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Abstract1

Automated vehicles (AVs) eliminate the burden of finding a parking spot upon arrival to2

the destination, because they can park at a strategic location or cruise until summoned by3

their users. In this study, we investigate the parking choices of privately-owned AVs in a4

downtown area. Since each user’s choice has impacts on another via cruising-incurred traf-5

fic congestion and parking competition, we model the parking choice problem of AVs as a6

Wardrop equilibrium in which each user cannot further reduce their parking cost by unilater-7

ally changing their choice. The model considers all possible options for parking a private AV,8

and finds that these parking choices may yield multiple equilibria under which the conges-9

tion and social welfare are very different. We further develop an efficient solution algorithm10

to find all equilibrium solutions. Our analysis shows that even if AVs act in a non-cooperative11

manner, one possible outcome would involve many AVs choosing to cruise, which creates12

severe congestion to decrease the cost of cruising. However, this outcome can be avoided13

by a time-based congestion toll, which discourages AVs from cruising for a long period and14

increases the social welfare. Our analysis also shows parking pricing and provision may not15

reduce congestion induced by cruising AVs without the help of a congestion toll.16

17
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1 Introduction19

Automated vehicles (AVs) are fast approaching and they are going to change the way we travel,20

and the form and land use of cities, consequently. For instance, AVs could be stacked behind21

each other inside parking facilities to increase parking supply and decrease the land needed for22

parking (Nourinejad et al., 2018). This would free up land for commercial and residential land23

uses, thereby changing cities and their sprawl pattern (Zakharenko, 2016b; Gelauff et al., 2019).24

Also, AVs can accelerate the growth of shared use of a vehicle via car sharing or on-demand25

ride-hailing due to greater convenience and cost savings arising from their self-driving capability26
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(Stocker and Shaheen, 2017; Gurumurthy et al., 2019). However, surveys show that many users1

would prefer to own and use their private AVs even if shared mobility services become extremely2

cheap (Haboucha et al., 2017; Gkartzonikas and Gkritza, 2019).3

Private AV users would experience hassle-free parking due to the self-parking capability of4

AVs. This feature enables users to exit from their AVs at their final destinations, and send their5

occupant-free AVs to search for parking spots on their own. Hence, it removes the necessities6

of providing parking for AVs in the proximity of destination, and offers new parking options to7

them. AVs would still have the option to drive to a nearby parking spot and park there until they8

are summoned by their users. In addition, AVs may drive all the way back to the users’ home9

or any farther but cheaper parking spots. Furthermore, in a more extreme scenario, AVs may10

cruise around the destination while their users are running errands. Therefore, it is important to11

investigate the parking choices of these privately owned AVs and evaluate the impact of various12

policies on congestion and social welfare.13

Parking studies and impacts of parking policies have received much more attentions after14

the pioneering work by Shoup (Shoup, 2005), which highlights the impact of vehicle cruising for15

parking on congestion. Since then numerous research has attempted to model the impact of cruis-16

ing for parking, users’ preference in choosing a parking spot, and the effects of different parking17

policies and management schemes on congestion (e.g., Arnott and Inci, 2006; Van Ommeren18

et al., 2011; Benenson et al., 2008; Geroliminis, 2015; Arnott et al., 2015; Chen et al., 2016). Un-19

derstandably, these models consider human-driven vehicles (for recent reviews, see, e.g., Brooke20

et al., 2014, and Inci, 2015).21

Recently, researchers have started to study the impact of AVs on parking. Liu (2018) and22

Zhang et al. (2019) presented equilibrium models of the choice of parking locations for com-23

muter trips by AVs over a linear city. Zakharenko (2016a) also investigated the parking location24

of commuting trips in a mono-centric two-dimensional city of a half-circular shape. He consid-25

ered three options of parking, including parking near the workplace, parking at a farther special26

parking zone, and parking at residential lots. The analysis showed that 97% of commuter AVs27

will be parked in the dedicated parking zones, and the optimal location of such zones is just28

outside of the commuter work zone. Zakharenko (2016a) suggested that a congestion toll for29

zero-occupant AVs make outskirt parking more expensive than central ones. This leads to a com-30

petition between AVs and regular vehicles over central parking spots, thereby decreasing social31

welfare. More recently, Su and Wang (2020) investigated the parking location choice of commut-32

ing AV trips. They considered three parking locations in their model: parking in the downtown33

area, parking at home, and parking outside downtown area, and showed that congestion can34

be minimized without a toll with proper parking pricing and supply. All these prior models35

only consider commuter trips with long dwell times, which enables them to ignore the option of36

cruising as a substitution for parking. However, if the network becomes congested and the speed37

drops considerably, cruising can be a viable option even for the long dwell times of commuting38

trips. By means of an agent-based simulation model, Bahrami (2019) investigated the parking39

choices of AVs including the cruising option, and tested different policies for a real case study40

of the City of Toronto. He concluded that zero-occupant toll can make a balance between the41

parking cost and distance and decrease the congestion. Millard-Ball (2019) also considered cruis-42

ing as a substitution for parking and investigated its impact on downtown San Francisco. He43
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suggested that AVs would collaborate with each other and choose the most congested cruising1

path to make a gridlock in order to decrease their parking cost.2

In this paper, we model the parking choices of privately-owned AVs in a downtown area and3

investigate how these choices impact congestion and social welfare. We also explore the effective-4

ness of different policies on reducing congestion and increasing social welfare. More specifically,5

we consider a downtown area where users of private AVs come to engage in activities of vary-6

ing duration; AVs then choose different parking options depending on their users’ activity time,7

with the objective of minimizing their total parking cost, which leads to a Wardrop equilibrium.8

