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ABSTRACT. Let f € LP(R?), d > 3, and let A, f(z) be the average of f over the
sphere with radius ¢ centered at x. For a subset E of [1,2] we prove close to
sharp L? — L7 estimates for the maximal function sup,c |A¢f|. A new feature
is the dependence of the results on both the upper Minkowski dimension of F
and the Assouad dimension of E. The result can be applied to prove sparse
domination bounds for a related global spherical maximal function.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let A;f(x) denote the mean of a locally integrable function f over the sphere
with radius t centered at x. That is,

Af(x) = / f(& — ty)do(y),

where o is the standard normalized surface measure on the unit sphere in R% and
d>2. Let E C[1,2] and
(1.1) Mpf(z) = sup |Af(z)],

teE
which is well defined as a measurable function at least for continuous f. We
consider the problem of LP-improving estimates, i.e. LP — L7 estimates for g > p,
partially motivated by the problem of sparse domination results for the global
maximal function Mg f(x) = supycz supc i | Aok, f ()|, dependent on the geometry
of E, see §6. The sparse domination problem is suggested by a remark in [12].

It is well known ([16]) that for £ = {point} (when Mg reduces to a single
average) we have LP — L7 boundedness if and only if (1/p,1/q) belongs to the
closed triangle with corners (0,0), (1,1) and (ﬁ, ﬁ) For the other extreme case
E = [1,2] a necessary condition for L” — L% boundedness is that (1/p,1/q) belongs
to the closed quadrangle Q with corners P, = (0,0), P, = (djTl, %), P; = (d%dl, é)
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and Py = (dgj—j), jzjrll), see [21]. By results of Stein [25] for d > 3, and Bourgain
[3] there is a positive result for the segment [P}, P») while boundedness fails at Ps.
For p < q almost sharp results are due to Schlag and Sogge [21] (see also previous
work by Schlag [20] on the circular maximal function) and additional endpoint
results were obtained by Lee [14]. It turned out that for d > 3 we have LV — L9
boundedness for (1/p,1/q) € Q\ {P, P3, Py}. For the point P Bourgain [2] had
shown a restricted weak type inequality, and Lee [14] also showed in addition a
restricted weak type inequality for the points P3 and Py. It is not known whether
the LP — L9 bound holds for P3 or P;. In two dimensions the quadrangle O
becomes a triangle as the points P, and Ps coincide. From [14] we have that
LP — L7 boundedness holds on Q with exception of the points P, = P3 and Pj.
Lee also shows the L5/21(R?) — L5 (R?) estimate, i.e. the restricted weak type
inequality corresponding to Py (and it is open whether the endpoint L5/2 5 [P
estimate holds). In two dimensions, for the point P, = P3 the endpoint restricted
weak type inequality is true for radial functions ([13]) but fails for general functions,
see §8.3 of [22].

In this paper we take up the case of LP improving estimates for spherical max-
imal functions with sets of dilations intermediate between the two above extreme
cases; here we mainly consider the problem in dimensions d > 3 although some
partial results in two dimensions are included. Satisfactory results for p = ¢ are
in [23] where it was shown that the precise range of LP boundedness depends on
the upper Minkowski dimension ( of the set E, which should also play a role for
LP — L9 estimates. However it turns out that the notion of upper Minkowski di-
mension alone is not appropriate to determine the range of L? — L? boundedness,
and that in addition another type of dimension, the upper Assouad dimension,
plays a significant role.

We recall the definitions. For a set £ C R and § > 0 denote by N(E,d) the
minimal number of compact intervals of length § needed to cover E. The upper
Minkowski dimension dimysE of a compact set E is the smallest 8 so that there
is an estimate

(1.2) N(E,8) < C(e)s P2

for all 8 < 1 and € > 0. The upper Assouad dimension dimaFE is the smallest
number v so that there exist dg > 0, and constants C. for all € > 0 such that for
all § € (0,d0) and all intervals I of length |I| € (9,dp) we have

(1.3) N(ENT,8) < C(8/I)) ¢

Clearly we have 0 < dimp,F < dimgF < 1 for every compact subset of R. For the
Cantor middle third set C' we have dim;C = dim4C = logs 2. More generally the
upper Minkowski and upper Assouad dimensions are equal for large classes of quasi-
self-similar sets, see [7, §2.2] for precise definitions. In contrast, if 0 < 8 < 1 then
for the set E(8) = {1 +n~"%" : n € N}, with a(8) = % we have dimy E(B) =
and dimaF(5) = 1.
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One seeks to determine the region of (1/p,1/q) for which | Mg||Lr—rae is finite.
It turns out that the following definitions are relevant to answer this question, up
to endpoints.

