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ABSTRACT We develop an integrated assess-
ment model for spatially simulating water qual-
ity and social welfare from linked ecosystem
services that extends prior modeling by incor-
porating a broader suite of pollutants than con-
ventionally measured factors like phosphorus
and nitrogen. Beyond demonstrating the feasi-
bility of such a model, we provide guidance on
the impact of omitting or holding constant rele-
vant pollutants and their effect on estimates of
water quality and willingness to pay. Applying
the model to Narragansett Bay, we find that re-
cent wastewater treatment upgrades and a leg-
acy network of dams are providing millions in
annual value to adjacent residents. (JEL Q53,

Q57)
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1. Introduction

Narragansett Bay is a large estuary in the
U.S. Northeast that supports the well-being of
more than 2 million adjacent residents through
valued uses such as tourism and recreation,
commercial and recreational fishing, and
more (Figure 1). It is characteristic of many
coastal watersheds in the United States that
are moving toward compliance with the Clean
Water Act by upgrading wastewater treatment
practices against a backdrop of changing non-
point-source pollution drivers. Since 2000, in-
frastructure upgrades have decreased nitrogen
and phosphorus loading by 55% and 45%, re-
spectively, from wastewater treatment facili-
ties in Narragansett Bay (NBEP 2017). Simul-
taneously, land use patterns have gradually
changed over this same span toward a more
urbanized environment: by area, in 2001 the
watershed was 33% urbanized, 57% forested,
and 6% was devoted to agriculture, by 2011
these figures were 36%, 55%, and 5% respec-
tively (Table 1). Limited monitoring through-
out the bay has complicated establishing a net

this article.
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Figure 1
Narragansett Bay Watershed Study Area
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Table 1
Drivers of Point- and Nonpoint-Source Pollution in the Narragansett Bay Watershed

2001 2011
Variable Zone 1 Zone?2 Overall Zonel Zone2 Overall
Urban land cover (% of total) 32.6 39.7 33.2 35.5 41.4 36
Forested land cover (% of total) 58.5 42.8 57.2 56.3 41.5 55.1
Agricultural land cover (% of total) 5.6 8.1 5.8 4.9 7.8 5.2
Wastewater treatment facilities 24 5 29 23 5 28
Onsite water treatment systems — — — 39,121 29,290 68,411
Dams — — — 338 14 352

Note: Data not available on dams and on-site water treatment systems for 2001.

effect of how these cumulative changes have
manifested in water quality attributes or prox-
ies in the bay, such as water clarity and bacte-
rial contamination of swimming areas (NBEP
2017; Oczkowski et al. 2018), though some
evidence suggests decreases in total nitrogen
(TN), total phosphorus (TP), and chlorophyll
a, as well as an increase in water clarity (Ovi-
att et al. 2017).

Given this limited information about the
effect of recent changes of key drivers in wa-
ter quality, stakeholders and decision-makers
in this watershed have expressed a desire for

a better understanding of the effect of these
changes on water quality and human well-be-
ing. This is not just a regional consideration:
measuring the effect of a given intervention
on downstream water quality is complex
(Keeler et al. 2012). Modeling frameworks
often are poorly integrated between econom-
ics and natural sciences and stop short of
measuring changes in well-being (Brauman
2015; Polasky et al. 2019), and even those
studies that do link water quality interventions
to changes in well-being tend to undercount
many types of benefits (Keiser, Kling, and
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Figure 2
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Shapiro 2018). With nearly $2 trillion spent
on reducing pollution in surface waters in the
United States since 1960, there is still consid-
erable uncertainty over the net social welfare
implications of water quality improvements
from large-scale policies like the Clean Water
Act and the Conservation Reserve Program
(Keiser, Kling, and Shapiro 2018). While this
can partly be attributed to limited spatial and
temporal monitoring, and potentially even
measurement error in existing U.S. national
datasets (Keiser 2018), there is simultane-
ously a need for improved integrated assess-
ment models (IAMs), especially of the sort
that can produce marginal social welfare es-
timates from common interventions smaller
than national programs like the Clean Water
Act (Keiser and Muller 2017).

