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Abstract We present a strangeness-neutral equation of state for QCD that exhibits critical

behavior and matches lattice QCD results for the Taylor-expanded thermodynamic variables

up to fourth order in μB/T . It is compatible with the SMASH hadronic transport approach

and has a range of temperatures and baryonic chemical potentials relevant for phase II of the

Beam Energy Scan at RHIC. We provide an updated version of the software BES-EoS, which

produces an equation of state for QCD that includes a critical point in the 3D Ising model

universality class. This new version also includes isentropic trajectories and the critical con-

tribution to the correlation length. Since heavy-ion collisions have zero global net-strangeness

density and a fixed ratio of electric charge to baryon number, the BES-EoS is more suitable

to describe this system. Comparison with the previous version of the EoS is thoroughly

discussed.

1 Introduction

One of the main open questions in hot and dense strongly interacting matter is whether a

critical point on the QCD phase diagram separates the established crossover at small baryonic

density [1–5] from a first-order phase transition, hypothesized to exist as the asymmetry

between matter and anti-matter gets increasingly large [6–10]. While the fermionic sign

problem currently prevents a definitive answer from first principles lattice QCD simulations,

the critical point search is at the core of the second Beam Energy Scan (BES-II) at the

Relativistic Heavy Ion Collider (RHIC) in Brookhaven, which will take data until 2021.

The equation of state (EoS) of QCD plays a crucial role in the search for the critical point,

and it is needed as input in the hydrodynamic simulations that describe the system created

in the collisions [11,12]. The knowledge of the QCD equation of state and phase diagram

at finite density from first principles is currently limited, due to the aforementioned sign

problem. The EoS at vanishing chemical potential μB = 0 is available over a broad range

of temperatures [13–15]. The first continuum-extrapolated extension to finite μB in Ref.

[16], based on the Taylor expansion method, was followed by other works in which more
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terms were added to the Taylor series, with the intent of extending the μB -range to higher

values [17–22]. Recently, a new expansion scheme was proposed in Ref. [23], which shows

improved convergence properties compared to the Taylor series. Results on the EoS at finite

μB , μS and μQ are also available [24,25].

To support the RHIC experimental effort, theoretical predictions on the location of the

critical point [8,17,26–35] and its effect on observables [36–41] are steadily becoming avail-

able, together with approaches to extend the reach of the QCD equation of state to high

density [42–45]. In this context, some of us have recently developed a family of equations

of state, which reproduce the lattice QCD one in the density regime where it is available and

contain a critical point in the 3D Ising model universality class (the one expected for QCD)

[46]. In this approach, the location of the critical point and the strength of the critical region

can be chosen at will and can then be constrained through comparisons with the experimental

data from BES-II. Other works have already used this new EoS to study out-of-equilibrium

approaches to the QCD critical point [47,48], the sign of the kurtosis [37], and to calculate

transport coefficients [49].

In this manuscript, we improve the results presented in Ref. [46] by introducing the

conditions of strangeness neutrality and electric charge conservation into our EoS, in order

to match the experimental situation in a heavy-ion collision. The hadron resonance gas

(HRG) model is used to smoothly continue the lattice QCD results to small temperatures.

The resonance list on which the hadronic equation of state is based is consistent with the

list of particles currently used in the SMASH [50] code, so that our EoS can be used in

hydrodynamic simulations of heavy-ion collisions (HICs) that are coupled to the SMASH

hadronic transport code. We thoroughly compare the strangeness-neutral EoS to the previous

version. The isentropic trajectories showing the path of the system through the phase diagram

are markedly affected by the constraints on the conserved charges [24,25,51,52]. Finally,

our updated EoS code outputs the critical contribution to the correlation length for the first

time.