Under the equilibrium conditions, no AV users can decrease their parking cost by unilaterally9

changing their choices. With the parking equilibrium model, we then investigate policies such10

as congestion pricing, parking pricing and provision on internalizing the externalities of parking11

to increase social welfare. The primary contribution of this work is a parking choice equilibrium12

model. Developed in a stylized setting, the model provides a simple yet powerful framework for13

representing all parking considerations or preferences of AVs, capturing their interactions, and14

revealing various consequences of AV parking choices. It provides a foundation for investigating15

and optimizing parking policies in the era of AVs. The framework is flexible and can be extended16

to model more complicated scenarios such as ingress/egress congestion, elastic parking demand,17

heterogeneous AV fleet, and multiple areas or regions.18

The remainder of this paper is organized as follows. Section 2 presents an equilibrium model19

for AV parking choices. Section 3 presents the proposed solution algorithm. Section 4 investi-20

gates the impact of different policies on congestion and proposes optimal ones in terms of social21

welfare. Section 5 presents numerical examples, and Section 6 concludes the paper.22

2 An equilibrium model for AV parking choices23

2.1 Model setting24

We consider a downtown area where a continuum of users of AVs come to participate in activities25

whose duration vary from user to user. We assume that users activity time t is continuously26

distributed between [0, T]. Each AV user makes a parking decision upon arrival and chooses27

to send their AV back home (presented with “h”), travel to and park in an outskirt parking28

(presented with “o”), search and park in the downtown area (presented with “p”), or cruise29

within the area as a substitution for parking (presented with “c”) as shown in Figure 1. We30

will then model the interactions and outcome of their parking choices. Below we first present31

the cost of each parking option. It is assumed that the average running speed in the downtown32

area is related to the traffic accumulation and that AVs travel with a free-flow speed outside this33

downtown area; they also experience no delay during the ingress or egress of the area.34

We start with the cost of sending the AVs to park and wait at home. We assume that the35

average round-trip distance to home from the downtown area is lh. If a user whose activity time36

is equal to t decides to send the AV back home to park, two situations might happen: if the user37

activity time is long enough for the AV to complete round-trip travel between the destination38

and home, the cost of parking at home is equal to ρdlh, where ρd is the driving cost per unit of39

distance. Unlike human-driven vehicles, users are not present in the AVs while they are searching40
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Figure 1: Schematic of parking choices of AV users.

for parking. Therefore, the cost of driving is vehicle operating cost, which is typically measured1

in distance in the literature (e.g., Berthelot et al., 1996). Otherwise, if the activity time of the2

user is not long enough, the AV must return in the middle of its route to pick up the user. Note3

that it is possible that AVs will find the option of home parking cheaper, e.g., in the presence4

of congestion pricing in downtown, even if the activity time is shorter than the round-trip time.5

Hence, the cost of sending the AV back home would be equal to ρdv f t, where v f is the free-flow6

speed, and v f t gives the total distance traveled by the AV during user activity time t. Therefore,7

we can write the cost of sending AVs back home to park as8

γh(t) = ρd ·min(lh, tv f ). (1)

Another option for AV users is to send the AVs to an outskirt parking facility that is located9

lo/2 from the downtown area and charges τo per unit of time. Similar to parking at home, two10

situations might occur in this scenario. If the user’s activity time t is long enough, the AV reaches11

the parking facility and parks there for t− lo
v f

, where lo
v f

is the round-trip travel time to parking.12

Hence, the total cost of using the parking facility is equal to ρdlo + τo(t − lo
v f
), where the first13

term is the round-trip travel cost to the parking facility, and the second term is the cost charged14

by the parking facility. If the activity time of the user is not long enough for the AV to reach15

the outskirts parking, it must return in the middle of trip and the parking cost is the same as16

the home option and equal to ρdv f t. Hence, we can write the cost of sending AVs to park at an17

outskirt parking facility as18

γo(t) = ρd ·min(lo, tv f ) + τo ·max(t− lo

v f
, 0). (2)

The AVs also have the option to stay in the downtown area and search for a parking spot.19

The parking search time, denoted by tp, depends on the parking vacancy rate and average speed20

in the area. Similar to previous choices, two options might happen to an AV user with activity21

time t who chooses to park in the area. First, if the activity time is longer than the average22

time needed to find a parking spot (t ≥ tp), the AV parks and pays the parking charge τp for23

the parking period t− tp. Such a scenario also incurs a driving cost up until finding a parking24

spot, which is ρdv(n)tp, where v(n) is the moving speed in the downtown area, which depends25
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on traffic accumulation in the network, n. Also, there might be a time-based congestion pricing1

toll applied to AVs in the downtown area, denoted by τc, to disincentivize the zero-occupant2

movements of AVs. Hence, the AVs must also pay a toll equal to τctp. If the activity time is3

shorter than the average search time to find a parking spot, the AV is summoned before finding4

a parking spot. In other words, the AV searches for a vacant parking spot for the whole activity5

time of its user. In this case, the parking cost is equal to the summation of the driving cost and6

tolling cost, which is ρdv(n)t + τct. Hence, the cost of parking in the downtown area can be7

summarized as8

γp(t) = ρd · v(n) ·min(t, tp) + τc ·min(t, tp) + τp ·max(t− tp, 0). (3)

The parking search time tp will be the parking search distance divided by the cruising speed.9

The former is assumed to be a function of parking occupancy that is the ratio of the number of10

parked vehicles divided by the parking supply. The function can take various forms, depending11

on, e.g., the availability of parking information, the possibility of parking reservation or the12

presence of a service that matches searching vehicles with available parking.13

Finally, AVs also have the option to stay in the downtown area and cruise for the entire14

activity time of their users. The cost of this option is15

γc(t) = ρd · t · v(n) + τc · t, (4)

where the first term is the driving cost and the second term is the toll cost.16

2.2 Equilibrium conditions and formulation17

We are now ready to model the parking choice equilibrium problem. It is assumed that users are18

rational and would compete against each other to minimize their parking costs, which leads to19

the equilibrium conditions, where no user can further decrease their parking cost by unilaterally20

changing the parking choice. Given the number of users or AVs is infinite, the equilibrium is a21

Wardrop equilibrium or a mean-field equilibrium. Let’s assume that the total mass of AV users22

is q and the activity time t ∈ [0, T] follows a continuous probability density function f . Let k j be23

the jam density, and Au be the total utilizable road area. Also, P is the total number of parking24

spots in the downtown area. Below we present the equilibrium conditions conceptualized above:25

xr(t) · (γr(t)− µ(t)) = 0 ∀t, ∀r ∈ {h, o, p, c} (5a)

