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Quartic cumulant of baryon number in the presence of a QCD critical point
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In the context of the ongoing search for the QCD critical point at the Relativistic Heavy-Ion Collider, we

study the equation of state near the critical point in the temperature and baryon chemical potential plane. We use

the parametric representation introduced in earlier literature, which maps the universal three-dimensional Ising

equation of state onto the QCD phase diagram using several non-universal parameters. We focus on the quartic

cumulant of the baryon number, or baryon number susceptibility χB
4 , which can be accessed experimentally

via net-proton fluctuation kurtosis measurements. It was originally predicted, through universality arguments

based on the leading singular contribution, that χB
4 and net-proton kurtosis should show a specific nonmonotonic

behavior due to the critical point. In particular, when following the freeze-out curve on the phase diagram by

decreasing beam energy, the kurtosis is expected to dip, and then peak, when the beam energy scan passes close to

the critical point. We study the effects of the nonuniversal and thus far unknown parameters of the Ising-to-QCD

mapping on the behavior of χB
4 . We find that, while the peak remains a solid feature, the presence of the critical

point does not necessarily cause a dip in χB
4 on the freeze-out line below the transition temperature. The critical

point contribution to the dip appears only for a narrow set of mapping parameters, when subleading singular

terms are sufficiently suppressed.

DOI: 10.1103/PhysRevC.103.034901

I. INTRODUCTION

One of the current major thrusts of the nuclear physics

program is to map out the phase diagram of quantum chro-

modynamics (QCD) and specifically look for a critical point

in the transition from a hadron resonance gas into deconfined

plasma of quarks and gluons. Because the location of the QCD

critical point is yet unknown, searches are currently ongoing

across the relevant region of the QCD phase diagram. At high

temperatures and intermediate baryon chemical potentials,

relativistic heavy-ion collisions are able to scan the phase

*Corresponding author: parotto@uni-wuppertal.de

diagram by systematically decreasing the collision energy.

This is the motivation behind the second phase of the Beam

Energy Scan (BES-II) at the Relativistic Heavy-Ion Collider

(RHIC) (see, e.g., Ref. [1] for a recent review). At lower

temperatures and higher baryon chemical potentials, useful

information can be extracted from the study of neutron stars

and neutron star mergers. In fact, it appears that there may

even be significant overlap in the phase diagram pertaining to

the lowest beam energies in heavy-ion collisions and neutron

star mergers [2,3].

Lattice QCD calculations cannot be performed at finite

μB [4]; therefore, it is currently not possible to determine

the location of the critical point from first principles. Thus,

experimental searches for the critical point are central to
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determining its location [3,5]. The main strategy is based on

the search for certain nonmonotonic dependence of fluctua-

tions on an experimental variable, such as the collision energy√
s, as the critical region is traversed during the scan of the

QCD phase diagram [6–9]. The nonmonotonic behavior of

fluctuation measures is directly related to the divergence of

susceptibilities at the critical point. Therefore, susceptibilities

of conserved charges are of major interest for first princi-

ple lattice calculations (see, e.g., Ref. [10] for a review). In

the case of heavy-ion collisions, there are three conserved

charges: baryon number (B), strangeness (S), and electric

charge (Q), whereas in neutron star (mergers) only B and Q

are conserved, because the typical timescales are sufficiently

large for weak processes to become relevant.

Baryon number susceptibilities diverge at the critical point

[11], and are, therefore, the most promising observables in its

search. Since experiments measure multiplicities of charged

particles, the closest quantities to baryon number suscepti-

bilities, or cumulants, are the net-proton number cumulants,

which show similar critical behavior [8,12,13]. Electric charge

fluctuations contain a singular contribution from net-proton

fluctuations, but this effect is diluted by pions and therefore

it is expected to be milder [12]. Additionally, higher order

cumulants are the most sensitive to critical behavior because

they scale with higher powers of the correlation length [8,9]

in the vicinity of the critical point. However, experimental

measurements currently are only available up to the fourth

cumulant [5,14] at large baryon densities with reasonable

error bars.1

At μB = 0, it is possible to calculate the higher order BSQ

susceptibilities on the lattice and then use them to reconstruct

the lower order ones at small finite baryon densities, although

with large numerical uncertainties [10,16,17]. Alternatively,

effective models exist that can reproduce lattice QCD results

and do include a critical point at finite baryon density [18].