2 The scaling equation of state

This work is based upon a previously established equation of state (EoS) that incorporates

critical behavior, developed within the framework of the BEST collaboration in Ref. [46]. In

our updated version [53], we impose the conditions of strangeness neutrality and compatibility

with the hadronic transport simulator SMASH [50], by using the SMASH hadronic list as

input in the HRG model. Because SMASH has become a standard transport code used within

the field, we ensure consistency across all stages of phenomenological modeling of heavy-ion

collisions. We begin by describing the general procedure for developing an EoS with a critical

point in the 3D Ising model universality class. We then provide details of the implementation

of the new features into the EoS.

In order to study the effect of a critical point that could potentially be observed during

the BES-II at RHIC on QCD thermodynamics, we utilize the 3D Ising model to map such

critical behavior onto the phase diagram of QCD. The 3D Ising model was chosen for this

approach because it exhibits the same scaling features in the vicinity of a critical point as

QCD; in other words, they belong to the same universality class [54,55]. We implement the

non-universal mapping of the 3D Ising model onto the QCD phase diagram in such a way

that the Taylor expansion coefficients of our final pressure match the ones calculated on the

lattice order by order. This prescription can be summarized as follows:

123



Eur. Phys. J. Plus         (2021) 136:621 Page 3 of 15   621 

1. Define a parametrization of the 3D Ising model near the critical point, consistent with

what has been previously shown in the literature [6,46,56,57],

M = M0 Rβθ

h = h0 Rβδ h̃(θ)

r = R(1 − θ2)

(1)

where the magnetization M , the magnetic field h, and the reduced temperature r are

given in terms of the external parameters R and θ . The normalization constants for the

magnetization and magnetic field are M0 = 0.605 and h0 = 0.364, respectively, β =

0.326 and δ = 4.8 are critical exponents in the 3D Ising model, and h̃(θ) = θ(1 −

0.76201θ2 + 0.00804θ4).

The singular part of the pressure is described by the parametrized Gibbs’ free energy:

PIsing = −G(R, θ)

= h0 M0 R2−α(θ h̃(θ) − g(θ)),
(2)

where

g(θ) = c0 + c1(1 − θ2) + c2(1 − θ2)2 + c3(1 − θ2)3,

c0 =
β

2 − α
(1 + a + b),

c1 = −
1

2

1

α − 1
((1 − 2β)(1 + a + b) − 2β(a + 2b)),

c2 = −
1

2α
(2βb − (1 − 2β)(a + 2b)),

c3 = −
1

2(α + 1)
b(1 − 2β).

Because QCD is symmetric about μB = 0, we require that PIsing is also matter–anti-

matter symmetric. Thus, we perform the calculations in a range of μB spanning positive

and negative values. Furthermore, the equations defined here are subject to the following

constraints on the parameters: R ≥ 0, |θ | ≤ θ0 ∼ 1.154.

2. Choose the location of the critical point and map the critical behavior onto the QCD phase

diagram via a linear map from {T , μB} to {r, h}:

T − Tc

Tc

= ω(ρr sin α1 + h sin α2) (3)

μB − μB,c

Tc

= ω(−ρr cos α1 − h cos α2) (4)

where (Tc, μB,c) are the coordinates of the critical point, and (α1,α2) are the angles

between the axes of the QCD phase diagram and the Ising model ones. Finally, ω and ρ

are scaling parameters for the Ising-to-QCD map: ω determines the overall scale of both

r and h, while ρ determines the relative scale between them.

3. As previously established in Ref. [46], we reduce the number of free parameters from

six to four, by assuming the critical point sits on the chiral phase transition line, and by

imposing that the r axis of the Ising model is tangent to the transition line of QCD at the

critical point:

T = T0 + κ T0

(

μB

T0

)2

+ O(μ4
B). (5)
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In this study, we maintain consistency with the original EoS development of Ref. [46] by

utilizing the same parameters.1 The critical point lies at {Tc � 143.2 MeV, μB,c = 350

MeV}, while the angular parameters are orthogonal α1 = 3.85°and α2 = 93.85°, and the

scaling parameters are ω = 1 and ρ = 2. However, we remind the reader that such a choice

of parameters only has an illustrative purpose, and that we do not make any statement

about the position of the critical point or the size of the critical region. As this framework

does not serve to yield a prediction for the critical point, but rather to provide an estimate

of the effect of critical features on heavy-ion-collision systems, the users can pick their

preferred choice of the parameters and test its effect on observables. In particular, we note

that by varying the parameters ω and ρ, it is possible to increase or decrease the effects

of the critical point [10,46]. Hopefully, experimental data from the BES-II will allow us

to constrain the parameters and narrow down the location of the critical point.