This study develops a spatially explicit
IAM that evaluates willingness to pay (WTP)
for changes in six dimensions of estuarine
water quality that link back to point- and
nonpoint-source pollution in the upstream
watershed. We use the model to evaluate ret-
rospective and prospective changes in welfare
from heuristic and stakeholder-driven policy
scenarios in Narragansett Bay. The IAM es-
timates WTP using a benefit transfer func-
tion derived from a meta-analysis regression
of stated preference surveys that measure the
value of recreational and nonuse values as a
function of water quality (Johnston, Besedin,
and Stapler 2017). The function employs a
water quality index (WQI) as a predictor of
WTP that integrates multiple key water pollut-
ants into a single measure on a 0 to 100 scale
(Vaughan 1981; EPA 2009). Each pollutant is
modeled spatially by characterizing its phys-
ical transport and fate as a function of water-

shed characteristics and information about
nonpoint- and point-source factors, including
wastewater treatment facilities, onsite water
treatment systems, and more than 350 dams.
The IAM structure follows the form of an eco-
system service assessment (Freeman, Herriges
and Kling 2014; Olander et al. 2018), using
geospatial data and process-based and em-
pirical modeling to provide decision-relevant
outputs at each step of the model (Figure 2).

The water quality and economic models
employed in this IAM have facilitated a wide
array of policy analyses to measure ecosystem
service use and nonuse benefits from water
quality change (e.g., EPA 2009, 2010, 2015;
Meehan et al. 2013; Johnson et al. 2016);
however, prior modeling efforts employing
these functions have tended to feature only
one or two pollutants, usually nitrogen and
phosphorus, with limited capacity to simulate
spatial and aspatial policy impacts even with
this limited set of pollutants under consider-
ation. It is common in the context of I[AMs for
water quality to be represented by a limited
set of water pollutants; in some cases, this is
due to the scope of the study being narrowly
defined to a subset of effects/uses for which
the extra effort to expand the suite of pollut-
ants may be unnecessary. Examples include
IAMs that study the use of cost-effective con-
servation to reduce nitrogen and phosphorus
as the primary drivers of hypoxia in the Mis-
sissippi Basin (Rabotyagov et al. 2014), sed-
iment impacting coral reef health (Oleson et
al. 2017), and climate change impacting water
quality through changes in water temperature,
dissolved oxygen, nitrogen, and phosphorus
(Fant et al. 2017).
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Recent analysis supporting rule making for
steam electricity plant discharge in the United
States models the effect plant discharge has on
nitrogen, phosphorus, sediment, and metals
(EPA 2015). The study also incorporated three
other pollutants that are thought to contribute
to perceived water quality but was unable to
model their change due to plant discharge and
held them at their sample means. Of these, fe-
cal coliform is unlikely to be affected by steam
electrical power discharge and could be left as
a sample mean or potentially removed com-
pletely from the analysis; however, dissolved
oxygen and biochemical oxygen demand are
positively correlated with nitrogen and phos-
phorus through their role in eutrophication,
respiration, and decomposition (Heiskary and
Markus 2001; Prasad et al. 2011), and leaving
these at their sample means may bias results
toward higher water quality under increased
nitrogen and phosphorus scenarios. While this
analysis is generally more inclusive of dif-
ferent dimensions of water quality than prior
work, it demonstrates how modeling a limited
set of pollutants runs the risk of omitting a
pollutant that is directly and/or indirectly af-
fected by a policy or action, with the potential
to provide biased estimates of baseline water
quality and changes in water quality and so-
cial welfare.

We expand prior modeling efforts employ-
ing these water quality and WTP functions
with a more comprehensive suite of physical
models driving six key water pollutants: TN,
TP, total suspended sediment, dissolved oxy-
gen, chlorophyll a, and pathogenic bacterial
contamination. These pollutants are thought
be drivers of water quality that impact use
patterns (Vaughan 1981; Cude 2001) and
vary in their degree of correlation with each
other, from uncorrelated to high correlation.
As these are also the set of pollutants inves-
tigated in recent water quality guidelines by
the Environmental Protection Agency (EPA)
for polluting entities in the United States
(EPA 2009, 2015), using a similar modeling
structure while explicitly including these ad-
ditional pollutants can directly inform policy
making. The main scientific contributions of
this study are to: (1) investigate the feasibility
of including these additional pollutants into
an IAM for water quality, and doing so in a
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spatially explicit manner; and (2) characterize
the potential for bias if pollutants are omitted
or held constant in scenario analysis.

