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Improving performance of deep learning models
with axiomatic attribution priors and expected
gradients

Gabriel Erion"24, Joseph D. Janizek'?#, Pascal Sturmfels'4, Scott M. Lundberg'® and Su-In Lee ®'™

Recent research has demonstrated that feature attribution methods for deep networks can themselves be incorporated into
training; these attribution priors optimize for a model whose attributions have certain desirable properties—most frequently,
that particular features are important or unimportant. These attribution priors are often based on attribution methods that
are not guaranteed to satisfy desirable interpretability axioms, such as completeness and implementation invariance. Here we
introduce attribution priors to optimize for higher-level properties of explanations, such as smoothness and sparsity, enabled
by a fast new attribution method formulation called expected gradients that satisfies many important interpretability axioms.
This improves model performance on many real-world tasks where previous attribution priors fail. Our experiments show that
the gains from combining higher-level attribution priors with expected gradients attributions are consistent across image, gene
expression and healthcare datasets. We believe that this work motivates and provides the necessary tools to support the wide-
spread adoption of axiomatic attribution priors in many areas of applied machine learning. The implementations and our results

have been made freely available to academic communities.

has focused on feature attribution methods. Given an input

datum, a model and a prediction, such methods assign a num-
ber to each input feature that represents how important the feature
was for making the prediction. Current research also investigates
the axioms that attribution methods should satisfy'* and how they
provide insight into model behaviour®*. Feature attribution meth-
ods often reveal problems in a model or dataset. For example, a
model may place too much importance on undesirable features,
rely on many features when sparsity is desired or be sensitive to
high-frequency noise. In such cases, humans often have a prior
belief about how a model should treat input features but find it dif-
ficult to mathematically encode this prior for neural networks in
terms of the model parameters.

One method to address such problems is what we call an attri-
bution prior: if it is possible for explanations to reveal problems in
a model, then constraining the model’s explanations during train-
ing can help the model avoid such problems. It is worth noting
that the vast majority of feature attribution methods focus exclu-
sively on explaining why a given prediction was made. Only a very
small number of papers have investigated incorporating attribu-
tions themselves into model training. The first such paper, by Ross
et al.’, used a binary indicator of whether each feature should or
should not be important for making predictions on each sample in
the dataset and penalized the gradients of unimportant features. A
very recent publication successfully used the gradient-based prior
of Ross et al. as part of a human-in-the-loop strategy to improve
model generalization performance and user trust, as well as con-
tributing their own model-agnostic method for penalizing feature
importances'’. Such results create a clear synergy with our study,
which improves the quality of calculated feature importances and
develops new forms of attribution priors. This has the potential to

Recent work on interpreting machine learning (ML) models

greatly expand both the number of ways that a human-in-the-loop
can influence deep models and the precision with which they can
do so. However, two drawbacks limit this method’s applicability to
real-world problems. First, gradients do not satisfy the same theo-
retical guarantees as modern feature attribution methods. This
leads to well-known problems such as saturation: operations, such
as rectified linear units (ReLUs) and sigmoids, which have large
flat ‘saturated’ regions, can lead to zero gradient attribution even
for important features’. Second, it can be difficult to specify which
features should be important in a binary manner.

Additional recent work discusses the need for priors that incor-
porate human intuition to develop robust and interpretable mod-
els'. Still, it remains challenging to encode priors such as ‘have
smoother attributions across an image’ or ‘treat this group of fea-
tures similarly’ by penalizing a model’s input gradients or param-
eters. Some recent attribution priors have proposed regularizing
integrated gradients (IG) attributions'>"”. While promising, this
work suffers from three major weaknesses: it does not clearly dem-
onstrate improvements over gradient-based attribution priors,
it penalizes attribution deviation from a target value rather than
encoding sophisticated priors such as those we mention above,
and it imposes a large computational cost by training with tens to
hundreds of reference samples per batch. A contemporary method
called contextual decomposition explanation penalization (CDEP)
uses a framework similar to attribution priors and penalizes expla-
nations generated by the contextual decomposition method.
Unlike all other interpretability methods discussed in this paper,
CDEDP penalizes explanations for pre-specified groups of features,
meaning it is best suited for a different set of problems than we con-
sider. More discussion of CDEP can be found in ‘Attribution pri-
ors are a flexible framework for encoding domain knowledge’ and
Supplementary Sections A and B.
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The main contribution of this work is a broadened interpretation
of attribution priors that includes any case in which the training
objective incorporates differentiable functions of a model’s feature
attributions. This can be seen as a generalization of gradient-based
regularization”'*~'* and it can be used to encode meaningful domain
knowledge more effectively than existing methods. Whereas previ-
ous attribution priors generally took the form of ‘encourage feature
i’s attribution to be near a pre-determined target value), the priors we
present here consider relative importance among multiple features
and do not require pre-determined target values for any feature’s
attribution. Specifically, we introduce an image prior enforcing that
neighbouring pixels have similar attributions, a graph prior for bio-
logical data enforcing that related genes have similar attributions,
and a sparsity prior enforcing that a few features have large attribu-
tions while all others have near-zero attributions.

We also introduce a new general-purpose feature attribution
method to enforce these priors, expected gradients (EG). As men-
tioned above, virtually all attribution methods are designed to
explain a model’s prediction to humans, not to be penalized during
training. This means many such methods may be computationally
difficult to incorporate into the training process. EG is an attribu-
tion method explicitly designed for regularization as an attribution
prior (Fig. 1a); it can be efficiently regularized during training due
to its formulation as an expectation, which naturally lends itself to
batched estimates of the attribution. It also eliminates a hyperpa-
rameter choice required by IG”. Since these attributions are used
not only to interpret trained models but also as part of the training
objective itself, it is essential to guarantee that the attributions will
be of high quality. We therefore show that our attribution method
satisfies important interpretability axioms.

Across three different prediction tasks, we show that training
with EG outperforms training with previous, more limited versions
of attribution priors. On images, our image prior produces a model
that is more interpretable and generalizes better to noisy data. On
gene expression data, our graph prior reduces prediction error and
better captures biological signal. Finally, on a patient mortality pre-
diction task, our sparsity prior yields a sparser model and improves
performance when learning from limited training data.

Results

Attribution priors are a flexible framework for encoding domain
knowledge. Let X € R"*? denote a dataset with labels y € R"*,
where 7 is the number of samples, p is the number of features and o
is the number of outputs. In standard deep learning, we find optimal
parameters 6 by minimizing loss £, with a regularization term £2’(6)
weighted by 4’ on the parameters:

0 = argmin, L(6;X, y) + 1'Q/(0).