Another approach is to make use of the fact that the QCD

critical point is expected to be in the same universality class

as the three-dimensional (3D) Ising model [19–24]. Using

this approach, a specific nonmonotonic behavior of the fourth

cumulant of net-proton number as a function of
√

s was pro-

posed as a potential critical point signature in Ref. [9]. This

prediction has sparked interest in the community, especially

in light of the BES-II and its Fixed Target Program [25,26],

which is intended to provide larger statistics and reach lower

collision energies.

The baryon number susceptibility, which has a similar

behavior, can be obtained from the equation of state by dif-

ferentiating the pressure at fixed temperature:

χB
4 (T, μB) =

(

∂4 p

∂μ4
B

)

T

. (1)

Due to the mapping between the QCD and the 3D Ising

model critical equations of state, the leading divergence at the

critical point comes from the fourth derivative of the Gibbs

1The data for the sixth cumulant [15] are also available but with

large statistical error bars and only at vanishing baryon densities.

free energy G, i.e., the third derivative of the critical order

parameter (the magnetization M) with respect to the ordering

(magnetic) field h at constant reduced temperature r:

χ
Ising

4 (r, h) =
(

∂4G

∂h4

)

r

=
(

∂3M

∂h3

)

r

. (2)

Taking only the leading singular contribution, the predicted

behavior for χB
4 along a freeze-out curve (location of freeze-

out point as a function of
√

s) starting at μB = 0 and passing

close to the critical point is as follows. From its value at μB =
0, χB

4 is expected to decrease at increasing μB, then move

upwards and reach a peak in the vicinity of the critical point.

This peculiar, doubly nonmonotonic behavior has motivated

the experimental search for the critical point in the past years,

also due to a quite similar behavior observed in the measured

quantity

κσ 2 = κ4/κ2, (3)

where κ , σ = √
κ2 and κ4 are the kurtosis, variance, and quar-

tic cumulant of the net-proton number distribution. Indeed,

the data from the STAR experiment [14] show κσ 2 decreasing

and then swinging upwards as the collision energy decreases,

which resembles the behavior predicted in Ref. [9]. Although

this similarity is indeed quite promising, other explanations

have been proposed for the dip, such as global conservation of

baryon number, which is expected to play a bigger role at low

collision energies where the system is smaller [27,28]. Trans-

port models that do not include any criticality, but do account

for charge conservation, are able to reproduce the decrease at

finite μB [29]. On the other hand, the dip also arises when

extrapolating χB
4 to finite μB in lattice QCD through a Taylor

series [16,17]. This suggests that at least some contribution to

the experimentally observed dip comes from the equilibrium

equation of state, which may, in principle, be due to the

approach to the critical point.

The specific nonmonotonic behavior predicted in Ref. [9]

and described above focuses on the leading contribution to

χB
4 , given by χ

Ising

4 . In the parametric equation of state we

use in this paper, due to the mixing of r and h variables in

the mapping of 3D Ising to QCD equation of state, there are

also subleading critical contributions. The peculiarity of the

QCD equation of state, as we see below in more detail, is that

the leading contribution is suppressed by the smallness of the

slope α1 of the phase-separating line in the T, μB plane at the

critical point. Therefore, unless the r, h mixing is also sup-

pressed, the subleading critical contribution could dominate

in a significant part of the critical region, thus qualitatively

changing the prediction.

In this work we investigate this effect by comparing two

choices of the mixing parameters, which show qualitatively

different behavior of χB
4 near the critical point. One choice

is a common “default” choice in the literature, where the r, h

mixing is not suppressed. Another choice is motivated by the

recent work in Ref. [30], which argues that, close to the chiral

(small quark mass) limit, the mixing is suppressed. While in

the latter choice we recover the pattern of χB
4 behavior similar

to Ref. [9], in the former, the subleading terms significantly

changes that pattern. While the peak of χB
4 is a robust feature
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independent of the parameter choice, the dip at μB < μBC

is sensitive to the choice. It is worth pointing out that we

explored several other parameter choices, not shown here,

and that the dip disappears in almost all of them. The second

parameter choice shown here is one of the few in which the dip

is still visible. The reason for this will become clear below.