Definition. (i) For g <~ <1 let Q(f3,) be the closed convex hull of the points

= 0707 = — 3 il_l s
(1.4) Qldﬂ( )1 Q2(5) (d—1+ﬁ d 1+5)

Qs(8) = (557, 1), Qu(y) = (A5 2.

(ii) Let Seg(3) be the line segment connecting (0,0) and Q2(3), with (0, 0) included
and Q2(3) excluded.
(iii) Let R(S,~) denote the union of Seg(/) and the interior of Q(S,~).

Note that

R(B,72) SR(B,M)if <<y <L

Q=

Q2,3

) @35
Qay

@1

D=

FIGURE 1. The region Q(f3,v) with d =3, 8 =0.8, v = 1.

It was shown in [23] that boundedness holds on the segment Seg(/) and this
is sharp up to the endpoint. A number of conjectures for endpoint situations for
LP — LP boundedness are in [24] and these conjectures were confirmed there for the
problem of LP — LP estimates on radial functions; see also [22] for partial results
for convex sequences when the radiality assumption can be dropped. A slight
variation of the arguments in [23] shows that in the interior of the triangle with
corners Q;(8), i = 1,2,3 we have LP — L7 boundedness, see §2. Interpolation
with the above mentioned results by Schlag-Sogge and Lee then shows that we
have LP — L? boundedness in the region R(3,1). On the other hand the standard
examples (cf. §4.1, §4.2, §4.3) show that boundedness fails in the complement of

Q(B,8). The main result of this paper is to close this gap (at least in dimensions
d > 3).
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Theorem 1. Let d > 3,0< <y <1lord=2,0<p<~v<1/2. Let E be
a subset of [1,2] with dimyE = 8, dimyE = . Then for (1/p,1/q) contained in
R(B,7),

(1.5) [sup [Aiflllq < 1 F1p-
tek

Remark. The conclusion of the theorem in the two-dimensional case continues
to hold in the case v > 1/2 not covered in this paper. This requires arguments
different from what we use here, see [19].

We now turn to the issue of sharpness. It turns out that Theorem 1 is sharp up
to endpoints for a large class of sets which includes the above mentioned convex
sequences E, = {1 +n~%} where dimy;F, = (a +1)~! and dim4FE, = 1, and also
sets with dim 4 F = dimp, F (in particular, self-similar sets). Moreover we shall, for
every 8 <y < 1, construct sets E(f3,v) with dimy,E(8,7) = 8, dimaE(8,7v) =~
so that Theorem 1 is sharp up to endpoints for these sets, meaning that LP — L4
boundedness of Mg fails if (1/p,1/q) ¢ Q(B,7).

We can say more about the sets E for which such sharpness results can be
proved. To describe this family we work with definitions of dimensions which
interpolate between upper Minkowski dimension and Assouad dimension, notions
that were introduced by Fraser and Yu in [8]. For 0 < 6 < 1 one defines dimy gF
to be the smallest number ~y(6) so that there exist dp > 0, and constants C. for all
£ > 0 such that for all § € (0,00) and all intervals I of length |I| = 6% we have

(1.6) N(ENI,8) < Cu(6/|1])77 0=,

The function § +— dimgeFE is called the Assouad spectrum of E. Note that
dimg oF = dimp/E. There are some immediate inequalities relating the Assouad
spectrum with Minkowski and Assouad dimensions (see [8, Prop. 3.1]),

(1.7) dimy E < dimagF < min(4LE dimy E).

Indeed, the inequality dim4 ¢ F < dim4F holds by definition, while the inequal-
ity dimgpF < dimpyE/(1 — 0) follows from N(EN1I,0) < N(FE,d). To see the
first inequality in (1.7) let us write § = dimy/E and () = dimgpE. Cover the
set F with an essentially disjoint collection Z of intervals I of length 6% so that
#T < 2N(E, %) < C(e1)(69)7° and use

N(E,0) <Y N(ENL6) <Y C(s87 1)@
IGI IGI
< C.C(e1)6 B +e1)=(1=0)(3(0)Fe)

By definition of Minkowski dimension and letting €, 1 tend to zero, we get 8 <
05 + (1 — 0)y(6), which implies 8 < ~(0) since 0 < § < 1. For more sophisticated
relations between the various dimensions in the Assouad spectrum, see [8]. The
papers [8], [9] contain discussions of many interesting examples that are relevant
in the context of Assouad dimension and Assouad spectrum.
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Here we are interested, for suitable sets F, in those values of 6 for which
(1.8) dimygF = dimgF.

While the Assouad spectrum is generally not monotone (see [8, §8]), it holds that
once the Assouad spectrum reaches the Assouad dimension then it stays there,
i.e. if dimy g, B = dimaFE then dimggE = dimgFE for 6y < 6 < 1 (see [8, Cor.
3.6]). Note that the upper bound in (1.7) implies that (1.8) can only hold for
6 >1— /v, where § = dimy/F and v = dimy E. This leads us to introduce the
following terminology.