Attribution priors involve a model’s attributions, represented by
the matrix ®(6,X), where each entry ¢? is the importance of fea-
ture i in the model’s output for sample #. The attribution prior is a
scalar-valued penalty function of the feature attributions (®(6, X)),
which represents a log-transformed prior probability distribution
over possible attributions (4 is the regularization strength). The
attribution prior is modular and agnostic to the particular attribu-
tion method. This results in the optimization:

0 = argmin, L(6;X, y) + A02(9(0, X)),

where the standard regularization term has simply been replaced
with an arbitrary, differentiable penalty function on the feature
attributions.

While feature attributions have previously been used in train-
ing (more details in ‘Previous attribution priors’ in Methods)*",
our approach offers two novel components. First, we demonstrate

that calculating @ with attribution methods that satisfy previously
established interpretability axioms improves performance (see ‘EG
outperforms other attribution methods’ and ‘Expected gradients’ in
Methods for further discussion of interpretability axioms). Second,
rather than simply encouraging each feature’s attribution to be near
a target value as in previous work, we enforce high-level priors over
the relationships between features.

In image data, we use a Laplace zero-mean prior on the differ-
ence between attributions of adjacent pixels, which encourages a
low total variation (high smoothness) of attributions:

Dpixet (P(0, X)) = Z Z |¢f+1,j - ¢fj| + |¢fj+1 - ¢fj|’

e ij

where i,j indexes the pixels of an image by rows and columns,
respectively and # indexes each image.

In gene expression data, we use a Gaussian zero-mean prior on
the difference between mean absolute attributions ¢, of functionally
related genes, which encourages such similar genes to have similar
attributions:

Queapn (B0, X)) = >~ Wij(h; = 4))" = §' Ladh

where T represents a vector transpose, W, is the weight of connec-
tion between two genes in a biological graph, and L is the graph
Laplacian.

Finally, in health data where sparsity is desired, we use a prior
on the Gini coefficient of the mean absolute attributions ¢,, which
encourages a small number of features to have a large percentage of
the total attribution while others are near zero:

N
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»Qsparse(@(g; X)) = _]7‘07_ = _ZG(i)’
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where G is the Gini coefficient.

None of these priors requires specifying target values for features,
and all improve performance over simpler baselines. For more details
on our priors, see ‘Specific priors’ in Methods, and for more details
on previous attribution priors, see ‘Previous attribution priors’ in
Methods. We also note that these priors involve the relationships
between the attributions for all features in the dataset. Gradients, IG
and our method (EG) discussed below are all designed for calculat-
ing such attributions. The CDEP method discussed above differs in
that it penalizes the attributions of a single pre-specified group of
features'*; while CDEP has reported better performance with cer-
tain types of prior than EG and gradients, we believe this is due to
the fact that the methods are inherently best suited to different types
of prior. Using CDEP with the specific priors proposed in this work
would require several orders of magnitude more backward passes of
the model during training than our approach. CDEP also uses addi-
tional preprocessing steps that are not necessary in our approach,
which further distinguishes the scenarios in which each method is
most applicable. For further discussion of related work, including
a discussion of specific cases for which our method and CDEP are
best suited, see Supplementary Sections A and B.

EG outperforms other attribution methods. Attribution priors
involve using feature attributions not just as a post-hoc analy-
sis method but also as a key part of the training objective. Thus,
it is essential to guarantee as much as possible that the attribution
method used will produce high-quality attributions and run fast
enough to be calculated for each training batch. We propose an
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Fig. 1| EG is a feature attribution method designed to be regularized during training. a, A comparison of our method, EG, to IG as both a post-hoc explanation
method (left), and as a differentiable feature attribution to be penalized during training to enforce attribution priors (right). b, Comparison of saliency maps
generated by three different attribution methods on an image from the ImageNet dataset. The saliency maps demonstrate how the IG attribution method fails
to highlight black pixels as important when black is used as a baseline input, while EG is capable of highlighting the black pixels in these images as important.
¢, Comparison of saliency maps for the same three attribution methods for two MNIST digits. Again, |G fails to highlight potentially relevant image regions
(like the empty middle of the O or the empty region at the top of the 4, which might make the digit resemble a 9 if it were filled in).

axiomatic feature attribution method called expected gradients
(EG), which avoids problems with existing methods and is natu-
rally suited to being incorporated into training. EG extends the IG
method?, and like IG, satisfies a variety of desirable interpretability
axioms such as completeness (the feature attributions sum to the
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output for a given sample) and implementation invariance (the
attributions are identical for any of the infinite possible implemen-
tations of the same function). Because these methods satisfy com-
pleteness, they are not subject to the problems with input saturation
that affect gradient attributions. Because these methods satisfy
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Table 1| Synthetic data benchmark results for attribution
methods

Method Remove Remove Remove Convergence
positive negative absolute time

EG 3.612 3.759 0.897 0.150

IG 3.539 3.687 0.872 0.989

Gradients 0.035 0.110 0.729 0.250

Random —0.053 0.034 0.400 -

Larger numbers mean a better feature attribution method for all metrics other than convergence
time, for which a smaller number indicates faster convergence. The first three metrics measure
the quality of the method for correctly identifying important features, whereas convergence time
indicates how effectively the method is regularized during training as an attribution prior. The
‘remove positive’ metric measures the average magnitude change in model output when the
features identified as having the largest positive impact by each method are masked by the feature
mean, whereas ‘remove negative’ measures the average magnitude change in model output when
the features identified as having the largest negative impact by each method are masked by the
feature mean. The ‘remove absolute’ metric measures the average increase in model loss when the
features identified as having the largest magnitude impact on the model are masked by the feature
mean. Each model is trained on 900 samples and tested using 100 samples. EG attains the best
benchmark scores of all of the tested attribution methods (P=7.2x10~°, one-tailed binomial test,
tested across all 18 attribution performance metrics, see Supplementary Section D for details on
exact calculation of these metrics and exhaustive list of metrics considered).

implementation invariance, they are straightforward to practically
apply to any differentiable model, regardless of specific network
architectures (see ‘Expected gradients’ in Methods for an extended
discussion of the interpretability axioms satisfied by EG).

IG generates feature attributions by integrating the gradients of
the model’s output f between the sample of interest and a reference
sample x’ (Fig. 1a, left).

IGi(x) := /;:0 oftx’ + g)&x =) 4a

where 0 represents a partial derivative and a represents progress
along the integration path. If the attribution function @ in our
attribution prior 2(®(6,X)) is IG, regularizing @ would require
hundreds of extra gradient calls every training step (the original
IG paper’ recommends 20 to 300 gradient calls to compute attribu-
tions). This makes training with IG prohibitively slow—in fact, ref. **
finds that using IG can take up to 30 times longer than standard
training even when only back-propagating gradients through part of
the network. However, most deep learning models today are trained
using some variant of batch gradient descent, where the gradient
of a loss function is approximated over many training steps using
mini-batches of data. We can dramatically improve speed over an
IG attribution prior by using a similar idea and formulating the IG
integral as an expectation over integration path steps @ drawn from
a uniform distribution U (see Table 1 and Supplementary Section
D.1 for more details on convergence time benchmark). This Monte
Carlo estimate of the integral is the core of our EG method, defined
below for a single reference x”:

Iflx’ +ax (x—x))
axi ]

SingleRefEG,(x) = Eqou(o) [ (xi — ') X

Just like the gradient of the loss, EG attributions can be calcu-
lated in a batched manner during training (Fig. la, right). We let k
be the number of samples we draw for this Monte Carlo integral at
each mini-batch. Remarkably, because the variance in each batched
EG attribution will be smoothed over thousands of batches dur-
ing training, we find that as small as k=1 suffices to regularize the
explanations.

