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Traditional interpolation techniques for particle tracking include binning and convolutional formulas that use
pre-determined (i.e., closed-form, parameteric) kernels. In many instances, the particles are introduced as point
sources in time and space, so the cloud of particles (either in space or time) is a discrete representation of the
Green’s function of an underlying PDE. As such, each particle is a sample from the Green’s function; therefore,
each particle should be distributed according to the Green’s function. In short, the kernel of a convolutional
interpolation of the particle sample “cloud” should be a replica of the cloud itself. This idea gives rise to an
iterative method by which the form of the kernel may be discerned in the process of interpolating the Green’s
function. When the Green’s function is a density, this method is broadly applicable to interpolating a kernel density
estimate based on random data drawn from a single distribution. We formulate and construct the algorithm
and demonstrate its ability to perform kernel density estimation of skewed and/or heavy-tailed data including

breakthrough curves.

1. Introduction

In many applications, discrete samples of a continuous, and poten-
tially complex, random process are generated as output, even though
a continuous solution is desired. Some examples are given by particle-
tracking of passive solute transport (e.g., Fernandez-Garcia and Sanchez-
Vila, 2011; Pedretti and Fernandez-Garcia, 2013; Siirila-Woodburn
et al., 2015; Carrel et al., 2018), reactive particle transport (e.g., Ding
et al., 2012; 2017; Schmidt et al., 2017; Sole-Mari et al., 2017; Sole-
Mari et al., 2019; Sole-Mari and Fernandez-Garcia, 2018; Benson et al.,
2019; Perez et al., 2019; Engdahl et al., 2017; 2019), and Monte Carlo
and Bayesian simulation (e.g., Taverniers et al., 2020). In short, many
of the quantities used by hydrologists are probability density functions
that are constructed by users, even thought there is no concrete and
accepted methodology for their construction. A long history of statis-
tical estimation has sought to best-fit some continuous density func-
tion to a sequence of random samples, including maximum likelihood
estimation (Brockwell and Davis, 2016) and kernel density estimation
(Silverman, 1986). The former assumes a functional density form and
estimates its parameters, while the latter fits a continuous function to
discrete data. Tests of functional fits or other statistical properties may
be conducted later. In hydrology (and many other sciences), the un-
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derlying processes being simulated may be sufficiently uncertain that a
functional form for the density function cannot be assumed, and kernel
density estimation is preferred.

Given a true underlying pdf f(x), kernel density estimation is based
on the convolution-like interpolation (or extrapolation) of discrete ran-
dom data {x;, x5, ..., x,} with some kernel function K(x) producing the
estimated pdf

n

70 = < w"K(x_X’) M
o z?:l w; i3 h; h; ’

J
where w; are weights associated with data points X; (which could be
prior “concentrations” that come from binning), h; are “bandwidths”
associated with the kernel applied at each data point, and K is some pre-
determined, non-negative function with the requirement [ K(x)dx =1
(i.e., K is a pdf). For random samples, the weights are equal constants
that cancel from expression Eq. (1), resulting in a factor of 1/n. The
common forms of K are relatively simple (e.g., triangles or standard
Gaussians) and yield estimates of F(x) with different properties such as
regularity (i.e., number of derivatives) or compact support. Kernels that
are symmetric around x = 0 are most commonly used (but certainly not
always, see Hirukawa, 2018), inasmuch as the eventual form of 7(x),
including skewness or heavy tails, are unknown a priori.
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It is well known that a pre-chosen kernel (such as a standard Gaus-
sian) does not perform well if all of the bandwidths are chosen to be the
same size Silverman (1986). Where data is more dense, the kernel band-
widths must be made smaller. This has led to “adaptive bandwidths”
that are adjusted based on the apparent or estimated density at the data
points. Higher estimated density values at data points are given smaller
bandwidths. But one may ask, should the functional form of the ker-
nel also be adjusted based on the estimated density? We suggest (and
provide evidence in Appendix C) that the optimal kernel should be the
same shape as the underlying true density, which is best estimated by
the interpolated density. But clearly, the estimated density changes if the
kernel shape changes, therefore an iterative procedure is required. We
define this procedure in Section 3 after a brief review of kernel density
estimation in Section 2. A series of examples are given in Sections 4 and
5, and we conclude in Section 6.

2. Classical bandwidth selection

Intuitively, one would like to choose a bandwidth as small as possi-
ble, because the convolution adds the variance of the kernels to the data
itself. On the other hand, as A — 0, the kernels become delta functions
and continuity of f(x) disappears. Additionally, the choice of 4, will de-
pend strongly on both the eventual shape of f(x) and the availability of
random samples in any interval [x, x + Ax]. This has led to expressions
that balance the bias and variance of the estimates (Silverman, 1986)
that we review here and re-derive in Appendix A. A common place to
start is to minimize the mean integrated squared error (MISE) between
the estimated and unknown, real densities given by

MISE = E [ / (f(x)— 7(x))2dx]. o))

Taking the expectation inside the integral and realizing that the mean
squared error of an estimate is composed of squared bias and variance
terms, one finds

EL(f - /%1 = E[f1- ))? +E(f - ED)A,

which gives a target functional for minimization. Typically, a truncated
Taylor series is used to derive asymptotic (h — 0,nh — oo) expressions
for the bias and variance that depend on the properties of the kernel
and underlying density (Silverman, 1986). This process (Appendix A)
results in approximations for the bias

— —_ 2
B(x) = bias[f(x)] = E[f(x)] - f(x) = %f”(x)m(lo +0On), 3)
and variance
Var[f(x)] = E[(f — E(/))*] = nihf(x) / K*(x)dx + O((nh)7?). @

All other things held equal, letting 4 — 0 minimizes bias, but vari-
ance grows without bound (i.e. accuracy increases but smoothness de-
creases), while letting / grow large decreases the variance of estimates,
but accuracy is sacrificed. Minimizing the sum gives a value for the op-
timal global bandwidth

d [ K*(x)dx s
ho = 2 ” 2 ®
n(py(K))? [ (f"(x))%dx

where d is the number of dimensions of the random variable (d =1
herein). Notice that a finite second moment u,(K) is necessary to use
this method in the estimation of the optimal bandwidth; we remove that
requirement herein (Appendices A-C). Without any information at all,
it is common to assume Gaussian f(x) and Gaussian kernels, in which
case a constant global bandwidth is used with size

hy ~ 1.06n~'/5, ©)

where 6 is the sample variance. Greater data density means smaller
bandwidth (until as n» — o0, hy — 0). Because this estimation of finite
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hy is based, in part, on an assumption of s, — 0, we might expect signif-
icant error in any estimate of the global bandwidth value using Eq. (5).
Indeed, an exact value of i, can instead be derived using the Fourier
transform (Appendix B), and we show that the result in Eq. (6) can be
significantly erroneous.

Furthermore, it is largely recognized (e.g., Silverman, 1986) that
the local data density is a better indicator of bandwidths that should
be uniquely defined at each data point. In regions where data den-
sity is smaller, the bandwidth should be greater. There are several
methods used to estimate local data density (e.g., Silverman, 1986;
Wu et al., 2007; Sole-Mari and Fernandez-Garcia, 2018). For example,
Silverman (1986) shows that for large n, the local data density can be
approximated by the value of the estimated pdf, so that an adaptive
bandwidth can be estimated by

FX)\*
e ,

h; = hyh; = h0< 7)
where the tilde indicates some intermediate estimate of the density, and
the normalization factor G is the geometric mean of estimated density
values, namely

G=exp<%21nf~(X,~)>. (8)
i=1

The exponent 0 < ¢ < 1 is an empirical weighting factor shown to be 0.5
under ideal conditions (Abramson, 1982).