γr(t)− µ(t) ≥ 0 ∀t, ∀r ∈ {h, o, p, c} (5b)

xr(t) ≥ 0 ∀t, ∀r ∈ {h, o, p, c} (5c)

∑
r

xr(t) = q · f (t) ∀t (5d)

v(n) = V
(

n
k j Au

)
(5e)

n =
∫ T

0
xc(t) · t · dt +

∫ T

0
xp(t) · tp · dt + qb ·

lb

v(n)
(5f)

qb = Qb(
lb

v(n)
, τc) (5g)
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tp =

Lp

( ∫ T
0 xp(t)·max(t−tp,0)dt

P

)
v(n)

(5h)

where µ(t) is the minimum parking cost incurred by each user whose activity time is t. γr is1

the cost of parking option r ∈ {h, o, p, c}, and xr(t) is the AV flow density with activity time2

t choosing option r for parking. Also, qb is the background traffic, and lb is the average travel3

distance of background traffic, which is assumed to be given.4

Constraints (5a)-(5c) indicate that all parking options used by a group have the same cost,5

which is equal to or smaller than the cost of all unused parking options for that group. Con-6

straints (5d) assure that the total AV flow density in each group is equal to the sum of flow density7

choosing different parking options. Equation (5e) states that the speed in the downtown area is a8

function of network accumulation, the jam density, and the utilizable road area, as described by a9

network macroscopic fundamental diagram (e.g., Geroliminis and Daganzo, 2008). Equation (5f)10

states the traffic accumulation in the downtown area, including those who are cruising, searching11

for parking spots, and from the background traffic. Each cruising AV remains in traffic for the12

whole activity time of its user, while the AVs that park in the downtown area are only present13

for the parking search time in traffic. Equation (5g) captures the background traffic, which is14

given by a demand function of their travel time in the downtown area and the toll. Equation15

(5h) states the parking search time as a function of parking search distance divided by cruising16

speed. The former is a function of parking occupancy that is the ratio of the number of parked17

vehicles divided by the parking supply.18

Define Λ = {Y|xr(t) ≥ 0, ∑r xr(t) = q · f (t), ∀t, r; 0 ≤ n ≤ k j Au, 0 ≤ qb ≤ Q0
b, 0 ≤ tp ≤ T},19

where Q0
b is the potential background demand. The above conditions yield an equivalent fixed-20

point problem of finding an Y ∈ Λ such that21

F(Y) = Y, (6)

where

Y =


x
n
qb
tp

 (7)

F(Y) =



Hγr(xr(t), n)∫ T
0 xc(t) · t · dt +

∫ T
0 xp(t) · tp · dt + qb · lb

v(n)

Qb(
lb

v(n) , τc)

Lp

( ∫ T
0 xp(t)·max(t−tp ,0)·dt

P

)
v(n)


, (8)

in which Hγr(xr(t), n) = max
(

0, xr(t)− (γr(t)− µ(t))
)

.22

Since the users activity time is a continuous random variable, the fixed-point problem (6) is of23

infinite dimension, similar to traffic assignment models with continuous value of time previously24

investigated in the literature (Marcotte and Zhu, 2009; Zhu et al., 2015). Note that Λ is a compact25
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convex set in a Banach space and F is continuous if the parking search distance function Lp is1

continuous. Based on the Schauder fixed-point theorem, which generalizes the Brouwer fixed-2

point theorem (Franklin, 2002), there exists a solution to the fixed-point problem (6). However,3

there may be multiple solutions as F is not necessarily monotone, e.g., a fall in speed can decrease4

cost of cruising and induce an increase in number of users choosing to cruise. Moreover, solutions5

may arise either in the non-congested or congested regime. It is thus critical to find these equilibra6

for the purpose of proposing parking policies, as the congestion and parking externalities are7

much different under these solutions. We further note that these equilibrium solutions may not8

necessarily be stable. An equilibrium solution is considered stable if the system returns to it after9

a small disruption.10

Below we present a special case for the sake of demonstrating the properties of the equi-11

librium solutions and motivating a solution algorithm to find all equilibrium solutions of the12

general case.13

2.3 A special case14

We now assume that there are no parking spots in the downtown area and AVs must choose15

between cruising, outskirts parking, or returning home. We also assume that the background16

traffic accumulation, nb, in the downtown area is fixed. In this special case, finding a solution17

to the nonlinear complementarity system (5) is equivalent to solving the following mathematical18

program:19

minZ =
∫ T

0

(
γh(t) · xh(t) + γo(t) · xo(t) + τc · t · xc(t) +

∫ ∫ T
0 xc(t)·t·dt

0
ρd · v(ω) · dω

)
· dt (9a)

s.t. xh(t) + xo(t) + xc(t) = q · f (t) ∀t (9b)

xh(t), xo(t), xc(t) ≥ 0 ∀t, (9c)

in which: v = V
(∫ T

0 xc(t) · t · dt + nb

k j Au

)
. (9d)

The equivalence of the above formulation can be established by writing out the optimality20

conditions and comparing them with the reduced system (5) for the special case. We note that the21

formulation (9) appears very similar to the equilibrium traffic assignment formulation (Beckmann22

et al., 1956). In the parking choice problem, each parking choice can be treated as a route in a23

parallel network with one origin-destination pair. However, a closer inspection of the objective24

function will find that, as the average network speed and density are negatively correlated, the25

objective function is concave, and thus the problem is a concave minimization problem with linear26

constraints. This suggests that the problem may have a number of locally optimal solutions and27

there exists a globally optimal solution that is an extreme point of the feasible region.28
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Figure 2: An example of the cost function of different parking choices with respect to the activity
time of a user.

