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Recent work on interpreting machine learning (ML) models 
has focused on feature attribution methods. Given an input 
datum, a model and a prediction, such methods assign a num-

ber to each input feature that represents how important the feature 
was for making the prediction. Current research also investigates 
the axioms that attribution methods should satisfy1–4 and how they 
provide insight into model behaviour5–8. Feature attribution meth-
ods often reveal problems in a model or dataset. For example, a 
model may place too much importance on undesirable features, 
rely on many features when sparsity is desired or be sensitive to 
high-frequency noise. In such cases, humans often have a prior 
belief about how a model should treat input features but find it dif-
ficult to mathematically encode this prior for neural networks in 
terms of the model parameters.

One method to address such problems is what we call an attri-
bution prior: if it is possible for explanations to reveal problems in 
a model, then constraining the model’s explanations during train-
ing can help the model avoid such problems. It is worth noting 
that the vast majority of feature attribution methods focus exclu-
sively on explaining why a given prediction was made. Only a very 
small number of papers have investigated incorporating attribu-
tions themselves into model training. The first such paper, by Ross 
et al.9, used a binary indicator of whether each feature should or 
should not be important for making predictions on each sample in 
the dataset and penalized the gradients of unimportant features. A 
very recent publication successfully used the gradient-based prior 
of Ross et al. as part of a human-in-the-loop strategy to improve 
model generalization performance and user trust, as well as con-
tributing their own model-agnostic method for penalizing feature 
importances10. Such results create a clear synergy with our study, 
which improves the quality of calculated feature importances and 
develops new forms of attribution priors. This has the potential to 

greatly expand both the number of ways that a human-in-the-loop 
can influence deep models and the precision with which they can 
do so. However, two drawbacks limit this method’s applicability to 
real-world problems. First, gradients do not satisfy the same theo-
retical guarantees as modern feature attribution methods. This 
leads to well-known problems such as saturation: operations, such 
as rectified linear units (ReLUs) and sigmoids, which have large 
flat ‘saturated’ regions, can lead to zero gradient attribution even 
for important features2. Second, it can be difficult to specify which 
features should be important in a binary manner.

Additional recent work discusses the need for priors that incor-
porate human intuition to develop robust and interpretable mod-
els11. Still, it remains challenging to encode priors such as ‘have 
smoother attributions across an image’ or ‘treat this group of fea-
tures similarly’ by penalizing a model’s input gradients or param-
eters. Some recent attribution priors have proposed regularizing 
integrated gradients (IG) attributions12,13. While promising, this 
work suffers from three major weaknesses: it does not clearly dem-
onstrate improvements over gradient-based attribution priors, 
it penalizes attribution deviation from a target value rather than 
encoding sophisticated priors such as those we mention above, 
and it imposes a large computational cost by training with tens to 
hundreds of reference samples per batch. A contemporary method 
called contextual decomposition explanation penalization (CDEP) 
uses a framework similar to attribution priors and penalizes expla-
nations generated by the contextual decomposition method14. 
Unlike all other interpretability methods discussed in this paper, 
CDEP penalizes explanations for pre-specified groups of features, 
meaning it is best suited for a different set of problems than we con-
sider. More discussion of CDEP can be found in ‘Attribution pri-
ors are a flexible framework for encoding domain knowledge’ and 
Supplementary Sections A and B.
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The main contribution of this work is a broadened interpretation 
of attribution priors that includes any case in which the training 
objective incorporates differentiable functions of a model’s feature 
attributions. This can be seen as a generalization of gradient-based 
regularization9,15–18 and it can be used to encode meaningful domain 
knowledge more effectively than existing methods. Whereas previ-
ous attribution priors generally took the form of ‘encourage feature 
i’s attribution to be near a pre-determined target value’, the priors we 
present here consider relative importance among multiple features 
and do not require pre-determined target values for any feature’s 
attribution. Specifically, we introduce an image prior enforcing that 
neighbouring pixels have similar attributions, a graph prior for bio-
logical data enforcing that related genes have similar attributions, 
and a sparsity prior enforcing that a few features have large attribu-
tions while all others have near-zero attributions.

We also introduce a new general-purpose feature attribution 
method to enforce these priors, expected gradients (EG). As men-
tioned above, virtually all attribution methods are designed to 
explain a model’s prediction to humans, not to be penalized during 
training. This means many such methods may be computationally 
difficult to incorporate into the training process. EG is an attribu-
tion method explicitly designed for regularization as an attribution 
prior (Fig. 1a); it can be efficiently regularized during training due 
to its formulation as an expectation, which naturally lends itself to 
batched estimates of the attribution. It also eliminates a hyperpa-
rameter choice required by IG2. Since these attributions are used 
not only to interpret trained models but also as part of the training 
objective itself, it is essential to guarantee that the attributions will 
be of high quality. We therefore show that our attribution method 
satisfies important interpretability axioms.

Across three different prediction tasks, we show that training 
with EG outperforms training with previous, more limited versions 
of attribution priors. On images, our image prior produces a model 
that is more interpretable and generalizes better to noisy data. On 
gene expression data, our graph prior reduces prediction error and 
better captures biological signal. Finally, on a patient mortality pre-
diction task, our sparsity prior yields a sparser model and improves 
performance when learning from limited training data.

Results
Attribution priors are a flexible framework for encoding domain 
knowledge. Let X ∈ R

n×p denote a dataset with labels y ∈ R
n×o, 

where n is the number of samples, p is the number of features and o 
is the number of outputs. In standard deep learning, we find optimal 
parameters θ by minimizing loss L, with a regularization term Ω′(θ) 
weighted by λ′ on the parameters:

θ = argminθL(θ;X, y) + λ′Ω′(θ).

Attribution priors involve a model’s attributions, represented by 
the matrix Φ(θ, X), where each entry ϕℓ

i  is the importance of fea-
ture i in the model’s output for sample ℓ. The attribution prior is a 
scalar-valued penalty function of the feature attributions Ω(Φ(θ, X)), 
which represents a log-transformed prior probability distribution 
over possible attributions (λ is the regularization strength). The 
attribution prior is modular and agnostic to the particular attribu-
tion method. This results in the optimization:

θ = argminθL(θ;X, y) + λΩ(Φ(θ, X)),

where the standard regularization term has simply been replaced 
with an arbitrary, differentiable penalty function on the feature 
attributions.

While feature attributions have previously been used in train-
ing (more details in ‘Previous attribution priors’ in Methods)9,12, 
our approach offers two novel components. First, we demonstrate 

that calculating Φ with attribution methods that satisfy previously 
established interpretability axioms improves performance (see ‘EG 
outperforms other attribution methods’ and ‘Expected gradients’ in 
Methods for further discussion of interpretability axioms). Second, 
rather than simply encouraging each feature’s attribution to be near 
a target value as in previous work, we enforce high-level priors over 
the relationships between features.