This expectation formulation also enables us to solve a long-
standing problem with IG as an attribution method—the choice

of the required background reference x'. For example, in image
tasks, the image of all zeros is often chosen as a baseline, but doing
so implies that black pixels will not be highlighted as important
(Fig. 1b,c). This problem can be solved by integrating gradients over
multiple references. However, calculating multiple Riemann inte-
grals is expensive in terms of time and memory, probably prohibi-
tively so if calculated during every batch of training (Fig. 1a, right).
EG naturally accommodates multiple references by performing the
Monte Carlo integral with samples from multiple references and
interpolation points (here, x is the sample, x” is a reference and D is
the reference distribution):

oflx’ +a x (x—x)) |
ax,v

EGi(x) = Ev~pa~v [ (% — %) x

In principle, any distribution D over reference samples could be
used to calculate EG attributions; choosing which distribution to
use depends on the nature of the attribution problem. For exam-
ple, setting D to be a single sample recovers single-reference EG:
the same reference setup as IG but with the Monte Carlo speedup
of EG (Supplementary Section D.1). By default, we do not choose
D to be a single sample but rather a uniform distribution over the
entire training set. This tells us which features cause x’s output to be
different from the output at all other points in the dataset, on aver-
age. In certain cases, we may want to use a different distribution D.
For example, we might want to distinguish between subgroups and
understand why a digit is classified as a ‘seven’ rather than a ‘one’
by choosing references only from the ‘one’-labelled training sam-
ples. We could also account for baseline subgroup characteristics by
explaining, for example, an 80-year-old patient’s mortality risk rela-
tive to other 80 year olds; this could prevent age and age-correlated
features from being trivially listed as the most important. While our
formulation and implementation of EG support any choice of distri-
bution D, the examples in this paper do not focus on subgroup anal-
ysis, so we set D to be a uniform distribution over the training set
(see ‘Expected gradients’ in Methods and Supplementary Section C
for implementation details and pseudocode).

In a simple experiment using synthetic data to assess the impact
of k on the convergence time of model training (rather than the
convergence of a single explanation), we found that regularizing
EG with k=1 was more effective at removing a model’s depen-
dency on one of two correlated features than gradients or even IG
with more than k samples (Table 1, Supplementary Section D and
Supplementary Fig. 4). The k=1 setting also appeared optimal for
EG; setting k> 1 required more total gradient calls for convergence
(Supplementary Section D.1 and Supplementary Fig. 3). We also
compare EG to other feature attribution methods using synthetic
data benchmarks introduced in ref. ° (Table 1), which are available
as part of the SHAP software package. These benchmark metrics
evaluate whether each attribution method finds the most important
features for a given dataset and model. EG significantly outperforms
the next best feature attribution method (P=7.2x107°, one-tailed
binomial test). We believe this demonstrates another benefit of
EG; by averaging attributions over multiple reference samples,
it becomes more robust to the wide array of patterns of missing-
ness and re-imputation tested in the benchmark. We provide more
details and additional benchmarks in Supplementary Section D.

A pixel attribution prior improves robustness to image noise.
Previous work on interpreting image models has focused on creating
pixel attribution maps, which assign a value to each pixel indicating
how important that pixel was for a model’s prediction®". Attribution
maps can be noisy and difficult to understand due to their tendency
to highlight seemingly unimportant background pixels, indicating
the model may be vulnerable to adversarial attacks?. Although we
may prefer a model with smoother attributions, existing methods
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Fig. 2 | Pixel attribution prior improves saliency map smoothness and increases robustness of MNIST classifier to noise. a, EG attributions (from 100
samples) on MNIST for both an unregularized model and a model trained with an attribution prior regularized using EG. The latter achieves visually
smoother attributions, and it better highlights how the network classifies digits (for example, the top part of the 4 being very important). Unlike previous
methods that take additional steps to smooth saliency maps after training"??, these are unmodified saliency maps directly from the learned model.

b, Training with an attribution prior on total variance of EG attributions induces robustness to Gaussian noise without specifically training for robustness.
This robustness greatly exceeds that provided by an attribution prior on the total variance of model gradients. Shaded bars around each line indicate
standard deviation of the accuracy results; however, the bars are small enough to be indistinguishable in this plot.

only post-process attribution maps but do not change model
behaviour'**"*. Such techniques may not be faithful to the original
model". In this section, we describe how we applied our framework
to train image models with naturally smoother attributions.

To regularize pixel-level attributions, we used the following intu-
ition: neighbouring pixels should have a similar impact on an image
model’s output. To encode this intuition, we chose a total variation
loss on pixel-level attributions (see ‘Specific priors’ in Methods for
more detail). We applied this pixel smoothness attribution prior
to the Modified National Institute of Standards and Technology
(MNIST) database, containing handwritten digits classified from 0
to 9, and the Canadian Institute for Advanced Research (CIFAR)-10
dataset, containing colour images classified into 10 categories such
as cats, dogs and cars'>*. On MNIST we trained a two-layer convo-
lutional neural network; for CIFAR-10 we trained a VGG16 network
from scratch (see Tmage model experimental settings’ in Methods
for more details)*. In both cases, we optimized hyperparameters for
the baseline model without an attribution prior. To choose 4, we
searched over values in [107%,107!] and chose the A that minimized
the attribution prior penalty and achieved a test accuracy within 1%
of the baseline model for MNIST and 10% for CIFAR-10. Figures 2
and 3 show EG attribution maps for both the baseline and the model
regularized with an attribution prior on five randomly selected test
images on MNIST and CIFAR-10, respectively. In all examples, the
attribution prior yields a model with visually smoother attributions.
Remarkably, in many instances, smoother attributions better high-
light the target object’s structure.

Recent work has suggested that image classifiers are brittle
to small domain shifts: small changes in the underlying distribu-
tion of the training and test set can lead to large reductions in test
accuracy”. To simulate a domain shift, we applied Gaussian noise
to images in the test set and re-evaluated the performance of the
regularized and baseline models. As an adaptation of ref. °, we also
compared the attribution prior model with regularizing the total
variation of gradients with the same criteria for choosing 1. For each
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method, we trained five models with different random initializa-
tions. In Figs. 2 and 3, we plot the mean and standard deviation of
test accuracy on MNIST and CIFAR-10, respectively, as a function
of standard deviation of added Gaussian noise. The figures show
that our regularized model is more robust to noise than both the
baseline and gradient-based models.

