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We consider the problem of learning an unknown function f, on the
d-dimensional sphere with respect to the square loss, given i.i.d. samples
{(yi» x;)}i<n Where x; is a feature vector uniformly distributed on the sphere
and y; = fi»(x;) + &;. We study two popular classes of models that can be
regarded as linearizations of two-layers neural networks around a random
initialization: the random features model of Rahimi—Recht (RF); the neural
tangent model of Jacot—Gabriel-Hongler (NT). Both these models can also
be regarded as randomized approximations of kernel ridge regression (with
respect to different kernels), and enjoy universal approximation properties
when the number of neurons N diverges, for a fixed dimension d.

We consider two specific regimes: the infinite-sample finite-width regime,
in which n = oo while d and N are large but finite, and the infinite-width
finite-sample regime in which N = oo while d and n are large but finite. In the
first regime, we prove that if d¢7% < N < d¢+1=% for small § > 0, then RF
effectively fits a degree-¢ polynomial in the raw features, and NT fits a degree-
(£ + 1) polynomial. In the second regime, both RF and NT reduce to kernel
methods with rotationally invariant kernels. We prove that, if the sample size
satisfies d¢19 <n< d€+176, then kernel methods can fit at most a degree-¢
polynomial in the raw features. This lower bound is achieved by kernel ridge
regression, and near-optimal prediction error is achieved for vanishing ridge
regularization.

1. Introduction and main results. In the canonical statistical learning problem, we are
given independent and identically distributed (i.i.d.) pairs (y;, x;), 1 <i <n, where x; € R4
is a feature vector and y; € R is a label or response variable. We would like to construct
a function f which allows us to predict future responses. Throughout this paper, we will
measure the quality of a predictor f via its square prediction error (risk): R(f) = E{(y —

f@))?)

1.1. Background. For a number of important applications, state-of-the-art performances
are obtained by representing the function f as a multi-layers neural network. The simplest
model in this class is given by two-layers networks (NN):

N
(NN) FNNE{f(x):Zaia((wi,x)):ai eR w; eRIVi<N}.
i=1
Here, N is the number of neurons and o : R — R is an activation function.
Two-layers neural networks have been extensively studied in the nineties, with a focus
on two goals: (i) Establishing approximation guarantees over classical function spaces; (ii)
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Controlling the generalization error via Rademacher complexity arguments. We refer to [3,
49] for surveys of these results.

Computational aspects were notably underrepresented within these early theoretical con-
tributions. On the contrary, it is nowadays increasingly clear that computational and statistical
aspects cannot be separated in the analysis of neural networks (see, e.g., [16, 44, 54]). Indeed,
the optimization algorithm does not simply compute the unique minimizer of a regularized
empirical risk: it instead selects one among many possible near-minimizers, whose general-
ization properties can vary significantly. Therefore, the specific optimization algorithm is an
integral part of the definition of the regularization method.

A concrete scenario in which this interplay can be understood precisely is the so-called
“neural tangent kernel” regime. First, explicitly described in [35], this regime has attracted
considerable amount of work. The basic idea is that, for highly overparametrized networks,
the network weights barely change from their random initialization. We can therefore replace
the nonlinear function class Fyy by its first-order Taylor expansion around this initialization.

Denoting by (ap,;, wo,i)i<ny the weights at initialization, a first-order Taylor expansion
yields

N
fNN(x)—Zaz (wi, x)) ~ fan,0(x) + Y _(a;i —ao,i)o ({wo,i, x))

i=1 i=1

N
+ > ag,i(w; — wo,i, x)o”' ((woi, x)),
i=1
where fnn,o is the neural network at initialization. In other words, fnn — fnn,o is a function
in the direct sum Fnt(W) & Fre(W), where we defined

(RF) Fre(W) = {f(X) —Za, (wi,x)):a; eRVi < N}

i=1

N
(NT) Fnt(W) = {f(x) = Z(a,-, x)o'((w;,x)):a; € R vi < N}.
i=1

Here, W € RV*4 i a matrix whose ith row is the vector w;, and o’ is the derivative of the
activation function with respect to its argument (if (w;, x) has a density, o only needs to be
weakly differentiable).

We will refer to Fre(W) as the “random features” (RF) model: it amounts to fixing the
bottom-layer weights, and only optimizing the top-layer weights. Equivalently, Frr (W) cor-
responds to the first-order Taylor expansion of fyn with respect to the top-layer weights
(ai)i<n. This model can be traced back to the work of Neal [47], and was successfully de-
veloped by Rahimi and Recht [50] as a randomized approximation to kernel methods.

The second function class Fnt(W) corresponds to the first-order Taylor expansion of fyn
with respect to the bottom-layer weights (w;); <y [35]. We will refer to Fnt(W) as the neural
tangent class.

A sequence of recent papers proves that, in a certain overparametrized regime, gradi-
ent descent (GD) applied to the nonlinear neural network class Fnn effectively converges
to a model in Fn7(W) & Fre(W). Namely, if the number of neurons N is larger than
a threshold No(n, d), and training is initialized with fo(x) = N~'2 3N ag ;0 ((wo,;, x))

1Often the term “neural tangent” is reserved for the direct sum Fn1(W) @ Frr(W). We find it more convenient
to give distinct names to each of the two terms, especially since Frp(W) has much smaller dimension than
FNT(W) for large d.
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where {(ap,;, wo,i)}i<n ~iid. N(O, 1) ® N(O,1;/d), then gradient descent converges expo-
nentially fast to weights {(a;, w;)};<n such that f — fj is well approximated by a function
in FnT(W) @ Fre(W). The specific value of the threshold Ng(n, d) for the onset of this NT
regime has been steadily pushed down over the last year [2, 4, 22, 23, 59].

Does the NT regime explain the power of multilayers neural networks, when trained by
gradient descent methods? From an empirical point of view, the evidence is not univocal [17,
27, 36]. From a theoretical point of view, while the expressivity of neural networks is superior
to the one of NT models, this hypothesis is not easy to dismiss for at least two reasons. First,
neural networks learned by gradient descent algorithms form a significantly smaller class than
general networks. Second, the answer depends on the data distribution, the target function f,
and the sample size.

In order to clarify this question, we explore the behavior of RF and NT models in the
high-dimensional setting. More precisely, we consider two specific asymptotic regimes:

(1) The infinite-sample finite-width regime in which n = 0o, and N, d diverge while being
polynomially related. In this case, the prediction error reduces to the approximation error
inf re 7, E{[ fu(x) — f(x)]Z}, for either model M € {NT, RF}.

(i1) The infinite-width finite-sample regime in which N = oo and n, d diverge while being
polynomially related. In this case (and under a suitable bound on the £, norm of the coeffi-
cients) both classes Fgrg, FnT reduce to certain reproducing kernel Hilbert spaces (RKHS).

In both cases, we obtain sharp results, up to errors vanishing as d — oo. Crucially, our results
hold pointwise, that is, they provide a characterization of approximation and generalization
error which hold for a given function f,.

In summary, a large number of recent papers argue that large neural networks, when trained
using practical algorithms, such as stochastic gradient descent, behave as linearized neural
networks. Our findings suggest that the performance gap between neural network and its
linearization is large, and hence the linear theory does not fully capture the behavior of neural
networks, even if we limit ourselves to those trained via gradient-based algorithms.

1.2. A parenthesis. The approximation properties of neural networks have been studied
for over three decades [8, 19, 20, 31, 34, 39, 45, 46, 48, 49]. It is useful to discuss the relation
between the questions outlined above and existing literature.

A number of results are available on the approximation of functions in certain smoothness
classes by two-layers neural networks. In particular, [8] controls smoothness by the average
frequency content in the Fourier transform (the “Barron norm”), while [39, 40, 45, 48] use
classical Sobolev norms. For instance, [40] proves that N-neurons NN approximate functions
in the Sobolev ball Wzr’d with worst case error

(1) Ci(r,d, ) N0 < sup  inf || f — fll;2 < Ca(r,d, 5)N~"/9F9,

e feFun

for any § > 0 and for some functions C1, C, that are independent of N. (Similar results are
found in [48].) These results cannot be used for our purposes.