Definition. We say that a set E is (3, 7)-Assouad regular if dimpyE = 8, dimg FE =
v and dimggFE = dimyE for 1 > 60 > 1— /v. E is called Assouad regular if it is
(8,7)-Assouad regular for some pair (3,7).

Note that when dimy/F = dimaFE or dimy/E = 0, then F is always Assouad
regular. Also, the convex sequences E, = {1+ n~%} are (a%rl, 1)-Assouad regular
(see [8, Thm. 6.2]). In §5 we shall give examples of (f3,y)-Assouad regular sets,
for every pair (5,7v) with 0 < 8 < < 1. We shall show that Theorem 1 is sharp

up to endpoints for Assouad regular sets.
Theorem 2. Let d > 2, E C [1,2] and f = dimy/E.
(1) If (1/p,1/q) & Q(B,B), then

(1.9) sup{[|Mefllq : [[fllp < 1} = oo
(ii) Let § € [0,1) such that
(1.10) dimygE = 92uE.

Then (1.9) holds for (1/p,1/q) ¢ Q(B, 1‘%9)

(i) If 0 < B < ~v < 1 and E is (B,7)-Assouad regular, then (1.9) holds for
(1/p,1/q) & Q(B,7). In particular, Theorem 1 is sharp up to endpoints for
Assouad reqular sets.

Observe that (ii) implies (i) because (1.10) holds trivially for § = 0. Moreover,
if F is (8,v)—-Assouad regular, then (1.10) holds with 6 =1 — 3/, i.e. v = %,
so (ii) also implies (iii). The validity of (ii) is proven in §4.

It would be interesting to investigate the sharpness of Theorem 1 for sets F
which are not Assouad regular. For more on this topic, see [19].

Endpoint results. Here we discuss endpoint questions on the off-diagonal bound-
aries of Q(3,~) and give a result which is somewhat analogous to one of Lee’s the-
orems in [14]. The theorem involves restricted weak type estimates (with Lorentz
spaces LP!, L) at the points Q2(8), Q3(8) and Q4(7) and strong type esti-
mates on the open edges connecting these points. Recall that Mg is said to be
of strong type (p,q) if Mg : LP — L9 is bounded, and of restricted weak type
(p,q) if Mg : LP' — L% is bounded. To prove these results we need to slightly
strengthen the dimensional assumptions in Theorem 1.
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Theorem 3. Let d > 3,0 < <~y <1, ord=20<p<+vy<1/2. Let
Ec1,2.
(i) Suppose that

(1.11) sup 0°N(E,d) < oc.
0<s<1

If (1/p,1/q) is one of the points
Q2(8) = (3%7k5 79755), Q3(8) = (35557, 7=h71)

then Mg is of restricted weak type (p,q). Mg is of strong type (p,q) when-

ever (%, %) belongs to the open line segment connecting Q2(5) and Q3(5).
(i) Suppose that
(1.12) sup  sup (%)VN(E NI, < oo,

0<d<16<|I<1

where the second supremum is taken over all intervals I of length in [0, 1].

Let (%, %) = Qu(y) = (dglid;vl_)p dgj'l_;,;_l). Then Mg is of restricted weak
type (p, q)-

(iii) Suppose that both (1.11) and (1.12) hold. Then Mg is of strong type (p, q)
fOT’ all (}lo, %) € Q(B)’Y) \ {QQ(B)J Q3(B)) Q4(7)}

This paper. In §2 we begin proving Theorems 1 and 3 by discussing elementary and
basically known estimates relevant for the p = ¢ cases and the bounds at Q3(5). In
§3 we prove the upper bounds at Q4(7), thus concluding the proofs of Theorems 1
and 3. In §4 we discuss examples proving Theorem 2; see §4.4 for the new argument
of sharpness for Assouad regular sets. In §5 we give some relevant constructions of
sets with prescribed Minkowski and Assouad dimensions. §6 contains a discussion
of related sparse domination bounds for the global maximal operator 9.

2. PRELIMINARY RESULTS

In this section we assume d > 2. We dyadically decompose the multiplier of the
spherical means. Let 19 be a C* function with compact support in {£ : || < 2}
such that no(¢£) = 1 for [¢] < 3/2. For j > 1 set n;(&) = no(277€) — no(277¢)
so that n; is supported in the annulus {¢ : 2971 < |¢] < 2771}, Let o denote

the surface measure of the unit sphere in R?. Define Alf,5=0,1,2,... via the
Fourier transform by
(2.1) ATF(€) = i (©)a () F€).