Both the robustness and more intuitive saliency maps our
method provides come at the cost of reduced test set accuracy
(0.93+0.002 for the baseline versus 0.85+0.003 for pixel attribu-
tion prior model on CIFAR-10). Mathematically, adding a penalty
term to the optimization objective should only ever reduce train-
ing set performance; it is reasonable that in many cases this can
lead to a reduction in test-set performance as well. However, test
accuracy is not the only metric of interest for image classifiers.
The trade-off between robustness and accuracy that we observe
is consistent with previous work that suggests image classifi-
ers trained solely to maximize test accuracy rely on features that
are brittle and difficult to interpret''”*>?. Despite this trade-off,
we find that at a stricter hyperparameter cutoff for 4 on CIFAR-
10—within 1% test accuracy of the baseline, rather than 10%—our
methods still achieve modest but significant robustness relative
to the baseline. We also evaluated our method against several
other attribution priors including IG and, for ablation purposes,
single-reference EG (Supplementary Figs. 10 and 11). We found
that the pixel attribution prior outperformed standard IG and
that most of this additional performance was due to our random
interpolation. Both the pixel attribution prior and single-reference
EG were much more robust than all other methods; however, only
the pixel attribution prior, which used multiple references, could
highlight important foreground and background regions in addi-
tion to providing robustness and smoothness. For details of the EG
versus IG comparison, results at different hyperparameter thresh-
olds, more details on our training procedure and additional experi-
ments on MNIST, CIFAR-10 and ImageNet, see Supplementary
Sections E-H.
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Fig. 3 | Pixel attribution prior improves saliency map smoothness and increases robustness of CIFAR-10 classifier to noise. a, EG attributions (from 100
samples) on CIFAR-10 for both the baseline model and the model trained with an attribution prior for five randomly selected images classified correctly by
both models. Training with an attribution prior generates visually smoother attribution maps in all cases. Notably, these smoothed attributions also appear
more localized towards the object of interest. b, Training with an attribution prior on total variance of EG attributions induces robustness to Gaussian noise,
achieving more than double the accuracy of the baseline at high noise levels. This robustness is not achievable by choosing total variation of gradients as
the attribution function. Shaded bars around each line indicate standard deviation of the accuracy results.

A graph attribution prior improves anticancer drug response
prediction. In the image domain, our attribution prior took the
form of a penalty encouraging smoothness over adjacent pixels. In
other domains, there may be prior information about specific rela-
tionships between features that can be encoded as a graph (such as
social networks, knowledge graphs or protein—protein interactions).
For example, previous work in bioinformatics has shown that pro-
tein—protein interaction networks contain valuable information for
improving performance on biological prediction tasks*. Therefore,
in this domain, we regularized attributions to be smooth over the
protein—protein feature graph analogously to the regular graph of
pixels in the image.

Incorporating the £,,,,, attribution prior not only led to a model
with more reasonable attributions but also improved predictive per-
formance by letting us incorporate prior biological knowledge into
the training process. We downloaded publicly available gene expres-
sion and drug response data for patients with acute myeloid leu-
kaemia (AML, a type of blood cancer) and tried to predict patients’
drug response from their gene expression®”. For this regression
task, an input sample was a patient’s gene expression profile plus
a one-hot encoded vector indicating which drug was tested in that
patient, while the label we tried to predict was drug response (mea-
sured by IC50, a continuous value representing the concentration of
the drug required to kill half of the patient’s tumour cells). To define
the graph used by our prior, we downloaded the tissue-specific
gene-interaction graph for the tissue most closely related to AML in
the HumanBase database™.

A two-layer neural network trained with our graph attribu-
tion prior (£2,.,;,) significantly outperforms all other methods in
terms of test set performance as measured by R?, which indicates
the fraction of the variance in the output explained by the model
(Fig. 4, see ‘Biological experiments in Methods for significance
testing). Unsurprisingly, when we replace the biological graph
from HumanBase with a randomized graph, we find that the test
performance is no better than the performance of a neural network
trained without any attribution prior. Extending the method pro-
posed in ref. ° by applying our new graph prior as a penalty on the

model’s gradients, rather than a penalty on the axiomatically correct
expected gradient feature attribution, does not perform significantly
better than a baseline neural network. We also observe substantially
improved test performance when using the prior graph information
to regularize a linear LASSO model. Finally, we note that our graph
attribution prior neural network significantly outperforms graph
convolutional neural networks, a recent method for utilizing graph
information in deep neural networks®..

To find out whether our model’s attributions match biological
domain knowledge, we first compared the list of top genes gener-
ated by our network trained with a graph attribution prior (ranked
by mean absolute feature attribution) to a ‘ground truth’ list of
AML-relevant genes found by querying the GeneCards database
(Fig. 4b). When we count the number of AML-relevant genes at
each position in our network’s top gene list and compare this to the
number of AML-relevant genes at each position in a standard neu-
ral network’s top gene list, we see that the graph attribution prior
network captures significantly more biologically relevant genes.

In addition, to check for biological pathway-level enrich-
ments, we conducted gene set enrichment analysis (a modified
Kolmogorov-Smirnov test). We measured whether our top genes,
ranked by mean absolute feature attribution, were enriched for
membership in any pathways (see ‘Biological experiments in
Methods and Supplementary Section I for more detail, including
the top pathways for each model)”>. We find that the neural net-
work with the tissue-specific graph attribution prior captures far
more biologically relevant pathways (increased number of signifi-
cant pathways after false discovery rate correction) than a neural
network without attribution priors™. Furthermore, the pathways
our model uses more closely match biological expert knowledge,
that is, they included prognostically useful AML gene expression
profiles as well as important AML-related transcription factors
(Supplementary Section I)****. These results are expected, given that
neural networks trained without priors can learn a relatively sparse
basis of genes that will not enrich for specific pathways (for exam-
ple, a single gene from each correlated pathway), while those trained
with our graph prior will spread credit among functionally related
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Fig. 4 | Graph attribution prior improves test accuracy and biological relevance of anticancer drug response prediction model. a, A neural network
trained with our graph attribution prior (bold) attains the best test performance, while one trained with the same graph penalty on the gradients (italics,
adapted from ref. °) does not perform significantly better than a standard neural network (error bars indicate the extent of the bootstrapped 95%
confidence interval of the mean test set R? value, over ten retrainings of the model on random re-splits of the data). b, A neural network trained with our
graph attribution prior gives more weight to AML-relevant genes than a standard neural network trained without the graph attribution prior (solid line
indicates average over ten random re-splits of the data and retrainings of the model, error bands indicate the extent of the bootstrapped 95%

confidence interval).

genes. This demonstrates the graph prior’s value as an accurate and
efficient way to encourage neural networks to treat functionally
related genes similarly.