First of all, we are interested in the NT class which is potentially much less powerful than
NN.

Second, even if bounds of the type (1) were available for NT, it would be hard to use
them to prove separation results between NN and NT. Since the lower bound in (1) is for the
worst case function, in order to prove a separation result, we would have to prove that neural
networks trained by gradient descent have good approximation properties, uniformly over
Sobolev balls. This objective is currently out of reach. Our pointwise approximation results
make it much easier to prove separation statements.
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Third, bounds of the type (1) have weak implications when both d and N are large, say d =
100, N = 10°. We will instead prove sharp asymptotic results that are valid in this regime.
As illustrated in the next section, our analysis captures the actual behavior in a quantitative
manner, already when d > 100.

Quantitative results in the high-dimensional regime have been proved only recently. In
particular, Bach [6] established quantitative upper and lower bounds for the approximation
error in the RF model. However, these results do not have direct implications on the NT model
which is our main interest here. Further, lower bounds in [6] are, as before, worst case over a
certain RKHS. (See also [1, 5, 52] for related work.)

Similar considerations apply to the generalization error of kernel methods. While this is
a classical topic [14, 18, 37, 52], earlier work proves minimax upper and lower bounds.
Establishing pointwise lower bounds is instead important in order to understand precisely the
separation between neural networks and their linearized counterparts. We refer to Section 4
for further discussion of related work.

1.3. A numerical experiment. In order to illustrate the approximation behavior of RF and
NT models, we present a simple simulation study. We consider feature vectors normalized
so that ||x; ||% = d, and otherwise uniformly random, and responses y; = f.(x;), for a cer-
tain function f,. Indeed, this will be the setting throughout the paper: x; ~ Unif(S¢~! (v/d))
(where S~1(r) denotes the sphere with radius r in d dimensions) and f, : S-1(/d) > R.
We draw random weights (w;);<y ~ii.d. Unif(Sd_l(l)). We use n samples to fit a model
in Fre(W) or FnT1(W). We learn the model parameters using least squares. If the model is
overparametrized, we select the minimum £;-norm solution. (We refer to Appendix F in the
Supplementary Material [30] for simulations using ridge regression instead.) We estimate the
risk (test error) using ny st = 1500 fresh samples, and normalize it by the risk of the trivial
model Ry = E{ f,(x)?}.

Figures 1, 2, 3 report the results of such a simulation using RF—for Figure 1—and NT—
for Figures 2 and 3. We use shifted ReLLU activations o (#) = max(u — ug, 0), ug = 0.5. The
choice of ug = 0.5 is not essential: (Lebesgue-)almost every ug 7% 0 has similar behavior. In
contrast, the case g = 0 is degenerate because max(u, 0) is equal to a linear function plus an
even function.?

The target functions f, in these examples are quite simple. 1 and 2 use a quadratic func-
tion fi2(X) =2 icj4/2) xi2 — 2i=1d/2) xl-z. In Figure 3, the target function is a third-order
polynomial f, 3(x) = Z?:] (x,-3 — 3x;).

The results are somewhat disappointing: in two cases (first and third figures) RF and NT
models do not beat the trivial predictor. In one case (the second one), the NT model surpasses
the trivial baseline, and it appears to decrease to O as the number of samples n increase. We
also note that the risk shows a cusp when n ~ p, with p being the number of parameters
(p = N for RF, and p = Nd for NT). This phenomenon is related to overparametrization,
and will not be discussed further in this paper (see [9, 10, 33, 43] for relevant work). We will
instead focus on the population behavior n — oo.

In other words, the RF model does not appear to be able to learn a simple quadratic func-
tion, and the NT model does not appear to be able to learn a third order polynomial. Our
main theorems (presented in the next sections) capture this behavior in a precise manner. In
particular,

ZNote that ReLU and shifted ReLU are not equivalent in the present setting because we are not allowing for
biases, namely a neuron maps x — o ({w;, x)) rather than x — o ((w;, x) + ;). A slightly more general setting
would introduce random biases u; in the RF and NT models. However, this makes the proof more cumbersome,
without being substantially different from the constant bias u.
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FIG. 1. Risk of the random features model for learning a quadratic function f, 5, for d = 20 (top left), d = 30

(top right), d = 50 (bottom left) and d = 100 (bottom right). We use least square to estimate the model coefficients
from n samples and report the test error over niest = 1500 fresh samples. Data points correspond to averages over
10 independent repetitions, and the risk is normalized by the risk R of the trivial (constant) predictor.
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FIG. 2. Risk (test error) of the neural tangent model in learning a quadratic function f, 2, for d = 30 (left

frame) and d = 50 (right frame). The other settings are the same as in Figure 1.
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FIG. 3. Risk (test error) of the neural tangent model in learning a third order polynomial f, 3, for d = 30 (left

frame) and d = 50 (right frame). The other settings are the same as in Figures 1 and 2.
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FI1G. 4.  Upper bounds on the optimal risk of the neural network model FnN when used to learn the third-order
polynomial f, 3 (same target function as in Figure 3), for d = 30 (left frame) and d = 50 (right frame). We use n
train samples and report the test error over niest = 1500 fresh samples. Data points correspond to averages over
50 independent repetitions, and the risk is normalized by the risk R of the trivial (constant) predictor. Training
uses oracle knowledge of the function f, 3.

e We will prove that for N = Oy (d*—?%), RF does not outperform the trivial predictor on
any function that has vanishing projection on linear functions. Similarly, NT does not out-
perform the trivial predictor on any function that has vanishing projection on linear and
quadratic functions.

e In contrast, there exists neural networks in Fyy with N = Og4(d) neurons, and a small
approximation error both for f, > and f, 3 (see, e.g., [6] or [44], Proposition 1).

These two points illustrate the gap in approximation power between NT (or RF) and NN.

We demonstrate the second point empirically in Figure 4 by choosing weight vectors
w; = s;e,(;), where r (i) ~ Unif([n]) are i.i.d. uniformly random indices, and the scaling fac-
tor is s; ~ N(0, 1). Fixing these random bottom-layer weights, we fit the top-layer weights a;
by least squares. The risk achieved is an upper bound on the minimum risk in the NN model,
namely Rnn(fi) = infrery E{(fu(x) — f (x))?}, and is significantly smaller than the base-
line Ro. (The risk reported in Figure 4 can also be interpreted as a “random features” risk.
However, the specific distribution of the vectors w; is tailored to the function f,, and hence
not achievable within the RF model.)

1.4. Summary of main results. Approximation error of RF models. If d't% < N < d*~°
for some & > 0, then the approximation error of RF is asymptotically equivalent to the ap-
proximation error of fitting a linear function in the raw covariates x (i.e., least squares with
the model f(x) = bo+ (B, x), bg € R, B € RY). More generally, if ‘7% < N <d**17% then
RF is equivalent to fitting a linear function over all monomials of degree at most £ in x.

The equivalence between RF regression and polynomial regression holds pointwise for
target function f.

Approximation error of NT models. If d't% < N < d?~?, then the approximation error
of NT is asymptotically equivalent to the approximation error of fitting a linear function
over monomials of degree at most two in x (i.e., least squares with the model f(x) = by +
(B,x) + (x, Bx), by € R, B e R, B € R**?). More generally, if d‘*® < N <d**1=? then
NT is equivalent to fitting a linear function over all monomials of degree at most £ 4 1 in x.

Again, this result holds pointwise over the choice of f,.