In a novel way, Pedretti and Fernandez-Garcia (2013) investigated
the use of the adaptive kernel methods (Egs. (5), (7), and (8)) for interpo-
lating breakthrough curves (BTCs) for simulated push-pull, single-well
tests with trapping in relatively immobile (low-velocity) zones. These
BTCs are noteworthy for their thin early tails and fat late tails, or rapid
(steep) early breakthrough and delayed, power-law decline of concen-
tration. Importantly, Pedretti and Fernandez-Garcia (2013) found that
adjusting the bandwidth based only on particle density tended to overly
broaden the early BTCs in order to more properly represent the late
tail. Pedretti and Fernandez-Garcia (2013) then imposed a restriction
on broadening the kernel bandwidth based on whether particles (con-
centrations) in Eq. (1) occurred early or late in the BTC. This, of course,
means that the user must decide how the bandwidths must be adjusted.
But this is simply a side effect of choosing, a priori, a non-physical and
symmetric kernel. If each particle were treated as a single realization of
the Green’s function, then its highly skewed kernel would transfer little
mass to earlier portions of the BTC, and no adjustment may be needed.
We investigate that possibility here.

3. Iterative algorithm

We show (Appendix C) that asymptotically as n — oo, to minimize
the MISE, the kernel applied to each random sample should be a scaled
version of the underlying true density itself. This suggests that for a rea-
sonably large number of data n, the kernel K should be made function-
ally similar to the estimated density f, as this is the best representation
of the true density f. Of course the shape of the density is not known
a priori, so the shape of the kernel must be learned during the estima-
tion process. We seek to find f to best approximate f, and we find f
through successive intermediate estimates that we call f. Our proposed
algorithm discovers the kernel shape and size recursively according to
the following steps:

1. Build an initial candidate fy(x) using constant bandwidth #, and
standard Gaussian kernel K(x) = (2z)~'/2 exp(-x%/2) in Eq. (1).

2. Use fo(x) to interpolate values at data points f (X).

3. Use the values f (X;) in Eq. (7) to estimate adaptive bandwidths &, for
the Gaussian kernel and re-estimate fl(x). This would end classical
estimation. Set counter 7 = 1.

4. Use f,(x) as the new kernel K,(x) = f,(x).

5. Adjust kernel K, to have zero mean and unit “width”.
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6. Use ff(x) to interpolate values at data points f (X)).

7. Use the values f (X;) in Eq. (7) to estimate adaptive bandwidths A;
for the new kernel K,(x).

8. Use new kernel function K, and bandwidths h; to estimate f,,(x)
using Eq. (1).

9. Return to step 4 until desired closure between ff +1(x) and ff(x).
Upon closure, ff +1(x) is the best estimate of f(x).

The potentially tricky parts of the algorithm are associated with steps
1, 4, 5, and 7. For step 1, the distributional qualities of the data are
unknown, so we use a Fourier transform algorithm to estimate the data
density function (see Eq. (17) in the Appendix). By assuming a Gaussian
kernel, the initial , can be easily estimated. For step 4, it is important to
use a numerical domain for x that is wider than the data values, so that
the kernel may extrapolate sufficiently before the smallest data point
and after the largest. Furthermore, for widely-spaced and sparse data,
the density of calculated points in x must also be chosen to provide
sufficient resolution. For step 5, it is not always clear that the mean
and standard deviation exist or are the proper scaling metrics for the
iterated kernel. A simple example is a stable density, which may have
diverging moments, and also rescale differently from, say, a Gaussian
density. Here, we suggest using the interquartile range of the data and
the kernel for a reasonably close and reliable estimate of the scale of
many different density functions. For step 7, we are now using a kernel
that is thought to resemble the underlying density, so using K — f or
? in Egs. (3)—(5) and (7) will give different values of ,k, etc. More on
these points is provided below.

In order to find a “standard” kernel from the previous iteration’s
density estimate ? the kernel must have zero mean (so that the sub-
sequent addition of kernels has the same mean as the data). The width
of the kernel should be standardized, such as normalizing by a scale
factor equal to the standard deviation of the data or central second mo-
ment of f. However, many densities have diverging second moments,
so a robust method must be found for situations in which the under-
lying density is unknown. A quick survey of the interquartile range
(IQR) and the scale factor of many densities shows reasonably similar
relationships. For finite-variance distributions we find, for example, the
Gaussian has ¢ ~ IQR/1.35; the exponential ¢ ~ IQR/1.1; the Laplace
o ~ IQR/0.98. Infinite variance distributions with closed-form distribu-
tion functions (characterized by scale parameter o) include the sym-
metric Cauchy with ¢ ~ IQR/2 and the maximally-skewed, 1/2-stable
Lévy density with ¢ = IQR/9. Using MATLAB’s routine for calculating
the CDF of a stable law, we find that, for a maximally-skewed 1.5-stable,
o ~ IQR/2.13. With the exception of the Lévy density, it is a reasonable
approximation to say that the “width” of the density function may be
standardized using ¢ ~ IQR/1.5. Therefore, in the following, to arrive at
a “standard” density from the data-kernel, we numerically integrate the
intermediate density f,_, to find IQR = x 75 — x, 5. Where

n
X, = min {xj Afof_l(xj) > z}
¢=1

and simply shift and rescale the experimental density by its first moment
m and a generic multiple of the IQR so that

1 ~ X —m

K00 = TRy 77 <<IQR/1.5) >

As noted before, the kernel is allowed to change after each iteration,
and this kernel is checked against the previous iteration’s kernel. Itera-
tion is terminated when the kernel converges and the difference between
the density estimated with those kernels in successive approximations
is sufficiently small. Here, we choose to discontinue the algorithm when
the L? difference between successive iterations is less then 10~°, where

| ~ 2
L2 =[Ax Y |Fo0) = Foma 0] - ©)
i=1
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If the L? difference is found to increase between iterations, this indi-
cates too large a global bandwidth A (assuming that one starts with a
conservatively large value from the Fourier-transform procedure). The
too-large value of i, makes the kernel itself too smooth and also gives
it too large a scale based on the IQR, so convergence will not occur. In
practice, there may be a range of A, values that leads to convergence
based on some numerical threshold of the L? norm, so some care needs
to be used when adjusting h,. When the initial 4, estimate is far from
the correct range, one may decrease h, by a factor of 0.9. As the algo-
rithm gets nearer the correct kernel and h,, the minimum of Eq. (9) gets
progressively smaller, and there is a danger of overshooting the opti-
mal A, so the algorithm slows the adjustment of 4, by incrementally
moving the factor toward unity. After h is adjusted, iteration resumes.
In practice, if the minimum L? (Eq. (9)) reached for a given hy is on
the order of 107, the value of h, is reasonably far from the optimal
and may be decreased by about 10%. Each order-of-magnitude improve-
ment in the L, convergence is accompanied by moving the factor 2%
closer to unity. We also add that other A, estimators can be used that
may underestimate the optimal h,, and so the same procedure to ad-
just the value is done in reverse, say starting with an adjustment factor
of 1.1 that decreases toward unity based on minimum L? norm seen
with any A, value. Examples can be seen in the matlab code provided
at https://github.com/dbenson5225/kernel-density-estimation

Another important consideration is the construction of the set of
points at which the density is calculated. Through some experimenta-
tion we find that an optimal set of points is made from a union of (1)
a set of appropriately-spaced points between a desired minimum and
maximum that is larger than the measured data range and (2) the set
of actual random data values X;. The first set is important so that suf-
ficient interpolation between widely-spaced data is made. The second
set is (sometimes) important so that the weights are accurately calcu-
lated within Eq. (7). We experimented with neglecting the second set
and simply interpolating the density at points x; from points in the first
set, but for “spiky” densities, the results depend too much on the den-
sity of points that are specified. If the number of points at which the
density is calculated becomes large, it is a simple matter to parallelize a
large part of the procedure, because the calculation of f(x) in Eq. (1) is
independent for any x value.