We change notation for added flexibility. Let a(t,-) be a multiplier and a symbol
of order zero, satisfying \6{‘48?(1(15,5)] < C)¢|7 for all multiindices o with || <
100d and all M. Denote by Gy the class of these symbols. For a € Gy and j > 1
let

~

T [a, f](x) = / ni(§)alt, ) F(§)e' = lag



BOUNDS FOR SPHERICAL MAXIMAL OPERATORS 7

so that, by well-known stationary phase arguments (see [26, Ch. VIII]),
Alf =27V a4 f]+ Ty M0 ),

where a; 4 are symbols in &g, with bounds uniform in j. In what follows a; € &g

is fixed and TV refers to cither f s 7,57 [aj+, fl.
‘We shall need a pointwise estimate for the convolution kernels of the operators
T} and T} (T},)* provided by the following lemma.

Lemma 2.1. Let x € C®(RY), supported in {&:1/2 < |¢] < 2} and let

R (1) = / (277g)eltm el =Ml ge.

Then there are constants Cy depending only on bounds for a finite number of
derivatives of x so that for all (z,t) € R? x R:

(2.2) |9 (2, 1) < Cn 241+ 29)2)) =T (1 + 27 ||| — J¢]]) =
Proof. We change variables and write

ﬂj’i(m,t) _ 2jd/X(w)ei21<x,w):tit2j|w|dw.

If max{|z|, |t|} < C277 we use the trivial estimate |x/*(x,t)] < 27¢. From inte-
gration by parts we obtain

: 2041+ 29]z|)~M  if 2| > 2|t
‘F,,i(w,t),gM{ (L+ 2727 if Ja] > 2],

241+ 21t)~M if |t > 2|z

It remains to consider the case |t| =~ |z| > 277. Then we apply polar coordinates,
stationary phase in the spherical variables, and integration by parts in the resulting
oscillatory integral to get (2.2). O

We now state the basic estimate used in [23].
Lemma 2.2. (i) For 1 <p <2,
29D sup [T, S N(B.279) /r- #0001 g,

(ii) For 2 < p < oo,
279D /ZHSUP\T]J"\Hp S N(B,279)Ypomdl=D) |,
Proof. For (i) one interpolates between the cases p = 1 and p = 2, and for (ii) one
interpolates between the cases p = oo and p = 2. ]
The same argument also gives
Lemma 2.3. For2<q<oo,1/¢d +1/q=1,
24N sup T 7l S N(B,279) 0250 £l
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Proof. We interpolate between ¢ = 2 and ¢ = oo. The case ¢ = 2 is from the
previous lemma. For the case ¢ = oo we use that the convolution kernel K7 of
2-9(d=1/2T7 satisfies the uniform bound |K7 (z)| < 27 (by Lemma 2.1). O

Bourgain’s interpolation trick. For various restricted weak type estimates we ap-
ply a familiar interpolation argument due to Bourgain [2], see also an abstract
extension in the appendix of [4]. It says assuming ag,a; > 0, that if (R;);>0 are
sublinear operators which map LP*! to L with operator norm O(27%) and
LPul to L9 with operator norm O(277%) then >_j>o R is of restricted weak
type (p,q) where

(5 2) = =G ) +0Gra) 0=ada

Using this result we get

Lemma 2.4. Suppose 0 < B < 1 and assumption (1.11) holds. Then Mg is of
restricted weak type p,q if (1/p,1/q) is either one of Q2(5), Q3(B).

Proof. For the statement with Q2(5) we apply Lemma 2.2 and assumption (1.11)
to get for 1 < p < 2,

B —d+1
Isup AL f|[l, < 29 N1l

We consider these inequalities for pg, p1 where py < d;irﬁ < pi1. We then use

Bourgain’s interpolation argument to deduce

| S suplaisl]| | S IFler, p =252
IS0 t€E Lp»

This gives the asserted weak restricted weak type inequality for Mg at Q2(f).
For the result at Q3(/3) we apply Lemma 2.3 instead and obtain under assump-
tion (1.11), for 2 < ¢ < o0,

(1—d+1=8
Isup A f 1l S 2T f g

Bourgain’s interpolation argument gives

| > suplaisl]| S Iflpeas a=d+1-8.
IS0 t€E L

This gives the asserted restricted weak type inequality for Mg at Q3(53). ]

Corollary 2.5. Let E C [1,2] and dimy E = §.
(i) Then for ddf{ﬁ <p< oo

[sup 147 1], <o 27711 £l
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with a(p) > 0.
(it) For (1/p,1/q) in the interior of the triangle Tz with corners Q1, Q2(5), Q3(B)
we have

[sup [ALF1]], Sp 27770 1],
teE
for some a(p,q) > 0.
Proof. Use N(E,277) <. 27 (B+¢) apply the previous lemmata to A{. O

3. ESTIMATES NEAR (Q4(y): THE ROLE OF ASSOUAD DIMENSION

As the case f = 1 is already known (see [21]) we shall assume in this section
that g < 1.