3 Equilibrium solution by finding indifference activity times1

3.1 Special case2

Note that the formulation (9) is NP-hard. In this section, we develop an efficient solution algo-3

rithm to solve it. We first show that each class of users can only select one parking option based4

on their activity time. Figure 2 shows an example of the cost function of different parking choices5

for different users’ activity times in the special case in which we assume that we know the speed6

in the downtown area. We can see in this example that the cruising option has the lowest cost for7

any activity time up to tco, and users with a shorter activity time than tco choose this option based8

on the equilibrium conditions, consequently. From tco to toh, the outskirts parking has the lowest9

cost; users whose activity times are in this range send their AVs to outskirts parking. Finally, the10

home option has the lowest cost for any activity time longer than toh. Hence, we can solve the11

AV parking problem (Eqs. (9a)-(9c)), if we know the boundary points in activity time (tco and12

toh), where the option with the lowest cost changes.13

To find all the boundary points of the AV parking problem (Eqs. (9a)-(9c)), we define the14

indifference points in the activity time of users. The indifference point, denoted by trr′ , is activity15

time in which the cost of two choices r and r′ are equal and users are indifferent in choosing16

between the two. Also, the indifference point trr′ indicates that the cost of option r is less than r′17

for shorter activity times, while the option r′ has the lower cost for longer activity times. Figure18

3 shows all the possible scenarios for the cost function of different parking choices in the special19

case. The slopes of home and the outskirts parking choices are fixed based on Equations (1) and20

(2). However, for the cruising option, the slope depends on the speed in the downtown area21

and three scenarios might occur, as shown in Figure 3. We can see that the type and location of22

the indifference points vary between different scenarios. For instance, tco is the activity time in23

which the cost of cruising and outskirts parking are equal in scenario II, while there is no such24

indifference point under scenarios I and III.25

We now discuss the three scenarios and find the indifference points in the activity times,26

8
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Figure 3: Possible scenarios for the cost function of different parking choices with respect to the
activity time of a user.

which can give us the mass of users choosing different parking choices under the equilibrium1

conditions.2

3.1.1 Scenario I3

If we have v ≤ v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
under the equilibrium conditions, then scenario I happens. In4

this scenario, as shown in Figure 3, cruising is the cheapest option from the minimum activity5

time up until tch. The cost of cruising and parking at home are equal at tch, and parking at home6

is cheaper for any activity time longer than tch. Under this scenario, the outskirts parking is7

dominated and no user would use it, consequently. The indifference point of activity time, tch, is8

tch =
ρdlh

ρdv + τc
. (10)

3.1.2 Scenario II9

Scenario II happens if we have v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
≤ v ≤ v f − τc

ρd
under equilibrium conditions.10

In this scenario, cruising is the cheapest option for the minimum activity time up to the activity11

time tco. The cost of cruising and outskirts parking is equal at tco. Then, outskirts parking is the12

cheapest option up to the activity time toh, in which the cost of outskirts parking is equal to the13

home option. Parking at home becomes the cheapest option for any activity time longer than toh.14

Under this scenario, all three parking options are used by the AVs and the indifference points in15

the activity times are16

tco =
lo(ρdv f − τo)

v f
(
ρdv + τc − τo

) (11)

toh =
lo

v f
+

ρd(lh − lo)

τo
. (12)

9



𝛾௛

𝛾௢
𝛾௖

𝛾௣ (Scenario I.a)

𝛾௣ (Scenario I.b)

activity 
time (t)

parking 
cost (𝛾)

𝑡௖௛ 𝑡௣௛𝑡௖௣

𝛾௛

𝛾௢𝛾௖

𝛾௣ (Scenario II.b)

𝛾௣ (Scenario II.c)

activity 
time (t)

parking 
cost (𝛾)

𝑡௢௛ 𝑡௣௛𝑡௖௣

𝛾௣ (Scenario II.a)

𝑡௣௢𝑡௖௢

𝛾௛

𝛾௢𝛾௖
𝛾௣ (Scenario III.b)

𝛾௣ (Scenario III.c)

activity 
time (t)

parking 
cost (𝛾)

𝑡௢௛ 𝑡௣௛𝑡௢௣

𝛾௣ (Scenario III.a)

𝑡௣௢

(a) (b) (c)

Figure 4: The cost function of different parking choices with respect to the activity time of a user.

3.1.3 Scenario III1

Finally, if v ≥ v f − τc
ρd

under equilibrium conditions, scenario III occurs. In this scenario, cruising2

is always more expensive than the other two options for any activity time duration. Outskirts3

parking is cheaper than park at home for minimum activity time up to toh, in which the cost of4

two options are equal. Then, park at home is cheaper for any activity time greater than toh. No5

AVs cruise instead of parking and the indifference point, toh, is6

toh =
lo

v f
+

ρd(lh − lo)

τo
. (13)

In scenarios I and II, the indifference points in the activity times are a function of speed7

in the downtown area, which itself is a function of the number of cruising vehicles and their8

cruising time, yielding a fixed-point problem. There may be multiple solutions that satisfy all the9

conditions depending on the type of function assumed for speed and the distribution of users10

based on their activity times. Also, all three scenarios might be possible for the same set of input11

parameters, implying that any of them can arise in reality. We discuss these phenomena in more12

detail in Section 5 with the help of a numerical example.13

3.2 General case14

Although the general case is modeled as a fixed-point problem, we can still use the indifference15

point approach to find all the solutions. In the general case, there are eight different scenarios,16

as shown in Figure 4. Table 1 presents the indifference points in activity times for general case17

and the conditions on parking search time and travel speed in the downtown area under the18

equilibrium conditions for these scenarios to happen. We discuss these scenarios in further detail19

in Appendix A.20

Similar to the special case, multiple solutions may exist in each scenario depending on the21

type of speed function, the parking search time function, and the distribution of users based22

on their activity times. Also, multiple scenarios might be feasible for the same set of input23

parameters and any of the equilibrium solutions might happen in reality. Figure 5 shows a24

flowchart with a step-by-step approach to find all of the solutions.25
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Scenario Conditions Indifference points in activity times

I.a
v ≤ v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd tch = ρd lh
ρdv+τc

tp ≥ ρd lh
ρdv+τc

I.b v ≤ v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
tcp = tp

tp ≤ ρd lh
ρdv+τc

tph = ρd lh
τp
− tp(ρdv+τc−τp)