4. Examples

We investigate the iterative algorithm versus classical (assumed
Gaussian kernel) methods for four types of data: (1) symmetric and thin-
tailed; (2) maximally-skewed and exponentially-tailed, (3) Symmetric
and heavy, power-law tailed; and, (4) maximally skewed and heavy,
power-law-tailed. The last is chosen because BTC data are strictly pos-
itive and often observed to fall off like x~1~*, where « is on the or-
der of 0.5. We also investigate how well the estimators perform over
a large realization of random samples and a range of population sizes
n = {100, 1000, 10,000}, inasmuch as large particle numbers (and ran-
dom arrival times) are typically used. In each case we use estimates of
the MISE to measure bias and variance of the estimated density versus a
known density on a regular grid in x. A numerical estimate of the MISE
is given by an ensemble mean of the L? norm, namely

n

M
WISE = 22 % 3" (7)) - IR,
m=1 j=1

for a set of M realizations of data with an underlying density f and the
corresponding estimates of the density f,, on a common grid of estima-
tion points x; with spacing Ax. For each of the examples, we generate
M = 100 independent realizations of data from known distributions in
order to estimate the densities and resulting MISE (Table 1).
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Table 1

Computed ensemble MISE for various kernel estimates from
100 realizations of 1000 random variables. The first row is
for uniform initial bandwidth A,. The second is for single-pass
application of adaptive bandwidth A(x;). The third is iterated
Gauss kernel until closure. The fourth is data-based kernel iter-
ated to closure.

Kernel Normal  Exponential ~ Cauchy  1.5-Stable
Gauss w/h,  0.0013 0.157 0.0279  0.0197
Gauss w/h, 0.0012 0.135 0.0243  0.0118
Gauss iter. 0.0016  0.127 0.0231 0.0100
7 iter. 0.0014  0.073 0.0150  0.0020

4.1. Gaussian data

We start with Gaussian random variables, in which the data kernel
should (nearly) converge to an a priori Gaussian kernel, because the
underlying data that builds the data-kernel is Gaussian. Indeed, for a
large number of data points (1000), the iterated KDE for the data-based
and Gaussian-based kernel are nearly identical, even in the extreme tails
(Fig. 1). This example shows the robust nature of the estimation, inas-
much as the Gaussian kernel uses the exact width of the kernel ¢ = 1,
while the iterated kernel uses a general width estimate of IQR/1.5. In
actuality, the width of a Gaussian is ¢ = IQR/1.34. It is worth noting
that closure to the final kernel usually takes between 5 and 7 iterations.
Furthermore, because the value of A is not set exactly (which would
require identifying the data as Gaussian before interpolating), the iter-
ated kernels have similar magnitudes of MISE as single-pass adaptive
Gaussian kernels and convolution with a single value of h (Table 1).

4.2. Exponential data

Next, we use a shifted exponential (the arbitrary shift is added to
ensure functionality of the code) with density function

- 1
ox (_x u+1/o

), forx>u-1/c
c

else.

Q=

fx) =

L

This density has arbitrary mean x and variance 1/¢2. In the plots
that follow we set 4 = 0 and ¢ = 1. For this skewed density it becomes
clear that a symmetric (Gaussian in this case) kernel is not an effective
interpolant (Fig. 2). While Silverman (1986) suggests using a skewed
(say, lognormal) kernel for this kind of data, our method does not rely
on interpretation and user intervention for kernel selection. And while
a Gaussian kernel is not particularly useful for this kind of data, the
iterated data-based kernel typically has MISE of about half that of the
Gaussian (Table 1). Because the underlying optimal A, is much smaller
than that estimated from assuming a Gaussian kernel, the iterations do
not converge (and in fact tend to diverge) until s, decreases several
times, requiring on the order of 30 or more iterations for 1000 data
points.

4.3. Cauchy data

Heavy-tailed data present a problem for kernel density estimation be-
cause of the extremes that may accompany the data. This leads to very
wide spacing between extreme data points and difficulty interpolating
the density here. This also means that the x-discretization of the kernel
must use a large number of points in order to represent the near-origin
“spikiness” of the density as well as the very long range. The existence of
one or two super-extreme values can lead to numerical problems. In our
100-realization ensemble of 1000 Cauchy data points, two realizations
failed to converge in 100 iterations with the data-based kernel because
of data values in the 50,000 range. A typical realization shows that the
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converged data-based kernel tends to both interpolate between, and ex-
trapolate beyond, extreme values better than the Gaussian kernel, but
still represents the fine-scale near the origin where most of the data re-
side (Fig. 3). In the ensemble, the MISE estimated for the data-based
kernel is substantially less than for the Gaussian kernels (Table 1).

4.4. Maximally-skewed a-stable data

Stable random variables (RV) are characterized (among many other
ways) as those to which sums of IID random variables converge
(Samorodnitsky and Taqqu, 1994). Sums of finite-variance RVs converge
to (are in the domain of attraction of) a Gaussian, which is itself a stable
RV. When, for some constant 0 < @ < 2, only those moments of order
a and greater are infinite (such as for Pareto (power-law) distributed
RVs), then those RVs are in the domain of attraction of a a-stable. These
RVs arise in hydrology quite naturally, because they describe waiting
times that a particle might take when trapped in a sequence of fractal
immobile zones (see Schumer et al., 2003; Benson et al., 2013). Depend-
ing on the skewness parameter, one or both of the tails of a a-stable
density function decay like ~ |x|~!~%; therefore all moments of order a
and greater diverge. The density is only expressible in closed-form for
a few instances, but most statistical packages will readily calculate the
density to any desired tolerance and generate sequences of the random
variable. Here, we choose a maximally-skewed, standard 1.5-stable for
analysis, using the parameterization in the MATLAB statistics package
(also called the O-parameterization in Nolan, 2018). The ensemble MISE
for the data-based kernel is about 1/5 that of the iterated Gaussian ker-
nel, suggesting that both the heavy-tailed and skewed nature of this
example is especially well-suited to our proposed method (Fig. 4).

5. Particle breakthrough (concentration) data

The creation of “breakthrough curves” (BTC) from particle-tracking
simulations is a tricky proposition. Classically, histograms are used,
which means manually choosing either constant or variable bin sizes and
locations. The variance of the estimated density is inversely proportional
to bin size, total number of particles, and the estimated concentration
(Chakraborty et al., 2009), and the histogram-based density is discontin-
uous and may frequently be zero when particle arrival times are widely
separated, especially in the late-time tail. The zeros make comparison
to non-zero data difficult (e.g., using weighted least-squares), so several
methods are typically used to create a non-zero PDF interpolation.

