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Abstract. We present our new results for the QCD transition line at finite chemical potential
up from first principle, lattice QCD simulations. We extrapolate our results from imaginary
chemical potentials, up to up ~ 300 MeV. We obtain the most precise value for the transition
temperature, the curvature of the QCD phase diagram and its fourth order correction. The
results are continuum extrapolated, based on Ny = 10, 12, 16 lattices. We also study the
height and width of the peak of the chiral susceptibility and how they change with increasing
chemical potential. We find that both of them are consistent with a constant, which does not
indicate any criticality in our explored

1. Introduction

Mapping out the whole phase diagram of strongly interacting matter is one of the main goals
of high energy nuclear physics. From the experimental point of view, the deconfined phase
of Quantum Chromodynamics (QCD) can be created in relativistic heavy-ion collisions. In
particular, the LHC program aims at creating the hottest form of deconfined matter, while the
RHIC program can vary the collision energy, to systematically scan the finite-density region.
The second Beam Energy Scan (BESII) at RHIC is running between 2019 and 2021, its main
goal being the search for the QCD critical point separating crossover from first order phase
transition.

From the theoretical point of view, lattice simulations are the best tool to solve QCD in
the regime of temperatures and densities where the transition occurs. However, at the moment
finite-density simulations are hindered by the sign problem and cannot be directly performed.
Two main methods have been proposed to circumvent this problem: Taylor expansion of
thermodynamic observables in powers of up [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] or simulations
at imaginary pup (where the sign problem is absent) and analytical continuation of the results
to real up [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].
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In our recent manuscript [29], we considered the following expansion for the transition
temperature of QCD:

Tﬂi)o) sl (TC/ZEB))QM (Tc/(fB)>4m W

and we extracted the most precise values in the literature for T.(up = 0), k2 and k4 along the
strangeness neutral crossover line. The latter is defined as the line in the T, up plane at which
the phase transition occurs, but with pg depending on T and pp so that the net-strangeness in
the system is identically zero. This is imposed to match the experimental situation in which no
net-strangeness is present in the system.

One can evaluate the coefficients k3 and k4 by either one of the standard extrapolation
methods listed above. A direct evaluation of the pup-derivatives over up = 0 ensembles was used
in Refs. [30, 31, 10]. We choose the analytical continuation from imaginary-xp method, which
results in a larger signal-to-noise ratio [21, 22]. Results for k2 obtained with the two different
methods were thoroughly compared in Ref. [27].

In Ref. [29], we also considered the height and width of the peak of the chiral susceptibility as
functions of the chemical potential, as an indication of the strength of the crossover transition.

2. Methodology and results

We use the 4-stout staggered fermion action with temporal lattice sizes N; = 10, 12, 16. We
consider the following observables:

(ppy = — [(ppyr — (V)o] fl‘ll ,
de .
X = [xr — xo] —;~ , with (2)
™
- T dlog Z T 0%log Z
<1/”/’>T,0 = V OMiag XT,0 = V@Tﬁd’
where we assumed isospin symmetry, i.e. m, = mg = m,g. In the above equations, the

subscripts 7,0 indicate values at finite- and zero-temperature, respectively. In the following,
(1)) (the chiral condensate) and x (the chiral susceptibility) are always shown after applying
the correction to satisfy ny = 0 with zero statistical error.

The left and middle panel of Fig. 1 show the chiral condensate and susceptibility as functions
of the temperature, for different values of the imaginary chemical potential, respectively. The
right panel shows that, when the chiral susceptibility is plotted as a function of the chiral
condensate, all curves collapse on a common, smooth line. We exploit this feature in our
analysis, which allows us a more precise determination of T, and, as a consequence, a more
precise determination of ko and k4.

We proceed as follows:

i) We first determine (1)) and x as function of T and Imup through lattice simulations.

ii) We extract the curve of chiral susceptibility as a function of the chiral condensate.

iii) We search for the peak of x((1)%)) through a low-order polynomial fit for each N; and Imup
obtaining () .(Ng, Imug).

iv) We interpolate ())(T) to convert (1)1 to T. for each Impug/T.

v) We perform a global fit of T.(Ny, Imup/T,) to determine its pup dependence. This yields ko
and ry4 for 1/N? = 0. For this step we use various functions — all containing an independent
ke — with coefficients depending linearly on 1/N2.
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Figure 1. Renormalized chiral condensate (1)) (left) and chiral susceptibility x (middle) as
functions of the temperature for the intermediate lattice spacing in this study. The black curves
correspond to vanishing baryon density, while results for various imaginary values of the chemical
potential are shown in other colors. Finally, in the right panel we show the susceptibility as
a function of the condensate. In this representation the chemical potential dependence is very
weak.

Each step listed above leads to a few possible choices for e.g. the fit functions, ranges etc.
Combining all these choices we get 28 = 256 different analyses. We take this into account in the
systematic error. We obtain

T. = 158.0+0.6 MeV
k2 = 0.0153 £0.0018
ke = 0.00032 £ 0.00067. (3)

We show the corresponding transition line in Fig. 2.
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Figure 2. Top: Transition line extrapolated from lattice simulations at imaginary chemical
potential using an analytical continuation with the ansétze used in step iv) of our analysis
(green band) compared with an extrapolation using the formula in Eq. (1) up to the order of k4
(red band) or up to k2 (blue band). Bottom: Crossover line from the lattice compared with a
prediction from truncated Dyson-Schwinger equations [32] and some estimates of the chemical
freezeout parameters in heavy ion collisions [33, 34, 35, 36, 37].

We introduce a width parameter o as a proxy for the natural definition of the width of the
susceptibility peak, given by its second derivative:

(PY)(Te £ 0/2) = (P))e = AlPy) /2, (4)
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with (Y1), = 0.285 and A(y¢p) = 0.14. We show the half width of the transition in the left
panel of Fig. 3. As evident from the figure, the half width is consistent with a constant for
up ~= 300 MeV.

Finally, as a proxy for the strength of the crossover, we study the value of the chiral
susceptibility at the crossover temperature, which corresponds to the height of the peak of
the chiral susceptibility. We get this for each Impup and N, as a byproduct of steps i-ii) of the
analysis for ko and k4. If one then performs a continuum extrapolation of the resulting values
for fixed values of Imup, one gets the right panel of Fig. 3. Again, we see a very mild ﬂQB
dependence, consistent with a constant.
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Figure 3. Left: Half width o of the transition defined in Eq. (4) using the temperature difference
of the contours (1)) = 0.31 and (19)) = 0.19. In the insert we show a plot of the x({11))) peak,
where the shaded region corresponds to (). £ A(x))/2. Both are extrapolated to real up.
Right: Result of a pp-by-up analysis for the value of the chiral susceptibility at the crossover
temperature after continuum extrapolation and including the systematic errors for LT, = 4.
The green band shows a linear extrapolation in fi%.

3. Conclusions

We have obtained the most precise values for the transition temperature at up = 0, the curvature
ko and the fourth-order coefficient x4 by studying the chiral condensate and susceptibility as
functions of the temperature, for different values of imaginary chemical potential. We have
also studied the height and width of the peak of the chiral susceptibility as a function of the
chemical potential, and observed that they are both consistent with a constant. For this reason,
we conclude that we see no sign of criticality in our explored pp range.
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