This paper is organized as follows. In Sec. II we quickly

summarize the procedure developed in Ref. [31] to construct

equations of state for QCD with a built-in criticality in the

correct universality class. In Sec. III we present a discussion

of the dependence of the critical region size and shape on

the different parameters, focusing on the contribution from

the leading divergence. In Sec. IV we present our results for

several different choices of the parameters in the Ising-to-

QCD map, which lead to our conclusions, summarized in

Sec. VI.

II. PARAMETRIC EQUATION OF STATE

In this work, we utilize the procedure for constructing a

family of equations of states with a critical point developed in

Ref. [31]. This parametric family is constructed in such a way

that all its members match lattice QCD results at μB = 0 [up

to order O(μ4
B)] and contain a critical point in the 3D Ising

model universality class. We note that the implementation of

the critical behavior is essentially the same as in Ref. [9].

The procedure can be summarized as follows:

(i) Define a parametrization of the 3D Ising model EoS in

the vicinity of the critical point, imposing the correct

critical behavior. Express the magnetization M, the

magnetic field h and the reduced temperature r =
(T − Tc)/Tc in terms of the new parameters (R, θ )

with [32–35]

M = M0Rβθ,

h = h0Rβδ h̃(θ ), (4)

r = R(1 − θ2),

where M0 � 0.605 and h0 � 0.364 are normaliza-

tion constants, h̃(θ ) = θ (1 + aθ2 + bθ4), with a =
−0.76201 and b = 0.00804, and β � 0.326, δ � 4.80

are 3D Ising model critical exponents [33]. The pa-

rameters are within the range R � 0 and |θ | � θ0,

where θ0 � 1.154 is the first nontrivial zero of h̃(θ ).

(ii) Map the phase diagram of the 3D-Ising model onto

the T μB plane of QCD, choosing the location of the

critical point. A simple linear map [36] requires six

parameters, and can be written as

T − TC

TC

= w(rρ sin α1 + h sin α2), (5)

μB − μBC

TC

= w(−rρ cos α1 − h cos α2), (6)

where (TC, μBC ) are the coordinates of the critical

point, and (α1, α2) are the angles between the hori-

zontal (fixed T ) lines on the QCD phase diagram and

the h = 0 and r = 0 Ising model axes, respectively.

Finally, w and ρ are scaling parameters for the Ising-

to-QCD map: w determines the overall scale of both

r and h, while ρ determines the relative scale between

the two.

As in Ref. [31], we reduce the number of param-

eters to four by imposing that the critical point is

located on the chiral transition line given by lattice

QCD calculations [37]:

T = T0 + κ2 T0

(

μB

T0

)2

+ O
(

μ4
B

)

, (7)

which allows us to fix the values of TC and α1 by

choosing μBC only.

In order to be consistent with previous work, we

use the same input from lattice QCD as in Ref. [31].

Although recently new results on the QCD transition

line have become available2 [38,39], we note that

utilizing these new results would not have any effect

on the conclusions presented here.

(iii) Impose exact matching to lattice QCD at μB = 0 at

the level of the coefficients of Taylor expansion of the

pressure through

T 4cLAT
n (T ) = T 4cNon-Ising

n (T ) + T 4
C cIsing

n (T ), (8)

where cLAT
n are the coefficients calculated from the

lattice, and c
Ising
n determine the contribution to the

former due to the presence of the critical point. Eq. (8)

is thus the definition for the coefficients c
Non-Ising
n re-

quired to match the given critical equation of state to

lattice data without changing the singular behavior at

the critical point. The procedure is carried out up to

order O(μ4
B).

(iv) Reconstruct the full QCD pressure as

P(T, μB) = T 4
∑

n

cNon-Ising
n (T )

(

μB

T

)n

+ P
QCD
crit (T, μB), (9)

where P
QCD
crit (T, μB) is the critical pressure from the

3D-Ising model mapped onto QCD. For additional

details, we again refer the reader to Ref. [31].

With the procedure summarized here, the constructed EoS

(i.e., the pressure, from which all needed derivatives can be

calculated) by construction meets the initial requirements,

and depends on the nonuniversal mapping between 3D Ising

model and QCD through the specific choice of parameters.

In the following we focus on the observable effects of a

critical point on the fourth order susceptibility of the baryon

number in Eq. (1). For this purpose we can safely limit our-

selves to the critical contribution to χB
4 , because in the region

we consider it largely exceeds any possible contribution from

2Both in this work and in Ref [31], we assume that the QCD tran-

sition line is a parabola, with curvature κ2 determined in Ref. [37].