Generalization error of kernel methods. We study the generalization error of kernel meth-
ods under the same data distribution described above, for any rotationally invariant kernel on
the sphere S~!(v/d). We prove two results:

1. If the sample size is n < d“*179, then the generalization error of any kernel method is
lower bounded by the approximation error of linear regression over monomials of degree at
most £ in x.
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2. If the sample size satisfies ‘™0 <n < d**1=%, then the generalization error of Ker-
nel Ridge Regression (KRR) is given by the approximation error of linear regression over
monomials of degree at most £ in x.

It is worth emphasizing two aspects of this last result. The first one is its generality. The NT
kernel associated to an infinitely wide multilayers fully connected neural network is always
rotational invariant (assuming an i.i.d. Gaussian initialization of weights, which is common
in practice). Therefore, in the NT regime, multilayers neural networks cannot outperform the
trivial predictor on a target function f,(x) that has vanishing projection onto degree-£ poly-
nomials, unless the sample size satisfies n > d**!7%. (For instance, they cannot outperform
the trivial predictor for f,(x) = xf —3x; unless n > d>7%))

The second aspect can be summarized as follows.

Optimality of near interpolators. For d*t% <n < d*T17?, the ideal behavior of KRR is
achieved for all regularization values A < A,, with A, depending on N, d and the activation
function. In particular, it is achieved by “near interpolators” (corresponding to A =~ 0), that is,
functions f that have negligible training error.

The statistical properties of interpolators have been the object of a large number of recent
papers [11, 12, 33, 37]. Our analysis provides a sharper optimality guarantee in certain cases.

2. Approximation error of linearized neural networks. In this section, we state for-
mally our results about the approximation error of RF and NT models. We define the mini-
mum population error for any of the models M € {RF, NT} by

2) Ru(fe, W)= inf E[(filx)— f(x))z], M € {RF, NT}.
feFm(W)

Notice that this is a random variable because of the random features encoded in the matrix

W e RV*4_ Also, it depends implicitly on d, N, but we will make this dependence explicit

only when necessary.

For ¢ € N, we denote by P : L2(S?1(J/d)) — L3S 1(V/d)) the orthogonal projector
onto the subspace of polynomials of degree at most £. (We also let P~y =1 — P<;.) In other
words, P<¢ f is the function obtained by linear regression of f onto monomials of degree at
most £. Throughout this paper, “with high probability” means ‘with probability converging
to one as d, N — oo’. The notation sq = wy(tg), sS4 = 04(tg), sa = O4(tq), sa = QLq(tq)
mean, respectively, limy_ o [Sq/t4| = 00, liMy— o0 |S4/ta]l = 0, limsup,_, o |54/ta] < 00,
liminfy_, o |S4/t4] > 0. Given random variables X4, and deterministic quantities ¢4, we write
X4 =04 p(t7) (and so on) if the above holds in probability.

2.1. Approximation error of random features models.

ASSUMPTION 1 (Assumptions for the RF model at level £ € N). Let {o4}4>1 be a se-
quence of functions o4 : R — R.
(a) o4 € LZ([—\/E, ﬂ], ré_l), where 1:‘}_1 is the distribution of (x,e) for x ~

Unif(S4~1(v/d)), and e = (1,0, ...,0)T e R4,
(b) We have

[ - minda (0a)? ]/ [ou(te. D721 (yay = 2a (D).

where Ag k (0q) = (oa({e, -)), Qk(«/a(e, '>)>L2(Sd—1(ﬁ))’ and Qy is the kth Gegenbauer poly-
nomial (see Section 5).



1036 GHORBANI, MEI, MISIAKIEWICZ AND MONTANARI

THEOREM 1 (Risk of the RF model). Let {f; € L*>(S?~1(v/d))}u=1 be a sequence of
functions. Let W = (w;);c[n] with (w;);c[N] ~ Unif(S9—1) independently. Then the following
hold:

(a) Assume N < d*T17% for a fixed integer € and any sequence 84 such that 5621 logd — o0
(in particular, N < d“*1=° is sufficient for any fixed § > 0). Let {04}q4>1 satisfy Assump-
tion 1(a). Then, for any € > 0, the following holds with high probability:

|RRe(fa. W) — Rre(P<¢ fa. W) — [IP=¢ fall3, |

<ellfall2[IP>e fall 2

(b) Assume N = wg(db) for some integer £, and {o4}4>1 satisfy Assumption 1(b) at level
L. Then for any & > 0, the following holds with high probability:

4) 0 < Rre(P<¢ fa, W) <&llP<¢fall7

3)

See Appendix A for the proof of lower bound, and Appendix B for the proof of upper
bound in the Ssupplementary Material.

In words, equation (3) amounts to say that when N = O4(d t+1-3a) the risk of the random
feature model can be approximately decomposed in two parts, each nonnegative, and each
with a simple interpretation:

(5) Ree(fa. W)~ Rae(P<¢ fa. W) + [P=¢ fal 3.

The second contribution, ||P~g fd||i2 is simply the risk achieved by linear regression with
respect to polynomials of degree at most £. The first contribution Rrr(P<¢ f4, W) is the risk
of the RFmodel when applied to the low-degree component of f;. Equation (4) implies that
when N = wy (de), the first contribution Rrr(P<¢ f4, W) vanishes asymptotically.

If both Assumptions 1(a) and 1(b) hold and w, (d® < N < 04(d*1=%) for some integer
£, we thus obtain

Rer(fa. W) = IP=e fall72 + Il fall72 - 042 (D).
In particular, this shows that RFfits a linear function over polynomials of maximum degree £.

REMARK 1. Note that Theorem 1(a) holds under very weak conditions on the activation
function, which may depend on the dimension d. The condition o;({e1, -)) € L2(S4-1(/d))
can also be rewritten as o; € Lz(]R, rl}_l), where ‘L’C}_l is the one-dimensional projection of

the uniform measure over S¢~!(v/d). In particular:

1) ‘L’C}_l is supported on [—+/d, </d]. Tt is therefore sufficient that SUP|, | <./d log(u)| =
Ci(d) < oo.

(i) By an explicit calculation, the density is given by fc}_l(du) = C(d) x
(1 — u?/d)@=3/2du. Since this density is bounded, it is sufficient that o, is square inte-
grable with respect to the Lebesgue measure on [—+/d, v/d].

REMARK 2. If the activation o is independent of d, Assumption 1(b) is satisfied as long
as ur(o) #0fork =0, ..., ¢, where ui (o) is the kth Hermite coefficient of o (see Section 5
for definitions).

REMARK 3. The conclusion of Theorem 1(a) can be established’ by a somewhat simpler
proof if the activation function o is independent of d and satisfies the following regularity
conditions: (i) o (u)% < ¢ exp(c1u2 /2) for some c1 < 1; (ii) o is not a polynomial of degree
smaller than 2¢ + 3. Under these conditions, the conclusion holds for N = o4(d**!).

3The first version of this manuscript, posted on arXiv, assumed such conditions.
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Note that Assumption 1(b) requires in particular that o is not a polynomial of degree
strictly smaller than €. This is easily seen to be a necessary condition, since any linear com-
bination of polynomials of degree k < £ is a polynomial of degree k. For the same reason,
this condition also arises in the approximation theory of neural networks [49].

2.2. Approximation error of neural tangent models. For the NT model, the proof, while
following the same scheme as for RF, is more challenging. We restrict our setting to a
fixed activation function o (independent of dimensions) which is weakly differentiable,
with weak derivative ¢’ that does not grow too fast (in particular, exponential growth
is fine). We further require the Hermite decomposition of ¢’ to satisfy a mild “generic-
ity” condition. Recall that the kth Hermite coefficient of a function /4 can be defined as
wi(h) = Eg~nw,1){h(G)Her(G)}, where Hey(x) is the kth Hermite polynomial (see Sec-
tion 5 for further background).

ASSUMPTION 2 (Assumptions for the NT model at level £ € N). Let o be an activation
function o : R — R.

(a) The function o is weakly differentiable, with weak derivative ¢’ such that o’ (u)? <
co exp(c1u2/2) for some constants cq, ¢, with c¢; < 1.