Let v <1 and
d?4+2y-1 d?4+2y-1
ps = d2_’yd y  qa = d;{ )

ie. Qu(y) = (1/pa,1/qq).

Proposition 3.1. Let either d > 3, or both d = 2 and v < 1/2. Suppose that
assumption (1.12) holds. Then

(3.1) 1M fllzaaee S [ fllprar-
Proof. Let ¥ = % and notice that ¥ € (0,1) if d =3 ord =2, v < 1/2.
One checks that 1 — 19 = %ﬁi? and

d— 2y—(d—1)2
(L, L,0) = (1 =93, siilsy S tay) + 9(1,0,1).

For all estimates concerning A{ we shall assume d > 2, and assumption (1.12). By
Lemma 2.3 we have

(3-2) [sup A7 £ < 2’£11-
tel

We shall prove, for d > 2,

(

) o (d=1)2-2 _
(33)  |[sup|Afflll, o S27ATIE | flla,  where g, = 242
teE i

Notice that % >0 ford >3 ord=2 v < 1/2. The asserted restricted
weak type inequality follows from (3.2) and (3.3), using Bourgain’s interpolation
trick. It remains to prove (3.3).

For each j let Z;(FE) denote the collection of intervals J of the form [k277, (k +
1)277] which intersect E. For each interval I with length at least 277 we form
Z;(ENI). Then

(3.4) #TL,(ENI) <TN(ENI,277),

Indeed if V is any collection of intervals of length 277 covering E N I, and if
J € Z;(E N I) there must be an interval J(J) € V which intersects J; moreover if



10 T. ANDERSON K. HUGHES J. ROOS A.SEEGER

J, J' have distance > 3-277 then the intervals .J(.J) and .J(J’) in V must be disjoint.
This means that the cardinality of V is at least one seventh of the cardinality of
Z;(ENI) and (3.4) follows. By our assumption (1.12) we also have

(3.5) #T,(ENT) < C|I|"277

for any interval of length at least 277.
We now fix j. Let Z;(E) = {I,} and let {t,} be the set of left endpoints of
these intervals. Here the indices v are chosen from some finite set which we call

Z;. Equipping Z; with the counting measure, we claim that it suffices to show

that for ¢, = W,

. 279 . L (d=1)2-2y
(3.6) [l AL fllparvoe(rixz)) +/0 105 A7, 45 fll oo (rix z,)ds S 277 2@ 520 || f|o.

Indeed, by the fundamental theorem of calculus
. . 277 .
sup | A7 f| < sup |A] f| —I—/ sup |0sA{ | flds
tek veZ; 0 VEZ;

Taking L%*°-norms (recall that L% is normable, see [11]) on both sides and
noting that

meas({z : sup |g(z, v)] > A}) < measgarz, ({(@,v) : |g(z,v)| > A})

we see that || sup,cp | AL | ||l 4,00 is dominated by a constant times the left hand side
of (3.6).
The estimate (3.6) follows once we show that

(d—1)2 -2y

. . i
(3.7) 2 VRNTY fl paros maxz;) S 277 2@ | fla-
Given a function g : R¢ x Z; — C, define the operator

Sjg(a,v) = 279D XN T (T ) (g (-, )] ().
v'eZ;

A TT* argument using that the dual space of L7! is L9 shows that (3.7) follows
once we establish

(3.8) 150l et 3,y < 277 EEE gl
. 791l Lo (RIXZ5) ~ 9 Lq"/’l(RdXZj)'

We use a variant of the argument in the proof of the L? Fourier restriction
theorem [28] (see also [27]). For n > 0 and v € Z; we define

Z, i) =V €z 270t <ty — | < 2791
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Observe that Z, j(v) is empty if n > j + 3 and that Z; = (5 Zn,j(v). Define
the operators S, ; acting on functions g : R% x Z; — C by

Snggla,v) =270 N T T (1 ) g ()] ().
V'EZy, (V)
Then S; = 3,50 Sn,j- We claim that

(3.9) 190,391l Lo Raxz,) S 2729l 11 axz,)

and

(3.10) 15 ,39”L2(Rdxz) < 2@l ”9”L2(Rdxzj)-

Then (3.8) follows by Bourgain’s interpolation trick: with § = 2/¢, = di%%w
(qllaq 50) 0(%5%77)_’_(1_0)(1’0’_%)

