other paths. Constraint (34) states
the minimum nature of µw. Constraint (35) states that the path toll must be non-negative, and
Constraint (36) suggests the binary nature of Xr.
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As formulated, JCP is a bi-objective mixed-integer program with nonlinear terms in the
objective function, i.e., ∑w∈W ∑r∈R̄w

f U
r γr. Such a problem is thus extremely difficult to solve op-

timally. In conventional SO decentralization, ∑w∈W ∑r∈R̄w
f U
r γr can often be equivalently trans-

formed into a linear term ∑w∈W d̄wµw (e.g., Zangui et al., 2015), but such transformation is in-
feasible in JCP because the demand related to SVs is dC

w, which is itself a variable. Fortunately,
we can still utilize the following property of path-differentiated tolls to linearize the above for-
mulation. Consider the set of utilized paths between OD pair w by SVs, say r1, r2, ..., rn, where
t̄r1 ≥ t̄r2 ≥ ... ≥ t̄rn ; we call r1 the ”longest utilized path”. By Constraint (33), we know these
paths share the same generalized travel costs, denoted by µw. Apparently, for any given SV path
flows, setting γri = t̄r1 − t̄ri , ∀i ∈ 1, 2, ..., n leads to the minimum revenue for this OD pair, and
in such a case the longest utilized path is toll-free. Such a phenomenon is also highlighted in
Zangui et al. (2015). Therefore, the path toll on any utilized path is determined once the longest
utilized path is known, and with this property we are able to linearize the objective function of
JCP.

We introduce an additional binary variable Yr to represent the selection of the longest utilized
path for OD pair w ∈ W, where Yr = 1 represents that path r is chosen as the longest utilized
path in w and Yr = 0 otherwise; apparently we have ∑r∈R̄w

Yr = 1. Then we can rewrite γr as
∑r′∈R̄w

Yr′ max(0, t̄r′ − t̄r), suggesting that the path toll is max(0, t̄r′ − t̄r) if path r′ is chosen as the
longest utilized path. Then we have f U

r γr = ∑r′∈R̄w
f U
r Yr′ max(0, t̄r′ − t̄r). By introducing another

auxiliary variable Zr,r′ = f U
r Yr′ , we can then reformulate JCP as follows:

min
f U , f C ,dU ,dC ,vU ,vC ,Y ,Z

(
∑

w∈W
∑

r∈R̄w

∑
r′∈R̄w

Zr,r′ max(0, t̄r′ − t̄r), ∑
w∈W

dC
w

)
s.t. f U

r ≤ d̄w ∑
r′∈R̄w :t̄r′≥t̄r

Yr′ ∀r ∈ R̄w, w ∈W (37)

∑
r∈R̄w

Yr = 1 ∀w ∈W (38)

f U
r − d̄w(1−Yr′) ≤ Zr,r′ ≤ d̄wYr′ ∀r, r′ ∈ R̄w, w ∈W (39)

0 ≤ Zr,r′ ≤ f U
r ∀r, r′ ∈ R̄w, w ∈W (40)

Yr ∈ {0, 1} ∀r ∈ R̄w, w ∈W (41)

( f U , f C, dU , dC, vU , vC) ∈ F

In the reformulated JCP, the objective function is transformed into equivalent linear terms.
Constraint (37) states that only paths with shorter or equal travel time compared to the longest
utilized path can support SV flows, because ∑r′∈R̄w :t̄r′≥t̄r

Yr′ = 0 if the travel time of path r is
longer than that of the selected longest utilized one. Constraint (38) requires that only one path
is selected as the longest utilized path for each OD pair. Constraints (39) and (40) together restrict
that Zr,r′ = 0 if Yr′ = 0, and Zr,r′ = f U

r if Yr′ = 1, i.e., Zr,r′ = f U
r Yr′ ; Constraint (41) states the

binary nature of Yr. Compared to the original JCP formulation, the reformulated one neutralizes
the nonlinear terms, then it becomes a bi-objective mixed-integer linear program (B-MILP). The
next subsection will introduce the solution procedure to find the Pareto frontier of JCP.
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5.3 Solution procedure