In image data, we use a Laplace zero-mean prior on the differ-
ence between attributions of adjacent pixels, which encourages a 
low total variation (high smoothness) of attributions:

Ωpixel(Φ(θ, X)) =
∑

ℓ

∑

i,j
|ϕℓ

i+1,j − ϕℓ

i,j|+ |ϕℓ

i,j+1 − ϕℓ

i,j|,

where i, j indexes the pixels of an image by rows and columns, 
respectively and ℓ indexes each image.

In gene expression data, we use a Gaussian zero-mean prior on 
the difference between mean absolute attributions ϕ̄i of functionally 
related genes, which encourages such similar genes to have similar 
attributions:

Ωgraph(Φ(θ, X)) =
∑

i,j
Wi,j(ϕ̄i − ϕ̄j)

2
= ϕ̄TLGϕ̄,

where T  represents a vector transpose, Wi,j is the weight of connec-
tion between two genes in a biological graph, and LG is the graph 
Laplacian.

Finally, in health data where sparsity is desired, we use a prior 
on the Gini coefficient of the mean absolute attributions ϕ̄i, which 
encourages a small number of features to have a large percentage of 
the total attribution while others are near zero:

Ωsparse(Φ(θ, X)) = −

p∑
i=1

p∑
j=1

|ϕ̄i − ϕ̄j|

n
p∑

i=1
ϕ̄i

= −2G(ϕ̄),

where G is the Gini coefficient.
None of these priors requires specifying target values for features, 

and all improve performance over simpler baselines. For more details 
on our priors, see ‘Specific priors’ in Methods, and for more details 
on previous attribution priors, see ‘Previous attribution priors’ in 
Methods. We also note that these priors involve the relationships 
between the attributions for all features in the dataset. Gradients, IG 
and our method (EG) discussed below are all designed for calculat-
ing such attributions. The CDEP method discussed above differs in 
that it penalizes the attributions of a single pre-specified group of 
features14; while CDEP has reported better performance with cer-
tain types of prior than EG and gradients, we believe this is due to 
the fact that the methods are inherently best suited to different types 
of prior. Using CDEP with the specific priors proposed in this work 
would require several orders of magnitude more backward passes of 
the model during training than our approach. CDEP also uses addi-
tional preprocessing steps that are not necessary in our approach, 
which further distinguishes the scenarios in which each method is 
most applicable. For further discussion of related work, including 
a discussion of specific cases for which our method and CDEP are 
best suited, see Supplementary Sections A and B.

EG outperforms other attribution methods. Attribution priors 
involve using feature attributions not just as a post-hoc analy-
sis method but also as a key part of the training objective. Thus, 
it is essential to guarantee as much as possible that the attribution 
method used will produce high-quality attributions and run fast 
enough to be calculated for each training batch. We propose an  
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axiomatic feature attribution method called expected gradients 
(EG), which avoids problems with existing methods and is natu-
rally suited to being incorporated into training. EG extends the IG 
method2, and like IG, satisfies a variety of desirable interpretability 
axioms such as completeness (the feature attributions sum to the 

output for a given sample) and implementation invariance (the 
attributions are identical for any of the infinite possible implemen-
tations of the same function). Because these methods satisfy com-
pleteness, they are not subject to the problems with input saturation 
that affect gradient attributions. Because these methods satisfy 
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Fig. 1 | EG is a feature attribution method designed to be regularized during training. a, A comparison of our method, EG, to IG as both a post-hoc explanation 
method (left), and as a differentiable feature attribution to be penalized during training to enforce attribution priors (right). b, Comparison of saliency maps 
generated by three different attribution methods on an image from the ImageNet dataset. The saliency maps demonstrate how the IG attribution method fails 
to highlight black pixels as important when black is used as a baseline input, while EG is capable of highlighting the black pixels in these images as important.  
c, Comparison of saliency maps for the same three attribution methods for two MNIST digits. Again, IG fails to highlight potentially relevant image regions  
(like the empty middle of the 0 or the empty region at the top of the 4, which might make the digit resemble a 9 if it were filled in).
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implementation invariance, they are straightforward to practically 
apply to any differentiable model, regardless of specific network 
architectures (see ‘Expected gradients’ in Methods for an extended 
discussion of the interpretability axioms satisfied by EG).

IG generates feature attributions by integrating the gradients of 
the model’s output f between the sample of interest and a reference 
sample x′ (Fig. 1a, left).

IGi(x) :=
∫ 1

α=0

∂f(x′ + α(x− x′))
∂xi

dα

where ∂ represents a partial derivative and α represents progress 
along the integration path. If the attribution function Φ in our 
attribution prior Ω(Φ(θ, X)) is IG, regularizing Φ would require 
hundreds of extra gradient calls every training step (the original 
IG paper2 recommends 20 to 300 gradient calls to compute attribu-
tions). This makes training with IG prohibitively slow—in fact, ref. 12  
finds that using IG can take up to 30 times longer than standard 
training even when only back-propagating gradients through part of 
the network. However, most deep learning models today are trained 
using some variant of batch gradient descent, where the gradient 
of a loss function is approximated over many training steps using 
mini-batches of data. We can dramatically improve speed over an 
IG attribution prior by using a similar idea and formulating the IG 
integral as an expectation over integration path steps α drawn from 
a uniform distribution U (see Table 1 and Supplementary Section 
D.1 for more details on convergence time benchmark). This Monte 
Carlo estimate of the integral is the core of our EG method, defined 
below for a single reference x′:

SingleRefEGi(x) = Eα∼U(0,1) [ (xi − x′)× ∂f(x′ + α × (x− x′))
∂xi

]

Just like the gradient of the loss, EG attributions can be calcu-
lated in a batched manner during training (Fig. 1a, right). We let k 
be the number of samples we draw for this Monte Carlo integral at 
each mini-batch. Remarkably, because the variance in each batched 
EG attribution will be smoothed over thousands of batches dur-
ing training, we find that as small as k = 1 suffices to regularize the 
explanations.

