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Abstract

Automated vehicles (AVs) eliminate the burden of finding a parking spot upon arrival to
the destination, because they can park at a strategic location or cruise until summoned by
their users. In this study, we investigate the parking choices of privately-owned AVs in a
downtown area. Since each user’s choice has impacts on another via cruising-incurred traf-
fic congestion and parking competition, we model the parking choice problem of AVs as a
Wardrop equilibrium in which each user cannot further reduce their parking cost by unilater-
ally changing their choice. The model considers all possible options for parking a private AV,
and finds that these parking choices may yield multiple equilibria under which the conges-
tion and social welfare are very different. We further develop an efficient solution algorithm
to find all equilibrium solutions. Our analysis shows that even if AVs act in a non-cooperative
manner, one possible outcome would involve many AVs choosing to cruise, which creates
severe congestion to decrease the cost of cruising. However, this outcome can be avoided
by a time-based congestion toll, which discourages AVs from cruising for a long period and
increases the social welfare. Our analysis also shows parking pricing and provision may not
reduce congestion induced by cruising AVs without the help of a congestion toll.

Keywords: Automated vehicles; parking choice, parking policy; time-based toll; congestion

1 Introduction

Automated vehicles (AVs) are fast approaching and they are going to change the way we travel,
and the form and land use of cities, consequently. For instance, AVs could be stacked behind
each other inside parking facilities to increase parking supply and decrease the land needed for
parking (Nourinejad et al., 2018). This would free up land for commercial and residential land
uses, thereby changing cities and their sprawl pattern (Zakharenko, 2016b; Gelauff et al., 2019).
Also, AVs can accelerate the growth of shared use of a vehicle via car sharing or on-demand
ride-hailing due to greater convenience and cost savings arising from their self-driving capability
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(Stocker and Shaheen, 2017; Gurumurthy et al., 2019). However, surveys show that many users
would prefer to own and use their private AVs even if shared mobility services become extremely
cheap (Haboucha et al., 2017; Gkartzonikas and Gkritza, 2019).

Private AV users would experience hassle-free parking due to the self-parking capability of
AVs. This feature enables users to exit from their AVs at their final destinations, and send their
occupant-free AVs to search for parking spots on their own. Hence, it removes the necessities
of providing parking for AVs in the proximity of destination, and offers new parking options to
them. AVs would still have the option to drive to a nearby parking spot and park there until they
are summoned by their users. In addition, AVs may drive all the way back to the users” home
or any farther but cheaper parking spots. Furthermore, in a more extreme scenario, AVs may
cruise around the destination while their users are running errands. Therefore, it is important to
investigate the parking choices of these privately owned AVs and evaluate the impact of various
policies on congestion and social welfare.

Parking studies and impacts of parking policies have received much more attentions after
the pioneering work by Shoup (Shoup, 2005), which highlights the impact of vehicle cruising for
parking on congestion. Since then numerous research has attempted to model the impact of cruis-
ing for parking, users’ preference in choosing a parking spot, and the effects of different parking
policies and management schemes on congestion (e.g., Arnott and Inci, 2006; Van Ommeren
et al., 2011; Benenson et al., 2008; Geroliminis, 2015; Arnott et al., 2015; Chen et al., 2016). Un-
derstandably, these models consider human-driven vehicles (for recent reviews, see, e.g., Brooke
et al., 2014, and Inci, 2015).

Recently, researchers have started to study the impact of AVs on parking. Liu (2018) and
Zhang et al. (2019) presented equilibrium models of the choice of parking locations for com-
muter trips by AVs over a linear city. Zakharenko (2016a) also investigated the parking location
of commuting trips in a mono-centric two-dimensional city of a half-circular shape. He consid-
ered three options of parking, including parking near the workplace, parking at a farther special
parking zone, and parking at residential lots. The analysis showed that 97% of commuter AVs
will be parked in the dedicated parking zones, and the optimal location of such zones is just
outside of the commuter work zone. Zakharenko (2016a) suggested that a congestion toll for
zero-occupant AVs make outskirt parking more expensive than central ones. This leads to a com-
petition between AVs and regular vehicles over central parking spots, thereby decreasing social
welfare. More recently, Su and Wang (2020) investigated the parking location choice of commut-
ing AV trips. They considered three parking locations in their model: parking in the downtown
area, parking at home, and parking outside downtown area, and showed that congestion can
be minimized without a toll with proper parking pricing and supply. All these prior models
only consider commuter trips with long dwell times, which enables them to ignore the option of
cruising as a substitution for parking. However, if the network becomes congested and the speed
drops considerably, cruising can be a viable option even for the long dwell times of commuting
trips. By means of an agent-based simulation model, Bahrami (2019) investigated the parking
choices of AVs including the cruising option, and tested different policies for a real case study
of the City of Toronto. He concluded that zero-occupant toll can make a balance between the
parking cost and distance and decrease the congestion. Millard-Ball (2019) also considered cruis-
ing as a substitution for parking and investigated its impact on downtown San Francisco. He
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suggested that AVs would collaborate with each other and choose the most congested cruising
path to make a gridlock in order to decrease their parking cost.