4. Calculate the Ising model susceptibilities and match the Taylor expansion coefficients

order by order to lattice QCD results at μB = 0. The Taylor expansion of the pressure in

μB /T as calculated on the lattice can be written as:

P(T, μB)

T 4
=

∑

n

c2n(T )
(μB

T

)2n

. (6)

Thus, the background pressure or the non-Ising pressure is, by construction, the difference

between the lattice and Ising contributions:

T 4cLAT
2n (T ) = T 4c

Non-Ising
2n (T ) + T 4

c c
Ising
2n (T ). (7)

5. Reconstruct the full Taylor-expanded pressure, including its critical and non-critical com-

ponents

P(T, μB) = T 4
∑

n

c
Non-Ising
2n (T )

(μB

T

)2n

+ P
QCD
crit (T, μB),

(8)

where P
QCD
crit is the critical contribution to the pressure that has been mapped onto the

QCD phase diagram as described in steps 1 and 2.

6. Merge the full reconstructed pressure from the previous step with the HRG pressure at

low temperature in order to smooth any non-physical artifacts of the Taylor expansion.

For this smooth merging, we utilize the hyperbolic tangent:

PFinal(T, μB)

T 4
=

P(T, μB)

T 4

1

2

[

1 + tanh
( T − T ′(μB)

	T

)]

+
PH RG(T, μB)

T 4

1

2

[

1 − tanh
( T − T ′(μB)

	T

)]

,

(9)

where T ′(μB) acts as the switching temperature and 	T is the overlap region where both

terms contribute. We perform the same merging as in the original development of the EoS

and, therefore, perform the merging parallel the QCD transition line and with an overlap

region of 	T =17 MeV.

7. Calculate thermodynamic quantities as derivatives of the pressure.

1 As in Ref. [46], we assume the transition line to be a parabola and utilize the curvature parameter κ =

−0.0149 from Ref. [4]. Recent results from lattice QCD [33,58] are consistent with this value and predict the

next to leading order parameter κ4 to be consistent with 0 within errors.
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Fig. 1 Results for the Taylor expansion coefficients of the pressure from lattice QCD, merged with HRG

model calculations at low temperature. The red points and lines correspond to strangeness neutrality, whereas

the black points and lines show the μS = μQ = 0 case [4,19]

For a thorough description of this procedure including investigation of the parameter space

and further discussion, we refer the reader to the original development of this framework in

Ref. [46]

3 Strangeness neutrality and compatibility with SMASH

This updated version of the code that calculates an EoS for QCD via the prescription described

in Sect. 2 now allows the user to choose between a new, strangeness-neutral EoS or the

previous one, which is given at μS = μQ = 0. One of the advantages of the strangeness-

neutral EoS is that the relationships between the conserved charges of QCD mirror those

present in a heavy-ion collision. These conditions are incorporated by enforcing a set of

requirements on the densities as shown in Eq. (10).

〈nS〉 = 0

〈nQ〉 = 0.4〈nB〉
(10)

Given these relations, it is clear that the calculations performed in lattice QCD and in the

HRG model will be different in the case of strangeness neutrality versus μS = μQ =

0. Results on the Taylor coefficients calculated in lattice QCD are available in both cases

[4,19]. Figure 1 shows the comparison of the quantities χ2 and χ4 from the lattice for

both scenarios. While in either case the Taylor coefficients exhibit the expected qualitative

features, they are quite different quantitatively, even approaching separate Stefan–Boltzmann

limits. Generally, the strangeness-neutral trajectory leads to smaller susceptibilities at high

temperatures. Additionally, the peak in χ4 appears to be narrower for the strangeness-neutral

line.