This expectation formulation also enables us to solve a long-
standing problem with IG as an attribution method—the choice 

of the required background reference x′. For example, in image 
tasks, the image of all zeros is often chosen as a baseline, but doing 
so implies that black pixels will not be highlighted as important  
(Fig. 1b,c). This problem can be solved by integrating gradients over 
multiple references. However, calculating multiple Riemann inte-
grals is expensive in terms of time and memory, probably prohibi-
tively so if calculated during every batch of training (Fig. 1a, right). 
EG naturally accommodates multiple references by performing the 
Monte Carlo integral with samples from multiple references and 
interpolation points (here, x is the sample, x′ is a reference and D is 
the reference distribution):

EGi(x) = Ex′∼D,α∼U(0,1) [ (xi − x′)× ∂f(x′ + α × (x− x′))
∂xi

]

In principle, any distribution D over reference samples could be 
used to calculate EG attributions; choosing which distribution to 
use depends on the nature of the attribution problem. For exam-
ple, setting D to be a single sample recovers single-reference EG: 
the same reference setup as IG but with the Monte Carlo speedup 
of EG (Supplementary Section D.1). By default, we do not choose 
D to be a single sample but rather a uniform distribution over the 
entire training set. This tells us which features cause x’s output to be 
different from the output at all other points in the dataset, on aver-
age. In certain cases, we may want to use a different distribution D. 
For example, we might want to distinguish between subgroups and 
understand why a digit is classified as a ‘seven’ rather than a ‘one’ 
by choosing references only from the ‘one’-labelled training sam-
ples. We could also account for baseline subgroup characteristics by 
explaining, for example, an 80-year-old patient’s mortality risk rela-
tive to other 80 year olds; this could prevent age and age-correlated 
features from being trivially listed as the most important. While our 
formulation and implementation of EG support any choice of distri-
bution D, the examples in this paper do not focus on subgroup anal-
ysis, so we set D to be a uniform distribution over the training set 
(see ‘Expected gradients’ in Methods and Supplementary Section C 
for implementation details and pseudocode).

In a simple experiment using synthetic data to assess the impact 
of k on the convergence time of model training (rather than the 
convergence of a single explanation), we found that regularizing 
EG with k = 1 was more effective at removing a model’s depen-
dency on one of two correlated features than gradients or even IG 
with more than k samples (Table 1, Supplementary Section D and 
Supplementary Fig. 4). The k = 1 setting also appeared optimal for 
EG; setting k > 1 required more total gradient calls for convergence 
(Supplementary Section D.1 and Supplementary Fig. 3). We also 
compare EG to other feature attribution methods using synthetic 
data benchmarks introduced in ref. 5 (Table 1), which are available 
as part of the SHAP software package. These benchmark metrics 
evaluate whether each attribution method finds the most important 
features for a given dataset and model. EG significantly outperforms 
the next best feature attribution method (P = 7.2 × 10−5, one-tailed 
binomial test). We believe this demonstrates another benefit of 
EG; by averaging attributions over multiple reference samples, 
it becomes more robust to the wide array of patterns of missing-
ness and re-imputation tested in the benchmark. We provide more 
details and additional benchmarks in Supplementary Section D.

A pixel attribution prior improves robustness to image noise. 
Previous work on interpreting image models has focused on creating 
pixel attribution maps, which assign a value to each pixel indicating 
how important that pixel was for a model’s prediction2,19. Attribution 
maps can be noisy and difficult to understand due to their tendency 
to highlight seemingly unimportant background pixels, indicating 
the model may be vulnerable to adversarial attacks20. Although we 
may prefer a model with smoother attributions, existing methods  

Table 1 | Synthetic data benchmark results for attribution 
methods

Method Remove 
positive

Remove 
negative

Remove 
absolute

Convergence 
time

EG 3.612 3.759 0.897 0.150

IG 3.539 3.687 0.872 0.989

Gradients 0.035 0.110 0.729 0.250

Random −0.053 0.034 0.400 –

Larger numbers mean a better feature attribution method for all metrics other than convergence 
time, for which a smaller number indicates faster convergence. The first three metrics measure 
the quality of the method for correctly identifying important features, whereas convergence time 
indicates how effectively the method is regularized during training as an attribution prior. The 
‘remove positive’ metric measures the average magnitude change in model output when the 
features identified as having the largest positive impact by each method are masked by the feature 
mean, whereas ‘remove negative’ measures the average magnitude change in model output when 
the features identified as having the largest negative impact by each method are masked by the 
feature mean. The ‘remove absolute’ metric measures the average increase in model loss when the 
features identified as having the largest magnitude impact on the model are masked by the feature 
mean. Each model is trained on 900 samples and tested using 100 samples. EG attains the best 
benchmark scores of all of the tested attribution methods (P = 7.2 × 10−5, one-tailed binomial test, 
tested across all 18 attribution performance metrics, see Supplementary Section D for details on 
exact calculation of these metrics and exhaustive list of metrics considered).
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only post-process attribution maps but do not change model 
behaviour19,21,22. Such techniques may not be faithful to the original 
model11. In this section, we describe how we applied our framework 
to train image models with naturally smoother attributions.

To regularize pixel-level attributions, we used the following intu-
ition: neighbouring pixels should have a similar impact on an image 
model’s output. To encode this intuition, we chose a total variation 
loss on pixel-level attributions (see ‘Specific priors’ in Methods for 
more detail). We applied this pixel smoothness attribution prior 
to the Modified National Institute of Standards and Technology 
(MNIST) database, containing handwritten digits classified from 0 
to 9, and the Canadian Institute for Advanced Research (CIFAR)-10 
dataset, containing colour images classified into 10 categories such 
as cats, dogs and cars15,23. On MNIST we trained a two-layer convo-
lutional neural network; for CIFAR-10 we trained a VGG16 network 
from scratch (see ‘Image model experimental settings’ in Methods 
for more details)24. In both cases, we optimized hyperparameters for 
the baseline model without an attribution prior. To choose λ, we 
searched over values in [10−20, 10−1] and chose the λ that minimized 
the attribution prior penalty and achieved a test accuracy within 1% 
of the baseline model for MNIST and 10% for CIFAR-10. Figures 2 
and 3 show EG attribution maps for both the baseline and the model 
regularized with an attribution prior on five randomly selected test 
images on MNIST and CIFAR-10, respectively. In all examples, the 
attribution prior yields a model with visually smoother attributions. 
Remarkably, in many instances, smoother attributions better high-
light the target object’s structure.

Recent work has suggested that image classifiers are brittle 
to small domain shifts: small changes in the underlying distribu-
tion of the training and test set can lead to large reductions in test 
accuracy25. To simulate a domain shift, we applied Gaussian noise 
to images in the test set and re-evaluated the performance of the 
regularized and baseline models. As an adaptation of ref. 9, we also 
compared the attribution prior model with regularizing the total 
variation of gradients with the same criteria for choosing λ. For each 

method, we trained five models with different random initializa-
tions. In Figs. 2 and 3, we plot the mean and standard deviation of 
test accuracy on MNIST and CIFAR-10, respectively, as a function 
of standard deviation of added Gaussian noise. The figures show 
that our regularized model is more robust to noise than both the 
baseline and gradient-based models.