(b) The Hermite coefficients {ux(0”)}x>0 are such that there exist ki, ko > 2¢ 4+ 7 such
that g, (o), i, (o) # 0 and

i, (¥%0") g, (x%0”)

6 .
© iy () iy (0)

(c) The Hermite coefficients of o satisfy ui(c) # 0 for any k < £+ 1.

THEOREM 2 (Risk of the NT model). Let {f; € L*>(S?~!1(\/d))}u=1 be a sequence of
Sunctions. Let W = (w;);e[n] With (w;)ie[n] ~ Unif(S4—1) independently. We have the fol-
lowing results:

(a) Assume N = 04(d*th) for a fixed integer €, and let o satisfy Assumptions 2(a) and
2(b) at level €. Then, for any & > 0, the following holds with high probability:

|RNT(fa. W) = RaT(P<e41 fa, W) — [IP= 1 fall3 2|

< el fallL2IP>ev1 fall 2

(N

(b) Assume N = wy(d®) for some integer £, and let o satisfy Assumptions 2(a) and 2(c)
at level L. Then for any & > 0, the following holds with high probability:

(8) 0 < RNT(P<¢41 fa, W) < ellP<eq1 fall 72

See Section 6 for the proof of lower bound, and Appendix D in the Supplementary Material
for the proof of upper bound.

REMARK 4. It is easy to check that Assumptions 2(a) and 2(b) hold for all ¢, for all
commonly used activations.

For instance, the ReLU activation o (1) = max(u«,0) and its weak derivative o’(x) =
1.>0 have subexponential growth. Its Hermite coefficients are easily computed. Indeed,
po(e”) = Egneo.1y{o'(G)} = 1/2. Further recall that Hey (x) = (—1)*¢™® (x) /¢ (x) with
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FIG. 5. A cartoon of the approximation error versus number of parameters in the RFand NT models. (This
sketch is an illustration of the predictions of Theorems 1 and 2. It is not a numerical result by of solving a finite-N
approximation problem.)

¢(x) = e‘xz/ 2 /~/2m the standard Gaussian density and ¢(k)(x) its kth derivative. We thus
get, for k > 1,

(o) =Eg~no.1){o'(G)Her (G)} = /0 (—1*¢® (x) dx

)
1, (k= G
— (¥ 1% =D ) =
e O NGZ3

which satisfy the required condition of Theorem 2(a) for each £. (In checking the condition,
it might be useful to notice the relation ug(x20”) = pis2(0’) + Rk + Dur(o”’) + k(k —
Dpg—2(0").)

Assumption 2(c) does not hold for ReLU activation o (#) = max(u, 0), since ug(c) =0
for k even. However, it holds for shifted ReLU o () = max(u# — ug, 0), for a generic value of
the shift ug.

(k —2)M1g odd,

Theorems 1 and 2 can be illustrated by a cartoon, which is shown as Figure 5. In words,
the approximation error plotted as a function of log(#parameters)/logd follows a staircase:
it drops at the integer values of this ratio, with the size of the £th drop corresponding to
IP¢ f*||i2. We can extract three useful statistical insights from these findings:

1. There is no difference between RFand NT in terms of approximation power, once we
compare them at fixed number of parameters p. Note that p = N for RF, and p = Nd for
NT. The recent work [28] actually shows some advantage for the RFmodel, although in a
special case. It is worth mentioning that the same equivalence holds in the infinite-width
finite-sample regime; see Section 3.

‘We notice however an important computational advantage for NT over RFat the same num-
ber of parameters. Indeed, the complexity at prediction time is O (Nd) = O (p) for NT, while
itis O(Nd) = O(pd) for RF.

2. RFor NT models have similar performance to polynomial regressions. Note that the
space of degree-£ polynomials in d dimension has ®4(d*) degrees of freedom. For any func-
tion f, degree-¢ polynomial regression gives approximation error ||P~ f,,lliz.

3. Our results also suggest interesting directions to improve random features methods.
First, if f, is known to primarily depend on x projected onto a low-dimensional subspace )V C
R? with dim(V) = d; < d, there will be a significant advantage in choosing the bottom-layer
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weights w;’s along that d1-dimensional subspace. Second, if the distribution of feature x lies
close to such a subspace V), one might hope that—even if the w;’s are sampled isotropically
on S~ —random features methods will be sensitive to d; rather than d. We reported on
these topics in a follow-up publication [29].

2.3. Separation between NN and RF, NT. Theorems 1 and 2 imply a separation of ap-
proximation power between two-layers neural networks and their linearization. As a simple
example, consider the target function f,(x) = o ({(w,, x)), for ||w,]l2 = 1. This can be rep-
resented exactly by a neural network with N = 1, that is, by a single neuron. On the other
hand, the above results imply that either RFor NT model is lower bounded by a non-vanishing
population error. If d“*% < N < d“*1=%  provided that o satisfies Assumptions 1 and 2, we
get

Rer (0. W) = o205, + 00D - 0122 ).
(10)
Rut(0. W) = loe4112ag 006D ol -

Here, o~ (x) is the projection of o orthogonal to the subspace of polynomials of maximum

degree k, in L>(R, y), where y (dx) = e=%°12 dx /+/27 is the standard Gaussian measure.

Crucially, as proven in [41], running gradient descent over the space of neural networks
consisting of a single neuron allows to learn the target function f,(x) = o ({w,., x)) effi-
ciently. In other words, we not only have a separation between linearized neural networks
(Frr and Fnr) and the function class Fnn, but also a separation between linearized neural
networks, and neural networks trained by gradient descent.

The same blueprint can be followed to prove further separation results. For instance, con-
sider f,(x) = ¢(Q7x), for Q € RY*" an orthogonal matrix and ¢ : R” — R a bounded
smooth function, which is not a polynomial. If » is kept constant as dttd < N < gtt1-s,
Theorems 1 and 2 can be used to show that Rge(fix, W), RnT(fi, W) are bounded away from
zero and to compute their limits. On the other hand, the classical results [39] can be used
to show that such f, can be approximated arbitrarily well by neural networks with O4(1)
neurons (with bottom-layer weights w; in the span of columns of @). Unfortunately, we are
not aware of general results implying that such neural networks can be learnt by gradient de-
scent, although we expect this to be the case for certain choices of ¢. Whenever such a result
is available, it implies a separation between linearized neural networks and neural networks
trained by gradient descent.

Let us remark that a similar setting was independently considered by Yehudai and Shamir*
in concurrent work [58]. (The setting of their work is slightly different as they consider x; ~
N(0, I7) instead of our setting x; ~ Unif(S4=1(V/d)).) Translating to our notation, they prove
that there exist finite constants cg, c; > 0 such that, if N <exp{c1d} and the coefficients a;
and a; in (RF) and ( NT) have magnitude at most exp{c1d}, then there exists b,, with |b,| <
6d + 1, such that the following happens for any w, with ||w,]2 = 1: if fi(x) = ((w,, x) +
by)+, then Rge(fr, W), RuT(fo, W) =0/ d® with high probability. An important difference
of their result with our analysis is that Theorems 1 and 2 apply to any function f, (and
equation (10) can be generalized to other functions of low-dimensional projections), while
the result of [58] applies to the specific function f,(x) = ({w., x) + b,)4 for a certain b,.
Let us emphasize that there are other important differences between our setting and the one
of [58], and neither of the two analysis implies the other.

4We refer here to the latest available version of their result, posted as arXiv:1904.00687v3, Theorem 4.1. We
adapt the normalization adopted in that paper, dividing f, by d3, so that | fell 2 = ©(1), when by = O(1).
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3. Generalization error of kernel methods. We consider next the infinite-width finite-
sample regime. Namely, we let N = oo, and n, d diverge while being polynomially related.
It is known since the work of Rahimi and Recht [50] that ridge regression over the function
class Frr(W) converges in this limit to kernel ridge regression (KRR) with respect to the
kernel (here expectation is with respect to w ~ Unif(S?—1(1)))

(11) HF (x1,x2) := A5 ((x1, x2) /d) =Elo ((w, x1))o ((w, x2))}.