Recent results from lattice QCD [38,39] are consistent with this value

of the curvature, and predict the next-to-leading order parameter κ4

which is consistent with 0 within error bars.
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TABLE I. The two sets of parameter choices we employ in this

work. Notice that, as detailed in the main text, TC and α1 are not

free parameters, but they follow from the choice of μBC due to the

constraints from Eq. (7).

μBC TC α1 α2 − α1 w ρ

I 420 MeV 138 MeV 4.6◦ 90◦ 0.5, 1, 2 0.5, 1, 2

II 420 MeV 138 MeV 4.6◦ −3◦ 0.5, 1, 2 0.5, 1, 2

non-critical-point-related physics. Moreover, since the pro-

cedure we just summarized stops at order O(μ4
B), the total

contribution obtained in our approach differs from the critical

one by a constant in μB, i.e., a function depending on the

temperature only. Thus, a similar plot for the total contribution

would show the same features.

III. THE SIZE AND SHAPE OF THE CRITICAL REGION

While the divergence of χB
4 at the critical point is present

for any choice of parameters due to the parametrization

in Eq. (4), the extent of the region in the phase diagram

where its magnitude is large (either positive or negative)

is a nonuniversal property of the theory—the “size of the

critical region”—which cannot be inferred from universality

arguments. It is nonetheless of crucial importance, as it can

ultimately determine whether the critical behavior can be ob-

served in experiments.

Here we describe how the parameters of the mapping con-

trol the size of the critical region. We define the critical region

as the region where the leading singular part of the equation of

state dominates over the regular part. This comparison cannot

be done on the pressure itself, since the critical contribution

to the pressure vanishes at the critical point (as r2−α). A

reasonable measure of the critical region should be based on

a quantity which diverges at the critical point, such as the

baryon susceptibility, χB
2 = Pμμ or, in our case, χB

4 = Pμμμμ

[where Pμ = ∂ (p/T 4)/∂ (μB/T ) at fixed T ]. We shall estimate

the size of the critical region along the crossover, h = 0, line.

The singular part of χB
4 at h = 0 is given by

χ
sing

4 ∼ AGμμμμ(r, 0) ∼ AGhhhh(r, 0)h4
μ (10)

∼ Arβ(1−3δ)

(

s1

wTCs12

)4

∼ A

(

�μB

ρwTCc1

)β(1−3δ)
( s1

wTCs12

)4

. (11)

where P
QCD
crit (T, μB) = AG(r, h), Gμ = ∂G/∂ (μB/T ), si =

sin αi, ci = cos αi, and s12 = sin(α1 − α2); A is an overall

constant and hμ = ∂h/∂μB at fixed T . Comparing this to the

regular contribution of order χ
reg

4 ≈ 1, we find for the extent

of the critical region in the μB direction

�μB ∼ TCρwc1

(

A1/4

TC

s1

ws12

)

4
β(3δ−1)

. (12)

Therefore, while increasing ρ increases the size of the

critical region, the effect of increasing the parameter w is very

weak. For the mean-field value of β = 1/2 and δ = 3, the w

dependence is completely absent, while for the values β =
1/3, δ = 5 approximating the exact values of 3D Ising model

exponents one finds a very weak dependence �μB ∼ w
1/7.

To determine the extent in the vertical, i.e., μB = const =
μBC direction, we note that this corresponds to a finite ratio

h/r = −ρc1/c2. Thus, the scaling variable r/h1/(βδ) → 0 as

we approach the critical point, and we can set r = 0 when

determining the magnitude of χ4:

χ
sing

4 ∼ AGμμμμ(0, h) ∼ AGhhhh(0, h)h4
μ (13)

∼ Ah(1−3δ)/δ

(

s1

wTCs12

)4

= A

(

c1�T

wTCs12

)(1−3δ)/δ
( s1

wTCs12

)4

. (14)

The condition χ
sing

4 ≈ 1 then gives

�T ∼ TC

(

A

T 4
C

)
δ

3δ−1 s1

c1

(

s1

ws12

)
δ+1
3δ−1

. (15)

The dependence on w is given by �T ∼ w
− δ+1

3δ−1 . For the

mean-field value of δ this corresponds to w
−1/2 and for δ = 5

to w
−3/7.