The first set of constructions of arrival time pdfs, which we will
call “naive estimators” is based on simple linear interpolation of ar-
rival times. For example, one may construct (by several means) an em-
pirical cumulative distribution function (ECDF) that is strictly increas-
ing and, then make a non-zero empirical PDF using finite differences
on the ECDF. In particular, order the particle arrival times of N parti-
cles T}, T,, ... Ty and at each point the ECDF(T}) = i/N. Then the em-
pirical PDF is EPDF((T},, + Ti)/2) = (ECDE(T,, ) — ECDR(T}))/(T;,, —
T;);i = 1..N — 1. The ECDF can also use a regularly spaced time grid and
count numbers of particles arriving between grid points (i.e., bins), and
empty bins are neglected, once again giving a strictly increasing ECDF.
In this section, we compare these two naive estimators to the iterative
kernel-based techniques developed in this paper along with prior de-
terministic kernel-based methods (Fernandez-Garcia and Sanchez-Vila,
2011; Pedretti and Fernandez-Garcia, 2013).

For particle arrival times, we solved for the hydraulic head H in
the steady-state groundwater flow equation V- KVH =0 in 2-D using
finite-differences on a square 128 x 128 m grid with constant grid
discretization of 1 x 1 m (Fig. 5a). The hydraulic conductivity K is
a scalar log-Normal random variable with a mean of In(K) = 1, stan-
dard deviation of In(K) =4, and an exponential autocorrelation func-
tion for In(K) with correlation length of 5 m. The left and right bound-
aries x = 0 and x = 128 are Dirichlet with H = 1 and H = 0, respectively.
The top and bottom boundaries y =0 and y = 128 are Neumann with
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Fig. 1. (a) Semilog and (b) linear plots of itera-
tively estimated densities for a single realization of

1005\ T+ -+

1000 Gaussian data points using data-based ker-
nel (black symbols) and Gaussian-based kernels
(red curves). Also shown are the single-pass Gaus-
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to the web version of this article.)

Lol IR

vl

1 1 1 / 1 L 1 11 1
-10 -8 -6 -4 -2 0 2 4 6 8
Data Values
0.5
—
O  Datakernel
0.45 - Gauss kernel | |
(b) Init. Gauss
04l — — — Reality |
. [T Histogram
0.35 i
0.3 - B
i
n 025 i
o
0.2 i
0.15 B
0.1 - B
0.05 B
0 (o |
-4 -3 -2 -1 0 1 2 3 4

Data Values

0H /oy = 0. The resulting velocities take the solved H field and apply
v=—-KVH /¢, where ¢ is assumed a constant porosity of unity, once
again using finite-differences. These velocities vary in magnitude from
about 3 x 1077 to 2.1 m/d (Fig. 5a). Particles are placed in a line near
the left boundary and each particle’s position vector tracked via a dis-
cretized Ito equation X (r + Af) = X() + (v+ V - (D)) + \/EBJ\/, where
D = (D,, + Ar|vDI + (A — Ap)vo” /|v] is a dispersion tensor that has a
decomposition D = BBT, N is an independent 2-D standard normal vec-

tor, D,, = 8 x 107> m?/d is molecular diffusion, A; = 1073 m is trans-
verse dispersivity, and A; = 5 x 1073 m is longitudinal dispersivity. The
number of particles placed in any cell is proportional to the velocity
magnitude in that cell (i.e., a flux-weighted source). A plot of particle
positions at elapsed times of 1 and 250 days (just before arrival of first
particle at the right-hand side) suggests the wide range of arrival times
that can be expected. We ran simulations using 500, 5000, and 50,000
particles to judge the efficacy of density estimates.
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The data-based kernel estimates developed in this work are remark-
ably similar for the different particle numbers on a linear plot (Fig. 5b).
Two naive estimates of the EPDF using 50,000-particle arrival times
(Fig. 5f) show considerable noise at late time due to wide separation
of late particle arrival times. This effect can be counteracted by using

much larger particle numbers (e.g., Labolle et al., 1996; Kang et al.,
2017; Carrel et al., 2018). This computational burden may be reduced
in the case of particle-tracking simulations for conservative solutes be-
cause they are highly parallelizable (Rizzo et al., 2019). However, non-
linearly reacting solutes have yet to be parallelized in three-dimensions
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(Engdahl et al., 2019). The naive estimators also do not have density
weight before the first particle arrival because the ECDF is zero for any
time before the first particle. This is a commonly accepted, but ulti-
mately incorrect, feature: as the number of particles becomes larger (or
goes to infinity in the case of kernel density estimates) the empirical

density of early arrivals should grow. In other words, by calculating the
density on a time grid from zero to 10° days, the only imposed constraint
is that the first arrival is non-negative. The early-time density estimates
for larger particle numbers have greater probability for early time than
the 500-particle, which can be identified using logarithmic time axes
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(Fig. 5d and e). The late-time tail estimates are smoothly interpolated
and very close for all three particle numbers (Fig. 5e) until some time
after the final particle arrival time in the 500-particle simulation, when
that tail starts to drop somewhat compared to the higher particle num-
bers. The 500-particle density is smoothly extrapolated over 50 times

longer than the final arrival because of the kernel shape. Overall, it is
fair to say that the 5000-particle simulation gives similar enough results
to the 50,000-particle simulation that the latter is superfluous.

A serious problem with the kernel density estimates is that the time
grid along which the density (hence kernel for subsequent iterations)
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Table 2

Computed values of global bandwidth A, for the particle-tracking
data using either 500, 5000, or 50,000 particles. FT denotes Fourier-
transform routine in Appendix C. Plug-in refers to method of
Engel et al. (1994). Iterated refers to values from the iterated ker-
nel and A, method from Section 5. Values in days.

Method 500 5000 50,000
FT 2033 2981 2370
Plug-in 108 50 22
Iterated 256 267 253

needs to be quite large. The density is “spiky” enough to warrant a grid
size of about 20 days or less, and the last particle arrives on the order of
10° days, so a linearly partitioned grid is a vector on the order of 50,000
to 100,000 elements, making the convolutions quite slow. Convergence
is also slow because of the high skewness, so the estimates are computa-
tionally expensive. Because of this we looked at two alternatives: (1) use
of a log-spaced discretization grid (which was used to generate Fig. 5),
and (2) the ad-hoc correction of Pedretti and Fernandez-Garcia (2013),
which is detailed immediately.

5.1. Experiments with the universal adaptive bandwidth of Pedretti and
Fernandez-Garcia (2013)

These authors recognize that early arrival tails of a BTC are often
much thinner than late-arrival tails and seek to adjust the bandwidth
assigned to early versus late data accordingly. The authors choose to use
the smaller global bandwidth &, at smaller 7; that relatively smoothly
transitions to the density-adjusted value for later data. There are an un-
limited number of possible schemes to do this. Pedretti and Fernandez-
Garcia (2013) suggest constructing the ECDF(T;), which is monotoni-
cally increasing with arrival time T, and constructing a variable band-
width at each point by taking a weighted average of the single global
bandwidth h, and the classical adaptive bandwidth:

hy(T;) = (1 — ECDR(T)))hg + ECDF(T;) X h;. (10)

where h, is their “universal global bandwidth” (UAB), and h; is
the adaptive bandwidth given in Eq. (7). Pedretti and Fernandez-
Garcia (2013) choose a standard Gaussian kernel in their paper so we
do the same here. This leaves only the selection of the global band-
width A as a potential difference in the implementation. Pedretti and
Fernandez-Garcia (2013) use a code supplied by Engel et al. (1994) that
uses a prescribed kernel to interpolate data points to predict the value
of [ f”(x)dx only once, prior to estimation of f (x). This value is used
in (5) to get a value of h;. We have shown above that there are several
approaches to arriving at a value of A, to be used in Egs. (5) and (10).
For example, we may use the Fourier methods in Appendix C.