Both the robustness and more intuitive saliency maps our 
method provides come at the cost of reduced test set accuracy 
(0.93 ± 0.002 for the baseline versus 0.85 ± 0.003 for pixel attribu-
tion prior model on CIFAR-10). Mathematically, adding a penalty 
term to the optimization objective should only ever reduce train-
ing set performance; it is reasonable that in many cases this can  
lead to a reduction in test-set performance as well. However, test 
accuracy is not the only metric of interest for image classifiers.  
The trade-off between robustness and accuracy that we observe 
is consistent with previous work that suggests image classifi-
ers trained solely to maximize test accuracy rely on features that  
are brittle and difficult to interpret11,26,27. Despite this trade-off, 
we find that at a stricter hyperparameter cutoff for λ on CIFAR-
10—within 1% test accuracy of the baseline, rather than 10%—our 
methods still achieve modest but significant robustness relative 
to the baseline. We also evaluated our method against several 
other attribution priors including IG and, for ablation purposes, 
single-reference EG (Supplementary Figs. 10 and 11). We found 
that the pixel attribution prior outperformed standard IG and  
that most of this additional performance was due to our random 
interpolation. Both the pixel attribution prior and single-reference 
EG were much more robust than all other methods; however, only 
the pixel attribution prior, which used multiple references, could 
highlight important foreground and background regions in addi-
tion to providing robustness and smoothness. For details of the EG 
versus IG comparison, results at different hyperparameter thresh-
olds, more details on our training procedure and additional experi-
ments on MNIST, CIFAR-10 and ImageNet, see Supplementary 
Sections E–H.
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Fig. 2 | Pixel attribution prior improves saliency map smoothness and increases robustness of MNIST classifier to noise. a, EG attributions (from 100 
samples) on MNIST for both an unregularized model and a model trained with an attribution prior regularized using EG. The latter achieves visually 
smoother attributions, and it better highlights how the network classifies digits (for example, the top part of the 4 being very important). Unlike previous 
methods that take additional steps to smooth saliency maps after training21,22, these are unmodified saliency maps directly from the learned model.  
b, Training with an attribution prior on total variance of EG attributions induces robustness to Gaussian noise without specifically training for robustness. 
This robustness greatly exceeds that provided by an attribution prior on the total variance of model gradients. Shaded bars around each line indicate 
standard deviation of the accuracy results; however, the bars are small enough to be indistinguishable in this plot.
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A graph attribution prior improves anticancer drug response 
prediction. In the image domain, our attribution prior took the 
form of a penalty encouraging smoothness over adjacent pixels. In 
other domains, there may be prior information about specific rela-
tionships between features that can be encoded as a graph (such as 
social networks, knowledge graphs or protein–protein interactions). 
For example, previous work in bioinformatics has shown that pro-
tein–protein interaction networks contain valuable information for 
improving performance on biological prediction tasks28. Therefore, 
in this domain, we regularized attributions to be smooth over the 
protein–protein feature graph analogously to the regular graph of 
pixels in the image.

Incorporating the Ωgraph attribution prior not only led to a model 
with more reasonable attributions but also improved predictive per-
formance by letting us incorporate prior biological knowledge into 
the training process. We downloaded publicly available gene expres-
sion and drug response data for patients with acute myeloid leu-
kaemia (AML, a type of blood cancer) and tried to predict patients’ 
drug response from their gene expression29. For this regression 
task, an input sample was a patient’s gene expression profile plus 
a one-hot encoded vector indicating which drug was tested in that 
patient, while the label we tried to predict was drug response (mea-
sured by IC50, a continuous value representing the concentration of 
the drug required to kill half of the patient’s tumour cells). To define 
the graph used by our prior, we downloaded the tissue-specific 
gene-interaction graph for the tissue most closely related to AML in 
the HumanBase database30.

A two-layer neural network trained with our graph attribu-
tion prior (Ωgraph) significantly outperforms all other methods in 
terms of test set performance as measured by R2, which indicates 
the fraction of the variance in the output explained by the model 
(Fig. 4, see ‘Biological experiments’ in Methods for significance 
testing). Unsurprisingly, when we replace the biological graph 
from HumanBase with a randomized graph, we find that the test 
performance is no better than the performance of a neural network 
trained without any attribution prior. Extending the method pro-
posed in ref. 9 by applying our new graph prior as a penalty on the 

model’s gradients, rather than a penalty on the axiomatically correct 
expected gradient feature attribution, does not perform significantly 
better than a baseline neural network. We also observe substantially 
improved test performance when using the prior graph information 
to regularize a linear LASSO model. Finally, we note that our graph 
attribution prior neural network significantly outperforms graph 
convolutional neural networks, a recent method for utilizing graph 
information in deep neural networks31.

To find out whether our model’s attributions match biological 
domain knowledge, we first compared the list of top genes gener-
ated by our network trained with a graph attribution prior (ranked 
by mean absolute feature attribution) to a ‘ground truth’ list of 
AML-relevant genes found by querying the GeneCards database 
(Fig. 4b). When we count the number of AML-relevant genes at 
each position in our network’s top gene list and compare this to the 
number of AML-relevant genes at each position in a standard neu-
ral network’s top gene list, we see that the graph attribution prior 
network captures significantly more biologically relevant genes.

In addition, to check for biological pathway-level enrich-
ments, we conducted gene set enrichment analysis (a modified 
Kolmogorov–Smirnov test). We measured whether our top genes, 
ranked by mean absolute feature attribution, were enriched for 
membership in any pathways (see ‘Biological experiments’ in 
Methods and Supplementary Section I for more detail, including 
the top pathways for each model)32. We find that the neural net-
work with the tissue-specific graph attribution prior captures far 
more biologically relevant pathways (increased number of signifi-
cant pathways after false discovery rate correction) than a neural 
network without attribution priors33. Furthermore, the pathways 
our model uses more closely match biological expert knowledge, 
that is, they included prognostically useful AML gene expression 
profiles as well as important AML-related transcription factors 
(Supplementary Section I)34,35. These results are expected, given that 
neural networks trained without priors can learn a relatively sparse 
basis of genes that will not enrich for specific pathways (for exam-
ple, a single gene from each correlated pathway), while those trained 
with our graph prior will spread credit among functionally related 
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genes. This demonstrates the graph prior’s value as an accurate and 
efficient way to encourage neural networks to treat functionally 
related genes similarly.

A sparsity prior improves performance with limited training 
data. Feature selection and sparsity are popular ways to alleviate 
the curse of dimensionality, facilitate interpretability and improve 
generalization by building models that use a small number of input 
features. A straightforward way to build a sparse deep model is to 
apply an L1 penalty to the first layer (and possibly subsequent lay-
ers) of the network. Similarly, the sparse group lasso (SGL) method 
penalizes all weights connected to a given feature36,37, while a simple 
existing attribution prior approach38 penalizes the gradients of each 
feature in the model.

These approaches suffer from two problems. First, a feature  
with small gradients or first-layer weights may still strongly  
affect the model’s output39. A feature whose attribution value  
(for example, IG or EG) is zero is much less likely to have any  
effect on predictions. Second, successfully minimizing penalties 
such as L1—regardless of attribution type—is not necessarily the 
best way to create a sparse model. A model that puts weight w on 
1 feature is penalized more than one that puts weight w/2p on each 
of p features. Previous work on sparse linear regression has shown 
that the Gini coefficient G of the weights, proportional to 0.5 minus 
the area under the cumulative distribution function of sorted val-
ues, avoids such problems and corresponds more directly to a sparse 
model40,41. We extend this analysis to deep models by noting that the 
Gini coefficient can be written differentiably and used as an attribu-
tion prior.