A sparsity prior improves performance with limited training
data. Feature selection and sparsity are popular ways to alleviate
the curse of dimensionality, facilitate interpretability and improve
generalization by building models that use a small number of input
features. A straightforward way to build a sparse deep model is to
apply an L1 penalty to the first layer (and possibly subsequent lay-
ers) of the network. Similarly, the sparse group lasso (SGL) method
penalizes all weights connected to a given feature®®, while a simple
existing attribution prior approach® penalizes the gradients of each
feature in the model.

These approaches suffer from two problems. First, a feature
with small gradients or first-layer weights may still strongly
affect the model’s output®. A feature whose attribution value
(for example, IG or EG) is zero is much less likely to have any
effect on predictions. Second, successfully minimizing penalties
such as L1—regardless of attribution type—is not necessarily the
best way to create a sparse model. A model that puts weight w on
1 feature is penalized more than one that puts weight w/2p on each
of p features. Previous work on sparse linear regression has shown
that the Gini coefficient G of the weights, proportional to 0.5 minus
the area under the cumulative distribution function of sorted val-
ues, avoids such problems and corresponds more directly to a sparse
model**!. We extend this analysis to deep models by noting that the
Gini coefficient can be written differentiably and used as an attribu-
tion prior.

Here we show that the £, attribution prior can build sparser
models that perform better in settings with limited training data.
We use a publicly available healthcare mortality prediction dataset
of 13,000 patients®, whose 35 features (118 after one-hot encod-
ing) represent medical data such as a patient’s age, vital signs and
laboratory measurements. The binary outcome is survival after ten
years. Sparse models in this setting may enable accurate models to
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be trained with very few labelled patient samples or reduce cost by
accurately risk-stratifying patients using few lab tests. We randomly
sampled training and validation sets of only 100 patients each, plac-
ing all other patients in the test set, and ran each experiment 200
times with a new random sample to average out variance. We built
three-layer binary classifier neural networks regularized using L1,
SGL and sparse attribution prior penalties to predict patient sur-
vival, as well as an L1 penalty on gradients adapted for global spar-
sity from refs. ***. The regularization strength was tuned from 1077
to 10° using the validation set for all methods (see ‘Sparsity experi-
ments’ in Methods and Supplementary Section J.2).

The sparse attribution prior enables more accurate test predic-
tions (Fig. 5a) and sparser models (Fig. 5¢) when limited training
data is available, with P<10~* and t > 4.314 by paired-samples ¢-test
for all comparisons. We also plot the average cumulative impor-
tance of sorted features and find that the sparse attribution prior
more effectively concentrates importance in the top few features
(Fig. 5d). In particular, we observe that L1 penalizing the model’s
gradients as in ref. ** rather than its EG attributions performs poorly
in terms of both sparsity and performance. A Gini penalty on gra-
dients improves sparsity but does not outperform other baselines
such as SGL and L1 in area under a receiver operating characteristic
curve (ROC AUC). Finally, we plot the average sparsity of the mod-
els (Gini coefficient) against their validation ROC AUC across the
full range of regularization strengths. The sparse attribution prior
exhibits higher sparsity than other models and a smooth trade-off
between sparsity and ROC AUC (Fig. 5b). Details and results for
other penalties, including L2, dropout and other attribution priors,
are in Supplementary Section J.

Discussion

The immense popularity of deep learning has driven its application
in many areas with diverse, complicated domain knowledge. While
it is in principle possible to hand-design network architectures to
encode this knowledge, a more practical approach involves the
use of attribution priors, which penalize the importance a model
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Fig. 5 | Sparse attribution prior builds sparser and more accurate healthcare mortality models. a,c, A sparse attribution prior enables more accurate test
predictions (a) and sparser models (¢) across 200 small subsampled datasets (100 training and 100 validation samples, all other samples used for test
set) than other penalties, including gradients. b, Across the full range of tuned parameters, the sparse attribution prior achieves the greatest sparsity and
a smooth sparsity-validation performance trade-off. d, A sparse attribution prior concentrates a larger fraction of global feature importance in the top few
features. ‘Gini’, ‘L1" and ‘'SGL" indicate the Gini, L1and SGL penalties, respectively, ‘grad’ indicates a penalty on the gradients, ‘all’ indicates a penalty on all
weights in the model and ‘Ist’ indicates a penalty on only the first weight layer. ‘Unreg’ indicates an unregularized model.

places on each of its input features when making predictions.
Unfortunately, previous attribution priors have been limited, both
theoretically and computationally. Binary penalties only specify
whether features should or should not be important and fail to
capture relationships among features. Approaches that focus only
on a model’s input gradients change the local decision boundary
but often fail to impact a model’s underlying decision-making.
Attribution priors on more complicated attributions, such as IG,
have proven computationally difficult.

Our work advances previous work both by introducing novel,
flexible attribution priors for multiple domains and by enabling
the training of such priors with a newly defined feature attribution
method. Our priors lead to smoother and more interpretable image
models, biological predictive models that incorporate graph-based
prior knowledge and sparser healthcare models that perform better
in data-scarce scenarios. Our attribution method not only enables
the training of said priors but also outperforms its predecessor—
IG—in terms of reliably identifying the features models use to make
predictions.

There remain many avenues for future work in this area. We
chose to base our prior on an improved version of IG because it is
the most prominent differentiable feature attribution method we are
aware of, but a wide array of other attribution methods exist. Our
framework makes it straightforward to substitute any other attribu-
tion method as long as it is differentiable, and studying the effec-
tiveness of other attribution methods as priors would be valuable.
In addition, while we develop new, more sophisticated attribution
priors and show their value, there is ample room to improve on our
priors and evaluate entirely new ones for other tasks. Determining
the best attribution priors for particular tasks opens a further ave-
nue of research. We believe that surveys of domain experts to estab-
lish model desiderata for particular applications will help to develop
the best priors for any given situation while offering a valuable
opportunity to put humans in the loop. Overall, the dual advances
of sophisticated attribution priors and EG enable a broader view of

attribution priors: as tools to achieve domain-specific goals without
sacrificing efficiency.

Methods

Previous attribution priors. The first instance of what we now call an attribution
prior was proposed in ref. °, where the regularization term was modified to place a
constant penalty on the gradients of undesirable features:

a
0 = argmin, L(6;X, y) + 2NNAG § | \fc

Here the attribution method is the gradients of the model, represented by the
matrix 4 whose ¢, ith entry is the gradient of the loss at the £th sample with
respect to the ith feature. A is a binary matrix indicating that features should be
penalized in which samples, and F is the Frobenius norm.