From Lemma 2.1 we get that the convolution kernel Kf/ i of thu (th ,)* satisfies

(3.11) 1K oo S 2741+ 27|t — b))~ 7

This implies (3.9). It remains to prove (3.10). Using the Cauchy-Schwarz inequal-

ity we get
1/2
(2] = maruel,)

vEZ; VeZ, ;(v)

< (T #E0) Y HT&(J?;,)*[g(-,V/)]E)W
veZ; VEZy, (V)

(T #E0 Y latE)"
veEZ; V'eZy, (V)

where we have used that HthHLzﬁLz = O(1). Finally, by (3.5) we have # 2, ;(v)

<
2™ for all v € Z;. Together with the previous display this implies (3.10). U

The above proof also gives

Corollary 3.2. Suppose that dimaE = ~. Then for alle >0
(3.12) sup [47£1ll,. - 2711 f .
tek

Proof. The assumption means that given any ¢ > 0 the assumption (1.12) holds
with 7 4 € in place of . Hence we get (3.3) with an additional factor of C(€)2’¢
for all € > 0, and interpolation as before yields the result. [l

Proof of Theorems 1 and 8. Theorem 1 is now immediate from Corollary 2.5 and
Corollary 3.2. Theorem 3 follows by a combination of Lemma 2.4, Proposition 3.1
and real interpolation. O
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4. NECESSARY CONDITIONS: PROOF OF THEOREM 2

Let 8 = dimy E and suppose that 6 € [0,1) is such that dimggFE = %. Set
N = % and assume that (1/p,1/q) is such that Mg is bounded from LP(R?) to
LY(R?). We will show that (1/p,1/q) € Q(B,7).

This is done by providing four separate examples, each corresponding to one of
the (generically) four edges of Q(/3,7). One is just in view of translation invariance
[10], and two others are adaptations of standard examples for spherical means and
maximal functions (see [20], [21], [23]). The last example reveals the role of the
Assouad spectrum.

4.1. The line connecting Q1 and Q2(S). This is simply the necessary condition
p < g imposed by translation invariance on R%; one tests Mg on f+ f(- —a) where
f is compactly supported and a is a large vector, see [10].

4.2. The line connecting Q2(B) and Q3(5). First let By be the ball of radius § < 1
centered at the origin and x; the characteristic function of By, so that || fxs||, <

6P, The maximal function M is of size > §%~1 on a union of annuli with measure
N(E,¢)d. This leads to the inequality

s aN (B, )M < 5P,

By the assumption dimysE = 8 we have given € > 0 a sequence 9,,, with 6, — 0
as m — oo, such that N(FE,d,,) > 557", Hence, after letting ¢ — 0 we get the
condition

1-8 _ d
(4.1) . td—1=>7

as being necessary for LP — L9 boundedness.

4.3. The line connecting Q1 and Q4(7). As in [20] we may take fs = l¢(54) where
C(9,t) is the ¢ neighborhood of the circle of radius ¢ € [1, 2] centered at the origin.
Then || fs], = /7 and |A,f(x)| > 1 for |z| < cJ. Hence we 69 < §'/P which
forces d/q > 1/p, as required.

4.4. The line connecting Q3(3) and Q4(7). By assumption, for every ¢ > 0 there
exists an arbitrarily small § > 0 and an interval I C [1,2] with [I| = 6% such that
N(ENI, ) > (]I]/§)7¢. Set a« = B/7 and
o =0§%2%> §1/2
Let r be the left endpoint of the interval I and let g5 ; be the characteristic function
of the set
{(y/7yd) : Hy| - T| < 5’ ’y,| < U}'

Then
= (o1l — g0,

15,1
Choose a covering of F NI by a collection J of pairwise disjoint intervals, each of
length § such that ENTNJ # () for every J € J. Then #J > N(EN1,0).
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Let ¢ € (0,1) be a sufficiently small absolute constant not depending on dimen-
sion that is to be determined. We claim that for all ¢t € Ujec7J and all x = (2, z4)
with |2/| < edo~t and |xg +t — 7| < b,

(4.2) Mggs.1(x) > Agsr(a',xq) = 0?71
Indeed, let y = (v/,yq) € ST with || < co. Compute
|+ ty|® = |2/|? + 22 4 2t(2,y)) + 2twqyq + 12
= &2+ (zqg + t)? + 2txq(\/1 = [y/)2 — 1) + 2t(2, /).
Since |zg +t — 7| < ¢d and |2)? < 252072 < 24,
[l + (za + )" = r*| < 6e0,
262", /)| < 4fa’|y'| < 4?5,