We apply the UAB method using fixed estimates of 4, from the plug-
in method and from our Fourier-transform method (Fig. 6). Once again
we calculate the densities on time points made from a union of two sets:
(1) a set of 20,000 logarithmically-spaced time points between zero and
10° days and (2) the set of actual arrival times. For the 50,000 parti-
cle simulation, our Fourier transform algorithm gives h, = 2370 days.
The plug-in method of estimating (5) from Engel et al. (1994), used by
Pedretti and Fernandez-Garcia (2013), gives an estimated h, = 22 days
(Table 2). The fact that these two estimates differ by two orders-of-
magnitude is remarkable by itself and points to the potential errors of
a priori h, estimates. Using a Gaussian kernel with these estimates and
the UAB (10) gives clearly over-smoothed and under-smoothed density
estimates (Fig. 6a). The under-smoothing by the plug-in value of A, used
in the UAB is shown by the failure to interpolate between the many late-
time arrivals (due to the relatively narrow Gaussian kernels there), while
the over-smoothing of the initial Fourier A, is shown by the relatively
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high weight of the near-zero arrival time PDF. Similar discrepancies are
seen in both the densities and values of A, from the FT and plug-in meth-
ods for the other particle numbers (Table 2). Also shown in Table 2 and
Fig. 6a—c are the intermediate, iterated values of A that accompany the
iteration of the kernels from Section 5.

This analysis of BTC did not allow an assessment of which model had
the better “fit” because the underlying true density was unknown. The
particle arrival-time data have several features common to the 1.5-stable
density used in Section 4.4 including thin leading (early-time) tail, fat
trailing tail, and a high degree of skewness. We applied the UAB method
using a standard Gaussian kernel and the iterated kernel algorithm de-
veloped in this paper to data taken from a known maximally-skewed,
1.5-stable distribution with one caveat: to eliminate one variable, in
both methods we use the A, from the plug-in method (Engel et al., 1994),
as did Pedretti and Fernandez-Garcia (2013). An ensemble of 100 data
realizations, each with 1000 random variables, were generated to calcu-
late the ensemble mean MISE using Eq. (4). These values were 1.1 x 10™*
and 1.5 x 10~ for the UAB and iterated kernels approaches, respectively.
The UAB method paired with the plug-in A clearly does a good job in
the areas around the peak (Fig. 7a,b), where the densities have the great-
est weight in Eq. (4). Similar to the BTC data above, the UAB method
succeeds in re-creating the thin leading tail of the 1.5-stable density, but
fails to interpolate between large data values or extrapolate beyond the
largest data value (Fig. 7a,b). The iterated kernel method outperforms
the Gauss-kernel method of Pedretti and Fernandez-Garcia (2013) in
both interpolating and extrapolating the large-data tail (Fig. 7c,d), but
does tend to put too much density weight on the thin-tailed small data
values relative to the known, real density. One might also conclude that
the UAB method could be combined with the iterated kernel method to
achieve good estimates of both the early and the late tails. Indeed, iter-
ating the kernel function until closure and then applying the UAB does
give essentially identical late tail estimates and steeper early tail esti-
mates (red curve, Fig 7 c), although we note that the estimated MISE
using the UAB and the iterated kernel was about 20% worse due to
slightly poorer fits around the peak. Of course using the UAB requires
inspection of the data to decide whether this adjustment is appropriate.

It is interesting to note that the plug-in estimates of A, use a method
that evaluates the integrals in Eq. (5) based only on data values. Our
method of iterating the kernel recognizes that the “best” estimate of the
true density f(x) ~ f(x) evolves, and that [ f"(x)dx might be improved
using intermediate values of F(x). We implemented this procedure by
repeatedly estimating [ f”'(x)dx by finite differences and trapezoidal
integration. The new value of h, was then used in the UAB (Eq. (10))
until closure was reached. In all cases, the value of &, that was estimated
was smaller than the one-time plug-in estimate and the overall MISE was
worse, so those density estimates are not shown.

Finally, in the context of fitting models to data, seeking to minimize
the MISE is not always the most appropriate choice. Any kernel den-
sity estimate constitutes a model of the data, and the classical measures
of model fit should apply, including maximum likelihood estimation
(MLE) and entropy considerations that include parametric and computa-
tional parsimony (e.g., Akaike, 1974; Benson et al., 2020). In particular,
Chakraborty et al. (2009) make an argument that the variance of con-
centration values in a binned density estimate would have a variance
proportional to the estimated concentration, and that those variances,
while dependent upon each other, could be treated independently. In
the present case, we conjecture that an MLE would seek to minimize an
integrated weighted squared difference of the estimated and real den-
sities, where the weights are 1/ (x). Applying this formula to the data
in this section returned machine infinities for the UAB method using
Gaussian kernels because of the machine zeros for the estimates of the
density in many places (e.g., Fig. 7a,b). The iterated kernel returned fi-
nite values for all realizations in the ensemble with an average weighted
MISE of 0.02. From a standpoint of comparing some estimated BTC to
real data, this coincides with a desire to have good interpolations of
particle-tracking simulations on the low concentration tails.
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Fig. 6. Log-log plots of estimated arrival-time densities (breakthrough
curves) using UAB of Pedretti and Fernandez-Garcia (2013) with different
values of i estimated either by Fourier transform (black), or Plug-in method
Engel et al. (1994) (red). Also shown as blue dashed lines on the plots are
the curves from Fig. Se that use our iterated kernel (and iterated h,) method.
(a) 50,000-particle simulation. (b) 5000-particle simulation. (c) 500-particle
simulation. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)



D.A. Benson, D. Bolster, S. Pankavich et al.

10 T
+ o+ +
) N Gauss kernels using plug-in hO
107 F 3
(a) SY h
-3 h2
107 F = = = Reality 3
N [ Histogram
x + Data
10 F N E
N
NN
5L J
» 10 ~ N
[ie
o ~
o ~ N
10°F ~ E
~
N
~
107 F 3
108 F E
10°F E
10710 1 I
10' 102 10°
Data Values
+ 4+ +
Iterated kernels using plug-in hO
e} Data kernel w/ hi
Data kernel w/ h2
— — - Reality 4
[ Histogram
+ Data
” J
L
[=)
o

1 I
102
Data Values

PDFs

PDFs

Advances in Water Resources 152 (2021) 103889

T T T
102k Gauss kernels using plug-in h0
h
() "
108 ¢ 2 ]
= = = Reality
\ [ Histogram

10 L ‘ 4

51 4
10 \

AN
~
~
10 ¢ S o 3
~
-~
~
107 £ S~ E
-~ -
108 E
10°F E
10—10 1 1 1 1 1 L L L
-1000 500 0 500 1000 1500 2000 2500
Data Values
T T T
102k Iterated kernels using plug-in h0 |
o Data kernel w/ hi

3L (d) Data kernel w/ h2 B

10 — — - Reality
[ Histogram

104 E
10°F
10 F
107 £
108
10°F

10 L L L L

g I
-1000 -500 0 500 1000 1500

Data Values

2000 2500

Fig.7. Plots of density estimates from a single realization of 1000 maximally-skewed, 1.5-stable data points (a) Log-log and (b) Semi-log plots using Gaussian kernels
and weights given by Eq. (7) and UAB of Pedretti and Fernandez-Garcia (2013); (c) log-log and (d) semilog plots using iterated, data-based kernels developed in
section, also using weights given by Eq. (7) and UAB. The value of global bandwidth 4 is held the same and given by plug-in formula of Engel et al. (1994).