A more general interpretation of attribution priors is that any function of any
feature attribution method could be used to penalize a loss function, thus encoding
prior knowledge about what properties the attributions of a model should have.
For some model parameters 0, let @(6, X) be a feature attribution method, which
is a function of @ and the data X. Let ¢¢ be the feature importance of feature i
in sample #. We formally define an attribution prior as a scalar-valued penalty
function of the feature attributions 2(®(6, X)), which represents a log-transformed
prior probability distribution over possible attributions:

0 = argmin, L(6;X, y) + 102(2(0, X)),

where 4 is the regularization strength. Note that the attribution prior function Q is
agnostic to the attribution method ®.

Previous attribution priors™' required specifying an exact target value for
the model’s attributions, but often we do not know in advance which features are
important in advance. In general, there is no requirement that @(6, X) constrain
attributions to particular values. The ‘Results’ section presented three newly
developed attribution priors for different tasks that improve performance without
requiring pre-specified attribution targets for any particular feature.

Expected gradients. EG is an extension of IG* with fewer hyperparameter
choices. Like several other attribution methods, IG aims to explain the difference
between a model’s current prediction and the prediction that the model would
make when given a baseline input. This baseline input is meant to represent
some uninformative reference input that represents not knowing the value of the
input features. Although choosing such an input is necessary for several feature
attribution methods>***, the choice is often made arbitrarily. For example, for
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image tasks, the image of all zeros is often chosen as a baseline, but doing so
implies that black pixels will not be highlighted as important by existing feature
attribution methods. In many domains, it is not clear how to choose a baseline that
correctly represents a lack of information.

Our method avoids an arbitrary choice of baseline; it models not knowing
the value of a feature by integrating over a dataset. For a model f, the IG value for
feature i is defined as:

Lol + a(x — x')) do

IGi(x x') := (xi — x") x / Py

a=0
where x is the target input and x’ is baseline input. To avoid specifying x’, we define
the EG value for feature i as:

1 / o
EGi(x) :://((x,-—x') ></ _OWda)pD(x’)dx’,

where D is the underlying data distribution. Since EG is also a diagonal path
method, it satisfies the same axioms as IG". Directly integrating over the training
distribution is intractable; therefore, we instead reformulate the integrals as
expectations:

f(x’ +a x (x—x"))
axi

This expectation-based formulation lends itself to a natural, sampling based
approximation method: (1) draw samples of x" from the training dataset and
from U(0, 1), (2) compute the value inside the expectation for each sample and
(3) average over samples. For a pseudocode description of EG, see Supplementary
Section C.

EG also satisfies a set of important interpretability axioms: implementation
invariance, sensitivity, completeness, linearity and symmetry preserving.

EGi(x) :=Ey  pa~ucor) [ (i — x') x ].

o Implementation invariance states that two networks with outputs that are
equal over all inputs should have equivalent attributions. Any attribution
method based on the gradients of a network will satisfy this axiom’, meaning
that IG, EG and gradients will all be implementation invariant.

o Sensitivity (sometimes called dummy) states that when a model does not
depend on a feature at all, it receives zero importance. IG, EG and gradients all
satisfy sensitivity because the gradient with respect to an irrelevant feature will
be zero everywhere.

o Completeness states that the attributions should sum to the difference between
the output of a function at the input to be explained and the output of that
function at a baseline. Gradients do not satisfy completeness due to saturation
at the inputs; elements such as ReLUs may cause gradients to be zero, making
completeness impossible’. IG and EG both satisfy completeness due to the
gradient theorem (fundamental theorem of calculus for line integrals)”. For
EG, the function being integrated is the expectation of the model’s output, so
completeness means that the attributions sum to the difference between the
model’s output for the input and the model’s output averaged over all possible
baselines.

«  Linearity states that for a model that is a linear combination of two submodels
flx) =af,(x) + bfy(x), where a and b are arbitrary scalars, the attributions are a
linear combination of the submodels’ attributions ¢(x) = a¢,(x) + bgh,(x). This
will hold for IG, EG and gradients because gradients are linear.

«  Symmetry preserving states that symmetric variables with identical values
should achieve identical attributions. IG is symmetry preserving since it is a
straight line path method, and EG will also be symmetry preserving, as a sym-
metric function of symmetric functions will itself be symmetrical’.

Unlike previous attribution methods, EG is explicitly designed for natural
batched training. This enables an order of magnitude increase in computational
efficiency relative to previous approaches for training with attribution priors. We
further improve performance by reducing the need for additional data reading.
Specifically, for each input in a batch of inputs, we need k additional inputs to
calculate EG attributions for that input batch. As long as k is smaller than the batch
size, we can avoid any additional data reading by re-using the same batch of input
data as a reference batch, as in ref. **. We accomplish this by shifting the batch of
input k times, such that each input in the batch uses k other inputs from the batch
as its reference values.

Specific priors. Here we elaborate on the explicit form of the attribution priors

we used in this paper. In general, minimizing the error of a model corresponds to
maximizing the likelihood of the data under a generative model consisting of the
learned model plus parametric noise. For example, minimizing mean squared error
in a regression task corresponds to maximizing the likelihood of the data under the
learned model, assuming Gaussian-distributed errors:

argminy|fo(X) — yII3 = argmax,exp (—|[fo(X) = y|2) = Oru,

where 6y, is the maximum-likelihood estimate (MLE) of € under the model

Y = £5(X) + N(0, ).
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An additive regularization term is equivalent to adding a multiplicative
(independent) prior to yield a maximum a posteriori (MAP) estimate:

argminy | [fy (X) — 113 + A110]13
= argmax,exp (—|[fo(X) — yI[3) exp (=2110]]3) = Ouar,

Here, adding an L2 penalty is equivalent to MAP for Y = fp(X) + N(0, 6) with
a N (0, 1) prior. We next discuss the functional form of the attribution priors
enforced by our penalties.

Pixel attribution prior. Our pixel attribution prior is based on the anisotropic total
variation loss and is given as follows:

Qoixat (B0, X)) =D i1 — bigl + b5 0 — &1

e ij

where ¢fj is the attribution for the i, jth pixel in the #-th training image.

Research shows that this penalty is equivalent to placing zero-mean, i.i.d.,

Laplace-distributed priors on the differences between adjacent pixel values, that is,
f+1,j - ¢fj ~ Laplace (0, 4~ ')and ¢fj+1 — ¢fj ~ Laplace (0, 1~ '). Reference

does not call our penalty ‘total variation; but it is in fact the widely used anisotropic

version of total variation and is directly implemented in Tensorflow*~*.

Graph attribution prior. For our graph attribution prior, we used a protein-
protein or gene-gene interaction network and represented these networks as

a weighted, undirected graph. Formally, assume we have a weighted adjacency
matrix W € RE*? for an undirected graph, where the entries encode our prior
belief about the pairwise similarity of the importances between two features. For
a biological network, W,; encodes either the probability or strength of interaction
between the ith and jth genes (or proteins). We encouraged similarity along graph
edges by penalizing the squared Euclidean distance between each pair of feature
attributions in proportion to how similar we believe them to be. Using the graph
Laplacian (Lg;=D — W), where D is the diagonal degree matrix of the weighted
graph, this becomes:

o -
Lurapn (B(6, X)) = > Wij(; — §)" = ¢' L.
ij

In this case, we choose to penalize global rather than local feature attributions.
We define ¢, to be the importance of feature i across all samples in our dataset,
where this global attribution is calculated as the average magnitude of the feature
attribution across all samples: ¢; = 1 >/ _ |f|. Just as the image penalty is
equivalent to placing a Laplace prior on adjacent pixels in a regular graph, the
graph penalty £, is equivalent to placing a Gaussian prior on adjacent features
in an arbitrary graph with Laplacian L (ref. ).