In this paper, we model the parking choices of privately-owned AVs in a downtown area and
investigate how these choices impact congestion and social welfare. We also explore the effective-
ness of different policies on reducing congestion and increasing social welfare. More specifically,
we consider a downtown area where users of private AVs come to engage in activities of vary-
ing duration; AVs then choose different parking options depending on their users” activity time,
with the objective of minimizing their total parking cost, which leads to a Wardrop equilibrium.
Under the equilibrium conditions, no AV users can decrease their parking cost by unilaterally
changing their choices. With the parking equilibrium model, we then investigate policies such
as congestion pricing, parking pricing and provision on internalizing the externalities of parking
to increase social welfare. The primary contribution of this work is a parking choice equilibrium
model. Developed in a stylized setting, the model provides a simple yet powerful framework for
representing all parking considerations or preferences of AVs, capturing their interactions, and
revealing various consequences of AV parking choices. It provides a foundation for investigating
and optimizing parking policies in the era of AVs. The framework is flexible and can be extended
to model more complicated scenarios such as ingress/egress congestion, elastic parking demand,
heterogeneous AV fleet, and multiple areas or regions.

The remainder of this paper is organized as follows. Section 2 presents an equilibrium model
for AV parking choices. Section 3 presents the proposed solution algorithm. Section 4 investi-
gates the impact of different policies on congestion and proposes optimal ones in terms of social
welfare. Section 5 presents numerical examples, and Section 6 concludes the paper.

2 An equilibrium model for AV parking choices

2.1 Model setting

We consider a downtown area where a continuum of users of AVs come to participate in activities
whose duration vary from user to user. We assume that users activity time ¢ is continuously
distributed between [0, T|. Each AV user makes a parking decision upon arrival and chooses
to send their AV back home (presented with “h”), travel to and park in an outskirt parking
(presented with “0”), search and park in the downtown area (presented with “p”), or cruise
within the area as a substitution for parking (presented with “c”) as shown in Figure 1. We
will then model the interactions and outcome of their parking choices. Below we first present
the cost of each parking option. It is assumed that the average running speed in the downtown
area is related to the traffic accumulation and that AVs travel with a free-flow speed outside this
downtown area; they also experience no delay during the ingress or egress of the area.

We start with the cost of sending the AVs to park and wait at home. We assume that the
average round-trip distance to home from the downtown area is I,. If a user whose activity time
is equal to t decides to send the AV back home to park, two situations might happen: if the user
activity time is long enough for the AV to complete round-trip travel between the destination
and home, the cost of parking at home is equal to p;l;, where p; is the driving cost per unit of
distance. Unlike human-driven vehicles, users are not present in the AVs while they are searching
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Figure 1: Schematic of parking choices of AV users.

for parking. Therefore, the cost of driving is vehicle operating cost, which is typically measured
in distance in the literature (e.g., Berthelot et al., 1996). Otherwise, if the activity time of the
user is not long enough, the AV must return in the middle of its route to pick up the user. Note
that it is possible that AVs will find the option of home parking cheaper, e.g., in the presence
of congestion pricing in downtown, even if the activity time is shorter than the round-trip time.
Hence, the cost of sending the AV back home would be equal to p,;vst, where v is the free-flow
speed, and vyt gives the total distance traveled by the AV during user activity time ¢. Therefore,
we can write the cost of sending AVs back home to park as

’)/h(t) = Pgq- min(lh, tvf). (1)

Another option for AV users is to send the AVs to an outskirt parking facility that is located
l,/2 from the downtown area and charges 7, per unit of time. Similar to parking at home, two
situations might occur in this scenario. If the user’s activity time ¢ is long enough, the AV reaches
the parking facility and parks there for t — l—”, where z’}—”f

o7 is the round-trip travel time to parking.

Hence, the total cost of using the parking facility is equal to psl, + T, (t — ZIJ—;), where the first
term is the round-trip travel cost to the parking facility, and the second term is the cost charged
by the parking facility. If the activity time of the user is not long enough for the AV to reach
the outskirts parking, it must return in the middle of trip and the parking cost is the same as
the home option and equal to psust. Hence, we can write the cost of sending AVs to park at an

outskirt parking facility as

Yo(t) = pg - min(ly, tvf) + T - max(t — ;};,O). 2)

The AVs also have the option to stay in the downtown area and search for a parking spot.
The parking search time, denoted by ¢,, depends on the parking vacancy rate and average speed
in the area. Similar to previous choices, two options might happen to an AV user with activity
time t who chooses to park in the area. First, if the activity time is longer than the average
time needed to find a parking spot (t > t,), the AV parks and pays the parking charge 7, for
the parking period t — t,. Such a scenario also incurs a driving cost up until finding a parking
spot, which is psv(n)t,, where v(n) is the moving speed in the downtown area, which depends
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on traffic accumulation in the network, n. Also, there might be a time-based congestion pricing
toll applied to AVs in the downtown area, denoted by 7, to disincentivize the zero-occupant
movements of AVs. Hence, the AVs must also pay a toll equal to 7.t,. If the activity time is
shorter than the average search time to find a parking spot, the AV is summoned before finding
a parking spot. In other words, the AV searches for a vacant parking spot for the whole activity
time of its user. In this case, the parking cost is equal to the summation of the driving cost and
tolling cost, which is p;v(n)t + 7.t. Hence, the cost of parking in the downtown area can be
summarized as

Yp(t) = pa-v(n) -min(t, t,) + T - min(t, t,) + 7, - max(t — £,,0). 3)

The parking search time ¢, will be the parking search distance divided by the cruising speed.
The former is assumed to be a function of parking occupancy that is the ratio of the number of
parked vehicles divided by the parking supply. The function can take various forms, depending
on, e.g., the availability of parking information, the possibility of parking reservation or the
presence of a service that matches searching vehicles with available parking.