Analogously, ridge regression in Fnt(W) can be shown to converge to KRR with respect to
the kernel

HyT(x1,x2) = hy)" ((x1,x2)/d)
= ((x1,x2)/d)E{c’({(w, x1))o’ ((w, x2))}.

We will denote the corresponding RKHS by Hgr and Hyt. Quantitative estimates on the
relation between Frr(W) and HpRr are obtained in [6], which shows that the unit ball of
Hgr is well approximated by the unit ball of Fre(W) (endowed with the £, norm of the
coefficients (a;);<n), for N large enough.

Notice that both kernels H dRF, H 6’1\” are rotationally invariant, namely H;(Sx1, Sx;) =
Hy(x1,x2) for Hy € {H?F, HYT} and any d x d orthogonal matrix S. Any rotationally in-
variant kernel on the sphere S94=1(/d) takes the form

(13) Hy(x1,x2) =hg((x1,x2)/d),

for some function Ay : [—1, 1] — R. (The scaling factor d is introduced here to make contact
with the normalization used in previous sections, and is not necessary: indeed, /4 can depend
itself on d.)

Our results apply to general rotational invariant kernels under very weak conditions
on the function hy. In particular, they apply to multilayer neural networks in the neural
tangent regime. Namely, consider a L-layers network with matrix weights W, € RN1*4,
Wy e RV2XNi W, _| e RVNi-1XNi-2 g ¢ RVL-1 As long as all the weights are initialized
as independent centered Gaussians, with variance dependent only on the layer, the resulting
NT kernel is rotationally invariant. The recent papers [2, 4, 22, 23, 59] provide conditions
under which the NT approximation is accurate for SGD-trained multilayer neural networks.

Section 3.1 presents a lower bound on the prediction error of general kernel methods, and
Section 3.2 derives an upper bound for kernel ridge regression.

Throughout this section, we consider the same data model as in the previous sections:
we observe pairs {(yi, X;)}i<n, With (x;)i<p ~ Unif(ST~1(V/d)), and yi = fu(x;) + &, fu €
L2(S?1(J/d)) and &; ~ N(0, 72) independently.

(12)

3.1. Lower bound for general kernel methods. Consider any regression method of the
form

n
(14) foo=argming 3 €(yi. f i) + 2 £ 17 |-
i=1
where || f| g is the reproducing kernel Hilbert space (RKHS) norm with respect to the kernel
H of the form (13). By the representer theorem [13], there exist coefficients ay, ..., a, such
that

(15) F@) =) "aiha((x, xi)/d).

i=l



LINEARIZED TWO-LAYERS NEURAL NETWORKS 1041

We are therefore led to define the following data-dependent prediction risk function for kernel
methods

n 2
(16) Ry (fus X) =minE, i (f,(x) — Y aiha((xi, x)/d)) }
i=1

The next theorem provides a decomposition of this generalization error that is analogous
to the one given in Theorem 1(a). Notice however that the controlling factor is not the number
of neurons N, but instead the sample size n.

THEOREM 3. Assume n < d“t'7% for a fixed integer € and any sequence 8q such
that 8‘21 logd — oo (in particular, n < d**17% is sufficient for any fixed § > 0). Let {f; €
LZ(Sd_l(\/E))}dzl be a sequence of functions, {X;}ic[n] ~i.id. Unif(S?—1(J/d)) with yi =
fa(xi). Assume hy((e1, -)//d) € L*(S*~1(V/d)). Then for any & > 0, with high probability
as d — 0o, we have

A7) |Ru (fa, X) = Ru(P<e fa, X) = [IP=e fall 2| <€l fall 2IPe fall 2

PROOF. This follows immediately from Theorem 1(a). Indeed, setting o4(u) = hy(u/
Jd) and w; = xi/\/a, we obtain Ry (fz, X) = Rre(fa, W), whence the claim follows by
applying equation (3). [J

3.2. Upper bound for kernel ridge regression. Kernel ridge regression is one specific
way of selecting the coefficients @ in equation (15), namely by using £(9, y) = (§ — y)? in
equation (14). Solving for the coefficients yields

a=(H+,)"y,
where the kernel matrix H = (H;;);je[n] is given by
Hij =hq((x;i,x;)/d),
and y = (y1, ..., yn)". The prediction function at location x is given by
Fuay=yT(H +30,) " h(x),
where
h(x) = [ha((x, x1)/d), ..., ha((x, x,)/d)]".
The test error of empirical kernel ridge regression is defined as
Ri(fa, X, 2) = Ex[(fa(x) = y'(H +21) " h(x))*].

We assume that {h,}4>1 are positive-definite kernels, and we consider the associated eigen-
values:

(8) furho = [

where we recall that Q,((d) is the kth Gegenbauer polynomial.

. ha(x/Vd) QP (Vdx)T)_ (dx),

ASSUMPTION 3 (Assumption for KRR at level £ € N). Let {hs}4>1 be a sequence of
functions i : R — R, such that Hy(x1, x2) = hg({x1,x2)/d) is a positive semidefinite ker-
nel.

(@) ha(-/v/d) € L*([—+/d,~/d],t)_,), where t}_| is the distribution of (x, e) for x ~
Unif(SY=1(v/d)), where e = (1,0, ...,0)T e R%.
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(b) There exists a constant ¢; > 0 such that

d*ming<¢ &4 (hy)

19
(19 > kse+18d.k(ha)B(d, k)

_C67

with B(d, k) = =2 (F+d=3),

THEOREM 4. Assume wy(d* logd) <n < Oy (d“’l_‘s)for some integer £ and & > 0. Let
{fa € Lz(Sd_l(\/E))}dzl be a sequence of functions. Let {hq}q>1 be a sequence of kernels
satisfying Assumption 3 at level €. Further, define

(20) ha(d, ) := d* mingy x (ha).

If hy has zero mean (i.e., fhd(\/g(el,x))td(dx) = 0) further assume that fg is centered
(i.e., [ fa(x)ta(dx) =0).

Let X = (xX;)ie[n] With (x;)iefn) ~ Unif(SY=1(/d)) independently, and y; = fq(x;) + &
and ; ~ijiq N, T2). Then for any € > 0, and any regularization parameter A € (0, L) with
high probability we have

1) |Rer(fa. X. 1) = IPse fall 72| < e(l fall72 + 72).
See Appendix E in the Supplementary Material for the proof of this theorem.

REMARK 5. Assume h; — h as d — oo, uniformly over [—4, §], together with its
derivatives, and further assume |h4(x)| < cg exp(c1x2 /2) for some ¢g > 0, ¢; < 1. We ex-
pect this to be the case for many kernels of interest, and in particular it can be shown to be
the case for hf}F and hyT under mild conditions on the activation o. Using Rodrigues’ for-
mula described in Section 5.2, by an application of integration by part followed by dominated
convergence, we get

1
(22) Eqx(ha) = ﬁh“) 0) +0g(d*1),

where 1) is the kth derivative of 4. Notice further that &4.x(hg) = 0 for all k since hy is pos-
itive semidefinite by definition. Therefore, as long as £ (0) > 0 for all k < ¢, Assumption 3
is satisfied, and A, (d, £) is bounded away from 0.

REMARK 6. For hy = th and if the activation o € L2(R, y) is independent of d, we

have &, x(hg) = i (a)zd_k +04(d~*1) and, therefore, Assumption 3 is satisfied as soon as
ur(o)#£0forall k <£.