IV. RESULTS AND DISCUSSION

We now employ the procedure described in Sec. II to calcu-

late the susceptibilities of the baryon number. We summarize

our parameter choices in Table I. We fix the location of the

critical point sufficiently far from the μB = 0 axis to allow for

maximum freedom in our parameter choice but still within the

range of the Taylor expansion of O(μ4
B). To satisfy those crite-

ria we use μBC = 420 MeV, which results in TC � 138 MeV

and α1 � 4.6◦, and study several values of the parameters

(w, ρ). In addition, we consider two different choices for the

relative angle between the (r, h) axes. First, we keep the two

axes orthogonal (α2 − α1 = 90◦), as this has been a common

“default” choice in the literature. Then we examine the case

with the angle between the two axes α2 − α1 = −3◦. This

second choice is motivated by the fact that, in the chiral limit,

the angle difference vanishes (as quark mass to power 2/5)

and 0 < α2 < α1 for sufficiently small quark mass,3 according

to Ref. [30]. Note that, according to Eqs. (12) and (15), a small

value for s12 yields a larger critical region size for the same w

and ρ: �μB ∼ s
−6/7
12 and �T ∼ s

−3/7
12 .

We now investigate the behavior of the critical contri-

bution to χB
4 over the QCD phase diagram, with focus on

the region close to the critical point T = 130–160 MeV and

μB = 250–450 MeV.4

3This can be seen explicitly in the random matrix model of the QCD

phase diagram [21,30].
4We point out that, with the current linear mapping between the

Ising model and QCD phase diagrams, this second parameter choice

would give rise to a pathological equation of state with negative

baryon density. However, this is not relevant for the results presented
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FIG. 1. Density plots of the critical contribution to χB
4 (T, μB ) in the (T, μB ) plane with a critical point located at (TC � 138 MeV, μBC =

420 MeV), and with α2 − α1 = 90◦, for (top to bottom) w = 0.5, 1, 2 and (left to right) ρ = 0.5, 1, 2. The critical point is indicated by a red

dot, while the chiral/deconfinement transition line is represented by the solid orange line. The yellow and green areas correspond to positive

values (the regions where it is the largest are indicated in yellow) of χB
4 , while the blue ones correspond to negative values (darker blue in the

regions where it is largest in magnitude).

In Figs. 1 and 2, density plots of the critical contribution to

χB
4 (T, μB) in the (T, μB) plane are shown for w = 0.5, 1, 2

and ρ = 0.5, 1, 2 in the case of α2 − α1 = 90◦ and w =
0.5, 1, 2 and ρ = 0.125, 0.25, 0.5 in the case of α2 − α1 =
−3◦, respectively. The yellow and green areas correspond to

positive values (the regions where it is the largest are indicated

in yellow) of χB
4 , while the blue ones correspond to negative

values (darker blue in the regions where it is largest in magni-

tude). The orange curve shows the QCD transition line from

Eq. (7). The red dot marks the critical point.

We note that the color function is not the same for Figs. 1

and 2. The color schemes are such that a factor 10 in the value

of χB
4 separates the two figures, for the same color. This is

because, due to the dependence of χB
4 on s12, this quantity is

overall significantly larger in all the plots of Fig. 2 than in

those of Fig. 1.

We would like to point out the following relevant features

in Figs. 1 and 2:

here, since we only consider the critical contribution to the equation

of state, and not the full one. It would be interesting to explore

whether a different, nonlinear mapping could lead to a nonpatho-

logical equation of state with this parameter choice, which is one of

the very few which leads to a dip in χB
4 . We leave this investigation

for future work.

(i) A smaller value of w leads to a larger critical region

in the T direction, for both values of the relative angle

α2 − α1. This follows from Eq. (15).

(ii) The main effect of ρ is to stretch the critical region

in the μB direction. Indeed, the size of the critical

region along μB increases linearly with ρ, while the

one in the T direction is not affected by ρ according

to Eqs. (12) and (15).

(iii) It is most interesting to compare our findings to what

was originally anticipated in Ref. [9] based on the

leading singular contribution. While the pattern in

Fig. 2 is in agreement with the leading singularity pre-

diction, in Fig. 1 that prediction only holds extremely

close to the critical point.

Away from the critical point the subleading sin-

gular terms modify the pattern. In Fig. 1 for ρ =
2.0 and in Fig. 2 the main effect is the bending of

the negative lobe away from the crossover line. The

downward bending in Fig. 2 is a consequence of

0 < α2 < α1, while the upward bending in Fig. 1 is

a consequence of α1 < α2 < 180◦, as explained in

Ref. [30].

