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We provide the most accurate results for the QCD transition line so far. We optimize the definition of the
crossover temperature 7., allowing for its very precise determination, and extrapolate from imaginary
chemical potential up to real uz ~ 300 MeV. The definition of 7. adopted in this work is based on the
observation that the chiral susceptibility as a function of the condensate is an almost universal curve at zero
and imaginary pp. We obtain the parameters k, = 0.0153(18) and x4 = 0.00032(67) as a continuum
extrapolation based on N, = 10, 12, 16 lattices with physical quark masses. We also extrapolate the peak
value of the chiral susceptibility and the width of the chiral transition along the crossover line. In fact, both
of these are consistent with a constant function of yz. We see no sign of criticality in the explored range.
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Introduction.—One of the most important open problems
in the study of quantum chromodynamics (QCD) at finite
temperature and density is the determination of the phase
diagram of the theory in the temperature (7)-baryochemical
potential (up) plane. It is now established by first principle
lattice QCD calculations that the transition at yz =0 is a
smooth crossover [1,2] for physical quark masses. Due to
the lack of a real phase transition, the crossover temperature
is of course ambiguous, since different definitions can lead
to different values for it. Observables related to chiral
symmetry (i.e., the chiral condensate and its susceptibility)
yield a transition temperature around 155-160 MeV [3-6].

Extending our knowledge to the up > 0 part of the phase
diagram turns out to be very challenging due to the
notorious sign problem. Since this makes direct simulation
at finite pp impossible, the state of the art for finite density
QCD on fine lattices is to use one of two extrapolation
methods. The first method is the direct calculation of Taylor
coefficients [7—17] using simulations at yp = 0, while the
second is to use simulations at imaginary chemical poten-
tials (u3 < 0), where the sign problem is absent, and later
perform an extrapolation of different quantities to a real
chemical potential (43 > 0) [18-31]. It is often conjectured
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that in the (7', ug) plane the crossover line, departing from
(T.,upg = 0), eventually turns into a first-order transition
line. The point (Tcgp, Ucpp) separating the crossover and
the first-order transitions is known as the critical endpoint
(CEP), where the transition is expected to be of second
order. Though there have been attempts in extracting
information about the location of the supposed CEP from
lattice simulations [15,26,32-37], these attempts face great
difficulties as extrapolation-type methods have the property
of giving reliable results mostly in the immediate vicinity
of Hp = 0.

In this Letter, we address the problem of calculating the
Taylor coefficients of the crossover temperature around
ug = 0, parameterized as follows:
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along the phenomenologically relevant strangeness neutral-
ity line. In this work we improve the uncertainty on x4
available in the literature [16] by a factor of 6, giving a
state-of-the-art determination of the crossover line in the
(T, up) plane. In particular, as we will show, at chemical
potentials up > 200 MeV, the error on the T, extrapolation
is dominated by the subleading coefficients, e.g., k4. The
coefficients k, and k4 can be calculated with either one of
the standard extrapolation methods. A direct evaluation of
the pp derivatives from up = 0 ensembles was used in
Refs. [38,39]. The current state of the art using the up = 0
simulation method is Ref. [16], which includes the first
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FIG. 1. Renormalized chiral condensate (yy) (left) and chiral susceptibility y (middle) as functions of the temperature for the

intermediate lattice spacing in this study. The black curves correspond to vanishing baryon density, while results for various imaginary
values of the chemical potential are shown in other colors. Finally, in the right panel we show the susceptibility as a function of the
condensate. In this representation the chemical potential dependence is very weak.

continuum extrapolated results for k4. Here we will employ
an analytical continuation from imaginary up instead and
use lattices as fine as N, = 16. This is motivated by the fact
that the signal-to-noise ratio of higher up derivatives is
suppressed with powers of the lattice volume; therefore
the calculation of higher order derivatives requires
very high statistics. Determinations of «, using the imagi-
nary up method with continuum extrapolation include
Refs. [24,25]. Finally, in Ref. [30] the two methods were
compared with a careful check of the systematics, and a
very good agreement was found for the coefficient x,. The
transition line was also studied in chiral effective models,
see, e.g., the recent Ref. [40].

We also study the strength of the crossover by extrapo-
lating the width of the transition and the value of the chiral
susceptibility at the transition to real up in the continuum
limit. While one always has to be careful not to overinterpret
results from extrapolations, we currently do not see any sign
of criticality up to up =~ 300 MeV, as the crossover tran-
sition does not get narrower or stronger in this region.

On chiral observables in the transition region.—For the
lattice simulations, we use 4-stout improved staggered
fermions with an aspect ratio of LT =4 and temporal
lattice sizes of N, =10, 12, 16. The details of the
simulation setup can be found in the Supplemental
Material [41]. The use of rooted staggered fermions may
come with additional systematic effects that we did not
consider in this Letter. Ideally, this work should be repeated
with a chiral discretization.