6. Conclusions and recommendations

The application of an optimal, iterative algorithm for kernel density
estimation (using an evolving, data-based kernel) is possible with a few
caveats. First, because the underlying data density is, in general, un-
known, a method is needed to estimate a MISE-minimizing global band-
width h,. We show that a Fourier-transform based method can obtain
an unbiased estimate for any kernel, and the exact value for a Gaussian
kernel. This Gaussian kernel “starts” the new algorithm by generating
a first continuous estimate of the density. This density is then used to
construct the kernel for subsequent density estimates. Second, creating a
“standard” kernel based on the current iterated density estimate requires
an estimate of the scale parameter of the density. We use a value based
on the interquartile range divided by 1.5. This value is intermediate for
several known densities and works well for a range of known densities.
Third, because the final iterated version does not use a Gaussian kernel,
the initial estimate of A, will necessarily be in error.

We show that for some common densities, the Fourier-transform es-
timate of h, will err on the large side. Furthermore, we show for a wide
range of densities that the estimate of iy ~ n™", with y being a mini-
mum for Gaussian data and increasing systematically as the tails become

12

heavier (including exponential and power-law). Therefore, the iterative
scheme allows A, to decrease if the algorithm fails to demonstrate con-
vergence. As expected, for Gaussian data, the data-based kernel con-
verges rapidly to a form similar to that given by the Gaussian kernel.
For skewed and/or heavy-tailed data, convergence is slower and only
occurs when #, is allowed to decrease toward its actual, optimal value
(or range).

Overall, the data-based, iterated kernel gives significantly smaller
ensemble MISE than either (1) an iterated (adaptive bandwidth) Gaus-
sian kernel, (2) a single-pass adaptive bandwidth Gaussian kernel, and
(3) a single-pass Gaussian kernel with a single global value of h,. The
new algorithm is clearly better when the “non-Gaussian” aspects of the
underlying data increase, including skewness and heavy (exponential or
power-law) tails. When applied to particle arrival times that are heavy-
tailed, the iterated kernel kernel and A, provide smooth and continuous
interpolation and extrapolation of widely spaced late-time arrivals even
when few particles (5000) are used. The iterated kernel approach does
over-smooth the early time data, and the UAB approach can be used to
thin the estimated early-time tail. If a particle-tracking model is used
to compare to real data (whose measurement times will not necessarily
correspond to particle arrival times), the methods developed here will
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be key to providing good interpolations between a simulation’s widely-
spaced late time arrivals.

The derivation of the optimal kernel and global bandwidth solved a
minimization problem for one variable A, based on kernel shape and the
Fourier transform of actual data (Appendix C). A more difficult prob-
lem of optimizing a separate h; for each data point may be possible
using cluster identification (Wu et al., 2007) or multi-Gaussian kernel
localization techniques (Sole-Mari and Fernandez-Garcia, 2018). These
methods would eliminate the potentially dubious Taylor-series-based as-
sumptions of the power-law weighting scheme used in Eq. (7) to adjust
each data point’s bandwidth. We leave this for a future paper.
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Appendix A. Mathematical background

The idea of optimal global bandwidth (Silverman, 1986) stems from
using a truncated Taylor series to represent the terms in the MISE. We
begin with the fact that the expectation of the density estimate con-
structed from a set of independent observations is the sum of the expec-
tations of the weights associated with each observation so that

) (5 o

Similarly, we compute the variance as
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The bias at any point is

B(x) =E[f(x)] - f(x) =

1 x—¢
/EK< h )f(f)dé—f(X)
=/K(Z)f(x—h2)dz—f(X)

= / K(2)(f(x = hz) - f(x))dz.

With this, the MISE is written as

MISE = / B(x)2dx + / Varl f(x)ldx

2
= /(/ K(2)(f(x — hz) —f(X))) dzdx
2
1 1 x—¢& (
+;(/ / PK< 7 ) f(&)dédx
2
1 x—=¢
([ (55 o) o),
The bias contribution is simply the effect of the kernel smoothing on the
real density, which does not depend on the sample size n. The variance
obviously grows smaller as » increases and (not completely obviously) as
h increases. This expression is difficult to minimize exactly, although for
both K and f Gaussian, the convolutions yield Gaussians and an exact
result may be computed (Silverman, 1986). The vast majority of work
done with KDE is to use asymptotic expansions of certain functions, with
some questionable assumptions regarding their validity and application.
For example, the density at x — Az is typically approximated for hz — 0,

even though the goal is to find a finite 4 and z may be arbitrarily large
in the integral. Still, using a truncated Taylor series, namely

12)

f(x—hz) = f(x)— hzf'(x) + %hzzz F(x) + Oh®)

gives
B(x) = —hf'(x) / zK(z)dz + %hz (%) / 22K (z)dz + O(h®)

= —hf'()u (K) + %hzf”(x)llz(K) +O(hY),

where yu,(K) denotes the nth moment of the kernel. Clearly, using a zero-
mean (i.e., symmetric or properly shifted) kernel eliminates the first
term on the RHS, and indeed, letting # — 0 eliminates bias altogether,
but at the cost of increasing the noise in the estimate. Assuming a finite
mean and proper shifting, the squared bias is simply (after truncation
of higher-order terms)

/ B(x)%dx ~ i(hzyz(K))2 / (f")dx.

Silverman (1986) uses the bias approximation, the substitution z =
(x — &)/h, and another application of Taylor series to reduce the local
variance term to

Var[f(x)] = # / K22 f(x — zh)dz — %( f+ c‘)(hz))2
~ # / K(2*(f(x) = hzf'(x) + O(h*))dz + O(n™")

) / K(27dz,
nh

which, when integrated over x yields

/ Var[F(oldx ~ - / K(z)%dz.

nh
All told, this gives a MISE of
MISE ~ %(hzﬂz(K))z / 7 )%dx + ih / K(z)%dz,

n

based on the assumptions of small &, large n, and n > 1/h?, all of which
are likely to be bad assumptions in practice. Taking d(MISE)/dh and
setting this expression to zero clearly gives the global estimate Eq. (5) in
one-dimension.
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Appendix B. Global bandwidth estimation using Fourier methods

In this section, we implement a method based on the Fourier trans-
form that will allow us to create an unbiased estimator for the MISE
and minimize this function in order to select the optimal bandwidth
h. Throughout, we will use the form of the transform common to fast
Fourier transform routines, namely

gw) = / eI g (x)dx

for any sufficiently smooth function g(x). Recall that the MISE can be
written as the sum of a bias and variance term as in (12) so that

MISE = / B(x)? dx + / Var[f(x)] dx (13)
where the bias is

B(x) = / K(z2)f(x — hz) dz — f(x)

and the variance is given by

_ _\2 _ 2
Var[f(x)]:%[/#K(xhz> f(z)dz—(/ %K(xhz>f(z)dz> ]

Using Fourier methods, we first compute the bias term. Taking the
transform of the bias and making the change of variables y = x — hz, we
find

B(w) = / / K(2)f(x — hz)e™ > dzdx — f(w)

= / / K(2)f (e >0 dydz — f(w)

= ( / K(z)e 2riohz g7 _ 1) Flw)

= (K(hw) - 1) f(@).
Therefore, by Plancherel’s Theorem, the bias term in Eq. (13) becomes
/ B(x)? dx = / B()? do = / (R(ha) = 1)’ f(@)? do.