τp

II.a
v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
≤ v ≤ v f − τc

ρd
tco =

lo(ρdv f−τo)

v f

(
ρdv+τc−τo

)
tp ≥

lo(ρdv f−τo)

v f

(
ρdv+τc−τo

) toh = lo
v f

+ ρd(lh−lo)
τo

II.b

τp−τc
ρd

+ lh
tp
− τp

tp
( lh−lo

τo
+ lo

ρdv f
) ≤ v ≤ v f − τc

ρd
tcp = tp

tp ≤
lo(ρdv f−τo)

v f

(
ρdv+τc−τo

) tpo =
ρd lo− τo lo

v f
τp−τo

− tp(ρdv+τc−τp)
τp−τo

toh = lo
v f

+ ρd(lh−lo)
τo

II.c
v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
≤ v ≤ τp−τc

ρd
+ lh

tp
− τp

tp
( lh−lo

τo
+ lo

ρdv f
) tcp = tp

tp ≤
lo(ρdv f−τo)

v f

(
ρdv+τc−τo

) tph = ρd lh
τp
− tp(ρdv+τc−τp)

τp

III.a
v ≥ v f − τc

ρd toh = lo
v f

+ ρd(lh−lo)
τotp ≥ lo

v f

III.b
v ≥ τp−τc

ρd
+ lh

tp
− τp

tp
( lh−lo

τo
+ lo

ρdv f
) top =

tp(ρdv+τc−τp)
ρdv f−τp

tp ≤ lo
v f

tpo =
ρd lo− τo lo

v f
τp−τo

− tp(ρdv+τc−τp)
τp−τo

toh = lo
v f

+ ρd(lh−lo)
τo

III.c
v f − τc

ρd
≤ v ≤ τp−τc

ρd
+ lh

tp
− τp

tp
( lh−lo

τo
+ lo

ρdv f
) top =

tp(ρdv+τc−τp)
ρdv f−τp

tp ≤ lo
v f

tph = ρd lh
τp
− tp(ρdv+τc−τp)

τp

Table 1: The indifference points in activity times for general case.

4 Parking management policies1

With the proposed framework of equilibrium analysis of the AVs parking decision, we are now2

ready to formulate an optimal policy design problem to prescribe parking management poli-3

cies to improve social welfare. Below we demonstrate our formulation by considering policies4

including pricing of downtown and outskirt parking, downtown parking provision, and conges-5

tion pricing, which can be used by policymakers to manage parking in the age of AVs.6

More specifically, a congestion toll can increase the cost of driving in the downtown area,7

thereby increasing the costs of the options of cruising and parking in the downtown area. There-8

fore, it can be used as a leverage to incentivize AV users to go outside the downtown area for9

parking and reduce congestion. The pricing of outskirt parking can further regulate the choices10

between home and parking outskirt. In contrast, the pricing and provision of downtown parking11

can change the cost of parking in the downtown area. However, their impact on congestion in12

the downtown area is not as clear as the congestion toll. For instance, a low parking provision13

can increase the parking search time and the cost of parking in the downtown area. This can lead14

more AVs to go and park outside the area or choose to cruise for a longer period. The former15

case can decrease the congestion in the downtown while the later one increases it. From this16

11
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Figure 5: Flowchart of the proposed algorithm to find all equilibrium solutions.

perspective, therefore, the pricing and provision of downtown parking is a double-edged sword.1

The nonuniqueness of solutions to the parking equilibrium model presents a challenge when2

we prescribe an optimal parking management policy, because its outcome will be uncertain.3

Below we develop an optimization model to determine a policy whose worst-case social welfare4

is maximized. In the literature, the resulting policy is considered to be robust (Lou et al., 2010;5

Li et al., 2020).6

min
(τp,τo ,τc,P)

max
x,qb

∫ T

0

(
xh(t) · ρd ·min(lh, tv f ) + xo(t) · ρd ·min(lo, tv f ) + xp(t) · ρd · v(n) ·min(t, tp)

+ xc(t) · ρd · v(n) · t
)

dt + α

(
qb ·

lb

v(n)
−
∫ qb

0
Q−1

b (ϑ)dϑ

)
+ βP (14)

s.t. (5),

where α is the value of time of background traffic users and Q−1
b is the inverse function of7

background traffic. Also, β is the cost of providing a parking spot in the downtown area. In the8

above equation, the objective is to minimize the maximum social cost (negative social welfare).9

12



As formulated, the optimal parking policy design problem is a mathematical program with1

equilibrium constraints, difficult to solve in general. However, as the decision variables of the2

outer minimizing layer are of a low dimension and we have developed an efficient inference point3

approach to find all equilibrium solutions, a derivative-free method such as the Nelder–Mead4

method can be applied to solve the problem effectively.5

We also note that when the background traffic is fixed in the special case, social welfare6

defined above can increase with a drop in speed in the downtown area. Such a ”paradox” may7

not arise with the presence of elastic background traffic in the general case. A speed drop or8

higher congestion will increase the cost of the background traffic and discourage them from9

coming to the downtown area, which yields a loss of consumers’ surplus.10

5 Numerical studies11

In this section, we assume that the speed function follows a Greenshields-type function (Green-12

shields et al., 1935) as13

v = v f

[
1− n

k j Au

]
. (15)

In addition, we assume that the parking search time in the downtown area can be estimated14

using the following function15

tp =
−1

ln(
∫ T

0 xp(t)·max(t−tp,0)·dt
P + 0.01)v

. (16)

The demand function of background traffic is assumed to be as follows:16

qb = Q0
b

(
(

κblb

v
)−2 − ψbτc

)
, (17)

where κb and ψb represent the sensitivity of the background traffic demand to travel time and17

toll, respectively.18

In the numerical examples, we consider a Manhattan-like downtown area and assume that19

users’ activity times follow a uniform distribution between 0 and 10 hours. This function can be20

replaced by any other distribution. Table 2 presents the default value of the used parameters in21

this section.22

We first consider that there is no on-street parking (P = 0) and the background traffic accu-23

mulation is fixed (nb = 15, 000) to explore the special case presented in Section 2.3. The purpose24

is to demonstrate the use of the proposed indifference point method and the existence of multiple25

solutions. First, we assume that scenario I happens and we have v ≤ v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
. Then, as26

users’ activity times follow a uniform distribution, we can drive27

xc =
D
10

tch =
Dρdlh

10(ρdv + τc)
. (18)

Replacing Eq. (18) into the speed function, we have a fixed-point equation as28

v = v f

[
1−

D
20 (

ρd lh
ρdv+τc

)2 + nb

k j Au

]
. (19)

13



Table 2: Parameters and their default values in the numerical example.