The main observables in this study are the renormalized
dimensionless chiral condensate and susceptibility, respec-
tively defined as
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where we assumed isospin symmetry, i.e., m, = my; =
m,q. In the above equations, the subscripts 7, O indicate
values at finite and zero temperature, respectively. In the
following, (yy) and y are always shown after applying the
correction to satisfy n, = 0 with zero statistical error (see
the Supplemental Material [41] for details). The peak
height of the susceptibility is an indicator for the strength
of the transition, while the peak position in temperature
serves as a definition for the chiral crossover temperature. It
was pointed out in Refs. [3,4] that different normalizations
of the susceptibility, such as using 1/f2 or 1/T* to define y
in Eq. (2), can shift the peak position by 11 MeV. This
difference could be considered as a measure for the
broadness of the chiral transition.

Our normalization choice in Eq. (2) was motivated by
two observations, shown in Fig. 1 and explained below.
These observations (together with the improved statistics
and the more accurate tuning of ys(up) to ng = 0) allow a
very precise determination of 7', as a function of imaginary
chemical potential, which in turn allows a precise deter-
mination of the parameters x, and k4. We explored the
chiral condensate and susceptibility in a broad range of
imaginary baryochemical potential. In all panels of Fig. 1,
the black curves correspond to up = 0. In the left and
middle panel we show the chiral condensate and suscep-
tibility as functions of the temperature. By construction, our
renormalized condensate is zero at 7 = 0 and positive at
high temperature because of the explicit vacuum subtrac-
tion and the overall negative sign in Eq. (2). In both panels,
one can observe the shifting of the transition toward higher
temperatures when an imaginary chemical potential is
introduced. In the right panel we show the susceptibility
as a function of the condensate. Here we converted the
statistical error on the condensate into an additional error on
the susceptibility by solving for (py)(T) = const and
substituting the resulting 7 into y(7) (also taking the
correlation of the statistical errors into account). Our first
observation on the right panel of Fig. 1 is that the form of
the y((wy)) curve is simpler than that of y(7'): a low-order
(e.g., third or fourth) polynomial can fit the entire transition
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range with an excellent fit quality. The second observation
is that there is virtually no chemical potential dependence
in the y ((ww)) function. This way the susceptibility can be
modeled as a low-order polynomial of two variables, ()
and 1 = ug/T. Had we used a different normalization for
the susceptibility, e.g., y(T)f+/T* as we did in Ref. [5], the
peak height would be strongly pp dependent and the
collapse of the y((py)) curves at different (imaginary)
chemical potentials would not happen.

The transition line and its analytical continuation.—
Keeping the previous observations in mind, one can
perform a precise determination of 7., as defined by the
peak of y in Eq. (2), for various values of the imaginary
chemical potential. T.(u%) can then be fitted for the
coefficients kx, and k4. This requires the following steps:
i) Determine the renormalized condensate (py) and
susceptibility y in a two-dimensional parameter scan in
T and Imup using lattice simulations. Use these to obtain
the susceptibility as a function of the condensate. ii) Search
for the peak of y((py)) through a low-order polynomial fit
for each N, and Imup obtaining (). (N,, Imug). iii) Use
an interpolation of (yy)(T) to convert the (), to T, for
each Imyug/T. iv) Perform a global fit of T.(N,, Imug/T,)
to determine the coefficients x, and k, for 1/N? = 0. For
this step we use various functions—all containing an
independent kg—with coefficients depending linearly
on 1/N?.

There are ambiguities in steps 1)—iv). We estimate their
systematics by carrying out many versions of these steps.
For all these variations and the estimation of the errors, see
the Supplemental Material [41]. We finally obtain

Ky = 0.0153 + 0.0018,
k4 = 0.00032 + 0.00067. (3)

We stress that the uncertainties on these two quantities are
correlated. We put these results in the context of previous
lattice studies in Fig. 2. The extrapolated value of T.(up) is
shown in Fig. 3 (green band). Note that the errors on k, and
k4 are dominated by the statistical errors, as shown in the
detailed discussion of the systematic error estimate in the
Supplemental Material [41].

Since Ref. [25] we have more than doubled the statistics
and introduced a more precise analysis. The overall error on
Kk, has reduced slightly. The main result is the extraction of
k4. It appears to be a generic feature of deducing Taylor
coefficients from polynomial fits: the increased precision
on the input data leads to a sensitivity to a higher order
coefficient first and only later to a reduction of the error of
both coefficients. This feature is also clearly seen in the
mock data analysis in the Supplemental Material [41].

In Fig. 3 we also show the comparison to the leading
order Taylor expansion result (using only x,) and the next
to leading order result (using x, and x,). The latter is very
close to our full result (for pup < 300 MeV), while the
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FIG. 2. Compilation of x4 (left) and x, (right) coefficients from
recent lattice studies. We only include those papers where physical
quark masses were used, a controlled continuum extrapolation was
performed, and either strangeness neutrality or u, =0 was
considered. [Note that while p; = 0 means ug = ug/3 for all
values of pp, strangeness neutrality implies ug ~ up/4 for small
up.] The colors encode the numerical approach. Blue points
indicate simulations at yp = 0 only, where the up dependence
of T, was extracted using a Taylor expansion. If a study used
simulations with imaginary chemical  potentials in addition, we
plot the results with green points, instead. Top data points represent
this work, the further references in order: [16,24,25,30].

leading order result has a much smaller uncertainty.
Clearly, «, is precise enough. At intermediate pp, the
bottleneck for the precision of T'.(u) is the error on k4. We
also fitted x4, which turned out to be small enough to be
irrelevant for uz < 300 MeV.