Here we show that the Ωsparse attribution prior can build sparser 
models that perform better in settings with limited training data. 
We use a publicly available healthcare mortality prediction dataset 
of 13,000 patients42, whose 35 features (118 after one-hot encod-
ing) represent medical data such as a patient’s age, vital signs and 
laboratory measurements. The binary outcome is survival after ten 
years. Sparse models in this setting may enable accurate models to 

be trained with very few labelled patient samples or reduce cost by 
accurately risk-stratifying patients using few lab tests. We randomly 
sampled training and validation sets of only 100 patients each, plac-
ing all other patients in the test set, and ran each experiment 200 
times with a new random sample to average out variance. We built 
three-layer binary classifier neural networks regularized using L1, 
SGL and sparse attribution prior penalties to predict patient sur-
vival, as well as an L1 penalty on gradients adapted for global spar-
sity from refs. 9,38. The regularization strength was tuned from 10−7 
to 105 using the validation set for all methods (see ‘Sparsity experi-
ments’ in Methods and Supplementary Section J.2).

The sparse attribution prior enables more accurate test predic-
tions (Fig. 5a) and sparser models (Fig. 5c) when limited training 
data is available, with P < 10−4 and t ≥ 4.314 by paired-samples t-test 
for all comparisons. We also plot the average cumulative impor-
tance of sorted features and find that the sparse attribution prior 
more effectively concentrates importance in the top few features 
(Fig. 5d). In particular, we observe that L1 penalizing the model’s 
gradients as in ref. 38 rather than its EG attributions performs poorly 
in terms of both sparsity and performance. A Gini penalty on gra-
dients improves sparsity but does not outperform other baselines 
such as SGL and L1 in area under a receiver operating characteristic 
curve (ROC AUC). Finally, we plot the average sparsity of the mod-
els (Gini coefficient) against their validation ROC AUC across the 
full range of regularization strengths. The sparse attribution prior 
exhibits higher sparsity than other models and a smooth trade-off 
between sparsity and ROC AUC (Fig. 5b). Details and results for 
other penalties, including L2, dropout and other attribution priors, 
are in Supplementary Section J.

Discussion
The immense popularity of deep learning has driven its application 
in many areas with diverse, complicated domain knowledge. While 
it is in principle possible to hand-design network architectures to 
encode this knowledge, a more practical approach involves the  
use of attribution priors, which penalize the importance a model 
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places on each of its input features when making predictions. 
Unfortunately, previous attribution priors have been limited, both 
theoretically and computationally. Binary penalties only specify 
whether features should or should not be important and fail to 
capture relationships among features. Approaches that focus only 
on a model’s input gradients change the local decision boundary 
but often fail to impact a model’s underlying decision-making. 
Attribution priors on more complicated attributions, such as IG, 
have proven computationally difficult.

Our work advances previous work both by introducing novel, 
flexible attribution priors for multiple domains and by enabling 
the training of such priors with a newly defined feature attribution 
method. Our priors lead to smoother and more interpretable image 
models, biological predictive models that incorporate graph-based 
prior knowledge and sparser healthcare models that perform better 
in data-scarce scenarios. Our attribution method not only enables 
the training of said priors but also outperforms its predecessor—
IG—in terms of reliably identifying the features models use to make 
predictions.

There remain many avenues for future work in this area. We 
chose to base our prior on an improved version of IG because it is 
the most prominent differentiable feature attribution method we are 
aware of, but a wide array of other attribution methods exist. Our 
framework makes it straightforward to substitute any other attribu-
tion method as long as it is differentiable, and studying the effec-
tiveness of other attribution methods as priors would be valuable. 
In addition, while we develop new, more sophisticated attribution 
priors and show their value, there is ample room to improve on our 
priors and evaluate entirely new ones for other tasks. Determining 
the best attribution priors for particular tasks opens a further ave-
nue of research. We believe that surveys of domain experts to estab-
lish model desiderata for particular applications will help to develop 
the best priors for any given situation while offering a valuable 
opportunity to put humans in the loop. Overall, the dual advances 
of sophisticated attribution priors and EG enable a broader view of 

attribution priors: as tools to achieve domain-specific goals without 
sacrificing efficiency.

Methods
Previous attribution priors. The first instance of what we now call an attribution 
prior was proposed in ref. 9, where the regularization term was modified to place a 
constant penalty on the gradients of undesirable features:

θ = argminθL(θ;X, y) + λ′′||A ⊙
∂L
∂X ||

2
F.

Here the attribution method is the gradients of the model, represented by the 
matrix ∂L∂X  whose ℓ, ith entry is the gradient of the loss at the ℓth sample with 
respect to the ith feature. A is a binary matrix indicating that features should be 
penalized in which samples, and F is the Frobenius norm.

A more general interpretation of attribution priors is that any function of any 
feature attribution method could be used to penalize a loss function, thus encoding 
prior knowledge about what properties the attributions of a model should have. 
For some model parameters θ, let Φ(θ, X) be a feature attribution method, which 
is a function of θ and the data X. Let ϕℓ

i  be the feature importance of feature i 
in sample ℓ. We formally define an attribution prior as a scalar-valued penalty 
function of the feature attributions Ω(Φ(θ, X)), which represents a log-transformed 
prior probability distribution over possible attributions:

θ = argminθL(θ;X, y) + λΩ(Φ(θ, X)),

where λ is the regularization strength. Note that the attribution prior function Ω is 
agnostic to the attribution method Φ.

Previous attribution priors9,12 required specifying an exact target value for 
the model’s attributions, but often we do not know in advance which features are 
important in advance. In general, there is no requirement that Φ(θ, X) constrain 
attributions to particular values. The ‘Results’ section presented three newly 
developed attribution priors for different tasks that improve performance without 
requiring pre-specified attribution targets for any particular feature.

Expected gradients. EG is an extension of IG2 with fewer hyperparameter 
choices. Like several other attribution methods, IG aims to explain the difference 
between a model’s current prediction and the prediction that the model would 
make when given a baseline input. This baseline input is meant to represent 
some uninformative reference input that represents not knowing the value of the 
input features. Although choosing such an input is necessary for several feature 
attribution methods2,39,43, the choice is often made arbitrarily. For example, for 
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image tasks, the image of all zeros is often chosen as a baseline, but doing so 
implies that black pixels will not be highlighted as important by existing feature 
attribution methods. In many domains, it is not clear how to choose a baseline that 
correctly represents a lack of information.