To compute the associated variance term in Eq. (13), we first split it
into two parts so that

/ Var[ £ (x)]ldx = l(1 —10).
n

The first term is then

I= %//K(xT_ZYf(z) dzdx
and satisfies

: / / KO f(x = hy) dydx
X / K(y>2< / f(x—hy)dX>dy
%( / KO dy) ( / f(é‘)dé>
: / KGP dy

due to the change of variables y = (x — z)/h and then & = x — hy, as well
as the fact that f(x) is a pdf. To compute I I, we write it as

II = / P(x)* dx

where

~
Il

P(x) = % / K(";Z)f(m dz = / K()f(x - hy) dy.
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Of course, the transform of P(x) has already been identified in the
computation of the integrated bias term. In particular, it is given by

P(w) = K(ho) f (w).

Using Plancherel’s theorem as before, we find
II= / P(w)? do = / K(ho)? f()? do.

With this Fourier representation of the bias and variance integrals,
we may explicitly write the MISE in terms of integrals of transformed
functions, namely

MISE, (h) = ih / R(@)? dw + / ((I&(hw) 12— lI%(ha))2> F(@)? do.
n n

(14)

Note that we have used [ K(»)* dy = [ K(»)* dw in the first term to
write the MISE depending upon K rather than K. This derivation is sim-
ilar to previous spectral representations of the MISE (Chiu, 1991; Wu
et al., 2007; Wu and Tsai, 2004).

Unfortunately, this expression still requires knowledge of the Fourier
transform, f(w), of the unknown pdf and thus cannot be used to choose
the optimal bandwidth 4. Instead, we will rely on an empirical distri-
bution to approximate £, and thus f. Given n observations of the distri-
bution f(x), which are denoted Xj, ..., X,,, we define the empirical (or
observed) distribution

£ =5 Y 6x = X,)
=1

so that the corresponding transform of this function is
n

fn(w) — % Z / 8_2’”)“”5()( _ Xj) dx = l Z e—ZJrinj' (15)
j=1

n &
Now, as n — co, we find f, — f and f, — f. In fact, we have an asymp-
totic estimate for the expected value of f,,, which implies

Elfu@?) ~ (1- 1) f@? + (16)
n n
asn — oo.
Therefore, by using the empirical distribution, we can define and
utilize an unbiased estimator for the MISE. For fixed n € N and any » >
0, define

e,(h) = % / K(hw)dw + / [(1 - %)Ie(hw)z - 21€(ha>)] F(@)? do

= 2 kO)+ / [(1 - 1)12(;1@)2 - 21€(hm)] F(@)? do. a7
nh n
Then, ¢,(h) and MISE, (h) must attain their minimum values at the same
h. Therefore, given a sample X, ..., X, of n draws from f(x), we define
the optimal bandwidth by
arg min
h, =h>0 &,(h).
Computationally approximating the global bandwidth using this
value of A, is instrumental to the algorithm proposed in Section 2.
Finally, we justify the claim that €,(h) is an unbiased estimator of
the MISE. We first note that by the Fourier inversion property we have

Loy =L [ R do= [ R
hK(O)— h/K(a))e dco—/K(ha)) do.

Then, taking the expectation of ¢,(h) and inserting the convergence
result (16), we find

E[e,(h)]

2 / R(hw)dw+ / [(1 - l)lé(hw)z - 2I€(hw)]EE[fn(w)2] do
n n

2 / K(hw)dw

n

+/ [(1 - %)I&(hw)z —2I€(hw)]((1 - %)f(w)z n %) do
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(1) (- )+
—2(1 - %)/K(hw)f(w)Q do
= (1—%)/ [Ie(ha))z((l—%>f(w)2 ¥ '1-1) - 21€(hw)f(w)2] de
- (1 - %) / [(K(hcu)z — 2R (hw) - %Ie(hw)z) F)
+112(hw)2] do
n
- (1 - %) [/ ((k(hw) —1P2 - %I&(hw)z - l)f(w)zdw
+n]—h / K(w)? dco]
- (1 - %)(MISE,,(h) - / F)? da))
- (1 - i)(MISEn(h) - / F(x)? dx>.

This implies that, modulo a shifting and scaling factor that are both
independent of A, the expectation of our estimator is exactly MISE (k).
Additionally, it becomes clear that this function must attain its mini-
mum at the same value of 4 as MISE, (h), and modulo a shift we have
E[e,(h)] ~ MISE, (h) as n > co.

Appendix C. Numerical bandwidth estimation

Next, we outline a numerical approach based on our use of the
Fourier transform. Implementing the iterative algorithm of Section 3
to compute the approximate distributon, let us assume that the algo-
rithm converges. Then, due to the relationship between successive iter-
ates and the previous kernel, namely f, +1(x)and ff(x) = K,(x), the final
density and the kernel must converge to the same function as £ — o,
while the bandwidth must also converge to some value s, > 0. Then,
denoting the converged iteratively-estimated kernel (based on data) by
K (x), this function must satisfy the interesting self-similar property
(using Eq. (1))

v | x=X;
K == —K, .
w0 =23 5 m< o >

j=1 e

Additionally, its Fourier transform then satisfies the relationship

. x—X;
o~ 2miox 2 Koo( - J >dx
i=1

Reo(@) = —

- nhg,

0

n

1

nhg, s

n
l Z o 2miwX; e~ 2riwzhe K (2)dz
n =

e—2niw(zhw+Xj)K°° (z)hoodz

n
1 o N
- ; Ze 27rlijK°o(hoow)
Jj=1
= fp(@) Ky (heo)
due to (15). With this and the asymptotic approximation (16), we have

X A 1
R () = f(w)Km(hww)+(9<—> (18)
\/_

n
for n suitably large. Evaluating the MISE (14) with the approximation
K(x) = K, (x) and h = h, yields
. 24 0 1
MISE, (h,,) = / (Roo(hoo) — 1)’ f(@) da)+(9(—)
n
for n suitably large. Finally, expanding this expression and using the re-
lationship (18) satisfied by the Fourier transforms of the limiting kernel

15
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and unknown pdf, we find

MISE, (h ) = / (R (hoo @) f(@)* = 2K o (hoo ) f (@) + f(@)?) dew
1
+o(;)

= / (Ko@) = 2K (@) f(@) + f(@)) do + (9(%)

n
=/‘I€m(a))—f(w)‘2dw+(9<—l >
NG

Therefore, we see that for large n the iterative algorithm guarantees
that the MISE is minimized precisely when the kernel K(x) converges to
the unknown distribution in the L? sense. This suggests that when the
algorithm converges (as £ — o) it must converge to the unknown pdf
f(x) because an unbiased estimator for the MISE is minimized at every
step.

Furthermore, our analysis now demonstrates the appropriate range
of Taylor series estimates of h, because the exact result can be de-
rived from the Fourier transform. Assume a Gaussian for the kernel
and also assume a priori that the underlying data are Gaussian (with
zero mean and variance ¢2), so that K(w) = exp(—2zw)?/2) and f(w) =
exp(—o2(27w)? /2). The first integral in Eq. (14) can be computed in sev-
eral ways, but is easily performed by recognizing the form of a Gaussian,

so that

_?
L[ gemrg, - L 1L ;e@wz))m I
nh nh\faz ) 22872 2+/znh

owing to the fact that the last integral is of a density in w. Similarly, the
second integral in Eq. (14) is

/ ((1 = 1/mK*(ho) - 2K (hw)) f*(@)dw
_ / <(1 _ 1/n)e—(27rhw)2 _ 26—(2/rhw)2/2)e—a2(27rw)2dw

_ / <(1 _ 1/n)e—(62+h2)(2mu)2 _ 26—(52+h2/2)(275w)2)da}

__a-1/m 1
2y/z(h2 +62)  \r(e? + h2/2)
where we have rearranged as before to make Gaussian densities (in

) for each term. Therefore, the resulting quantity to be minimized
(Silverman, 1986) is now