Notation Interpretation Default value
Au Total utilizable area for roads [mi · lane] 300
D Total AV demand for parking [veh] 40,000
Q0

b Potential background traffic [veh] 20,000
ρd Driving cost per unit of distance[ $

mi ] 0.2
τo Outskirt parking hourly cost [ $

hr ] 1
τp On-street parking hourly cost [ $

hr ] 3
τc Congestion price cost [ $

hr ] 1
κb Sensitivity of background traffic demand to travel time [ 1

hr ] 4
ψb Sensitivity of background traffic demand to congestion toll [ 1

$ ] 0.001
k j Jam density [ veh

mi·lane ] 300
lb Average travel distance of background traffic [mi] 5
lh Average round-trip distance to home [mi] 20
lo Average round-trip distance to off-street parking [mi] 10
P Number of provided parking spots in the downtown area [veh] 5,000
v f Free-flow travel speed [mph] 30
α Background traffic value of time [ $

hr ] 10
β Cost of providing an on-street parking spot in downtown area [$] 100

If scenario II happens and we have v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
≤ v ≤ v f − τc

ρd
, then again as users’1

activity times follow a uniform distribution, following similar steps, we have another fixed-point2

equation as3

v = v f

[
1−

D
20 (

lo(ρdv f−τo)

v f

(
ρdv+τc−τo

) )2 + nb

k j Au

]
. (20)

Finally, if scenario (III) happens and we have v ≥ v f − τc
ρd

, then xc = 0, and the speed function4

simplifies to5

v = v f

[
1− nb

k j Au

]
. (21)

Figure 6 and Table 3 present the properties of different solutions for different outskirts park-6

ing costs. In Figure 6, the curves show the right-hand functions of Equations (19), (20), and (21)7

in blue, red, and yellow, respectively. The two dotted horizontal lines are the limits on speed and8

the curves intersection with the line y = x will indicate the solutions to the fixed-point problems9

of (19) and (20), if the intersections lie in the assumed range of speed. More specifically, the10

scenario I solutions are only feasible if the blue line and y = x intersect each other before the11

left-hand side of the dash line. Similarly, scenario II solutions are only feasible if the red line and12

y = x intersect between the two horizontal lines. Finally, the scenario III solution is only feasi-13

ble if it intersects with y = x beyond the right-hand side of the horizontal line. As shown, the14

equilibrium problem does not necessarily have a unique solution. Scenario III always provides a15

feasible solution in which v = 25. We can also see that when τo = 0.5 scenario II provides two16

solutions itself that are related to the congested and un-congested regimes of traffic, respectively,17

14



arising from the assumed relation between speed and density. This shows that multiple scenar-1

ios may be feasible for the same input parameters. More importantly, as shown in Table 3, the2

solutions have very different implications. While 30% of AVs cruise under the first equilibrium3

solution, which makes the downtown area congested with the running speed of v = 0.5[mph],4

only 3% of AVs cruise under the second one, and the running speed in the downtown area and5

the total travel cost increases, consequently.6
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Figure 6: Speed fixed-point functions for different outskirt parking costs.

Table 3: The properties of different solutions for different outskirt parking costs.

τo v xc xo xh Scenario

0
24.7 1,347 38,653 0 II
25 0 40,000 0 III

0.5
0.5 12,118 5,215 22,667 II
24.7 1,348 15,985 22,667 II
25 0 17,320 22,680 III

1
1.78 7,120 0 32,880 I
24.7 1,350 7,984 30,666 II
25 0 9,334 30,666 III

We now consider the general case. The problem has one solution for the input parameters7

presented in Table 2 (τc = 1[ $
hr ]), which happens under scenario III.b. Under the equilibrium8

conditions, the speed in the downtown area is v = 28.93[mph], and the indifference points in9

the activity times are top = 0.03[hr], tpo = 0.79[hr], and toh = 2.33[hr]. No AVs cruise in the10

downtown area due to the high speed and cost associated with it, and consequently most of11

potential background traffic comes to the downtown area (18,578 [veh]). 3,039 AVs park in the12

downtown area, and their parking search time is 0.02 hours due to the high running speed in the13

area and their short parking time. Also, 6,294 AVs go to outskirts parking, from which 117 return14

in the middle of their route. Finally, the remaining 30,667 AV users send their vehicles home.15

If we remove the toll, i.e., τc = 0[ $
hr ], we would see four equilibrium solutions under scenarios16

15



I.a, I.b, II.b, and III.b. The speed in the downtown are is v = 3.16[mph] and v = 0.34[mph]1

under scenarios I.a and I.b, respectively, due to the high number of cruising AVs. The low2

running speed in the downtown area results in the background traffic avoiding the area and the3

background traffic demand is only 222 [veh] and 3 [veh], respectively, under scenarios I.a and4

I.b. In contrast, under the equilibrium conditions in scenarios II.b and III.b, the speed in the5

downtown area increases to v = 28.9[mph] and v = 28.93[mph], respectively, and we will observe6

few cruising AVs in the downtown area. In the literature, Millard-Ball (2019) speculated that AVs7

would collaborate with each other to slow down and jam downtown to decrease their parking8

cost. This example shows this can happen even if AVs behave in a non-cooperative manner. This9

motivates the need for parking policies to avoid such situations.10

It is worth noting that the equilibrium solutions under scenarios I.a and I.b are not stable,11

while the other solutions are stable. Under scenario I.a equilibrium, there are 25,325 cruising12