A solution is said to be on the Pareto frontier of JCP if there is no other feasible solution that can
dominate both the total revenue and the control ratio. Specifically, there are two extreme points
on the Pareto frontier: one is the ”zero revenue” point, which is obtained by solving the JCP
problem with zero revenue, and where the corresponding control ratio is dubbed ”zero-revenue
control ratio” or ZRCR; and the other is the ”zero control” point, which is obtained by solv-
ing the JCR problem without the presence of CAVs or the minimum-revenue path-differentiated
toll problem proposed by Zangui et al. (2015), and the corresponding revenue is dubbed ”zero-
control-ratio revenue” or ZCRR. By definition, a straightforward way of generating the Pareto
frontier is to put the second objective, i.e., the total number of CAVs, into the constraint, and ex-
plore the whole frontier by traversing the interval of feasible boundaries on the number of CAVs.
Mathematically, we can define the following single-objective optimization problem, denoted by
JCP(D̄), as:

min
f U , f C ,dU ,dC ,vU ,vC ,Y ,Z

∑
w∈W

∑
r∈R̄w

∑
r′∈R̄w

Zr,r′ max(0, t̄r′ − t̄r)

s.t. (37)− (41)

∑
w∈W

dC
w ≤ D̄ (42)

( f U , f C, dU , dC, vU , vC) ∈ F

We observe that JCP(D̄) is a standard mixed-integer linear program (MILP), which can be
solved by well-established commercial software (e.g., CPLEX). The feasible choice of D̄ is [0, DZR],
where DZR is the demand associated with ZRCR. By choosing a set of uniformly distributed
values in [0, DZR] and solving JCP(D̄) upon these values we can acquire a rough layout of the
Pareto frontier.

Below we present a method for calculating the DZR, which should not be confused with the
solution to the problem of CP as defined in Section 2.1. The presence of path-based pricing may
help further reduce the number of CAVs required to achieve SO without collecting any revenue.
In other words, we can utilize path pricing to obviate the use of some paths for the minimization
of the control ratio. The JCP problem with zero revenue (JCP-ZR) is mathematically formulated
as follows:

min
f U , f C ,dU ,dC ,vU ,vC ,Y

∑
w∈W

dC
w

s.t. f U
r ≤ d̄w ∑

r′∈R̄w :t̄r′=t̄r

Yr′ ∀r ∈ R̄w, w ∈W (43)

∑
r∈R̄w

Yr = 1 ∀w ∈W (44)

Yr ∈ {0, 1} ∀r ∈ R̄w, w ∈W (45)

( f U , f C, dU , dC, vU , vC) ∈ F

In the above model, the objective is to minimize the number of CAVs, and Yr is the binary
variable to indicate the chosen paths to be toll-free. Constraint (43) suggests that only paths
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with Yr = 1 (or with the same travel time as a path such that Yr = 1) are allowed to support
positive SV flows; other paths are set with prohibitively large tolls to prevent SV drivers from
using them. As a result, no tolling path could attract SV flows, and thus no revenue is collected.
Constraint (44) indicates that for any OD pair, only paths with the same travel time are allowed
to be utilized by SVs. Constraint (45) states the binary nature of Yr. JCP-ZR is also an MILP,
which could be effectively solved by commercial software. The optimal objective function value
of JCP-ZR is used as the upper bound of feasible interval for Pareto frontier, i.e., DZR.

Recall that in the absence of pricing, there exist some specific networks requiring 100%
vehicle control to achieve SO. Interestingly, with the introduction of path-based pricing, an upper
bound for ZRCR exists, which is strictly less than one. The details are given as follows:

Proposition 4. For a given network and OD demand, the ZRCR is upper bounded by ∑w d̄w(1− 1
nw )

∑w d̄w
, where

nw is the number of MMTT paths between OD pair w.

Proof. From JCP-ZR, we see that the essence of a zero-revenue pricing and control problem is to
select one path (or a set of paths with the same travel time) for each OD pair as the non-controlled
path(s). For any given SO path flow pattern f , we can always select the path with the largest
flow for each OD pair as the non-controlled path by charging sufficiently high pricing on other
paths. For this OD pair, the number of CAVs is no more than d̄w(1− 1

nw
), thus the total control

ratio is upper bounded by ∑w d̄w(1− 1
nw )

∑w d̄w
. Proof completes.

The above proposition offers a promising prospect on the minimum control ratio, because
many realistic networks are filled with OD pairs with only one MMTT path. For example, as
shown by Zangui et al. (2015), the number of OD pairs with a unique MMTT path is approxi-
mately 62% of the total for Sioux Falls and 81% for Anaheim. Since nw = 1 for these OD pairs,
we have d̄w(1− 1

nw
) = 0, suggesting that they contribute no CAVs to the whole required number,

and naturally the overall control ratio could be significantly lowered. Such an observation is
further confirmed by the numerical examples in the following subsection.

Lastly, we present the detailed procedure for obtaining the layout of Pareto frontier for JCP.

• Step 1. Solve JCP-ZR and obtain the optimal objective function value DZR; solve the JCP(0)
problem and obtain the optimal objective function value R0, i.e., ZCRR.