Finally, AVs also have the option to stay in the downtown area and cruise for the entire
activity time of their users. The cost of this option is

Ye(t) =pg-t-v(n)+1-t, 4)

where the first term is the driving cost and the second term is the toll cost.

2.2 Equilibrium conditions and formulation

We are now ready to model the parking choice equilibrium problem. It is assumed that users are
rational and would compete against each other to minimize their parking costs, which leads to
the equilibrium conditions, where no user can further decrease their parking cost by unilaterally
changing the parking choice. Given the number of users or AVs is infinite, the equilibrium is a
Wardrop equilibrium or a mean-field equilibrium. Let’s assume that the total mass of AV users
is g and the activity time ¢ € [0, T] follows a continuous probability density function f. Let k; be
the jam density, and A, be the total utilizable road area. Also, P is the total number of parking
spots in the downtown area. Below we present the equilibrium conditions conceptualized above:

X (1) - (9 (t) — (t)) =0 Vt,Vr € {h,o0,p,c} (5a)
70lt) — () > wvre {hopch  (5b)
x(t) >0 Vt,¥r € {h,o0,p,c} (5¢)
Y x () =q-f(t) \Z: (5d)
v(n) = ( > (5e)
I

/ xc(t) - t- dt+/ xp(t tp-dt+qb-fl;1) (5f)

qp = Qb(TZ)/Tc) (5g)
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ty = (5h)

where p(t) is the minimum parking cost incurred by each user whose activity time is t. 7, is
the cost of parking option r € {h,0,p,c}, and x,(t) is the AV flow density with activity time
t choosing option r for parking. Also, q; is the background traffic, and I, is the average travel
distance of background traffic, which is assumed to be given.

Constraints (5a)-(5¢) indicate that all parking options used by a group have the same cost,
which is equal to or smaller than the cost of all unused parking options for that group. Con-
straints (5d) assure that the total AV flow density in each group is equal to the sum of flow density
choosing different parking options. Equation (5e) states that the speed in the downtown area is a
function of network accumulation, the jam density, and the utilizable road area, as described by a
network macroscopic fundamental diagram (e.g., Geroliminis and Daganzo, 2008). Equation (5f)
states the traffic accumulation in the downtown area, including those who are cruising, searching
for parking spots, and from the background traffic. Each cruising AV remains in traffic for the
whole activity time of its user, while the AVs that park in the downtown area are only present
for the parking search time in traffic. Equation (5g) captures the background traffic, which is
given by a demand function of their travel time in the downtown area and the toll. Equation
(5h) states the parking search time as a function of parking search distance divided by cruising
speed. The former is a function of parking occupancy that is the ratio of the number of parked
vehicles divided by the parking supply.

Define A = {Y|x,(t) > 0,5, x,(t) = q- f(£),Vt,1;0 < n < kjA,,0 < g, < Q),0 < t, < T},
where QY is the potential background demand. The above conditions yield an equivalent fixed-
point problem of finding an Y € A such that

F(Y) =Y, (6)
where
X
n
Y = 0 )
tp
Ho, (x:(t),n)
Sy xe(t) - t-dt+ [T xp(t) -ty -dt +qp- %
F(Y) = Qv (57 %) , ®)

P P

v(n)

in which H,, (x,(t),n) = max <0, xr(8) = (7, (F) — y(t)))
Since the users activity time is a continuous random variable, the fixed-point problem (6) is of

infinite dimension, similar to traffic assignment models with continuous value of time previously
investigated in the literature (Marcotte and Zhu, 2009; Zhu et al., 2015). Note that A is a compact

6
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convex set in a Banach space and F is continuous if the parking search distance function L, is
continuous. Based on the Schauder fixed-point theorem, which generalizes the Brouwer fixed-
point theorem (Franklin, 2002), there exists a solution to the fixed-point problem (6). However,
there may be multiple solutions as F is not necessarily monotone, e.g., a fall in speed can decrease
cost of cruising and induce an increase in number of users choosing to cruise. Moreover, solutions
may arise either in the non-congested or congested regime. It is thus critical to find these equilibra
for the purpose of proposing parking policies, as the congestion and parking externalities are
much different under these solutions. We further note that these equilibrium solutions may not
necessarily be stable. An equilibrium solution is considered stable if the system returns to it after
a small disruption.

Below we present a special case for the sake of demonstrating the properties of the equi-
librium solutions and motivating a solution algorithm to find all equilibrium solutions of the
general case.