Notice that the setting of Theorem 4 is the same as in classical nonparametric regres-
sion. However, classical theory typically establishes minimax consistency rates of the form
E{[f(x) — ()%} < C(d)n—2P/2B+d) [32, 56]. In order to guarantee a fixed (small) er-
ror, these bounds require n > exp{cd}. Modern machine learning typically have d > 100 and
n between 10* and 108, and it is therefore unrealistic to consider n exponential in d. This
regime motivates a new type of question: assuming n < d*, what is the minimum prediction
error that can be achieved? This question is addressed by Theorem 4.
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3.3. Separation between kernel methods and neural networks. Repeating the same ar-
gument of Section 2.3, we see that Theorems 3 and 4 imply a separation between kernel
methods, with rotationally invariant kernels, and gradient-descent trained neural networks.

Namely, consider again the target function f,(x) = o ({(w,, X)), for ||w.|2 = 1. As proven
in [41], f. can be learnt efficiently by minimizing the following empirical risk via gradient
descent:

n

R 1
Rn(w; w,) := — > (i — o ((w, x:)))*.
i=1
Namely, if n > Cdlogd samples are used (and under some technical conditions on o), gra-
dient descent reaches prediction error of order (d logd)/n
In contrast, Theorems 3 and 4 imply that, for any integer ¢, and any d‘*® <n < dt+1=9,
any kernel method has test error bounded away from zero. Namely,

(23) Ry(o; X) = ||J>‘3||2L2(R,y) +o4.p(1) - ||°'”i2(R,y)'

This test error is achieved by kernel ridge regression.

3.4. Near-optimality of interpolators. Let us emphasize some important statistical as-
pects of Theorem 4. KRR is proved to achieve near optimal prediction error (matching the
lower bound of Theorem 3) pointwise, that is, per given function f;. What is the nature of
the predictor fﬂ Theorems 3 and 4 imply that, in £, sense, f;L must be close to a low-degree
approximation of f;, namely P<, f5.

Optimal test error is achieved for any A < A,. In particular, by taking A — 0, we obtain
an interpolator, that is, a predictor that interpolates the dataset {(y;, x;)};<,. This remark is
made quantitative in the following bound on the empirical risk:

n
(24) Ren(fa. X 1) = %Z(y,- — A0)

i=1

THEOREM 5. Assume wq(d* logd) <n < O4(dtt1-9) for some integer £ and § > O.
Under the same assumptions of Theorem 4, if A < Ay, then

. RS
(25) Rer(fa X, 1) < (1 +0ap(D)(I fall32 + T2)<A n Kh) ;
where kp = y>¢4184.k(ha) B(d, k).

PROOF OF THEOREM 5. Recall that the empirical risk of KRR is given by equation (24),
where f;, = (fi(x1), ..., fo(xy)) can be rewritten as

fi=HH+\,) y.
Therefore,
Rer(fa, X, 1) = |[L, — HH +31,) " ]y %/n
= 22| (H + L)~ y|3/n.

From the proof of Theorem 4, we have the following lower bound on the eigenvalues H +
ALy, = (kn + X + 04 p(1))I,. We deduce that with high probability

Rea(far X, 0) < (14 04.p(D)) (/e + 1)y 13/n
< (1+0apM)(Il fal%s + T2 (1 Gen + 1),

where we simply used the law of large numbers ||y||%/n — ||fd||%2 +72. 0O
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The statistical properties of interpolators have attracted substantial interest over the last 2
years. Classical statistical wisdom suggests that a model that fits too well the training set is
too complex and cannot generalize well. In contrast, modern machine learning methods often
operate at or near such an interpolation regime. Examples of interpolators with provable
optimality properties were presented among others in [11, 12, 37].

3.5. A conjecture for generalization error of random features model. Consider ran-
dom features regression with finite sample size and a finite number of neurons. We fit
data {(y;,x;)}i<n using ridge regression in the random features (RF) model, with (where
w; ~iid Unif(S?71(1)))

1 > Na
(26) a<x>=argmin{;Z( Zat ((wi x)) ) +7nan%}-

acRN j=1

Under the same data model of the previous sections, we are interested in the test error

N 2
(27) Rrr(fa, X, W, 1) =Ex [(fd(x) — Y ai(Mo ((w;, x))) ]

i=1
Theorem 1 characterizes the test error Rrr(fgz, X, W, A) in the population limit n = oo,
whereas Theorems 3 and 4 characterize the same quantity in the case when N = oo.

What happens when both n and N are finite? In the proportional regime N o« d and n < d,
the precise asymptotics of Rge(fz7, X, W, L) was calculated in [43].

What happens beyond the proportional asymptotics? We conjecture that the limiting factor
is given by the smallest of n and N. Namely, if 7% < min(n, N) < d*+'~? for some positive
3, then the prediction error is the same as the one of fitting a degree-¢ polynomial, that is,
Ree(fa. X, W, 1) = [P~ fall3, + I fall3, - 0ap(1). We leave this conjecture to future work.

4. Further related work. Donoho and Johnstone [21] study an approximation problem
analogous to the one we considered in Section 2, although in d = 2 dimensions. Their prob-
lem essentially reduces to determining rates of approximation on the unit circle, with the
technical difference that the w;’s are equispaced along the circle instead of being random. As
for other references mentioned in Section 1.2, the lower bounds of [21] are worst case over
differentiable functions.

The limitations of kernel methods in high-dimension are studied by El Karoui in [25] (see
also [26]), which analyzes kernel random matrices of the form H = (h({x;,x;)/d))i j<n-
The analysis of [25] is limited to the proportional asymptotics n o d. and establishes that in
this regime H is well approximated by the Gram matrix of raw feature vectors plus a diagonal
term: H ~ (h(1) — h'(0)I, + 1’ (0)G, where G = ((x;, x j)/d); j<n. This result is related to
our Theorems 3 and 4, which deal with kernel methods. However, our results analyze general
polynomial scalings n = Od(de“_a), while [25] assumes n = O4(d). Also [25] analyzes
the spectrum of H but not the prediction error of kernel methods. Finally, a large part of our
technical work is devoted to RFand NT models (cf. Theorems 1 and 2), which are not touched
upon by [25].

Recent work of Vempala and Wilmes [57] analyzes what amounts to an RFmodel. These
authors prove that RFcan learn a degree-¢ polynomial from n = d°® samples using N =
d%® neurons, and that at least d*©) queries are needed within the statistical query model.
While related, our setting is not directly comparable to theirs. Notice further that we obtain a
sharper tradeoff, since we obtain the precise exponents of d.

After the present paper appeared as a preprint, several authors presented important contri-
butions to the same line of work. In particular, Liang, Rakhlin, and Zhai [38] studies kernel
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ridge regression in d dimension using n = O4(d") samples. Assuming the target function has
bounded RKHS norm, they derive upper and lower bounds on the rate of convergence of the
generalization error. This result is related to our Theorem 3. The most important difference
is that we do not assume that the target function has bounded RKHS norm. Instead we obtain
the precise asymptotics of the generalization error in a regime in which it is nonvanishing.
As illustrated in Section 1.3, this asymptotic analysis captures indeed the actual behavior in
practically reasonable settings.

From a technical viewpoint, several of our calculations make use of harmonic analysis
over the d-dimensional sphere, as it is natural given that x;’s are uniform over the sphere.
Spherical harmonics expansion appear in related contexts, for example, in [7, 21, 57].

Let us finally mention that an alternative approach to the analysis of two-layers neural
networks in the wide limit, was developed in [16, 42, 44, 51, 53] using mean field theory.
Unlike in the neural tangent approach, the evolution of network weights is described beyond
the linear regime in this theory.

5. Technical background. In this section, we introduce some notation and technical
background which will be useful for the proofs in the next sections. In particular, we will use
decompositions in (hyper)spherical harmonics on the S¢~!(+/d) and in orthogonal polyno-
mials on the real line. All of the properties listed below are classical: we will however prove
a few facts that are slightly less standard. We refer the reader to [15, 24, 55] for further infor-
mation on these topics. As mentioned above, expansions in spherical harmonics were used in
the past in the statistics literature, for instance, in [7, 21].