Our method avoids an arbitrary choice of baseline; it models not knowing 
the value of a feature by integrating over a dataset. For a model f, the IG value for 
feature i is defined as:

IGi(x, x′) := (xi − x′) ×
∫ 1

α=0

∂f(x′ + α(x − x′))
∂xi

dα,

where x is the target input and x′ is baseline input. To avoid specifying x′, we define 
the EG value for feature i as:

EGi(x) :=

∫

x′
( (xi − x′) ×

∫ 1

α=0

∂f(x′ + α(x − x′))
∂xi

dα ) pD(x′)dx′,

where D is the underlying data distribution. Since EG is also a diagonal path 
method, it satisfies the same axioms as IG44. Directly integrating over the training 
distribution is intractable; therefore, we instead reformulate the integrals as 
expectations:

EGi(x) := Ex′∼D,α∼U(0,1) [ (xi − x′) × ∂f(x′ + α × (x − x′))
∂xi

] .

This expectation-based formulation lends itself to a natural, sampling based 
approximation method: (1) draw samples of x′ from the training dataset and α 
from U(0, 1), (2) compute the value inside the expectation for each sample and 
(3) average over samples. For a pseudocode description of EG, see Supplementary 
Section C.

EG also satisfies a set of important interpretability axioms: implementation 
invariance, sensitivity, completeness, linearity and symmetry preserving.
•	 Implementation invariance states that two networks with outputs that are 

equal over all inputs should have equivalent attributions. Any attribution 
method based on the gradients of a network will satisfy this axiom2, meaning 
that IG, EG and gradients will all be implementation invariant.

•	 Sensitivity (sometimes called dummy) states that when a model does not 
depend on a feature at all, it receives zero importance. IG, EG and gradients all 
satisfy sensitivity because the gradient with respect to an irrelevant feature will 
be zero everywhere.

•	 Completeness states that the attributions should sum to the difference between 
the output of a function at the input to be explained and the output of that 
function at a baseline. Gradients do not satisfy completeness due to saturation 
at the inputs; elements such as ReLUs may cause gradients to be zero, making 
completeness impossible2. IG and EG both satisfy completeness due to the 
gradient theorem (fundamental theorem of calculus for line integrals)2. For 
EG, the function being integrated is the expectation of the model’s output, so 
completeness means that the attributions sum to the difference between the 
model’s output for the input and the model’s output averaged over all possible 
baselines.

•	 Linearity states that for a model that is a linear combination of two submodels 
f(x) = af1(x) + bf2(x), where a and b are arbitrary scalars, the attributions are a 
linear combination of the submodels’ attributions ϕ(x) = aϕ1(x) + bϕ2(x). This 
will hold for IG, EG and gradients because gradients are linear.

•	 Symmetry preserving states that symmetric variables with identical values 
should achieve identical attributions. IG is symmetry preserving since it is a 
straight line path method, and EG will also be symmetry preserving, as a sym-
metric function of symmetric functions will itself be symmetrical2.

Unlike previous attribution methods, EG is explicitly designed for natural 
batched training. This enables an order of magnitude increase in computational 
efficiency relative to previous approaches for training with attribution priors. We 
further improve performance by reducing the need for additional data reading. 
Specifically, for each input in a batch of inputs, we need k additional inputs to 
calculate EG attributions for that input batch. As long as k is smaller than the batch 
size, we can avoid any additional data reading by re-using the same batch of input 
data as a reference batch, as in ref. 45. We accomplish this by shifting the batch of 
input k times, such that each input in the batch uses k other inputs from the batch 
as its reference values.

Specific priors. Here we elaborate on the explicit form of the attribution priors 
we used in this paper. In general, minimizing the error of a model corresponds to 
maximizing the likelihood of the data under a generative model consisting of the 
learned model plus parametric noise. For example, minimizing mean squared error 
in a regression task corresponds to maximizing the likelihood of the data under the 
learned model, assuming Gaussian-distributed errors:

argminθ ||fθ(X) − y||22 = argmaxθexp (−||fθ(X) − y||22) = θMLE,

where θMLE is the maximum-likelihood estimate (MLE) of θ under the model 
Y = fθ(X) + N (0, σ).

An additive regularization term is equivalent to adding a multiplicative 
(independent) prior to yield a maximum a posteriori (MAP) estimate:

argminθ ||fθ(X) − y||22 + λ||θ||22

= argmaxθexp (−||fθ(X) − y||22) exp (−λ||θ||22) = θMAP,

Here, adding an L2 penalty is equivalent to MAP for Y = fθ(X) + N (0, σ) with 
a N (0, 1

λ ) prior. We next discuss the functional form of the attribution priors 
enforced by our penalties.

Pixel attribution prior. Our pixel attribution prior is based on the anisotropic total 
variation loss and is given as follows:

Ωpixel(Φ(θ, X)) =
∑

ℓ

∑

i,j
|ϕℓ

i+1,j − ϕℓ

i,j| + |ϕℓ

i,j+1 − ϕℓ

i,j|,

where ϕℓ

i,j is the attribution for the i, jth pixel in the ℓ-th training image. 
Research shows46 that this penalty is equivalent to placing zero-mean, i.i.d., 
Laplace-distributed priors on the differences between adjacent pixel values, that is, 
ϕℓ

i+1,j − ϕℓ

i,j ≈ Laplace (0, λ−1) and ϕℓ

i,j+1 − ϕℓ

i,j ≈ Laplace (0, λ−1). Reference 46 
does not call our penalty ‘total variation’, but it is in fact the widely used anisotropic 
version of total variation and is directly implemented in Tensorflow47–49.

Graph attribution prior. For our graph attribution prior, we used a protein–
protein or gene–gene interaction network and represented these networks as 
a weighted, undirected graph. Formally, assume we have a weighted adjacency 
matrix W ∈ R

p×p
+

 for an undirected graph, where the entries encode our prior 
belief about the pairwise similarity of the importances between two features. For 
a biological network, Wi,j encodes either the probability or strength of interaction 
between the ith and jth genes (or proteins). We encouraged similarity along graph 
edges by penalizing the squared Euclidean distance between each pair of feature 
attributions in proportion to how similar we believe them to be. Using the graph 
Laplacian (LG = D − W), where D is the diagonal degree matrix of the weighted 
graph, this becomes:

Ωgraph(Φ(θ, X)) =
∑

i,j
Wi,j(ϕ̄i − ϕ̄j)

2
= ϕ̄TLGϕ̄.

In this case, we choose to penalize global rather than local feature attributions. 
We define ϕ̄i to be the importance of feature i across all samples in our dataset, 
where this global attribution is calculated as the average magnitude of the feature 
attribution across all samples: ϕ̄i =

1
n
∑n

ℓ=1 |ϕ
ℓ

i |. Just as the image penalty is 
equivalent to placing a Laplace prior on adjacent pixels in a regular graph, the 
graph penalty Ωgraph is equivalent to placing a Gaussian prior on adjacent features 
in an arbitrary graph with Laplacian LG (ref. 46).