2.3 A special case

We now assume that there are no parking spots in the downtown area and AVs must choose
between cruising, outskirts parking, or returning home. We also assume that the background
traffic accumulation, 7, in the downtown area is fixed. In this special case, finding a solution
to the nonlinear complementarity system (5) is equivalent to solving the following mathematical
program:

min Z = /OT (’yh(t) xp (1) 4+ vo(8) - xo(t) + Te - £+ xc(F) + /Ofo o P4 - v(w) -dw> - dt (9a)

st xp(F) + x0(t) + xc(t) =g f(¢) Vi (9b)
Xh(t), xo(t)/ xC(t) > 0 vt/ (9C)
T
in which: v = V<f0 xc(t;(j‘;‘;[ at nb). (9d)

The equivalence of the above formulation can be established by writing out the optimality
conditions and comparing them with the reduced system (5) for the special case. We note that the
formulation (9) appears very similar to the equilibrium traffic assignment formulation (Beckmann
et al., 1956). In the parking choice problem, each parking choice can be treated as a route in a
parallel network with one origin-destination pair. However, a closer inspection of the objective
function will find that, as the average network speed and density are negatively correlated, the
objective function is concave, and thus the problem is a concave minimization problem with linear
constraints. This suggests that the problem may have a number of locally optimal solutions and
there exists a globally optimal solution that is an extreme point of the feasible region.
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Figure 2: An example of the cost function of different parking choices with respect to the activity
time of a user.

3 Equilibrium solution by finding indifference activity times

3.1 Special case

Note that the formulation (9) is NP-hard. In this section, we develop an efficient solution algo-
rithm to solve it. We first show that each class of users can only select one parking option based
on their activity time. Figure 2 shows an example of the cost function of different parking choices
for different users’ activity times in the special case in which we assume that we know the speed
in the downtown area. We can see in this example that the cruising option has the lowest cost for
any activity time up to t., and users with a shorter activity time than t., choose this option based
on the equilibrium conditions, consequently. From t., to t,j, the outskirts parking has the lowest
cost; users whose activity times are in this range send their AVs to outskirts parking. Finally, the
home option has the lowest cost for any activity time longer than t,,. Hence, we can solve the
AV parking problem (Egs. (9a)-(9c)), if we know the boundary points in activity time (t., and
ton), where the option with the lowest cost changes.

To find all the boundary points of the AV parking problem (Egs. (9a)-(9c)), we define the
indifference points in the activity time of users. The indifference point, denoted by t,., is activity
time in which the cost of two choices r and 1’ are equal and users are indifferent in choosing
between the two. Also, the indifference point ¢, indicates that the cost of option r is less than /
for shorter activity times, while the option " has the lower cost for longer activity times. Figure
3 shows all the possible scenarios for the cost function of different parking choices in the special
case. The slopes of home and the outskirts parking choices are fixed based on Equations (1) and
(2). However, for the cruising option, the slope depends on the speed in the downtown area
and three scenarios might occur, as shown in Figure 3. We can see that the type and location of
the indifference points vary between different scenarios. For instance, ¢, is the activity time in
which the cost of cruising and outskirts parking are equal in scenario II, while there is no such
indifference point under scenarios I and III.

We now discuss the three scenarios and find the indifference points in the activity times,
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Figure 3: Possible scenarios for the cost function of different parking choices with respect to the
activity time of a user.

which can give us the mass of users choosing different parking choices under the equilibrium
conditions.

3.1.1 Scenariol

velpTo
< Gffhte T
If we have v A Pdvf(lh 1) 04

this scenario, as shown in Figure 3, cruising is the cheapest option from the minimum activity
time up until f,. The cost of cruising and parking at home are equal at t.;, and parking at home

under the equilibrium conditions, then scenario I happens. In

is cheaper for any activity time longer than ty. Under this scenario, the outskirts parking is
dominated and no user would use it, consequently. The indifference point of activity time, ¢, is

~ paly

= . 10
040 + T¢ (10)

ch

3.1.2 Scenario II

. . vfly T
Scenario II happens if we have Ry ()
In this scenario, cruising is the cheapest option for the minimum activity time up to the activity
time t,. The cost of cruising and outskirts parking is equal at t,,. Then, outskirts parking is the

cheapest option up to the activity time t,;, in which the cost of outskirts parking is equal to the

— ¢ < v < vf — ¢ under equilibrium conditions.
Od Pd

home option. Parking at home becomes the cheapest option for any activity time longer than t,,.
Under this scenario, all three parking options are used by the AVs and the indifference points in
the activity times are

Zo(pdvf —T)

foo = 11

« 0 (040 + T — To) (1)

oy — Loy palln=lo) (12)
Uf Tg
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Figure 4: The cost function of different parking choices with respect to the activity time of a user.

3.1.3 Scenario III

T
Od
is always more expensive than the other two options for any activity time duration. Outskirts

parking is cheaper than park at home for minimum activity time up to t,;, in which the cost of
two options are equal. Then, park at home is cheaper for any activity time greater than t,,. No
AVs cruise instead of parking and the indifference point, t,, is

Finally, if v > vy — -¢ under equilibrium conditions, scenario III occurs. In this scenario, cruising

toy = li + pd(lh - la)' (13)
0 f To

In scenarios I and II, the indifference points in the activity times are a function of speed
in the downtown area, which itself is a function of the number of cruising vehicles and their
cruising time, yielding a fixed-point problem. There may be multiple solutions that satisfy all the
conditions depending on the type of function assumed for speed and the distribution of users
based on their activity times. Also, all three scenarios might be possible for the same set of input
parameters, implying that any of them can arise in reality. We discuss these phenomena in more

detail in Section 5 with the help of a numerical example.

3.2 General case

Although the general case is modeled as a fixed-point problem, we can still use the indifference
point approach to find all the solutions. In the general case, there are eight different scenarios,
as shown in Figure 4. Table 1 presents the indifference points in activity times for general case
and the conditions on parking search time and travel speed in the downtown area under the
equilibrium conditions for these scenarios to happen. We discuss these scenarios in further detail
in Appendix A.