As a result, in Fig. 1, the critical contribution to

the dip to the left of the critical point is absent, except

in the extremely close vicinity of the critical point. In-

stead, the approach to the critical point from the left is

characterized by a peak instead of a dip. Furthermore,
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FIG. 2. Density plots of the critical contribution to χB
4 (T, μB ) in the (T, μB ) plane with a critical point located at (TC � 138 MeV, μBC =

420 MeV), and with α2 − α1 = −3◦, for (top to bottom) w = 0.5, 1, 2 and (left to right) ρ = 0.125, 0.25, 0.5. The critical point is indicated

by a red dot, while the chiral/deconfinement transition line is represented by the solid orange line. The yellow and green areas correspond to

positive values (the regions where it is the largest are indicated in yellow) of χB
4 , while the blue ones correspond to negative values (darker

blue in the regions where it is largest in magnitude).

FIG. 3. Profile of the critical contribution to χB
4 along lines parallel to the chiral transition line, and separated by �Tshift = 1, 2, 4 MeV.

The top and bottom rows correspond to α2 − α1 = 90◦ and α2 − α1 = −3◦, respectively.
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for smaller ρ values, an additional negative lobe ap-

pears below the critical point for larger μB.

To understand the effect of the choice of α2 on the sig-

nificance of the subleading singular contributions to χB
4 we

observe, let us examine the Ising-to-QCD mapping more

closely. Equations (5) and (6) allow us to convert the deriva-

tives with respect to μB in the definition of χB
4 in Eq. (1) into

derivatives with respect to Ising variables h and r:

∂μB
=

1

w ρ TCs12

(s1 ∂h + s2 ∂r ). (16)

Since h corresponds to the most relevant perturbation at the

critical point (h has the largest scaling dimension), the domi-

nant contribution to the derivative ∂μB
sufficiently close to the

critical point comes from ∂h. Since α1 is small, when α2 is not

small, the contribution of ∂h is suppressed by s1/s2 compared

to ∂r . This is precisely the case in Fig. 1. While taking only

the most divergent terms corresponds to setting ∂μB
∼ ∂h,

and hence χB
4 ∼ χ

Ising

4 from Eq. (2), the full expression for

χB
4 contains many additional subleading, less singular terms

which involve ∂r . The subleading terms will become negligi-

ble sufficiently close to the critical point, but if the leading

contribution is strongly suppressed this may not happen until

we are extremely close to the critical point, as seen in Fig. 1.

Thus, the pattern of the T μB dependence of χB around the

critical point is significantly affected by the subleading terms

in this scenario.

On the other hand, when α2 is small, as for our choice α2 ≈
1.6◦, the pattern is indeed more similar to the one described in

Ref. [9]. This can be seen in Fig. 2, especially when ρ = 0.5.

After analyzing the general behavior of χB
4 over the QCD

phase diagram, we now wish to determine the impact that its

features can have on experimental measurements. We shall

make a simplifying assumption that net-proton kurtosis has

a similar critical behavior to χB
4 , following the argument of

Ref. [12]. In the following we study the behavior of χB
4 along

exemplary freeze-out trajectories, which are roughly parallel

to the chiral/deconfinement transition line from Eq. (7):

TF(μB) = T0 + κ2 T0

(

μB

T0

)2

− �Tshift, (17)

where �Tshift indicates the shift in temperature downward

from the transition line. In Fig. 3 we show the behavior of

the critical contribution to χB
4 along such lines, with shifts

�Tshift = 1, 2, 4 MeV. In the different panels, we consider

the cases with α2 − α1 = 90◦ (top row) and α2 − α1 = −3◦

(bottom row), and with the parameter choices w = ρ = 0.5

(left column) and w = 2, ρ = 0.5 (right column).

The choice that displays a dip for μB < μBC is the one with

w = ρ = 0.5, α2 − α1 = −3◦ and only in the close vicinity

of the transition line, i.e., for �Tshift = 1, 2 MeV. Figure 2

suggests that this would be the case also for smaller values of

ρ, as we note that the lower the value of ρ, the more apparent

the downward bending is of the negative (blue) lobe. Since

this behavior follows from our choice for the angle α2, we

consider in the top panel of Fig. 4 different choices for the

angle α2. We focus on lines parallel to the transition line, with

�Tshift = 1 MeV, and keep w = ρ = 0.5 in all cases.