In Ref. [25] multiple T, definitions were considered,
leading to consistent values for k,. However, none of those
definitions can match the precision of the 7. observable
considered here, and precision was a prerequisite for the
determination of xy.

Extrapolation of the transition width and strength.—
A natural definition of the width of the susceptibility
peak is given by its second derivative at T, as (AT)?> =
—x(T)[(d?/dT*)y|7L; . Unfortunately, evaluating this
quantity is numericallyc difficult, so we introduce a simple
width parameter ¢ as a proxy for AT via

(y)(Te +0/2) = (py). + Algw)/2, (4)

with (). = 0.285 and A(py) = 0.14. The choice of the
range in (yy) is such that it is consistent with a linear
behavior within our error bars, meaning that the ratio
A(py) /o can be used as a proxy for (d/dT){yy)|r_r, as
well. The exact range in (yw) is chosen such that o
coincides with AT at zero and imaginary ug. A more
detailed discussion of the width parameter can be found in
the Supplemental Material [41].

We conclude that the half-width of the transition—
shown in the upper panel of Fig. 4—is consistent with a
constant up to pp ~ 300 MeV within the uncertainty from
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FIG. 3. Top: Transition line extrapolated from lattice simula-

tions at imaginary chemical potential using an analytical con-
tinuation with the ansatz used in step iv) of our analysis (green
band) compared with an extrapolation using the formula in
Eq. (1) up to the order of x4 (red band) or up to x, (blue band).
The proximity of the full and NLO result suggests that the higher
order corrections are small in the range of yp considered here.
Note that considering only the error bar of k, underestimates the
full error. The numerical values for the final analytical continu-
ation, together with its error, are tabulated in the Supplemental
Material [41]. Bottom: Crossover line from the lattice compared
with a prediction from truncated Dyson—Schwinger equations
[47] and some estimates of the chemical freeze-out parameters in
heavy ion collisions [48-52]. Note that the width of the green
band is not a representation of the width of the crossover region; it
depicts the statistical and systematic errors achievable with the
particular definition of the crossover temperature 7', adopted in
this work. Note also that the definition of the crossover
temperature adopted in Ref. [47] is different from the one used
in this work.

the extrapolation (we note that 50% uncertainty is reached
at ug ~ 280 MeV).

Finally, as a proxy for the strength of the crossover, we
study the value of the chiral susceptibility at the crossover
temperature. We get this for each Imup and N, as a
byproduct of steps i)—ii) of the analysis for x, and k4. If
one then performs a continuum extrapolation of the
resulting values for fixed values of Imupg, one gets the
lower panel of Fig. 4. Again, we see a very mild i3
dependence, consistent with a constant.

Summary and discussion.—The main result of this work
is a precise determination of the parameters x, and x, of the
crossover line in finite density QCD. For the determination
of the crossover line, we used the experimentally relevant
us(pp) tuned to keep ng = 0. Based on the observation that
the chiral susceptibility as a function of the condensate is a
rather simple function, only weakly dependent on the
imaginary chemical potential, we were able to obtain the
transition temperature as a function of the imaginary
chemical potential to very high accuracy. These pure lattice
results can be used for further model building and are
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FIG. 4. Top: Half-width ¢ of the transition defined in Eq. (4)
using the temperature difference of the contours () = 0.355
and (y) = 0.215. In the insert we show a plot of the y({yy))
peak, where the shaded region corresponds to (), +A(wy) /2.
Both are extrapolated to real yp. Bottom: Result of a up by up
analysis for the value of the chiral susceptibility at the crossover
temperature after continuum extrapolation and including the
systematic errors for LT, = 4. The green band shows a linear
extrapolation in fi%.

summarized in the Supplemental Material [41]. The high
precision data at imaginary up in turn allowed us to fit the
u% and pg, Taylor coefficients of the crossover temperature
K, and k4. In particular, while our determination of «, is still
consistent with zero, the error is 6 times smaller than the
one previously available in the literature and therefore
represents the state of the art in the study of the phase
diagram in the (7, up) plane with current lattice techniques.
As a byproduct, we also obtain the most precise value for
the central temperature of the crossover at ug = 0 so far, as
well as the width of the transition:

T.(LT = 4,5 = 0) = 158.0 + 0.6 MeV
AT(LT =4,z =0) = 15+ 1 MeV (5)

We briefly discuss the meaning of these small errors in the
Supplemental Material [41].

We also studied the strength of the phase transition as a
function of up by extrapolating our proxy for the transition
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width and the peak of the chiral susceptibility from
imaginary chemical potentials. Even though one has to
be careful with extrapolations, we see no sign of the
transition getting stronger up to uz ~ 300 MeV.
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