Similar to the special case, multiple solutions may exist in each scenario depending on the
type of speed function, the parking search time function, and the distribution of users based
on their activity times. Also, multiple scenarios might be feasible for the same set of input
parameters and any of the equilibrium solutions might happen in reality. Figure 5 shows a
flowchart with a step-by-step approach to find all of the solutions.

10
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Table 1: The indifference points in activity times for general case.

4 Parking management policies

With the proposed framework of equilibrium analysis of the AVs parking decision, we are now
ready to formulate an optimal policy design problem to prescribe parking management poli-
cies to improve social welfare. Below we demonstrate our formulation by considering policies
including pricing of downtown and outskirt parking, downtown parking provision, and conges-
tion pricing, which can be used by policymakers to manage parking in the age of AVs.

More specifically, a congestion toll can increase the cost of driving in the downtown area,
thereby increasing the costs of the options of cruising and parking in the downtown area. There-
fore, it can be used as a leverage to incentivize AV users to go outside the downtown area for
parking and reduce congestion. The pricing of outskirt parking can further regulate the choices
between home and parking outskirt. In contrast, the pricing and provision of downtown parking
can change the cost of parking in the downtown area. However, their impact on congestion in
the downtown area is not as clear as the congestion toll. For instance, a low parking provision
can increase the parking search time and the cost of parking in the downtown area. This can lead
more AVs to go and park outside the area or choose to cruise for a longer period. The former
case can decrease the congestion in the downtown while the later one increases it. From this
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Figure 5: Flowchart of the proposed algorithm to find all equilibrium solutions.

1 perspective, therefore, the pricing and provision of downtown parking is a double-edged sword.
2 The nonuniqueness of solutions to the parking equilibrium model presents a challenge when
s we prescribe an optimal parking management policy, because its outcome will be uncertain.
+ Below we develop an optimization model to determine a policy whose worst-case social welfare
s is maximized. In the literature, the resulting policy is considered to be robust (Lou et al., 2010;
s Lietal., 2020).

T
min max/ <xh(t) - pg - min(ly, tog) + xo(t) - pg - min(ly, tvy) + xp(t) - pg - v(n) - min(t, t,)
0

(Tp/To,Te,P) X4b

+ xc(t) - pg-v(n) - t) dt —l—zx(qb : Z)él;i) - 0% Q;l(ﬂ)dﬁ) + pP (14)

s.t. (5),

7 where a is the value of time of background traffic users and Q,"' is the inverse function of
s background traffic. Also, B is the cost of providing a parking spot in the downtown area. In the
s above equation, the objective is to minimize the maximum social cost (negative social welfare).
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As formulated, the optimal parking policy design problem is a mathematical program with
equilibrium constraints, difficult to solve in general. However, as the decision variables of the
outer minimizing layer are of a low dimension and we have developed an efficient inference point
approach to find all equilibrium solutions, a derivative-free method such as the Nelder-Mead
method can be applied to solve the problem effectively.

We also note that when the background traffic is fixed in the special case, social welfare
defined above can increase with a drop in speed in the downtown area. Such a “paradox” may
not arise with the presence of elastic background traffic in the general case. A speed drop or
higher congestion will increase the cost of the background traffic and discourage them from
coming to the downtown area, which yields a loss of consumers’ surplus.

5 Numerical studies

In this section, we assume that the speed function follows a Greenshields-type function (Green-
shields et al., 1935) as

n
v=uvr|l— ] . (15)
f [ kA,

In addition, we assume that the parking search time in the downtown area can be estimated
using the following function

-1
tp - fo (£)-max(t—t,,0)-dt : (16)
In (== 4 0.01)v
The demand function of background traffic is assumed to be as follows:
Kplp
qb = Qg((l;)b) z_lpb’fc), (17)

where x; and ), represent the sensitivity of the background traffic demand to travel time and
toll, respectively.

In the numerical examples, we consider a Manhattan-like downtown area and assume that
users’ activity times follow a uniform distribution between 0 and 10 hours. This function can be
replaced by any other distribution. Table 2 presents the default value of the used parameters in
this section.

We first consider that there is no on-street parking (P = 0) and the background traffic accu-
mulation is fixed (1, = 15,000) to explore the special case presented in Section 2.3. The purpose
is to demonstrate the use of the proposed indifference point method and the existence of multiple

. . . vl
solutions. First, we assume that scenario I happens and we have v < ——-"¢—~ — % Then, as
lng+def(l;l—lo) Pd

users’ activity times follow a uniform distribution, we can drive

D Dpdlh

= —tp=———. 18
= 10" T 10000 + 1) (18)
Replacing Eq. (18) into the speed function, we have a fixed-point equation as
Q( Paln )2 +
v =op|1 - 2P . (19)

kiAu
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Table 2: Parameters and their default values in the numerical example.