Sparse attribution prior. Our sparsity prior uses the Gini coefficient G as a penalty, 
which is written:

Ωsparse(Φ(θ, X)) = −

p∑
i=1

p∑
j=1

|ϕ̄i − ϕ̄j|

n
p∑

i=1
ϕ̄i

= −2G(ϕ̄),

By taking exponentials of this function, we find that minimizing the sparsity 
regularizer is equivalent to maximizing likelihood under a prior proportional to the 
following:

p∏

i=1

p∏

j=1
exp




1

p∑
i=1

ϕ̄i

|ϕ̄i − ϕ̄j|




,

To our knowledge, this prior does not directly correspond to a named distribution. 
However, we observe that its maximum value occurs when one ϕ̄i is 1 and all 
others are 0, and that its minimum occurs when all ϕ̄i are equal. This is similar 
to the total variation penalty Ωimage, but it is normalized and has a flipped sign to 
encourage differences. The corresponding attribution prior is maximized when 
global attributions are zero for all but one feature and minimized when attributions 
are uniform across features.

Image model experimental settings. We trained a VGG16 model from scratch 
modified for the CIFAR-10 dataset, containing 60,000 coloured 32 × 32-pixel 
images divided into 10 categories, as in ref. 50. To train this network, we used 
stochastic gradient descent with an initial learning rate of 0.1 and an exponential 
decay of 0.5 applied every 20 epochs. Additionally, we used a momentum level of 
0.9. For augmentation, we shifted each image horizontally and vertically by a pixel 
shift uniformly drawn from the range [−3, 3], and we randomly rotated each image 
by an angle uniformly drawn from the range [−15, 15]. We used a batch size of 128. 
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Before training, we normalized the training dataset to have zero mean and unit 
variance, and standardized the test set with the mean and variance of the training 
set. We used k = 1 background reference samples for our attribution prior while 
training. When training with attributions over images, we first normalized the 
per-pixel attribution maps by dividing by the standard deviation before computing 
the total variation; otherwise, the total variation can be made arbitrarily small 
without changing model predictions by scaling down the pixel attributions close to 
zero. See Supplementary Section F for more details.

We repeated the same experiment as above on MNIST, which contains 
60,000 black-and-white 28 × 28-pixel images of handwritten digits. We trained a 
convolutional neural network with two convolutional layers and a single hidden 
layer. The convolutional layers each had 5 × 5 filters, a stride length of 1, and 32 
and 64 filters total. Each convolutional layer was followed by a max pooling layer of 
size 2 with stride length 2. The hidden layer had 1,024 units and a dropout rate of 
0.5 during training51. Dropout was turned off when calculating the gradients with 
respect to the attributions. We trained with the Adam optimizer with the default 
parameters (learning rate α = 0.001, gradient average decay rate β1 = 0.9, squared 
gradient average decay rate β2 = 0.999, and numerical stability constant ϵ = 10−8)52. 
We trained with an initial learning rate of 0.0001, with an exponential decay of 0.95 
for every epoch, for a total of 60 epochs. For all models, we trained with a batch 
size of 50 images and used k = 1 background reference sample per attribution while 
training. See Supplementary Section G for more details.

Biological experiments. Significance testing of results. To test the difference in 
R2 attained by each method, we used a t-test for the means of two independent 
samples of scores (as implemented in SciPy)53. This is a two-sided test and can 
be applied to R2 as R2 is a linear transformation of mean squared error, which 
satisfies normality assumptions by the central limit theorem. When we compare 
the R2 attained from ten independent retrainings of the neural network to the R2 
attained from ten independent retrainings of the attribution prior model, we find 
that predictive performance is significantly higher for the model with the graph 
attribution prior (t statistic = 3.59, P = 2.06 × 10−3).

To ensure that the increased performance in the attribution prior model was 
due to real biological information, we replaced the gene-interaction graph with a 
randomized graph (symmetric matrix with identical number of non-zero entries 
to the real graph, but entries placed in random positions). We then compared the 
R2 attained from ten independent retrainings of a neural network with no graph 
attribution prior to ten independent retrainings of an neural network regularized 
with the random graph and found that test error was not significantly different 
between these two models (t statistic = 1.25, P = 0.23). We also compared to graph 
convolutional neural networks, and found that our network with a graph attribution 
prior outperformed the graph convolutional neural network (t statistic = 3.30, 
P = 4.0 × 10−3). Finally, we compared to an L2 penalty applied uniformly across 
all attributions, and found that this attribution prior did not significantly increase 
performance from baseline (t statistic = 1.7, P = 0.12, see Supplementary Fig. 15).

Train/validation/test-set allocation. To increase the number of samples in our 
dataset, we used as a feature the identity of the drug being tested, rather than one 
of a number of possible output tasks in a multi-task prediction. This follows from 
previous literature on training neural networks to predict drug response54. This 
yielded 30,816 samples (covering 218 patients and 145 anticancer drugs). Defining 
a sample as a drug and a patient, however, meant we had to choose carefully how 
to stratify samples into our train, validation and test sets. While it is perfectly 
legitimate in general to randomly stratify samples into these sets, we wanted to 
specifically focus on how well our model could learn trends from gene expression 
data that would generalize to new patients. Therefore, we stratified samples at a 
patient level rather than at the level of individual samples (for example, no samples 
from any patient in the test set ever appeared in the training set). We split 20% of 
the total patients into a test set (6,155 samples) and then split 20% of the training 
data into a validation set for hyperparameter selection (4,709 samples).

Model class implementations and hyperparameters tested. LASSO. We used the 
scikit-learn implementation of the LASSO55,56. We tested a range of α parameters 
from 10−9 to 1, and we found that the optimal value for α was 10−2 by mean squared 
error on the validation set.

Graph LASSO. For our graph LASSO, we used the Adam optimizer in 
TensorFlow47, with a learning rate of 10−5 to optimize the following loss function:

L(w;X, y) =∥ Xw − y∥22 + λ′ ∥ w∥1 + ν′wTLGw, (1)

where w ∈ R
d is the weights vector of our linear model and LG is the graph 

Laplacian of our HumanBase network30. In particular, we downloaded the ‘Top 
Edges’ version of the haematopoietic stem cell network, which was thresholded to 
only have non-zero values for pairwise interactions that had a posterior probability 
greater than 0.1. We used the value of λ′ selected as optimal in the regular LASSO 
model (10−2, which corresponds to the α parameter in scikit-learn) and then tuned 
over ν′ values ranging from 10−3 to 100. We found that a value of 10 was optimal 
according to MSE on the validation set.

Neural networks. We tested a variety of hyperparameter settings and network 
architectures via validation set performance to choose our best neural networks, 
including the following feed-forward network architectures (where each element 
in a list denotes the size of a hidden layer): [512, 256], [256, 128], [256, 256] and 
[1,000, 100]. We tested a range of L1 penalties on all of the weights of the network, 
from 10−7 to 10−2. All models attempted to optimize a least squares loss using the 
Adam optimizer, with learning rates again selected by hyperparameter tuning 
ranging from 10−5 to 10−3. Finally, we implemented an early stopping parameter of 
20 rounds to select the number of epochs of training (training was stopped after 
no improvement on validation error for 20 epochs, and the number of epochs 
was chosen based on optimal validation set error). We found that the optimal 
architecture (chosen by lowest validation set error) had two hidden layers of size 
512 and 256, an L1 penalty on the weights of 10−3 and a learning rate of 10−5. We 
additionally found that 120 was the optimal number of training epochs.