5.1. Functional spaces over the sphere. Ford >3, we let ST~ 1(r) = {x e R¢ : ||x|]» =
r} denote the sphere with radius r in R¢. We will mostly work with the sphere of radius
Vd, S 1(/d) and will denote by 7;_; the uniform probability measure on S4-1(/d). All
functions in the following are assumed to be elements of L3871 (J/d), t4—1), with scalar
product and norm denoted as (-, -);2 and || - ||;2:

(8) o= [, o s @)

For ¢ € Zxy, let Vd,g be the space of homogeneous harmonic polynomials of degree ¢
on R? (i.e., homogeneous polynomials ¢ (x) satisfying Ag(x) = 0), and denote by V, , the
linear space of functions obtained by restricting the polynomials in Vd, ¢ to S1(/d). With
these definitions, we have the following orthogonal decomposition:

o

(29) L* (SN WVd), ta—1) =P Vae.
£=0

The dimension of each subspace is given by

24d—2(t+d-73
(30) dim(vd,g):B(d,z):%( +€ )

For each ¢ € Z~, the spherical harmonics { Yz(flj)}lf je<B(d,¢) form an orthonormal basis of

Va,e:

d)
(Yk(i ), Y(j ))Lz = 8;jSks-

s

Note that our convention is different from the more standard one, that defines the spherical
harmonics as functions on S?~!(1). It is immediate to pass from one convention to the other
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by a simple scaling. We will drop the superscript d and write Y, ; = Yg(’d/-) whenever clear
from the context. 4

We denote by Py the orthogonal projections to Vy  in Lz(Sd_l(\/E), T4—1). This can be
written in terms of spherical harmonics as

B(d k)
(€29) Pefe)= D (fs ) 2 Yu ().
I=1

We also define P<y = Zi:o Pi, Py =1 —P< = Zlfié-i-l Py and Py = P<¢_1, Px¢ =
Por—1.

5.2. Gegenbauer polynomials. The £th Gegenbauer polynomial Qéd) is a polynomial of
degree ¢. Consistently with our convention for spherical harmonics, we view Ql(zd) as a func-
tion Ql(zd) :[—d, d] — R. The set {Qéd)}gzo forms an orthogonal basis on L*([—d, d], fc}_l),

where fc}_ | is the distribution of Jd (x,e1) when x ~ t;_1, satisfying the normalization
condition:

1
(32) (0" (Valer, ), 05" (Valer, ) 2gi1(yay =

S Y
B(d. k) ¥

In particular, these polynomials are normalized so that Q(d) (d) = 1. As above, we will omit
the superscript d when clear from the context.

Gegenbauer polynomials are directly related to spherical harmonics as follows. Fix v €
S?=1(y/d) and consider the subspace of V, formed by all functions that are invariant under
rotations in R¥ that keep v unchanged. It is not hard to see that this subspace has dimension
one, and coincides with the span of the function QEd)((v, ).

We will use the following properties of Gegenbauer polynomials:

1. For x, y € S 1(J/d)

) () 1 )
(33) <QJ (<xa >)’ Qk (<y’ >)>L2 - B(d,k) ]kQ (< >)
2. Forx,y e S~ 1(JVd),
(34) 0 (x, y)) = — Bka) Dy D (y).
=B & Y
3. Recurrence formula
(d) () k+d (d)
(35) Q (1) = 2k+d 2Q ()+2k+d 2Qk+1(t)-
4. Rodrigues’ formula
@ 2\ G=d)/2 ; 4\ k 2\ k+d=3)/2
(36) 0 (1) =(—1)kck,d<1 - ﬁ) (a) (1 - ﬁ) ,

where Cr.g = (d/2)FT((d — 1)/2)/ T (k + (d — 1)/2).

Note in particular that property 2 implies that—up to a constant—Q,({d) ({x, y)) is a represen-
tation of the projector onto the subspace of degree-k spherical harmonics

(37 (Pef)(x) = B(d, k) / e CNNOLAICH]
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For a function o € Lz([—«/g, NZi) r[}_l) (where Tg}—1 is the distribution of (x1, xz)/\/g

when x1, X7 ~iid Unif(Sd -1 (\/c_l))), denoting its spherical harmonics coefficients A4 (o) to
be

(38) @)= [ oo (Vv @),

then we have the following equation holds in L2([—\/ZI , «/3], rt}_l) sense

o(x) =Y hax(0) B, k) QY (Vdx).

k=0

To any rotationally invariant kernel Hy(x1,x2) = hg({x1,x2)/d), with ha(Vd") €
L2([—~/d, /4], rﬁ}_l), we can associate a self-adjoint operator .77 : L2(S4-1(Jd)) —

LS~ 1(V/d)) via

(39) A=

By rotational invariance, the space Vi of homogeneous polynomials of degree k is an
eigenspace of 7;, and we will denote the corresponding eigenvalue by &4 x(hy). In other
words, 75 f (x) := Z,?io Ad k(hag)Pk f. The eigenvalues can be computed via

a((x,x1)/d) f(x1)Ta—1(dx ).

(40) Saxha) = /[ ha (o)D) QP (W)t} ().

—Vd,/d]
5.3. Hermite polynomials. The Hermite polynomials {Hey },>0 form an orthogonal basis

of L*(R, y), where vy (dx) = e 2dx /+/2m is the standard Gaussian measure, and He; has
degree k. We will follow the classical normalization (here and below, expectation is with
respect to G ~ N(0, 1)):

(41) E{He;(G)Hex(G)} = k!5 4.

As a consequence, for any function g € L?(R, y), we have the decomposition

o0

“2) 80 =Y " be (), () = Elg (G He(@)).
k=0 '

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer
polynomials introduced in the previous section. Indeed, the Gegenbauer polynomials (up to
a +/d scaling in domain) are constructed by Gram—Schmidt orthogonalization of the mono-
mials {xk}kzo with respect to the measure f{}_l, while Hermite polynomial are obtained by
Gram—Schmidt orthogonalization with respect to y. Since fal,_l = y (here = denotes weak
convergence), it is immediate to show that, for any fixed integer k,

; (d) 1/2 1
(43) dll)ngo Coeff{ 0} (Vdx)B(d, k)" } = Coeff{WHek(x)}.
Here and below, for P a polynomial, Coeff{ P (x)} is the vector of the coefficients of P. As a
consequence, for any fixed integer k, we have

(44) pi@) = Tim g x(0) (B, Rk,

where 1 (0) and A4 k(o) are given in equations (42) and (38).
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5.4. Notation. Throughout the proofs, O4(-) (resp., o4(-)) denotes the standard big-O
(resp., little-o) notation, where the subscript d emphasizes the asymptotic variable. We denote
Oq4.p(-) (resp., o4 p(-)) the big-O (resp., little-0) in probability notation: 41 (d) = Og4 p(h2(d))
if for any ¢ > 0, there exists C; > 0 and d; € Z-.¢, such that

P(|h1(d)/ ha(d)| > Ce) <& Vd = dp,

and respectively: h1(d) = 04 p(h2(d)), if h1(d)/ h2(d) converges to 0 in probability.

We will occasionally hide logarithmic factors using the ONd(‘) notation (resp., 04(-)):
hi(d) = éd (h2(d)) if there exists a constant C such that /1 (d) < C(log d)Chy(d). Similarly,
we will denote O~d,]p(-) (resp., 04,p(-)) when considering the big-O in probability notation up
to a logarithmic factor.

6. Proof of Theorem 2(a): NT model lower bound.

6.1. Proof of Theorem 2(a): Outline. The proof for the NT model follows the same
scheme as for the RFcase presented in Appendix A of the Supplementary Material. How-
ever, several steps are technically more challenging.