The new EoS that obeys the charge conservation conditions present in HICs has the lattice

Taylor coefficients calculated under those same conditions as its backbone. Additionally, in

order to provide an equation of state in the temperature range required for hydrodynamic

simulations, we must also employ the pressure from the HRG model, such that the lattice coef-

ficients can be extended to low enough temperatures and to obtain a smooth parametrization

of each term in the Taylor expansion. Therefore, we also implement strangeness neutrality

conditions on our HRG model calculations by finding the dependence of the strangeness and

electric charge chemical potentials on T and μB when solving Eq. (10).

We achieve a continuation of the strangeness-neutral Taylor expansion coefficients from

the lattice by merging with the HRG model at T = 130 MeV, below which lattice data are
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Table 1 Parameters for the curves to fit the lattice Taylor coefficients with functional forms given in Eqs.

(11), (12)

a0 a1 a2 a3 a4 a5 a6

χ0 7.53891 −6.18858 −5.37961 7.08750 −0.977970 0.0302636 –

χ4 −390440 1131702 −1219370 599799 −140735 14672 −524

b0 b1 b2 b3 b4 b5 b6

χ0 2.24530 −6.02568 15.3737 −19.6331 10.2400 0.799479 –

χ4 −22232566 31888765 28905535 −42443011 −41348102 67900917 −22769197

h1 h2 f3 f4 f5

χ2 0.281713 −0.214339 0.103486 −3.5512 4.45949

Fig. 2 Taylor expansion coefficients of the pressure up to O(μ4
B

). The critical contributions from the Ising

model (black, dashed lines) are compared to the lattice QCD results (red, solid lines), which determine the

non-critical terms (blue, dot-dashed lines) as detailed in Eq. (7)

unavailable. We additionally require a smooth approach to the Stefan–Boltzmann limit at

high temperature. The parametrizations were obtained for χ0 and χ4 by employing ratios of

polynomials up to the sixth order:

χi (T ) =
ai

0 + ai
1/t + ai

2/t2 + ai
3/t3 + ai

4/t4 + ai
5/t5 + ai

6/t6

bi
0 + bi

1/t + bi
2/t2 + bi

3/t3 + bi
4/t4 + bi

5/t5 + bi
6/t6

, (11)

where t = T/154 MeV. For χ2, a different parametrization was necessary to fit the curve

shown in the left panel of Fig. 1:

χ2(T ) = e−h1/t ′−h2/t ′
2

· f3 · (1 + tanh f4/t ′ + f5), (12)

where t ′ = T/200 MeV. The fit coefficients for these functions in terms of inverse temper-

ature are given in Table 1. In Fig. 2, we show the parametrizations of each of the Taylor

coefficients for the lattice, Ising, and non-Ising terms up to O(μ4
B). These coefficients are

related via Eq. (7). We show the χn’s here for aesthetic reasons, since they are related to the

Taylor coefficients via factorials: cn = 1
n!

χn .

We note that the pressure, i.e., χ0, is the same in this case as in Ref. [46], since P(T, μB =

0) is not altered by the conditions applied for strangeness neutrality.

As previously stated, this EoS is also compatible with the SMASH transport code [50]. This

was achieved by utilizing the same hadronic list as the one used in SMASH simulations. The

hadronic list from SMASH contains a total of 400 particles, antiparticles, and resonances and

includes complete isospin symmetry. In the original formulation of this EoS, the PDG2016+

list, established in Ref. [59] as the hadronic list that best matches the partial pressures from
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lattice QCD, was utilized. The hadronic degrees of freedom included in SMASH are much

fewer than the 739 resonant states in PDG2016+, in which the additional states mainly come

from the strange sector. We note that since the HRG model is only used at temperatures

below T = 130 MeV, we do not see a large effect from the choice of particle list. Since the

particle species are the same across the different platforms, this ensures consistency of the

thermodynamics throughout the modeling of different stages of heavy-ion collisions.