AVs, and the rest 14,675 AVs go to park at home. The indifference point in activity time of users13

between these two choices is 6.33 [hrs] and the cost of cruising and parking at home for t = 6.3314

is equal to 4 [$]. If we make a small perturbation to the system that decreases the number of15

cruising AVs to 25,000 and the maximum cruising time to 6.25 [hrs], then speed will increase to16

3.85 [mph]. As a result the cost of cruising for the new indifference point (t = 6.25) increases to17

4.8 [$], which is higher than 4 [$] cost of parking at home, and thus more AVs will shift from18

cruising to park at home and the system further deviates from this equilibrium solution. In this19

example, the worse equilibrium solutions in terms of congestion and social welfare are not stable,20

implying that even if the system happens to achieve such a state, it may not stay there for long.21

However, it is inconclusive whether this observation is generally applicable.22

The previous examples highlight the need of policies and setting the prices of parking and23

tolls optimally. Hence, we seek for the optimal value of parking fees, congestion pricing, and24

parking provision by solving model (14) using the derivative-free method of Nelder-Mead. The25

optimum value of tolls, and parking fees are τc = 0.9[ $
hr ], τp = 5[ $

hr ], and τo = 0[ $
hr ]. Also, the op-26

timal parking provision is 1,500 spots. We only observe one equilibrium solution under scenario27

III.b for these parameter values, in which the speed in the downtown area is v = 28.93[mph]28

and most AVs park in outskirt parking (38,555 [veh]). Figure 7 illustrates the contours of the29

social welfare with respect to on-street parking fees and tolls for free outskirt parking. We can30

see that the total travel cost of users and social welfare do not change considerably with respect31

to on-street parking fees, while tolls have considerable impact on them. However, its impact32

would be eliminated after passing a threshold. Figure 8 similarly shows the changes in social33

welfare with respect to outskirts and downtown parking fees for no tolling. We can see that the34

parking fee in the downtown area cannot push AVs outside the area to increase the speed and let35

more background traffic travel through this region. Also, even though the outskirts parking fee36

has some impact on social welfare, it is marginal. Previously, without considering the option of37

cruising, Zakharenko (2016a) concluded that a toll would cause AVs to park closer to their des-38

tination, thereby decreasing social welfare by increasing parking competition in the downtown39

areas. Similarly, Su and Wang (2020) showed that parking pricing and parking provision policies40

are sufficient to reduce congestion without the help of the toll. However, our analysis shows that41

congestion pricing is the key policy factor in the age of AVs. Without a time-based toll, more42

AVs choose to cruise to slow down the speed and decrease their parking cost. Yet, the toll is not43
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Figure 7: Social welfare changes with respect to parking fee in the downtown area (τp) and toll
(τc) for free outskirts parking (τo = 0).

sufficient and needs to be supplemented by parking pricing or parking supply.1

6 Conclusion2

AVs will change users’ sensitivity to parking policies by means of their self-parking capability.3

This feature allows AV users to send their vehicles to cruise around the block or travel back4

home instead of parking. In this paper, the AV users’ parking choice in a downtown area is5

investigated with the use of Wardrop equilibrium. We model the AVs parking choice problem in6

downtown areas as a fixed-point problem and propose an efficient method to solve it. We show7

that the equilibrium problem might have multiple solutions in which congestion and external-8

ities are considerably different. We also provide a robust parking policy design formulation to9

recommend parking management policies to improve social welfare. The model can be used to10

properly set parking fees in and outside the downtown area, congestion toll, and parking provi-11

sion in the downtown area. Prior studies suggested that AVs may collaborate and intentionally12

slow down to substitute cruising for parking, which creates severe congestion. Our work shows13

that it can happen, even if AVs do not collaborate with each other and act in a non-cooperative14

manner. Our analysis also highlights that time-based congestion pricing is the key factor to hin-15

der AVs from cruising that exacerbates congestion. Without such a toll, the number of AVs that16

cruise in downtown areas increases substantially to decrease the running speed and their park-17

ing cost dramatically. The resulting congestion from cruising AVs discourages the background18

traffic from coming to the area due to high travel time, which decreases social welfare.19

We also note that the other types of congestion toll schemes, such as cordon-based or distance-20
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Figure 8: Social welfare changes with respect to parking fees in the downtown area (τp) and
outskirts (τo) for not toll (τc = 0).

based toll, are not effective in reducing congestion caused by AVs cruising instead of parking.1

The distance-based toll can be interpreted as a higher travel cost in the downtown area. However,2

as AVs’ travel distance decrease with more congestion, such type of toll cannot discourage AVs3

from cruising and choosing other parking options, and even their parking cost would decrease4

further with an increase in the number of cruising AVs. Also, if there is a cordon-based toll,5

all AVs have to pay it to egress to the downtown area regardless of what option they choose6

afterward for their parking. Therefore, it also cannot push cruising AVs to choose other parking7

options available to them.8

In this paper, we have developed a static framework to investigate the parking choice of9

privately-owned AVs. In future research, it would be valuable to develop a dynamic framework10

in which the cost of different options evolves over time. In such a dynamic setting, the departure-11

time decision of users can be also considered to investigate the impact of parking choice on12

ingress/egress time of those who leave later. In addition, shared AVs are not considered in this13

paper. Shared AVs may yield a significant number of empty miles between two occupied trips,14

which can be partially addressed by providing dedicated layover or parking spaces to shared15

AVs (Xu et al., 2017). An interesting future study would be to model the parking competition16

between shared and privately-owned AVs. Also, as AVs can sense their surroundings when17

traveling, they can detect whether on-street parking spots are empty or full, and share parking18

availability information with the rest of traffic. It would be interesting to study the design and19

implications of such a crowd-sourced parking information system.20
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Appendix A5

We now discuss the different scenarios of equilibrium in general case in more detail.6

A.0.1 Scenarios I.a and I.b7

Scenarios I.a and I.b take place when the speed in the downtown area is low enough that the8

outskirts parking is exceeded by either cruising or parking in the downtown area options. Figure9