12tzg(\/1 = |32 = 1)| < 2(|t — 7| + d)|y/|? < 2¢(|T] + ed)o? < 4cd,
where we used that |I| = §% = 6o—2. This implies

||z + ty|* — r?| < 14c0,

and hence ||z + ty| — 7| < § when we pick ¢ small enough (say, ¢ = 1072). Also,
|z’ 4+ ty'| < |2'| +2]y’'| < o so that altogether we proved gs5r(z + ty) = 1. This
establishes (4.2). Since the intervals J € J are disjoint, the corresponding regions
of « where (4.2) holds can be chosen disjoint. Hence,

IMggsrlly > o N (N(ENT,8)5 - (50~ )ty /a

~

Finally, we estimate N(ENT,8) > (|I|/6)7¢ = 6 A+5®and let ¢ and 6 tend to zero
to find the necessary condition

L) =5d=1+(d=8-(d=1)5); - (1+5(d-1); 20

A computation shows that L(Q3(8)) =0 and L(Q4(7)) = L(Q4(8/a)) = 0.

5. EXAMPLES OF ASSOUAD REGULAR SETS

Let 0 < 8 < v < 1. We construct a (f3,y)-Assouad regular subset of [1,2]. In
what follows we put A = 27/# and = 271/7, so that A < p < 1/2.

5.1. Cantor set construction. We review the standard Cantor set construction
adapted to a compact interval Ip; = [a,b], see [17, p. 60]. We let Iﬁl be the
compact interval of length 1(b — a) that includes the left endpoint of Iéf o and let
It', be the compact interval of length u(b — a) that includes the right endpoint of
10:0~ Continue this selection for the two compact subintervals. At stage k — 1 we
get 28~1 intervals Iy ,I;:il’%_l of length p*(b — a).

We let CY([a,b]) = Ul%kzllij and let bd(CY([a,b])) the set of boundary points

of the 2% intervals If' ... 1V

ok The usual Cantor set is given by C¥([a,b]) =



14 T. ANDERSON K. HUGHES J. ROOS A.SEEGER

2, Cl([a, b]); it is of Hausdorff dimension and Assouad dimension . However in
our example below we will not work with the full Cantor sets.

5.2. Construction of the set E. Let Jj, = [1+ A1 14 A*]. We now start to build

a Cantor set with dissection 1 = 27/ on each interval Jj, however to keep the
Minkowski dimension 8 we shall, for a suitable integer m(k), stop at the m(k)™
generation and only take the endpoints of the 2™(*) resulting intervals of length

(5.1) Sy 1= A1 mk) — o—k/B—m(k)/7
Let 0 =1—3/v € (0,1). Then we set m(k) =1+ L%J This choice is made so that
(5.2) 50 || ~ 25,

We then set

o0
E = | J B where Ej, = bd(Ch 4 (Ji))-
k=1
5.3. Dimensional estimates.
Lemma 5.1. For0< <~y < 1,0 =1-8/y and E as constructed in §5.2 we
have that
dimyE =, dimygeF =7, dimyE =}.

More precisely, the quantities

() HéﬁN(E,é), (i) lim 0°N(E,$),
6—0
(iii) lim sup (‘%)WN(EOI,(s), (7v) lim sup ( ‘)WN (ENI,o),
5—>0|I‘ 50 0—0|I]=4?
(v)  lim sup (|I|) N(ENI)Y), (vi) @sup( ) N(ENI,9).
6—=05<|1| 0—06<|I|

are all finite and positive.
Proof. Let us first show
(5.3) dimgFE = 7.

In order to see that dim4F < - note that, in view of the Cantor structure of each
E}, with dissection pu = 2_1/7, we get for I C Jj

N(E L) < JOND7 0 <8< 1] < 1)
SN GINTT B8 < 8, < 1] < |l

Then, for an arbitrary interval I C [1,2] and § < |1],
N(ENI,6) <Y N(Epn(J,N1I),d)

(5.4)

k>0
Sov( YD I+ YD 2Py S
k:1>2k/B>|1| k:2-k/B<T|

JeNI#£0
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This gives dimgF < «, and also shows that the quantities (iii), (iv), (v), (vi) are
finite. We can also conclude dim g pF < 7.
Next we observe,

(5.5) N(E O Ji, 6;) = N(Ek, 6) = 2% ~ (6,/Je) ™

This also shows that the quantity (iii) is positive (also (iv), (v), (vi)) and that
dimg F > ~. Thus we have now proved (5.3).