4 Correlation length

A further update to the BES-EoS is the calculation of the critical correlation length. The

search for the critical point in the QCD phase diagram is intrinsically tied to the behavior of

the correlation length ξ . The divergence of ξ at the critical point is the reason for any non-

analyticity of the thermodynamic quantities that make up the EoS. In addition, the correlation

length is an important input for hydrodynamic simulations of heavy-ion-collision systems.

For instance, in Ref. [47,60] it was used to describe the critical scaling of the bulk viscosity.

We provide information about the correlation length as given in the 3D Ising model and note

that we only provide the critical contribution at this time as the authors are not aware of

a calculation of the QCD correlation length on the lattice yet. We adopt the procedure as

previously shown in Refs. [57,61,62], which follows Widom’s scaling form in terms of Ising

model variables:

ξ2(r, M) = f 2|M |−2ν/β g(x), (13)

where f is a constant with the dimension of length, which we set to 1 fm, ν = 0.63 is the

correlation length critical exponent in the 3D Ising Model, g(x) is the scaling function, and

the scaling parameter is x =
|r |

|M|1/β .

In the ε-expansion, the function g(x) is given to O(ε2) as:

g(x) = gε(x)

= 6−2ν z
{

1 −
ε

36
[(5 + 6 ln 3)z − 6(1 + z) ln z]

+ ε2
[1 + 2z2

72
ln2 z +

( z

18

(

z −
1

2

)

(1 − ln 3)

−
1

216

(

16z2 −
47

3
z −

56

3

))

ln z

+
1

216

(101

6
+

2

3
I + 6 ln2 3 + 4 ln 3 − 10

)

z2

−
1

216

(

6 ln2 3 +
44

3
ln 3 +

137

9
+

8

3
I
)

z
]}

(14)

where z ≡ 2
1+x/3

, I ≡
∫ 1

0
ln[x(1−x)]
1−x(1−x)

dx ∼ −2.344, and ε = 4 − d , where d = 3 is the spatial

dimension.

However, when x becomes large, the above expression cannot be used, and one must use

the asymptotic form:

g(x) = glarge(x) =
( 1

3 + x

)2ν

. (15)

This requires a smooth merging between the different formulations of g(x), in order to provide

a well-behaved result for correlation length. Analogously to what was done in Ref. [57], we
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Fig. 3 Left: The full QCD pressure for the choice of parameters consistent with Ref. [46], listed in Sect. 2.

Right: The baryon density for the same choice of parameters

perform this smooth merging around x = 5. We make use of a hyperbolic tangent at the level

of the QCD variables, i.e., after we have already changed from Ising model variables to QCD

ones as described in Sect. 2. Further details on the procedure for the smooth merging can be

found in “Appendix A.”

5 Results

We begin by showing all thermodynamic quantities calculated within this framework. The

Taylor-expanded pressure is shown in the left panel of Fig. 3, while the derivatives of the

pressure (see Eq. (16) for definitions) are shown in the subsequent plots. In particular, the

right panel of Fig. 3 shows the baryonic density, and the two panels of Fig. 4 show the energy

density and entropy density, while those of Fig. 5 show the second-order baryon number

susceptibility and the speed of sound, respectively. Such quantities can be obtained from the

pressure according to the following relationships:

nB

T 3
=

1

T 3

(

∂ P

∂μB

)

T

,

χ B
2

T 2
=

1

T 2

(

∂2 P

∂μ2
B

)

T

,

S

T 3
=

1

T 3

(

∂ P

∂T

)

μB

,

ε

T 4
=

S

T 3
−

P

T 4
+

μB

T

nB

T 3
,

c2
S =

(

∂ P

∂ε

)

S/nB

.