1 1 1 1
+ - - .
2¢/anh  2\/z(e2 + h2) 2n\/m(e2+ h2)  \/z(c? + h2/2)
(19)

MISE, (h)=

It suffices to approximate the h, that minimizes MISE, (k) to any numer-
ical tolerance, by taking d(MISE, (h))/dh, setting it to zero, and finding
the root of the resulting equation. As expected, the estimate of 4, based
on Taylor series is worse for smaller data sets (i.e., n < 100), but as n
grows large, the Taylor series solution converges to the exact solution
(Fig. 8). However, it is important to note that these quantities are the
optimal bandwidth when both the kernel and the underlying data density
are known to be Gaussian. If the underlying density is unknown, then the
data are used to construct the quantity to be minimized ¢,(h) in Eq. (17).
To see how this differs, we can imagine that perfectly Gaussian data is
generated. Then Eq. (17) evaluates to

2 1 1 1
g,(h) = + - - ,
V2znh  2V/z(62+h2)  2n\/w(c? + h2)  \r(c? + h2)2)

(20)

which has a root approximately 4!/5 = 1.32 larger for large n (Fig. 8).
The fact that data are imperfect means that the global bandwidth must
be about 32% to 70% larger (depending on n) to achieve additional
smoothing when compared to a completely “perfect” realization of data.
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T T AL oo ML T Fig. 8. Log-log plots of global bandwidth over data
Taylor Series Approx. Exact solution for scale parameter (h,/c) versus number n of data using
ho ~ 1.060mn~"1/3 Gaussian density Exact solution for exa(ct so(lutl)c;n for Gaussllan data density known 1a pri-

.. . i (Eq. (20)) versus Taylor series approximate solution
"imperfect"” orti:d Y
known a priort f f . (Eq. (6)) and numerical estimation of Gaussian data
rea lza_tlon S Of density (Eq. (17)). Also shown are the lower values of
Gaussian data hy/o for Cauchy data estimated with Cauchy kernel.
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Fourier-transformed MISE (denoted ¢,(h))
as a function of global bandwidth parame-
-0.21 ter h. Plots either assume or use Gaussian
data with 62 = 1 and 1000 data points. The
022 exact expression Eq. (20) is plotted with

a thick red curve; the minimum (shown
with a + sign) is found at A, = 0.3406.
The estimate of h, using Taylor series is
0.266 and is denoted by a circle above the
curves. Also shown is an ensemble of 50
curves (in black) wherein for each curve
1000 IID Gaussian data are generated and
the density function is estimated by Fourier
transform Eq. (15). The ensemble statistics
of the estimated A, were calculated with
mean h, = 0.335, with standard deviation

-0.23

-0.24
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Fourier-transformed MISE €n(h)
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0.26 of Opy = 0.0238 (box above curves denotes
mean io‘ho). (For interpretation of the ref-
-0.27 erences to color in this figure legend, the
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‘ article.)
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For a specific example, we set n = 1000 and ¢ = 1, which produces Eq. (17)) instead of assuming the Gaussian form. Here we show the
an exact optimal global bandwidth (for imperfect data using ¢,(h) in results for 50 independent runs in which 1000 IID Gaussian data are
Eq. (17)) of hy = 0.341 (Fig. 9), whereas the estimate based on Taylor generated and the experimental curve generated and 4 taken at the
expansions gives h, = 1.066n~'/> = 0.266. It is important to see how well curve minimum (black curves in Fig. 9). While there is a large verti-
a numerical estimate of the data density gives an estimate of A, rather cal spread in the curves, the locations of the minima are fairly tightly
than simply assuming a Gaussian density function. We may now com- constrained. The mean of 50 values of h is 0.335 (compared to the ex-
pare the values of & that are estimated using the Fourier-transformed act value of 0.341), and the estimated A, have a standard deviation of

data to form an estimate of the density function (i.e., using Eq. (15) in 0.0238.
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Several other characteristic functions (Fourier transforms of PDFs)
are easily integrated and illustrate the effect of data distribution on es-
timation of h. For example, the standard Cauchy density, defined by

c
fx) = ———,
7(c? +x2)
has both divergent variance and mean, and its associated Fourier trans-
form is given by
f(w) = exp(-270|w]).

Note that the scale parameter ¢ commonly used for stable densities
is not the standard deviation, which is infinite. Assuming that the kernel
was also a perfect copy of the data density, so that

K() = exp(-2z|o)),
the MISE becomes (up to an additive factor independent of )

MISE, (h) = ﬁ + (1

_l) 1 _ 1
n/2x(h+ o) n(%h+a).

Therefore, calculating the minimum of the MISE (14) means solving
the root of

dMISE,) _ _ 1 ~( _1> Lo, 2
dh n 271'(1+%)2 71:(1+276>2.

These values of h(n) are significantly smaller than those found for Gaus-
sian data (Fig. 8) and also decline for large n approximately like ~ n~1/3.
This suggests a numerical procedure for simultaneous estimation of the
data density and the global bandwidth. The FT estimate of s, based on
Gaussian data is the largest of the estimates (Fig. 8), so we begin with
that value. If the iterated kernel—based on the estimated density and
using this hy—fails to converge, then we reduce A, systematically down
to a minimum given by the Cauchy h. In this procedure, the specifics
of the data distribution need not be known. Simply start with an as-
sumption of Gaussian-like smoothness and data density, but allow for
Cauchy-like sparcity of data (i.e., few very large data).

We may also consider the Laplace (or double exponential) density
defined by

)= 5 exp (—%)

2n @b

17

which has mean zero and variance 262, but does not possess a continuous
derivative at x = 0. The Fourier transform of this function is given by

2 1
J@) = 1+ 4726202

If the kernel is similarly distributed so that
_r

1 + 4202’

then the MISE becomes

K(w) =

_ 2h+o
2(h +0)?

(1_l>h2+3h6+62

MISE, (h) = —— o

4nh n

As before, the minimum of the MISE (14) can be computed by finding
the root of the derivative of this expression, namely

, h
O G G
:

(22)

The resulting values of hy(n) are again significantly smaller than those
found for Gaussian data (Fig. 8) and also decline for large n approxi-
mately like ~ n=1/4,

Finally, we consider the family of stable distributions, whose density
may be defined by

o
f(x)= ZL/ o lekI®(1=ifsgn(k) tan(50)) ,—ikx ;1
)

©

where 0 < « < 2 is the stability parameter, —1 < < 1 is a skewness pa-
rameter and c is the scale parameter. The Fourier transform is given
by

f(w) - e*\chwW(lfiﬂsgn(fw) lan(%x)).

As before, if the kernel is similarly distributed so that

K(m) — e—|27m)|"(1 —ifsgn(—w) tan( %)

then the MISE becomes

2—1 a

/
+ <1 - l) <2h" + 2c">_1/" - 2<h" + 2c“>—1/"]
nh n

MISE, (h) = C
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where
o a . na
C =/ e*|2nw\ (lflﬂsgn(fw)lan(T))dm
—o0

As before this can be minimized and, similar to the distributions ex-
plored so far, we find that there is a power law decline ~ n~" where y
depends on « as depicted in Fig. 10. Note that the magnitude of MISE
depends on « and g through the constant C, but that this does not im-
pact the minimized value. We also note that these calculations may be
made for other densities but are not shown. Additionally, some of the
integrations must be performed numerically as it may be the case that
no closed-form expression for the antiderivative exists.
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