Notation Interpretation Default value
Ay Total utilizable area for roads [mi - lane] 300
D Total AV demand for parking [veh] 40,000
Qg Potential background traffic [veh] 20,000
0d Driving cost per unit of distance[%] 0.2
T Outskirt parking hourly cost [%] 1
Ty On-street parking hourly cost [%] 3
T Congestion price cost [%] 1
Kp Sensitivity of background traffic demand to travel time [ -] 4
Py Sensitivity of background traffic demand to congestion toll [%] 0.001
ki Jam density [ 2] 300
I Average travel distance of background traffic [mi] 5
I, Average round-trip distance to home [mi] 20
l, Average round-trip distance to off-street parking [mi] 10
p Number of provided parking spots in the downtown area [veh] 5,000
vf Free-flow travel speed [mph] 30
% Background traffic value of time [%] 10
B Cost of providing an on-street parking spot in downtown area [$] 100
If scenario II happens and we have M}% — % < v < vp— ;—;, then again as users’

activity times follow a uniform distribution, following similar steps, we have another fixed-point
equation as
lO —lo
D (pavr—To) 2+,

200 ( _ )
. _ ' Pd0+Tc—To
v ="vf [1 KA, ] (20)

Finally, if scenario (III) happens and we have v > v = %, then x. = 0, and the speed function
simplifies to

— _
v—vf[l iju]. (21)

Figure 6 and Table 3 present the properties of different solutions for different outskirts park-
ing costs. In Figure 6, the curves show the right-hand functions of Equations (19), (20), and (21)
in blue, red, and yellow, respectively. The two dotted horizontal lines are the limits on speed and
the curves intersection with the line y = x will indicate the solutions to the fixed-point problems
of (19) and (20), if the intersections lie in the assumed range of speed. More specifically, the
scenario I solutions are only feasible if the blue line and y = x intersect each other before the
left-hand side of the dash line. Similarly, scenario II solutions are only feasible if the red line and
y = x intersect between the two horizontal lines. Finally, the scenario III solution is only feasi-
ble if it intersects with y = x beyond the right-hand side of the horizontal line. As shown, the
equilibrium problem does not necessarily have a unique solution. Scenario III always provides a
feasible solution in which v = 25. We can also see that when 7, = 0.5 scenario II provides two
solutions itself that are related to the congested and un-congested regimes of traffic, respectively,
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arising from the assumed relation between speed and density. This shows that multiple scenar-
ios may be feasible for the same input parameters. More importantly, as shown in Table 3, the
solutions have very different implications. While 30% of AVs cruise under the first equilibrium
solution, which makes the downtown area congested with the running speed of v = 0.5[mph],
only 3% of AVs cruise under the second one, and the running speed in the downtown area and
the total travel cost increases, consequently.

7,=0 7,=0.5 7,=1
30— ; 30— ‘ — 30— ‘ ‘
25 i l 25| i | o5 % !
200 | | 20 | | 200 | |
g | - 5| 1
E£15 ! ! e15r | E£15 i i
> > >
10 10¢f 10
5 5t 5
ol 1 ol ‘ L o AL ‘ L
-10 0 10 20 30 0 10 20 30 0 10 20 30
v [mph] v [mph] v [mph]

(a) (b) ()

Figure 6: Speed fixed-point functions for different outskirt parking costs.

Table 3: The properties of different solutions for different outskirt parking costs.

T v X¢ X Xy, Scenario
0 247 1,347 38,653 0 II
25 0 40,000 0 III

0.5 12,118 5,215 22,667 II

05 247 1,348 15985 22,667 II
25 0 17,320 22,680 11

1.78 7,120 0 32,880 I

1 247 1,350 7984 30,666 I
25 0 9,334 30,666 III

We now consider the general case. The problem has one solution for the input parameters
presented in Table 2 (t. = 1[]), which happens under scenario IILb. Under the equilibrium
conditions, the speed in the downtown area is v = 28.93[mph], and the indifference points in
the activity times are t,, = 0.03[hr], tp, = 0.79[hr|, and t,, = 2.33[hr]. No AVs cruise in the
downtown area due to the high speed and cost associated with it, and consequently most of
potential background traffic comes to the downtown area (18,578 [veh]). 3,039 AVs park in the
downtown area, and their parking search time is 0.02 hours due to the high running speed in the
area and their short parking time. Also, 6,294 AVs go to outskirts parking, from which 117 return
in the middle of their route. Finally, the remaining 30,667 AV users send their vehicles home.
If we remove the toll, ie., T, = 0[%], we would see four equilibrium solutions under scenarios
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La, Lb, ILb, and IIL.b. The speed in the downtown are is v = 3.16[mph] and v = 0.34[mph]
under scenarios L.a and Lb, respectively, due to the high number of cruising AVs. The low
running speed in the downtown area results in the background traffic avoiding the area and the
background traffic demand is only 222 [veh] and 3 [veh], respectively, under scenarios I.a and
Lb. In contrast, under the equilibrium conditions in scenarios II.b and IILb, the speed in the
downtown area increases to v = 28.9[mph| and v = 28.93[mph], respectively, and we will observe
few cruising AVs in the downtown area. In the literature, Millard-Ball (2019) speculated that AVs
would collaborate with each other to slow down and jam downtown to decrease their parking
cost. This example shows this can happen even if AVs behave in a non-cooperative manner. This
motivates the need for parking policies to avoid such situations.

It is worth noting that the equilibrium solutions under scenarios I.a and b are not stable,
while the other solutions are stable. Under scenario La equilibrium, there are 25,325 cruising
AVs, and the rest 14,675 AVs go to park at home. The indifference point in activity time of users
between these two choices is 6.33 [hrs] and the cost of cruising and parking at home for t = 6.33
is equal to 4 [$]. If we make a small perturbation to the system that decreases the number of
cruising AVs to 25,000 and the maximum cruising time to 6.25 [hrs], then speed will increase to
3.85 [mph]. As a result the cost of cruising for the new indifference point (t = 6.25) increases to
4.8 [$], which is higher than 4 [$] cost of parking at home, and thus more AVs will shift from
cruising to park at home and the system further deviates from this equilibrium solution. In this
example, the worse equilibrium solutions in terms of congestion and social welfare are not stable,
implying that even if the system happens to achieve such a state, it may not stay there for long.
However, it is inconclusive whether this observation is generally applicable.