(16)

The location of the critical point is indicated on each of these graphs to guide the reader

to the critical region. As expected, the pressure is a smooth function of {T, μB} in the

crossover region, while it shows a slight kink for chemical potentials larger the critical point

one. The derivatives of the pressure help to reveal the features of the critical region, with an

enhancement of criticality with increasing order of derivatives. For example, consider the

baryon density shown in the right panel of Fig. 3, compared to the second cumulant of the

baryon number shown in the left panel of Fig. 5: The former exhibits a discontinuity due to
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Fig. 4 Left: The energy density for the choice of parameters consistent with Ref. [46], listed in Sect. 2. Right:

The entropy density for the same choice of parameters

Fig. 5 Left: The 2nd baryon susceptibility for the choice of parameters consistent with Ref. [46], listed in

Sect. 2. Right: The speed of sound for the same choice of parameters

Fig. 6 The critical contribution to the correlation length for the choice of parameters consistent with Ref.

[46], listed in Sect. 2

the presence of the critical point, while the latter is shown to diverge at the critical point,

as expected. This intensification of critical features is due to the dependence on increasing

powers of the correlation length, ξ , of higher-order cumulants.

We show next in Fig. 6 the critical contribution to the correlation length, calculated as

described in Sect. 4, as a function of {T , μB}. The smoothly merged correlation length is

uniform everywhere in the phase diagram, except in the critical region. There, the correlation

length increases and then diverges at the critical point itself, following the expected scaling

behavior.
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Fig. 7 Left: Relative percent difference for the pressure between the original EoS formulation (Ref. [46])

and the updated strangeness-neutral version presented in this manuscript. Right: Relative percent difference

for the baryon density between the original EoS formulation (Ref. [46]) and the updated strangeness-neutral

version presented in this manuscript. In both plots, the point marks the location of the critical point as listed

in Sect. 2. For more details, see text

Fig. 8 Left: Relative percent difference for the energy density between the original EoS formulation (Ref. [46])

and the updated strangeness-neutral version presented in this manuscript. Right: Relative percent difference

for the entropy between the original EoS formulation (Ref. [46]) and the updated strangeness-neutral version

presented in this manuscript. In both plots, the point marks the location of the critical point as listed in Sect. 2.

For more details, see text

We provide a quantitative assessment of the differences between the original EoS with

μS = μQ = 0 and the new system with strangeness neutrality conditions. Contour plots

comparing each of the thermodynamic outputs of the code are shown in Figs. 7, 8 and 9.

In these plots, we show the percent difference between the results from the previous

formulation and the new one. In general, the largest deviations are found at high baryonic

chemical potential, which is to be expected as the values of μS and μQ are monotonically

increasing functions of μB . (And therefore, their value at high μB is the farthest away from

0.) For the baryon density and the second baryon number susceptibility, we note that the

large difference at high temperatures is due to the different high temperature limits of these

quantities in the case of μS = μQ = 0 and strangeness neutrality, as shown for χ2 in Fig. 1.

The negative differences at low temperature can be attributed to the fact that the SMASH

treatment assumes complete isospin symmetry. For example, the neutral pion, π0, appears

with a mass of 138 MeV, while Ref. [46] uses the particle list called PDG16+ (introduced

in Ref. [59]), which includes the physical mass for the neutral pion: mπ0 = 135 MeV. For

details, see Ref. [63].

In Fig. 10, we present the isentropic trajectories in the QCD phase diagram, which rep-

resent lines of constant S/nB . If the isentrope passes through the critical region, it exhibits

a disturbance where there is a jump in both the entropy and the baryon density. Figure 10
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Fig. 9 Left: Relative percent difference for the second baryon susceptibility between the original EoS for-

mulation (Ref. [46]) and the updated strangeness-neutral version presented in this manuscript. Right: Relative

percent difference for speed of sound between the original EoS formulation (Ref. [46]) and the updated

strangeness-neutral version presented in this manuscript. In both plots, the point marks the location of the