Note that we have not yet made use of the particular choice of m(k) (that is,
(5.2)). Taking (5.2) into account we see that (5.5) also implies that the quantity
(iv) is positive (hence also the ones in (iii), (v), (vi)) and that dimye¢E > 7.
Moreover using (5.2) we also obtain

N(EN Jy,0) =~ 8,7

which implies the positivity of (ii) (and (i)), and dimp E > .
It now only remains to consider the upper bounds for N(E,d). These again
depend on (5.2). Let & € (0,1) be given. Since 6¢ ~ |Ji|,

N( U Ek,é) <1
k:§25z
This gives
N(E,§)S1+ > N(BE,o)+ > N(E0),

k:bp<8<8 k>0:0, >0

which by (5.4) (with I = Ji) and (5.2) is
S D S N A e
k16 <6<6y k>0:6,>0
Hence we proved the finiteness of the quantities (i), (ii) and the bound dimy F <
B. O
6. A CONSEQUENCE FOR SPARSE DOMINATION BOUNDS

One motivation to prove sharp LP — L9 estimates comes from the problem of
sharp sparse domination bounds for the global maximal operator

ME f(x) = supsup [Age, f ()],
keZ tcE

as suggested in §7.5.3 in [12], with various consequences to weighted norm inequal-
ities. The concept of sparse domination originates in Lerner’s paper [15]. Here
we use the definition of sparse domination of bilinear forms in [12], which in some
form goes back to [1]. We refer the reader to [5], [12] for many additional references
and historical remarks.

A collection S of cubes is called sparse if for every ) € S, there is a measurable
set Ag C @ so that |Ag| > |Q|/4 such that the sets {Ag : Q € S} are disjoint.
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Definition. Let (p1,p2) be a pair of exponents, each in [1, 00). Let T" be a sublinear
operator 1" mapping compactly supported LP! functions in R™ to locally integrable
functions on R™. For a sparse family S we set

Aspips(f,9) ZIQ! ‘22|/Q]f(m)ypldm>l/m (@A‘g(m)IPde)l/p2'

Then is called the sparse form associated with S. We say that T satisfies a (p1, p2)
sparse domination inequality if there is a constant C' such that

(6.1) ‘/Tf(x)g(x)d:z‘ < Csup {Asp, po(f,9) : S sparse}

holds for all continuous compactly supported f and locally integrable g; here the
supremum is taken over all sparse families S. We define ||T'||sp(p, ) as the infimum
over all C' > 0 such that (6.1) holds for all f € LP*, g € LP? with compact support.
It is easy to see that ||T|zr—rr < 1T ||sp(pypo)> fOr p1 < p < ph; see e.g. [12, Prop.
6.1].

Let E C [1,2] and consider the global maximal function

Mg f(x) = supsup [Age, f ()|
keZ teE

mentioned in the introduction. The paper by Lacey [12] shows that Theorem 1
and a related regularity result imply certain sparse domination inequalities for the
M mentioned. Lacey’s result covered the cases E = {point} and E = [1,2]. For
general E C [1,2] we get

Theorem 6.1. Let 0 < f<~v<1,d>30r0<<~v<1/2,d=2. Let E be
as in Theorem 1. Suppose that (pl_l, 1-— pQ_I) belongs to the interior of R(S,7).
Then

HmEHSp (p1,p2) < 0.
The needed regularity result alluded to above is

Lemma 6.2. Let E be as in Theorem 1. Then for (1/p,1/q) € R(B,~) there is
a(p,q) > 0 such that

(6.2) I Sup [Acf (- +h) = Af Olllg S (AP £l

Proof. This regularity result is of course a by-product of the proof of Theorem 1.
We have, for A7 f as in (2.1),

sup 47 f1ll, +277 | sup [Vaaaif]]| <2701,
tekE tek q

for e(p,q) > 0 if (1/p,1/q) € R(B,7v). This immediately implies (6.2), for some
a(p,q) > 0. O
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Proof of Theorem 6.1. The reduction in [5], [12] can be applied (see also [18] for
related arguments). One systematically replaces in [12] the full local maximal
operator M|, o) by its modification Mg for general E C [1,2] and uses Theorem 1
and Lemma 6.2 in the proof. 0

Remark 6.3. If in this proof one uses the LP(R?) — L9(R?) result in [19] one can
drop the condition v < 1/2 in the two-dimensional case of Theorem 6.1.

Remark 6.4. One can also obtain sparse domination results for the general spherical
maximal operator

Mpf = sup|A:f|
teE

when E C (0,00). In this context, one has to use dilation invariant notions of the
Minkowski and Assouad dimensions for the sets E N [\, 2], with uniformity in A
in the definitions. Specifically, if Ey := A"*E N [1,2] we then let 3 be the infimum

over all B > 0 for which

sup sup 5EN(E,\,5) < 00.
A>05€(0,1)

We let v be the infimum over all 4 > 0 for which

sup sup sup (8/|1])YN(E,,d) < oo.
A>01C[1,2] 6€(0,1)

Then | ME|lsp(py pz) < 00 holds under the assumption that (pl_l, 1-— pg_l) belongs
to R(8,7)-
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