The previous examples highlight the need of policies and setting the prices of parking and
tolls optimally. Hence, we seek for the optimal value of parking fees, congestion pricing, and
parking provision by solving model (14) using the derivative-free method of Nelder-Mead. The
optimum value of tolls, and parking fees are 7. = 0.9[ 2], 7, = 5[], and 7, = 0[2]. Also, the op-
timal parking provision is 1,500 spots. We only observe one equilibrium solution under scenario
IIL.b for these parameter values, in which the speed in the downtown area is v = 28.93[mph]
and most AVs park in outskirt parking (38,555 [veh]). Figure 7 illustrates the contours of the
social welfare with respect to on-street parking fees and tolls for free outskirt parking. We can
see that the total travel cost of users and social welfare do not change considerably with respect
to on-street parking fees, while tolls have considerable impact on them. However, its impact
would be eliminated after passing a threshold. Figure 8 similarly shows the changes in social
welfare with respect to outskirts and downtown parking fees for no tolling. We can see that the
parking fee in the downtown area cannot push AVs outside the area to increase the speed and let
more background traffic travel through this region. Also, even though the outskirts parking fee
has some impact on social welfare, it is marginal. Previously, without considering the option of
cruising, Zakharenko (2016a) concluded that a toll would cause AVs to park closer to their des-
tination, thereby decreasing social welfare by increasing parking competition in the downtown
areas. Similarly, Su and Wang (2020) showed that parking pricing and parking provision policies
are sufficient to reduce congestion without the help of the toll. However, our analysis shows that
congestion pricing is the key policy factor in the age of AVs. Without a time-based toll, more
AVs choose to cruise to slow down the speed and decrease their parking cost. Yet, the toll is not
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Figure 7: Social welfare changes with respect to parking fee in the downtown area (7,) and toll
(Tc) for free outskirts parking (7, = 0).

sufficient and needs to be supplemented by parking pricing or parking supply.

6 Conclusion

AVs will change users’ sensitivity to parking policies by means of their self-parking capability.
This feature allows AV users to send their vehicles to cruise around the block or travel back
home instead of parking. In this paper, the AV users’ parking choice in a downtown area is
investigated with the use of Wardrop equilibrium. We model the AVs parking choice problem in
downtown areas as a fixed-point problem and propose an efficient method to solve it. We show
that the equilibrium problem might have multiple solutions in which congestion and external-
ities are considerably different. We also provide a robust parking policy design formulation to
recommend parking management policies to improve social welfare. The model can be used to
properly set parking fees in and outside the downtown area, congestion toll, and parking provi-
sion in the downtown area. Prior studies suggested that AVs may collaborate and intentionally
slow down to substitute cruising for parking, which creates severe congestion. Our work shows
that it can happen, even if AVs do not collaborate with each other and act in a non-cooperative
manner. Our analysis also highlights that time-based congestion pricing is the key factor to hin-
der AVs from cruising that exacerbates congestion. Without such a toll, the number of AVs that
cruise in downtown areas increases substantially to decrease the running speed and their park-
ing cost dramatically. The resulting congestion from cruising AVs discourages the background
traffic from coming to the area due to high travel time, which decreases social welfare.

We also note that the other types of congestion toll schemes, such as cordon-based or distance-
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Figure 8: Social welfare changes with respect to parking fees in the downtown area (7,) and
outskirts (t,) for not toll (t. = 0).

based toll, are not effective in reducing congestion caused by AVs cruising instead of parking.
The distance-based toll can be interpreted as a higher travel cost in the downtown area. However,
as AVs'’ travel distance decrease with more congestion, such type of toll cannot discourage AVs
from cruising and choosing other parking options, and even their parking cost would decrease
further with an increase in the number of cruising AVs. Also, if there is a cordon-based toll,
all AVs have to pay it to egress to the downtown area regardless of what option they choose
afterward for their parking. Therefore, it also cannot push cruising AVs to choose other parking
options available to them.

In this paper, we have developed a static framework to investigate the parking choice of
privately-owned AVs. In future research, it would be valuable to develop a dynamic framework
in which the cost of different options evolves over time. In such a dynamic setting, the departure-
time decision of users can be also considered to investigate the impact of parking choice on
ingress/egress time of those who leave later. In addition, shared AVs are not considered in this
paper. Shared AVs may yield a significant number of empty miles between two occupied trips,
which can be partially addressed by providing dedicated layover or parking spaces to shared
AVs (Xu et al., 2017). An interesting future study would be to model the parking competition
between shared and privately-owned AVs. Also, as AVs can sense their surroundings when
traveling, they can detect whether on-street parking spots are empty or full, and share parking
availability information with the rest of traffic. It would be interesting to study the design and
implications of such a crowd-sourced parking information system.
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Appendix A

We now discuss the different scenarios of equilibrium in general case in more detail.