• Step 2. Uniformly sample n points in interval [0, DZR], i.e., D̄1, D̄2, ..., D̄n, and solve
JCP(D̄i), i ∈ {1, 2, ..., n} accordingly. The corresponding objective function values are
Ri, i ∈ {1, 2, ..., n}.

• Step 3. Connect the points (0, R0), (D̄1, R1), (D̄2, R2), ..., (D̄n, Rn), (DZR, 0). The curve is the
approximated Pareto frontier.

5.4 Numerical Example

Applying the above procedure with n = 8, we obtain the Pareto frontiers of JCP on Anaheim and
Barcelona networks, shown in Fig. 9. Meanwhile, Table 4 specifies ZRCRs, MCRs, the decrements
of the former compared with the latter, the proportion of OD pairs with a unique path, and the
upper bound of ZRCRs provided by Proposition 4, for all real-world networks considered in this
paper. Some observations can be drawn:

20



• Based on Fig. 9, as the allowable control ratio increases, the collected revenue will decrease.
Particularly, when the control ratio is 0, i.e., there exists no CAV, the revenue, i.e., ZCRR, is
in fact the revenue collected by the minimum-revenue path-differentiated pricing scheme
proposed by Zangui et al. (2015). Specifically, the ZCRRs are 2180.73 and 667.48 minutes
for the two networks, respectively.

• It is possible to achieve SO by controlling a proportion of CAVs much lower than MCR
with a pricing scheme that generates much less revenue than the ZCRR. For example,
in the Barcelona network, the SO can be achieved by controlling only 0.175% vehicles and
collecting a total revenue equivalent to approximately 29 minutes (see Fig. 9(b)), which rep-
resents a 99.51% reduction in control ratio compared to the MCR, and a 95.63% reduction in
toll revenue compared to the ZCRR. This phenomenon suggests that combining congestion
pricing and path controlling schemes could generate substantial synergistic effect.

• The ratios between the ZCRR and the SO travel time are calculated to be 0.16% and 0.05%
for Anaheim and Barcelona networks, respectively. Together with their ZRCRs shown in
Table 4, it seems to imply that the tiny ZRCR for Anaheim and Barcelona networks is the
result of the tiny ZCRR. That is, the smaller the ZCRR is, the smaller ZRCR will be. It
seems plausible as, to some extent, the former suggests that a smaller number of vehicles
is required to be controlled. However, this may not be necessarily true (see Appendix B).

• One interesting finding from Table 4 is that the ZRCRs for the networks are all much lower
than their MCRs, and the decrements are quite significant (e.g., 96.45% and 99.12% for Ana-
heim and Barcelona, respectively). That is, by designing an appropriate path-differentiated
pricing scheme, the SO can be achieved with zero revenue and a level of CAVs that is much
smaller than the MCR. Since only SVs are charged for the toll, imposing a sufficiently high
toll on particular paths is equivalent to converting these paths into CAV-only paths, because
no SV would choose to use them. Therefore, regulating the routing strategy of SVs may
actually require collecting no toll. Furthermore, as shown in Table 4, except for Terrassa,
all the tested networks posses a large number of OD pairs (more than 50%) with a unique
MMTT path, such as Anaheim (80.87%) and BMPFC (90.75%). As the ZRCR for these OD
pairs must be 0, the ZRCR for these networks can be very small.

• Table 4 indicates that the upper bound of ZRCR provided by Proposition 4 could be much
smaller than the MCRs if the networks are with a large number of OD pairs with a unique
MMTT path, such as Anaheim (80.87%) and BMPFC (90.75%). However, for the networks
with a small number of OD pairs with a unique MMTT path, such as Terrassa (22.26%),
their upper bounds could be even higher than their MCRs.

6 Conclusion

Envisioning that automated vehicles may act as mobile actuators to regulate traffic flow across
road networks, this paper has proposed a path controlling scheme to achieve the system
optimum by controlling the routing of a portion of automated vehicles. Finding the minimum
control ratio of the scheme is delineated by a linear program, which can be solved efficiently
by commercial solvers. Mathematical proof and numerical examples based on real-world
transportation networks are offered to characterize the minimum control ratio. A few findings
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(a)

(b)

Figure 9: Pareto frontiers of JCP on (a) Anaheim, and (b) Barcelona networks

Table 4: Results for real-world networks

Network ZRCR (%) MCR (%) Decrement (%) OD Pairs with
Unique Path (%)

Upper Bound
of ZRCR (%)