FIG. 4. Top panel: Profile of the critical contribution to χB
4

along lines parallel to the chiral transition line, and separated by

�Tshift = 1 MeV. The different lines correspond to different choices

for α2 = −5.4◦, 0◦, 1.6◦, 2.6◦, 94.6◦. For all these curves we fixed

w = ρ = 0.5. Bottom panel: The chiral transition line (orange) is

shown together with the h = 0 axis (gray) and the r = 0 axis corre-

sponding to the choices shown in the top panel. The color coding is

kept the same.

We consider a handful of choices for the angle α2. We

include the ones corresponding to Fig. 1 (α2 � 94.6◦) and

Fig. 2 (α2 � 1.6◦), as well as α2 � −5.4◦, 0◦, 2.6◦. In the

bottom panel of Fig. 4 we show the orientations of the r = 0

axis corresponding to the different values of α2 we used. As

anticipated, only in the cases satisfying 0 < α2 < α1 a dip for

μB < μBC is seen. Moreover, we consider in this plot a shift

�Tshift = 1 MeV between the chemical freeze-out line and the

chiral transition line. With larger separation, a dip would be

harder to observe, as shown in Fig. 3.

V. EXPERIMENTAL CONSIDERATIONS

In our current study we focused on the equilibrium prop-

erties of the QCD equation of state that can lead to the

potential discovery of the QCD critical point. However, be-

cause heavy-ion collisions are inherently dynamical systems,

direct comparison with experimental data would require an

event-by-event relativistic viscous hydrodynamics model with

BSQ conserved charges [40,41] and critical fluctuations cou-

pled to a hadronic transport code.
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While important efforts are being made along these lines in

terms of new hydrodynamical models [42–48], transport coef-

ficients [49–55], critical fluctuations [7,56–59], and freeze-out

[60–65], the full dynamical description does not yet exist

at this time. In the meantime, a number of attempts have

been made to quantify effects such as critical slowing down

and memory, finite volume/lifetime, number of particles, de-

cays, charge conservation, kinematic cuts, low statistics, etc.

[28,66–77]. Yet further studies have looked into the influ-

ence of far-from-equilibrium initial conditions and potential

attractors at the critical point [48] and the influence of viscous

effects across a first-order phase transition line [78].

Another remaining question that is very relevant to this

study is the temperature difference between hadronization and

freeze-out. Earlier attempts were made in dynamic models

to quantify either the time scale or temperature range in

the difference between hadronization and freeze-out [79–88].

Generally, this depends on the number of hadrons in the

system [89] and their corresponding interactions [90–93].

However, given enough particles that appear near the phase

transition that are strongly interacting, it is possible to reach

chemical equilibrium on very short timescales [94–98].

VI. CONCLUSIONS

In this work we have studied the fourth-order susceptibility,

χB
4 , of the baryon number in QCD in the presence of a critical

point in the 3D Ising model universality class. We found that

some features of the T and μB dependence of χB
4 could be

significantly affected by sub-leading, less singular terms in the

critical behavior. In all cases that we studied, we found a di-

verging peak at the critical point. However, only in the special

case of 0 < α2 < α1 (which also implies a wide critical region

that is extended along the chiral phase transition) do we obtain

a dip as one approaches the critical point along an exemplary

freeze-out curve below the transition temperature. In this case,

at temperatures significantly lower than the transition the dip

moves to smaller μB and fades away.

One of the main conclusions which can be drawn from this

study is that the peak in net-proton kurtosis is a more robust

signature of the critical point than the dip. In principle, the

observation of a dip could help determine or constrain the

value of the parameter α2 as well as the deviation �Tshift of the

freeze-out temperature from the crossover line (e.g., by 0 <

α2 < α1, �Tshift < few MeV). Strictly speaking, this would

be possible only provided that other potential experimental

contributions to the dip (the baseline) are under control.

It is important to emphasize that this study only con-

siders the equilibrium equation of state and it would be

interesting and important to explore these issues further in

dynamical models. For example, as has been observed in

Refs. [60,66,68], critical slowing down, charge conservation,

and memory effects may help to preserve the signatures of

critical fluctuations down to lower temperatures below the

critical region.
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