A.0.1 Scenarios I.a and I.b

Scenarios I.a and Lb take place when the speed in the downtown area is low enough that the
outskirts parking is exceeded by either cruising or parking in the downtown area options. Figure
4a shows the cost functions for these scenarios. If we have t, > pﬂfiﬁn and v < M#jﬁ% - ;—;
under the equilibrium conditions, then scenario I.a happens. This scenario is similar to scenario
La in the special case. In this case, cruising is chosen by AV users whose activity times are up
to t.;, while others with longer activity times send their AVs home. In this scenario, outskirts
parking and parking in the downtown area are not used by any user. The indifference point of

activity time, t, is

aln
by = P4 (22)
040 + T
ll 0 1. . P
If we have t, < 5 ;;f_lfrc and v < % - p% under the equilibrium conditions, then

scenario I.b happens. In this scenario, as shown in Figure 4a the cruising is the cheapest option
from the minimum activity time up until t;,. The cost of cruising and parking are equal at
tcp- Then parking becomes the most viable option up until ¢,;,, where its cost is equal to the
home option. Parking at home is cheaper for any activity time longer than ¢,,. In this scenario,
outskirts parking is not chosen by any users again. The indifference points in activity times are

tep = tp (23)
- paln  tp(pav + T — Tp)_ (4)
! Tp Tp

A.0.2 Scenarios Il.a to Il.c

Scenarios Il.a to 1I.c happen when the speed in the downtown area is neither very low nor very
lo (def—To)

high. Figure 4b shows the cost functions for these scenarios. If we have t, > and
vf de+T57TU)
Ih T ey " .
S e AL <v<vp— I under the equilibrium conditions, then scenario Il.a occurs. In
luTo+Pdvf(lh_lo) Pd Od

this scenario, the parking in the downtown area is always dominated by other options, and there
are two indifference points. One such point is between cruising and outskirts parking, t.,, and
the other is between outskirts parking and home, t,,, which are
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Lo | palln—1
%:W+W%X (26)

(25)

lo(pavs—o) L O | I 7 s
If we have t, < —-F and L= b — (e 4 ) < p < < -
e have f, < B Po— o » tp( = Pde) v < v — ;¢ under the equilib

rium conditions, then scenario II.b happens. In this scenario, cruising, parking, outskirt parking,
and home are the most viable options, respectively. Thus, all options are used by AVs and the
indifference points in activity times are

by =1, (27)
palo — 2
R, tP(PdU + T — Tp)
tpo = — (28)
T, — T T, — T
l I, —1
t = 22 4 il 2 Do) 9)
Uf To
IO(Pde*To) UflhTD T Tp—Tc 17;1 o E lh_lg 170
If we have t, < - pdvﬂc_ru) and oy <9< Syl il (—Tu + pdvf) under

the equilibrium conditions, then scenario II.c happens. In this scenario, as shown in Figure 4b
cruising is the cheapest option from the minimum activity time up until t.,. The cost of cruising
and parking are equal at f.p. Then parking becomes the most viable option up to f,, where its
cost is equal to the home option. Parking at home is cheaper for any activity time longer than
tyn- In this scenario, outskirts parking is not chosen by any users, and the indifference points in
activity times are

by = paln  tp(pav + T — Tp)_ 31)
g Tp Tp

A.0.3 Scenarios IIl.a to IIl.c

Scenarios IIl.a to IIl.c occur when the speed in the downtown area is such that the cruising option
is always dominated by other options. Figure 4c shows the cost functions for these scenarios. If
we have t, > Zl)—"f andv > v = % under the equilibrium conditions, then scenario II.a happens. In
this scenario, both options of parking in the downtown area and cruising are always dominated
by other options. Thus, there is only one indifference point between outskirts parking and home,
ton, which is

oy = Loy Palhi =) (32)
0 f To
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If we have t, < zl}—‘} ando > b Tr(hh p‘jf“vf) under the equilibrium conditions, then

t t, To
scenario II.b happens. In this scgdnario,pthe E)utskirts parking option is the cheapest one from the
minimum activity time up until ,,, where its cost is equal to parking in the downtown area. The
outskirt parking option becomes the cheapest option again at activity time t,,. The parking in
the downtown area is the cheapest for any activity time between t,, and t,,. Actually, the AVs
with activity time less than t,, would not reach outskirts parking and would return mid-route,
while those with activity time longer than t,, would arrive at outskirts parking and park there.
Finally, the cost of outskirts parking becomes equal to the home option at t,,, with the latter
being the cheapest option for any activity time longer than that. The indifference points in the

activity times are

tyy = 33
= (3)
l _ Tolo
; Pato — =, tp(pdv—i—rc —Tp) a4
PO, — 1 T, — T, (34)
p— To p— To
1 I, —1
ton = i+m_ (35)
Uf To

lo T Tp—Tc 1 T lh—1, I, S
If we have t, < o and vy — o < v < e + é — 5( ]Tg + Pdvf> under the equilibrium
conditions, then scenario IIl.c happens. In this scenario, as shown in Figure 4c the outskirts
parking option is the cheapest from the minimum activity time up until ¢,,. The cost of outskirt
parking and parking in the area are equal at t,,. Then parking becomes the most viable option up
until ., where its cost is equal to the home option. Parking at home is cheaper for any activity
time longer than ;. In this scenario, cruising is not chosen by any users. The indifference points

in the activity times are

top = (36)

(37)

ph — - :
Tp Tp
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