Anaheim 0.73 20.52 96.45 80.87 13.27
Barcelona 0.32 35.96 99.12 63.14 20.79
BF 0.92 22.76 95.95 78.26 14.03
BMC 0.35 18.13 98.10 85.87 14.15
BMPFC 0.06 14.03 99.58 90.75 4.37
BPC 0.30 18.92 98.42 81.37 11.07
BT 0.41 18.04 97.75 83.23 11.80
EM 0.48 19.72 97.55 75.83 16.15
SF 0.70 14.11 95.07 61.93 20.94
Terrassa 23.64 56.56 58.21 22.26 73.07
Winnipeg 0.60 41.78 98.57 54.61 31.12

are worth highlighting here. We show that the minimum control ratio varies from 0 to 1,
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depending on the network topology and demand pattern. In our tested networks, it ranges
between 14.03% and 56.56%, but is below 23% for the majority of them. Given that the required
minimum control ratio can be high (e.g., 35.96%, 41.78%, and 56.56% for Barcelona, Winnipeg,
and Terrassa networks, respectively), we have further proposed a joint control and pricing
scheme that combines the path controlling of cooperative automated vehicles and the path-based
pricing of conventional vehicles or uncontrolled automated vehicles. The design of the scheme is
formulated as a mixed-integer linear program. Numerical examples demonstrate the substantial
synergistic effect of the joint scheme on reducing the minimum control ratio and the financial
burden on travelers. For example, the joint scheme can reduce the the minimum control ratios
by approximately 96% and 99% for Anaheim and Barcelona networks, respectively, without
collecting any tolling revenue.
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Appendix A

To avoid the enumeration of the sets of shortest paths and MMTT paths, we develop a column
generation algorithm to solve the CP problem. Specifically, we define the subsets of the shortest
paths and MMTT paths as P̂w and P̄w, respectively, and introduce a restricted CP (RCP) problem,
as shown below:

min
f U , f C ,dU ,dC ,vU ,vC

∑
w∈W

dC
w

s.t. vU
a = ∑

w∈W
∑

r∈P̂w

f U
r δa,r ∀a ∈ A (46)

∑
r∈P̂w

f U
r = dU

w ∀w ∈W (47)

f U
r ≥ 0 ∀r ∈ P̂w, w ∈W (48)

vC
a = ∑

w∈W
∑

r∈P̄w

f C
r δa,r ∀a ∈ A (49)

∑
r∈P̄w

f C
r = dC

w ∀w ∈W (50)

f C
r ≥ 0 ∀r ∈ P̄w, w ∈W (51)

vU
a + vC

a = v̄a ∀a ∈ A (52)

dU
w + dC

w = d̄w ∀w ∈W (53)
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The Lagrangian of RCP is thus given by

L = ∑
w∈W

dC
w − ∑

a∈A
λU

a

(
vU

a − ∑
w∈W

∑
r∈P̂w

f U
r δa,r

)
− ∑

w∈W
ρ̂w

(
∑

r∈P̂w

f U
r − dU

w

)

− ∑
a∈A

λC
a

(
vC

a − ∑
w∈W

∑
r∈P̄w

f C
r δa,r

)
− ∑

w∈W
ρ̄w

(
∑

r∈P̄w

f C
r − dC

w

)
− ∑

a∈A
αa

(
vU

a + vC
a − v̄a

)
− ∑

w∈W
βw

(
dU

w + dC
w − d̄w

)
= ∑

w∈W
∑

r∈P̂w

(
∑
a∈A

λU
a δa,r − ρ̂w

)
f U
r + ∑

w∈W
∑

r∈P̄w

(
∑
a∈A

λC
a δa,r − ρ̄w

)
f C
r + ∑

w∈W
dC

w − ∑
a∈A

λU
a vU

a

+ ∑
w∈W

ρ̂wdU
w − ∑

a∈A
λC

a vC
a + ∑

w∈W
ρ̄wdC

w − ∑
a∈A

αa

(
vU

a + vC
a − v̄a

)
− ∑

w∈W
βw

(
dU

w + dC
w − d̄w

)
where λU , ρ̂, λC, ρ̄, αa, βw are the multipliers of constraints (46), (47), (49), (50), (52), and (53),
respectively.