4a shows the cost functions for these scenarios. If we have tp ≥ ρd lh
ρdv+τc

and v ≤ v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
10

under the equilibrium conditions, then scenario I.a happens. This scenario is similar to scenario11

I.a in the special case. In this case, cruising is chosen by AV users whose activity times are up12

to tch, while others with longer activity times send their AVs home. In this scenario, outskirts13

parking and parking in the downtown area are not used by any user. The indifference point of14

activity time, tch, is15

tch =
ρdlh

ρdv + τc
. (22)

If we have tp ≤ ρd lh
ρdv+τc

and v ≤ v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
under the equilibrium conditions, then16

scenario I.b happens. In this scenario, as shown in Figure 4a the cruising is the cheapest option17

from the minimum activity time up until tcp. The cost of cruising and parking are equal at18

tcp. Then parking becomes the most viable option up until tph, where its cost is equal to the19

home option. Parking at home is cheaper for any activity time longer than tph. In this scenario,20

outskirts parking is not chosen by any users again. The indifference points in activity times are21

tcp = tp (23)

tph =
ρdlh

τp
−

tp(ρdv + τc − τp)

τp
. (24)

A.0.2 Scenarios II.a to II.c22

Scenarios II.a to II.c happen when the speed in the downtown area is neither very low nor very23

high. Figure 4b shows the cost functions for these scenarios. If we have tp ≥
lo(ρdv f−τo)

v f

(
ρdv+τc−τo

) and24

v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
≤ v ≤ v f − τc

ρd
under the equilibrium conditions, then scenario II.a occurs. In25

this scenario, the parking in the downtown area is always dominated by other options, and there26

are two indifference points. One such point is between cruising and outskirts parking, tco, and27

the other is between outskirts parking and home, toh, which are28

19



tco =
lo(ρdv f − τo)

v f
(
ρdv + τc − τo

) (25)

toh =
lo

v f
+

ρd(lh − lo)

τo
. (26)

If we have tp ≤
lo(ρdv f−τo)

v f

(
ρdv+τc−τo

) and τp−τc
ρd

+ lh
tp
− τp

tp
( lh−lo

τo
+ lo

ρdv f
) ≤ v ≤ v f − τc

ρd
under the equilib-1

rium conditions, then scenario II.b happens. In this scenario, cruising, parking, outskirt parking,2

and home are the most viable options, respectively. Thus, all options are used by AVs and the3

indifference points in activity times are4

tcp = tp (27)

tpo =
ρdlo − τo lo

v f

τp − τo
−

tp(ρdv + τc − τp)

τp − τo
(28)

toh =
lo

v f
+

ρd(lh − lo)

τo
. (29)

If we have tp ≤
lo(ρdv f−τo)

v f

(
ρdv+τc−τo

) and v f lhτo

loτo+ρdv f (lh−lo)
− τc

ρd
≤ v ≤ τp−τc

ρd
+ lh

tp
− τp

tp
( lh−lo

τo
+ lo

ρdv f
) under5

the equilibrium conditions, then scenario II.c happens. In this scenario, as shown in Figure 4b6

cruising is the cheapest option from the minimum activity time up until tcp. The cost of cruising7

and parking are equal at tcp. Then parking becomes the most viable option up to tph where its8

cost is equal to the home option. Parking at home is cheaper for any activity time longer than9

tph. In this scenario, outskirts parking is not chosen by any users, and the indifference points in10

activity times are11

tcp = tp (30)

tph =
ρdlh

τp
−

tp(ρdv + τc − τp)

τp
. (31)

A.0.3 Scenarios III.a to III.c12

Scenarios III.a to III.c occur when the speed in the downtown area is such that the cruising option13

is always dominated by other options. Figure 4c shows the cost functions for these scenarios. If14

we have tp ≥ lo
v f

and v ≥ v f − τc
ρd

under the equilibrium conditions, then scenario III.a happens. In15

this scenario, both options of parking in the downtown area and cruising are always dominated16

by other options. Thus, there is only one indifference point between outskirts parking and home,17

toh, which is18

toh =
lo

v f
+

ρd(lh − lo)

τo
. (32)
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If we have tp ≤ lo
v f

and v ≥ τp−τc
ρd

+ lh
tp
− τp

tp
( lh−lo

τo
+ lo

ρdv f
) under the equilibrium conditions, then1

scenario III.b happens. In this scenario, the outskirts parking option is the cheapest one from the2

minimum activity time up until top, where its cost is equal to parking in the downtown area. The3

outskirt parking option becomes the cheapest option again at activity time tpo. The parking in4

the downtown area is the cheapest for any activity time between top and tpo. Actually, the AVs5

with activity time less than top would not reach outskirts parking and would return mid-route,6

while those with activity time longer than tpo would arrive at outskirts parking and park there.7

Finally, the cost of outskirts parking becomes equal to the home option at toh, with the latter8

being the cheapest option for any activity time longer than that. The indifference points in the9

activity times are10

top =
tp(ρdv + τc − τp)

ρdv f − τp
(33)

tpo =
ρdlo − τo lo

v f

τp − τo
−

tp(ρdv + τc − τp)

τp − τo
(34)

toh =
lo

v f
+

ρd(lh − lo)

τo
. (35)

If we have tp ≤ lo
v f

and v f − τc
ρd
≤ v ≤ τp−τc

ρd
+ lh

tp
− τp

tp
( lh−lo

τo
+ lo

ρdv f
) under the equilibrium11

conditions, then scenario III.c happens. In this scenario, as shown in Figure 4c the outskirts12

parking option is the cheapest from the minimum activity time up until top. The cost of outskirt13

parking and parking in the area are equal at top. Then parking becomes the most viable option up14

until tph, where its cost is equal to the home option. Parking at home is cheaper for any activity15

time longer than tph. In this scenario, cruising is not chosen by any users. The indifference points16

in the activity times are17

top =
tp(ρdv + τc − τp)

ρdv f − τp
(36)

tph =
ρdlh

τp
−

tp(ρdv + τc − τp)

τp
. (37)

18
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