critical point as listed in Sect. 2. For more details, see text

Fig. 10 Isentropic trajectories in the QCD phase diagram. Left: Lines of constant S/nB with the transition

line shown in black. Right: Comparison of the isentropes in the case of strangeness neutrality (solid lines) and

in the original formulation with μS = μQ = 0 from Ref. [46] (dashed lines). In both plots, the point marks

the location of the critical point as listed in Sect. 2

also shows the comparison between the new isentropes including strangeness neutrality and

the previous ones from the literature [46]. While both exhibit features of the critical point,

their trajectories through the phase diagram are quite different in the two cases, consistent

with other EoS’s that include strangeness neutrality conditions [24,25]. Since the isentropes

can be understood to represent the path of the heavy-ion system through the phase diagram

in the absence of dissipation, we note that this plot in particular shows the importance of

incorporating strangeness neutrality into the EoS. Strangeness neutrality pushes the trajec-

tories to larger μB for the same value of T , which has implications for the initial conditions

of heavy-ion collisions.

6 Conclusions

We provide an equation of state with strangeness neutrality and fixed baryon-number-to-

electric-charge ratio, realizing the experimental conserved charge conditions, to be used in

hydrodynamic simulations of heavy-ion collisions. Not only does this framework probe a

slice of the QCD phase diagram covered by the experiments, but also includes exclusively the

hadronic states used in the SMASH hadronic afterburner [50]. Additionally, we compare this
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Fig. 11 The curve x = 5 in the

QCD phase diagram over which

the merging of the correlation

length formulations is performed

new equation of state with the original version that first matched the Taylor expansion coef-

ficients from lattice QCD and implemented critical features based on universality arguments

[46], but at μS = μQ = 0. Furthermore, we incorporate a calculation of the correlation

length in the 3D Ising model, which exhibits the expected scaling behavior and could be used

to calculate the critical scaling of transport coefficients at the critical point.
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Appendix A: smooth merging of correlation length

In order to obtain a result for the correlation length that is consistent with the scaling behavior

of the 3D Ising model, we perform a smooth merging of the ε-expansion and asymptotic forms

of the correlation length, as shown in Eqs. (14), (15). We employ a hyperbolic tangent in

order to achieve a well-behaved result, useful for hydrodynamic simulations:

ξfinal(T, μB) = ξasymp(T, μB)
1

2

[

1 ± tanh
( T − T ′

low/high(μB)

	T (μB)

)]

+ ξε(T, μB)
1

2

[

1 ∓ tanh
( T − T ′

low/high(μB)

	T (μB)

)]

,

(A.1)

where T ′(μB) acts as the switching temperature and 	T (μB) is the overlap region between

the two representations. The merging is performed along a curve in the (T, μB) plane that

corresponds to a value of the scaling parameter x = 5, as stated in Sect. 4. The shape which

this curve follows in the QCD phase diagram is shown in Fig. 11. Since this is a multi-valued

function of μB , in order to fit this curve for the switching temperature, we separate it into

two functions T ′
low(μB) and T ′

high(μB) for different temperature regimes. These curves were
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best fit with exponentials, the functional forms for which are

T ′
low(μB) = TM,low − (TM,low − T0,low)e−klowμB (A.2)

T ′
high(μB) = T0,highe−khighμB , (A.3)

where TM,low = 195 MeV, T0,low = 58 MeV, klow = 0.00318462, T0,high = 282.594 MeV,

khigh = 0.00207197. We additionally write the overlap region, 	T , as a function of μB in

order to achieve the smoothest possible result for the correlation length. For this function,

we also employ an exponential:

	T (μB) = T0,merg + (TM,merg − T0,merg)e
−kmergμB (A.4)

where TM,merg = 17 MeV, T0,merg = 0.1 MeV, kmerg = 0.0075. This procedure for the

smooth merging of the two representations of the correlation length through a hyperbolic

tangent yields the critical contribution to the correlation length shown in Fig. 6.
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