According to the above Lagrangian, the reduced cost of any path r ∈ R̂w is ∑a∈A λU
a δa,r − ρ̂w,

and it must be no less than 0 for any path r ∈ R̂w \ P̂w under optimality. Therefore, finding a
new shortest path for an OD pair w ∈ W that might improve the objective value is to solve the
following shortest path finding (SP) problem:

min
ŷw ∑

a∈A
λU

a ŷw
a

s.t. ∆ŷw = Ew ∀w ∈W

∑
a∈A

ta(v̄a)ŷw
a = ĉw ∀w ∈W

ŷw
a ∈ {0, 1} ∀a ∈ A

where ŷw
a is a binary variable, which is equal to 1 if link a is utilized and 0 otherwise; ĉw represents

the shortest travel time between OD pair w, which can be predetermined given the SO flow
distribution v̄; ∆ is the node-link incidence matrix associated with the network and Ew is the
vector with a length of |N|. The vector consists of two-nonzero components: one has a value
of 1 in the component corresponding to the origin of w, and the other has a value of -1 in
the component corresponding to the destination of w. The first constraint ensures the flow
conservation, and the second one is to guarantee that the selected path is a shortest path. For
each OD pair w ∈W, the optimal solution to SP can be used to construct a shortest path, i.e., p̂w,
that could possibly improve the objective value of RCP.

Similarly, we have the following MMTT path finding (MMTTP) problem:

min
ȳw ∑

a∈A
λC

a ȳw
a

s.t. ∆ȳw = Ew ∀w ∈W

∑
a∈A

t̄a(v̄a)ȳw
a = c̄w ∀w ∈W
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ȳw
a ∈ {0, 1} ∀a ∈ A

where ȳw
a is a binary variable, which is equal to 1 if link a is utilized and 0 otherwise; c̄w represents

the MMTT between OD pair w, which can be easily calculated with the SO flow distribution v̄;
For each OD pair w ∈ W, the optimal solution to MMTTP can be used to construct a MMTT
path, i.e., p̄w, that could possibly improve the objective value of RCP.

The column generation algorithm is presented as follows:

• Step 1. Solve the SO flow assignment via the path column generation process; obtain v̄,
c̄, and the corresponding subset of MMTT paths, i.e., P̄. Note that with P̄ as an initial
marginal shortest path subset, the feasibility of RCP can always be guaranteed.

• Step 2. Solve SP problem with λU
a = ta(v̄a), ∀a ∈ A for each OD pair; obtain ĉw, and

construct P̂w = { p̂w} for all w ∈W.

• Step 3. Solve RCP upon P̂w and P̄w, and obtain dC and the multipliers λU , ρ̂, λC,and ρ̄.

• Step 4. For each OD pair w ∈ W, solve SP and MMTTP upon λU and λC; obtain paths p̂w

and p̄w. For w ∈ W, if ∑a∈A( p̂w) λU
a ŷw

a < ρ̂w, add p̂w to P̂w; similarly, if ∑a∈A( p̄w) λC
a ȳw

a < ρ̄w,
add p̄w to P̄w. However, if ∑a∈A( p̂w) λU

a ŷw
a ≥ ρ̂w and ∑a∈A( p̄w) λC

a ȳw
a ≥ ρ̄w for all OD pairs,

stop and dC is the optimal solution. ∑w∈W dC
w is thus the minimum number of CAVs to

achieve SO. Otherwise, go to Step 3.

Appendix B

This appendix illustrates that a small ZCRR does not necessarily imply a small ZRCR and vice
versa.

Consider a parallel network as shown in Fig. 2. Assume there are two parallel links with
associated link travel time functions as t1(x) = 1 + x and t2(x) = 1 + δ + x where x is the
link flow and δ > 0 is a sufficiently small number. Given a total demand of d, the SO state is
calculated as x̄1 = d

2 +
δ
4 and x̄2 = d

2 −
δ
4 , and we have t1(x̄1) = 1 + d

2 +
δ
4 , t2(x̄2) = 1 + d

2 +
3δ
4 . To

achieve SO, we only need to charge a toll on link 1 with the amount of δ
2 , generating a revenue

of δ
2 x̄1 = dδ

4 + δ2

8 ≈ 0. On the other hand, the ZRCR is equal to x̄2/d = 1
d (

d
2 −

δ
4 ) ≈

1
2 . Such an

example shows that a network with almost zero ZCRR can still have a large ZRCR.

Then we show that a network with small ZRCR could result in a large ZCRR. Consider
a parallel network with two links, where the associated link travel time functions are t1(x) =
1 + 100x and t2(x) = 100 + x, and the total demand is given by d = 99

200 + δ, where δ > 0 is
a sufficiently small number. The SO state is given by x̄1 = 99

200 + 1
101 δ and x̄2 = 100

101 δ, and we
have t1(x̄1) =

101
2 + 100

101 δ, t2(x̄2) = 100 + 100
101 δ. For ZCRR, we must charge a toll of 99

2 on link 1,
resulting in a revenue of 9801

400 + 99
202 δ, but the ZRCR is x̄2/d ≈ 20000

9999 δ ≈ 0. Thus, a network with
high ZCRR could still have a negligible ZRCR.
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