Recall that (w;);e(n) ~ Unif(S?—1) independently. We define 0; = Jd - w; forie
[N], so that (6;)icin] ~ Unif(SY~1(v/d)) independently. Let W = (wy,..., wy), and
® = (0,...,0n). We denote Eg to be the expectation operator with respect to § ~
Unif(S~1(/d)), Ex to be the expectation operator with respect to x ~ Unif(S?~!(/d)) and
Ey to be the expectation operator with respect to w ~ Unif(S?—1(1)).

We define the random vector V = (V1,...,Vy) € RN where, for each J<N,V;e
R9, and analogously V<pi1 = (Vi <¢41,..., VN<ex)' €RY Vi) = (Vioiits ...,
VN,>5+1)T e RN a5 follows:

Vi<ert = Ex[[P<or1 fal(x)o’ ((8:, x)/V/d)x],
Vi1 =Ex[[Poq1 fal(x)a’ (8:, x) /Vd)x],
Vi=Ex[fa)a'((0;,x)/Vd)x] =Vi<or1+ Visir1.

We define the random matrix U = (Uj;); jein) € RNV

R?*4 is given by

, where, for each i, j < N, U;; €

(45) Ujj =E[o'((x,0:)/Vd)o'((x,0,)/vd)xx"].

In what follows, we write RnT(f7) = RnT(fa, W) = Rn1(f4, ©/ V/d) for the random fea-
tures risk, omitting the dependence on the weights W = ©/+/d. By the definition and a
simple calculation, we have

Rr(fo) = min {Ex[fa(x)’] = 2(a. V) + (a. Ua)}
=E.[fax)’] - VUV,
Rnt(P<eri fa) = min {Ex[Pr1 fa(®)’] = 2(a, V <es1) + (@, Ua))

=Ee[Prt1 fa()?] = VL, U Vo

By orthogonality, we have

Ex[fa(¥)?] = Ex[[P<e1 fa](x)?] + Ex [[P= 41 £21(x)?],
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which gives
|RNT(fa) — RNT(P<e41 fa) — Ex [P 41 fal(x)?]]
=Vl U W - VUV
=Vl U Warpi = (Ve + Varg ) U (Varn + Vg
=2VTU'Wo 1 — VI, UV
2|02Vt [ U2V + U IV e 13

<2JU2| IV etz fall 2 + U oIV s 15,
where the last inequality used the fact that
0<Rnt(fo)=fall3. = VUV,
so that
U2V 5= VTU~Y < fall2.
We claim that we have
(46) IV > es1ll2/IIP>et1 fall 2 = 0a,p(1),
(47) U op = Oa (D),
This is achieved in the following two propositions.
PROPOSITION 1 (Expected norm of V). Let o be an activation function satisfying As-
sumption 2(a). Define
Exe =Eg[(Ex[P=¢ fe(x)0" ({0, x)/Vd)x], Ex[P=¢ fu(x)0" (46, x)//d)x])]
=Ey v/[P=0 fu(0)P=0 fi (') Eg[o” (40, x)/Vd)o' (0. x)/Vd) . x)]].

where expectation is with respect to x, x" ~; ; q. Unif(Sd_1 (\/3)). Then there exists a constant
C (depending only on the constants in Assumption 2(a)) such that, for any £ > 1 and d > 6,

2
& < m l Pz(f*||Lz(Sd—1(ﬁ))-

PROPOSITION 2 (Lower bound on the kernel matrix). Let N = og4 (d“l) for some £ €
Z~q, and (0;)ic[N] ~ Unif(S?~1(Vd)) independently. Let o be an activation that satisfies
Assumptions 2(a) and 2(b). Let U € RNN4 pe the kernel matrix with i, j block U, € Rdxd
defined by equation (45). Then there exists a constant € > 0 that depends on the activation
function o, such that

)\min(U) )
with high probability as d — oo.

Proposition 1 will be proven in the next section, while the longer proof of Proposition 2 is
deferred to Appendix C of the Supplementary Material. Proposition 1 shows that

CNd

E[||V N<——7——IP 3.
[V se+1l3] “BWd (12 IP>eq1 fall3

Note B(d, £ +2) = ©4(d**?), and N = 04(d**"). By Markov inequality, we have equation
(46). Equation (47) follows simply by Proposition 2. This proves the theorem.
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6.2. Proof of Proposition 1.  We denote the Gegenbauer decomposition of o’ ({e, -)) by

o'({e.x)) =" B(d, k)i (0) Qk(Vd (e, x)),

k=0
where
he(0') = (o’ ((e. ). Qu(Vdie, ))) 2
By Lemma C.1 in the Supplementary Material, applied to function ¢’ (instead of o), un-

der Assumption 2(a), we have [|o’({e, -))I|i2 < C (for C a constant independent of d). We
therefore have (recalling the normalization of the Gegenbauer polynomials in equation (32))

(48) > Mlo')?B(d. k) =o' ((e.)) |72 < C.
k=0

We define the NT kernel by
H(x,x') =Eg[o’((0, x)/\/g)o/((O, x/)/\/g)](x, x’).
Then
H(x,x')

=g [i B(d, k)A (o) Ok ((0, x)) % B(d,Hr(a") Qu((0, x/))](x, x’)

k=0 =0

“49) - i B(d, k)*1i (') Eg[ Q1 (0, X)) Ok (0, X)) ](x, x')

k=0

= > B RV Ol ¥ ¥,

k=0
where in the last step we used equation (33). By the recurrence relationship for Gegenbauer
polynomials (35), we have

éQk(l) =S,k Qk—1(t) +ta x Qk+1(1),

where
k
S d =2
ldk = —k td -2 .
’ 2k+d -2
We use the convention that z; _; = 0. This gives
(50) sup [$q.k+1+tak—11= sup [k+1 +k+d_3}<
d>6,k>0 ’ d=6.k>0L2k +d ~ 2k+d—4]"

Hence we get

H(x,x') = id - B(d, k)2 (07)? Qi ((x, x))(x, x')/d
k=0

=" d- B, O)re(0") [sa.k Qr—1 (%, X)) + ta & Ors1 ((x, x7))]
k=0

= i Lk Qk(fx, x')),

k=0
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where
Tyx=d-[tax—1r-1(0")’B(d. k—1) +sqip1res1(0") B(d, k +1)]
<2dC.

The last inequality follows by equations (48) and (50).
We define

& = Bo[(Ex[Pr f(x)0" ({8, x) /Nd)x], Ex[Pr £ (x)a’ (0, x) /v/d)x])]
=Ex,x/[[Pkf*](x)H(x»x )[Pkf* (x )]

Using the fact that the kernel H preserve the decomposition (29), we have

52( == ng

k>t

Note by equation (49), we have (as always, expectations are with respect to x,x’ ~
Unif(S4—1(V/d)) independently)

Ek = Ex [Pk full ) H (x, %) [Pr £ (x") ]

B(d.K) B(d.k)
=Ey x/|: > ()Y ()T ax O((x, x') Z Mies (f3) Yis (x )}

=1

B(d,k) B(d,k
= Z Z 1 (Fhies (F)Ex xr [ Yir () Ok ((x, x7) Yis (x7) ]

B(d,k) B(d k)

r
d.k Z Z Mt (f)ris (f)dis

=1 s=1

_B(d 0 X P full j2 £ —— B k) P il 72,

where the fourth equality used the fact that Ey [V (x) Ok ((x, ")) Yis (x")] = 815/ B(d, k).
Hence we have

g> P> * 25
= ng_B(d ) NP> fullf2

where we used the fact that B(d, k) is nondecreasing in k (see Lemma A.1 in the Supplemen-
tary Material). This concludes the proof.
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SUPPLEMENTARY MATERIAL

Supplement to “Linearized two-layers neural networks in high dimension” (DOI:
10.1214/20-A0S1990SUPP; .pdf). The Supplementary Material contains the proofs of The-
orem 1(a) in Appendix A, Theorem 1(b) in Appendix B, Proposition 2 in Appendix C, The-
orem 2(b) in Appendix D and Theorem 4 in Appendix E. We included additional numerical
simulations using Ridge regression in Appendix F.
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