Sparse attribution prior. Our sparsity prior uses the Gini coefficient G as a penalty,
which is written:

M~
M~

316, 6|
Qupare(8(0, X)) = - —————— = —2G(¢),

nazfﬁi

By taking exponentials of this function, we find that minimizing the sparsity
regularizer is equivalent to maximizing likelihood under a prior proportional to the
following:

[ 1
[IITew | 5
i=§:1¢i

¢ — 1 |-

i=1j=1

To our knowledge, this prior does not directly correspond to a named distribution.
However, we observe that its maximum value occurs when one ¢, is 1 and all
others are 0, and that its minimum occurs when all ¢; are equal. This is similar

to the total variation penalty €2, but it is normalized and has a flipped sign to
encourage differences. The corresponding attribution prior is maximized when
global attributions are zero for all but one feature and minimized when attributions
are uniform across features.

Image model experimental settings. We trained a VGG16 model from scratch
modified for the CIFAR-10 dataset, containing 60,000 coloured 32 x 32-pixel
images divided into 10 categories, as in ref. *°. To train this network, we used
stochastic gradient descent with an initial learning rate of 0.1 and an exponential
decay of 0.5 applied every 20 epochs. Additionally, we used a momentum level of
0.9. For augmentation, we shifted each image horizontally and vertically by a pixel
shift uniformly drawn from the range [—3, 3], and we randomly rotated each image
by an angle uniformly drawn from the range [—15, 15]. We used a batch size of 128.
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Before training, we normalized the training dataset to have zero mean and unit
variance, and standardized the test set with the mean and variance of the training
set. We used k=1 background reference samples for our attribution prior while
training. When training with attributions over images, we first normalized the
per-pixel attribution maps by dividing by the standard deviation before computing
the total variation; otherwise, the total variation can be made arbitrarily small
without changing model predictions by scaling down the pixel attributions close to
zero. See Supplementary Section F for more details.

We repeated the same experiment as above on MNIST, which contains
60,000 black-and-white 28 X 28-pixel images of handwritten digits. We trained a
convolutional neural network with two convolutional layers and a single hidden
layer. The convolutional layers each had 5 x5 filters, a stride length of 1, and 32
and 64 filters total. Each convolutional layer was followed by a max pooling layer of
size 2 with stride length 2. The hidden layer had 1,024 units and a dropout rate of
0.5 during training’'. Dropout was turned off when calculating the gradients with
respect to the attributions. We trained with the Adam optimizer with the default
parameters (learning rate @ =0.001, gradient average decay rate #,=0.9, squared
gradient average decay rate f,=0.999, and numerical stability constante =107%)".
We trained with an initial learning rate of 0.0001, with an exponential decay of 0.95
for every epoch, for a total of 60 epochs. For all models, we trained with a batch
size of 50 images and used k=1 background reference sample per attribution while
training. See Supplementary Section G for more details.

Biological experiments. Significance testing of results. To test the difference in

R? attained by each method, we used a t-test for the means of two independent
samples of scores (as implemented in SciPy)*. This is a two-sided test and can

be applied to R? as R? is a linear transformation of mean squared error, which
satisfies normality assumptions by the central limit theorem. When we compare
the R* attained from ten independent retrainings of the neural network to the R?
attained from ten independent retrainings of the attribution prior model, we find
that predictive performance is significantly higher for the model with the graph
attribution prior (f statistic=3.59, P=2.06 X 107%).

To ensure that the increased performance in the attribution prior model was
due to real biological information, we replaced the gene-interaction graph with a
randomized graph (symmetric matrix with identical number of non-zero entries
to the real graph, but entries placed in random positions). We then compared the
R? attained from ten independent retrainings of a neural network with no graph
attribution prior to ten independent retrainings of an neural network regularized
with the random graph and found that test error was not significantly different
between these two models (f statistic=1.25, P=0.23). We also compared to graph
convolutional neural networks, and found that our network with a graph attribution
prior outperformed the graph convolutional neural network (f statistic=3.30,
P=4.0x107). Finally, we compared to an L2 penalty applied uniformly across
all attributions, and found that this attribution prior did not significantly increase
performance from baseline (f statistic=1.7, P = 0.12, see Supplementary Fig. 15).

Train/validation/test-set allocation. To increase the number of samples in our
dataset, we used as a feature the identity of the drug being tested, rather than one
of a number of possible output tasks in a multi-task prediction. This follows from
previous literature on training neural networks to predict drug response™. This
yielded 30,816 samples (covering 218 patients and 145 anticancer drugs). Defining
a sample as a drug and a patient, however, meant we had to choose carefully how
to stratify samples into our train, validation and test sets. While it is perfectly
legitimate in general to randomly stratify samples into these sets, we wanted to
specifically focus on how well our model could learn trends from gene expression
data that would generalize to new patients. Therefore, we stratified samples at a
patient level rather than at the level of individual samples (for example, no samples
from any patient in the test set ever appeared in the training set). We split 20% of
the total patients into a test set (6,155 samples) and then split 20% of the training
data into a validation set for hyperparameter selection (4,709 samples).

Model class implementations and hyperparameters tested. LASSO. We used the
scikit-learn implementation of the LASSO**°. We tested a range of a parameters
from 107 to 1, and we found that the optimal value for @ was 10~? by mean squared
error on the validation set.

Graph LASSO. For our graph LASSO, we used the Adam optimizer in
TensorFlow"’, with a learning rate of 10~° to optimize the following loss function:

LwX,y) =| Xw =yl + 2" || wll, +v'w'Low, )

where w € R? is the weights vector of our linear model and L, is the graph
Laplacian of our HumanBase network™. In particular, we downloaded the ‘“Top
Edges’ version of the haematopoietic stem cell network, which was thresholded to
only have non-zero values for pairwise interactions that had a posterior probability
greater than 0.1. We used the value of 1’ selected as optimal in the regular LASSO
model (1072, which corresponds to the a parameter in scikit-learn) and then tuned
over v/’ values ranging from 10~ to 100. We found that a value of 10 was optimal
according to MSE on the validation set.