Attribution prior neural networks. We next applied our attribution prior to the 
neural networks. First, we tuned networks to the optimal conditions described 
above. We then added extra epochs of fine-tuning where we ran an alternating 
minimization of the following objectives:

L(θ;X, y) =∥ fθ(X) − y∥22 + λ ∥ θ∥1 (2)

L(θ;X) = Ωgraph(Φ(θ, X)) = νϕ̄TLGϕ̄ (3)

Following ref. 9, we selected ν to be 100 so that the Ωgraph term would initially be 
equal in magnitude to the least squares and L1 loss terms. We found that five extra 
epochs of tuning were optimal by validation set error. We drew k = 10 background 
samples for our attributions. To test our attribution prior using gradients as the 
feature attribution method (rather than expected gradients), we followed the exact 
same procedure, only we replaced ϕ̄ with the average magnitude of the gradients 
rather than the EG.

Graph convolutional networks. We followed the implementation of graph 
convolution described in ref. 31. The architectures were searched as follows: in 
every network, we first had a single graph convolutional layer (we were limited to 
one graph convolution layer due to memory constraints on each Nvidia GTX 1080 
Ti GPU that we used), followed by two fully connected layers of sizes (512, 256), 
(512, 128) or (256, 128). We tuned over a wide range of hyperparameters, including 
L2 penalties on the weights ranging from 10−5 to 10−2, L1 penalties on the weights 
ranging from 10−5 to 10−2, learning rates of 10−5 to 10−3 and dropout rates ranging 
from 0.2 to 0.8. We found the optimal hyperparameters based on validation set 
error were two hidden layers of size 512 and size 256, an L2 penalty on the weights 
of 10−5, a learning rate of 10−5 and a dropout rate of 0.6. We again used an early 
stopping parameter and found that 47 epochs was the optimal number.

Sparsity experiments. Data description and processing. Our sparsity experiments 
used data from the National Health and Nutrition Examination I Survey 
(NHANES I)42 and contained 35 variables (expanded to 118 features by 
one-hot encoding of categorical variables) gathered from 13,000 patients. The 
measurements included demographic information such as age, sex and BMI as well 
as physiological measurements such as blood, urine and vital sign measurements. 
The prediction task was a binary classification of whether the patient was still alive 
(1) or not (0) ten years after data were gathered.

Data were mean-imputed and standardized so that each feature had zero 
mean and unit variance. For each of the 200 experimental replicates, 100 train and 
100 validation points were sampled uniformly at random; all other points were 
allocated to the test set.

Model. We trained a range of neural networks to predict survival in the NHANES 
data. The architecture, nonlinearities and training rounds were all held constant 
at values that performed well on an unregularized network, and the type and 
degree of regularization were varied. All models used ReLU activations and a 
single output with binary cross-entropy loss; in addition, all models ran for 100 
epochs with a stochastic gradient descent optimizer with learning rate 0.001 on the 
size-100 training data. The entire 100-sample training set fit in one batch. Because 
the training set was so small, all of its 100 samples were used for EG attributions 
during training and evaluation, yielding k = 100. Each model was trained on a 
single GPU on a desktop workstation with 4 Nvidia 1080 Ti GPUs.

Architecture. We considered a range of architectures, including 
single-hidden-layer 32-node, 128-node and 512-node networks, two-layer 
[128, 32]-node and [512, 128]-node networks, and a three-layer [512, 128, 32]-node 
network; we fixed the [512, 128, 32] architecture for future experiments.

Regularizers. We tested a large array of regularizers in addition to those 
considered in the main text. For details, see Supplementary Section J.1.

Hyperparameter tuning. We selected the hyperparameters for our models based on 
validation performance. We searched all L1, L2, SGL and attribution prior penalties 
with 121 points sampled on a log scale over [10−7, 105] (Supplementary Fig. 18). 
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Other penalties, not displayed in the main text experiments, are discussed in 
Supplementary Section J.2.

Main text methods. Performance and sparsity bar plots. The performance bar 
graph (Fig. 5a) was generated by plotting mean test ROC AUC of the best model 
of each type (chosen by validation ROC AUC) averaged over each of the 200 
subsampled datasets, with confidence intervals given by 2 times the standard error 
over the 200 replicates. The sparsity bar graph (Fig. 5c) was constructed using the 
same process, but with Gini coefficients rather than ROC AUCs.

Feature importance distribution plot. The distribution of feature importances 
was plotted in the main text as a Lorenz curve (Fig. 5, bottom right): for each model, 
the features were sorted by global attribution value ϕ̄i, and the cumulative normalized 
value of the lowest q features was plotted, from 0 at q = 0 to 1 at q = p. A lower area 
under the curve indicates more features had relatively small attribution values, 
indicating that the model was sparser. Because 200 replicates were run on small 
subsampled datasets, the Lorenz curve for each model was plotted using the averaged 
mean absolute sorted feature importances over all replicates. Thus, for a given model 
type, the q = 1 point represented the mean absolute feature importance of the least 
important feature averaged over each replicate, q = 2 added the mean importance for 
the second least important feature averaged over each replicate, and so on.

Performance versus sparsity plot. Validation ROC AUC and model sparsity 
were calculated for each of the 121 regularization strengths and averaged over each 
of the 200 replicates. These were plotted on a scatterplot to show the possible range 
of model sparsities and ROC AUC performances (Fig. 5, top right) as well as the 
trade-off between sparsity and performance.

Statistical significance. Statistical significance of the sparse attribution 
prior performance was assessed by comparing the test ROC AUCs of the sparse 
attribution prior models on each of the 200 subsampled datasets to those of the 
other models (L1 gradients, L1 weights, SGL and unregularized). Significance was 
assessed by two-sided paired-samples t-test, paired by subsampled dataset. The 
same process was used to calculate the significance of model sparsity as measured 
by the Gini coefficient. Detailed tables of the resulting P values and test statistics t 
are shown in Supplementary Section J.3.

Data availability
The data for all experiments and figures in the paper are publicly available. A 
downloadable version of the dataset used for the sparsity experiment, as well as 
links to download the datasets used in the image and graph prior experiments, 
is available at https://github.com/suinleelab/attributionpriors. Data for the 
benchmarks were published as part of ref. 57 and can be accessed at https://github.
com/suinleelab/treeexplainer-study/tree/master/benchmark.

Code availability
Implementations of attribution priors for Tensorflow and PyTorch are available at 
https://github.com/suinleelab/attributionpriors. This repository also contains code 
reproducing main results from the paper. The specific version of code used in this 
paper is archived at ref. 58.
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