Neural networks. We tested a variety of hyperparameter settings and network
architectures via validation set performance to choose our best neural networks,
including the following feed-forward network architectures (where each element
in a list denotes the size of a hidden layer): [512,256], [256,128], [256,256] and
[1,000,100]. We tested a range of L1 penalties on all of the weights of the network,
from 1077 to 1072 All models attempted to optimize a least squares loss using the
Adam optimizer, with learning rates again selected by hyperparameter tuning
ranging from 107° to 107>, Finally, we implemented an early stopping parameter of
20 rounds to select the number of epochs of training (training was stopped after
no improvement on validation error for 20 epochs, and the number of epochs
was chosen based on optimal validation set error). We found that the optimal
architecture (chosen by lowest validation set error) had two hidden layers of size
512 and 256, an L1 penalty on the weights of 10~ and a learning rate of 10~°. We
additionally found that 120 was the optimal number of training epochs.

Attribution prior neural networks. We next applied our attribution prior to the
neural networks. First, we tuned networks to the optimal conditions described
above. We then added extra epochs of fine-tuning where we ran an alternating
minimization of the following objectives:

LO:X,y) = fo(X) = yll5 + A1l 6], @)

L(0:X) = Qyeapn (86, X)) = v Lo 3)

Following ref. °, we selected v to be 100 so that the £, term would initially be
equal in magnitude to the least squares and L1 loss terms. We found that five extra
epochs of tuning were optimal by validation set error. We drew k=10 background
samples for our attributions. To test our attribution prior using gradients as the
feature attribution method (rather than expected gradients), we followed the exact
same procedure, only we replaced ¢ with the average magnitude of the gradients
rather than the EG.

Graph convolutional networks. We followed the implementation of graph
convolution described in ref. *'. The architectures were searched as follows: in
every network, we first had a single graph convolutional layer (we were limited to
one graph convolution layer due to memory constraints on each Nvidia GTX 1080
Ti GPU that we used), followed by two fully connected layers of sizes (512,256),
(512,128) or (256, 128). We tuned over a wide range of hyperparameters, including
L2 penalties on the weights ranging from 10~° to 1072, L1 penalties on the weights
ranging from 10~° to 107, learning rates of 10~ to 10~ and dropout rates ranging
from 0.2 to 0.8. We found the optimal hyperparameters based on validation set
error were two hidden layers of size 512 and size 256, an L2 penalty on the weights
of 107%, a learning rate of 10~° and a dropout rate of 0.6. We again used an early
stopping parameter and found that 47 epochs was the optimal number.

Sparsity experiments. Data description and processing. Our sparsity experiments
used data from the National Health and Nutrition Examination I Survey
(NHANES I)* and contained 35 variables (expanded to 118 features by

one-hot encoding of categorical variables) gathered from 13,000 patients. The
measurements included demographic information such as age, sex and BMI as well
as physiological measurements such as blood, urine and vital sign measurements.
The prediction task was a binary classification of whether the patient was still alive
(1) or not (0) ten years after data were gathered.

Data were mean-imputed and standardized so that each feature had zero
mean and unit variance. For each of the 200 experimental replicates, 100 train and
100 validation points were sampled uniformly at random; all other points were
allocated to the test set.

Model. We trained a range of neural networks to predict survival in the NHANES
data. The architecture, nonlinearities and training rounds were all held constant

at values that performed well on an unregularized network, and the type and
degree of regularization were varied. All models used ReLU activations and a
single output with binary cross-entropy loss; in addition, all models ran for 100
epochs with a stochastic gradient descent optimizer with learning rate 0.001 on the
size-100 training data. The entire 100-sample training set fit in one batch. Because
the training set was so small, all of its 100 samples were used for EG attributions
during training and evaluation, yielding k= 100. Each model was trained on a
single GPU on a desktop workstation with 4 Nvidia 1080 Ti GPUs.

Architecture. We considered a range of architectures, including
single-hidden-layer 32-node, 128-node and 512-node networks, two-layer
[128,32]-node and [512, 128]-node networks, and a three-layer [512, 128, 32]-node
network; we fixed the [512,128, 32] architecture for future experiments.

Regularizers. We tested a large array of regularizers in addition to those
considered in the main text. For details, see Supplementary Section J.1.

Hyperparameter tuning. We selected the hyperparameters for our models based on

validation performance. We searched all L1, L2, SGL and attribution prior penalties
with 121 points sampled on a log scale over [1077,10°] (Supplementary Fig. 18).
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Other penalties, not displayed in the main text experiments, are discussed in
Supplementary Section J.2.

Main text methods. Performance and sparsity bar plots. The performance bar
graph (Fig. 5a) was generated by plotting mean test ROC AUC of the best model
of each type (chosen by validation ROC AUC) averaged over each of the 200
subsampled datasets, with confidence intervals given by 2 times the standard error
over the 200 replicates. The sparsity bar graph (Fig. 5¢) was constructed using the
same process, but with Gini coefficients rather than ROC AUCs.

Feature importance distribution plot. The distribution of feature importances
was plotted in the main text as a Lorenz curve (Fig. 5, bottom right): for each model,
the features were sorted by global attribution value ¢, and the cumulative normalized
value of the lowest q features was plotted, from 0 at g=0 to 1 at g=p. A lower area
under the curve indicates more features had relatively small attribution values,
indicating that the model was sparser. Because 200 replicates were run on small
subsampled datasets, the Lorenz curve for each model was plotted using the averaged
mean absolute sorted feature importances over all replicates. Thus, for a given model
type, the g=1 point represented the mean absolute feature importance of the least
important feature averaged over each replicate, g=2 added the mean importance for
the second least important feature averaged over each replicate, and so on.

Performance versus sparsity plot. Validation ROC AUC and model sparsity
were calculated for each of the 121 regularization strengths and averaged over each
of the 200 replicates. These were plotted on a scatterplot to show the possible range
of model sparsities and ROC AUC performances (Fig. 5, top right) as well as the
trade-off between sparsity and performance.

Statistical significance. Statistical significance of the sparse attribution
prior performance was assessed by comparing the test ROC AUCs of the sparse
attribution prior models on each of the 200 subsampled datasets to those of the
other models (L1 gradients, L1 weights, SGL and unregularized). Significance was
assessed by two-sided paired-samples t-test, paired by subsampled dataset. The
same process was used to calculate the significance of model sparsity as measured
by the Gini coefficient. Detailed tables of the resulting P values and test statistics ¢
are shown in Supplementary Section J.3.

Data availability

The data for all experiments and figures in the paper are publicly available. A
downloadable version of the dataset used for the sparsity experiment, as well as
links to download the datasets used in the image and graph prior experiments,

is available at https://github.com/suinleelab/attributionpriors. Data for the
benchmarks were published as part of ref. °” and can be accessed at https://github.
com/suinleelab/treeexplainer-study/tree/master/benchmark.

Code availability

Implementations of attribution priors for Tensorflow and PyTorch are available at
https://github.com/suinleelab/attributionpriors. This repository also contains code
reproducing main results from the paper. The specific version of code used in this
paper is archived at ref. **.
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