We explore these by developing and ap-
plying the IAM in the context of recent water
quality change in Narragansett Bay. The appli-
cation of the IAM to answer a specific set of
questions was motivated by outreach and con-
sultation with stakeholder groups throughout
the watershed, following best practices for in-
tegrating science in decision-making (Posner,
McKenzie, and Ricketts 2016; Ruckelshaus
et al. 2015). Through this interaction, several
questions emerged as key considerations for
decision-making that we explore:

What was the change in pollutant loading
from watersheds flowing into the bay from
2001 to 2011?! Are specific water quality
contaminants more of a problem than oth-
ers? How has this differed for point- versus
nonpoint-source pollution?

How has recreational use value and nonuse
value of Narragansett Bay changed due to
changes in water quality?

What are the well-being impacts of sedi-
ment and nitrogen retention by dams and
reservoirs?

Under 2011 conditions, what are natural
areas’ contribution to well-being based on
their influence over water quality in the
bay? Where are priority natural areas to
conserve for water quality?

I'We use 2001 and 2011 as the change analysis dates;
however, the Multi-Resolution Land Characteristics Consor-
tium releases land use data every five years for the United
States, so the nonpoint-source pollution estimates we derive
from this land use data can be construed as best estimates
within a 2.5 year window on either side of their release dates
(2001 and 2011). While we attempted wherever possible to
use data that align with 2001 and 2011, this lack of annual
availability is a characteristic of other data in the analysis as
well. As such, it is more accurate to state that we are estimat-
ing differences in representative water quality between the
five year windows centered on 2001 and 2011. All data used
in the analysis are documented in the Appendix.

Periodic improvements in wastewater treatment and non-
point-source pollution mean there was intermittent change
through the decade; however, since we do not have adequate
data to account for the timing of changes within the 2001—
2011 period, we have chosen to represent the change as in-
stantaneous as of 2011, where such an interpretation is nec-
essary. In particular, this means that the estimated changes
in annual household WTP are for the observed water quality
change from 2001 to 2011, going forward from 2011.
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The analysis was also strongly influenced
by the recently completed report by the Nar-
ragansett Bay Estuary Program, The State of
Narragansett Bay and Its Watershed (NBEP
2017). In particular, choosing to measure
change in water quality from 2001 to 2011
was driven by findings in this report of ma-
jor decreases in point-source pollution due to
wastewater treatment upgrades during this pe-
riod. Through our modeling efforts here, a key
finding is a WTP of $50 and $38 (2011 dol-
lars) million per year for these point-source
infrastructure upgrades in the upper and lower
bay, respectively. Before we answer the re-
mainder of these questions, we turn to the de-
tails of the modeling.

2. Methods

Valuing Changes in Water Quality

Water quality enhancements can result in a
wide array of benefits that are mediated by
environmental factors and the location and
use preferences of affected populations (Kee-
ler et al. 2012). The breadth of the services
impacted and the requisite modeling and data
collection effort to estimate welfare effects
from changes in these services has increas-
ingly led researchers to focus on providing
generalizable and scalable tools for decision
support, with a particular focus on the use of
benefit transfer to facilitate analysis (Plummer
2009; Johnston and Thomassin 2010). This
approach to valuation uses estimates of WTP
for water quality improvements that have been
derived elsewhere and applies them at a new
study site. It has been tested widely in the con-
text of water quality, and evidence generally
supports the use of benefit transfer function
approaches when there is no readily compa-
rable site to borrow values from and limited
capacity to originate a stated preference sur-
vey (Bateman et al. 2011; Rosenberger and
Loomis 2000).

The benefit transfer function applied in our
IAM, described in detail by Johnston, Bese-
din, and Stapler 2017, was developed with
that purpose in mind, facilitating water qual-
ity assessments through a WTP function syn-
thesized from 51 stated preference studies for
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water quality in the United States.? Derived
using a metaregression analysis, the function
estimates total (use and nonuse) per house-
hold WTP for water quality changes in U.S.
water bodies that support ecosystem services
including aquatic life, recreational uses (such
as fishing, boating, and swimming), and non-
use values, while also capturing variation in
site-specific geophysical and demographic at-
tributes (Figure 3). The function is estimated
as translog, where the dependent variable
(WTP), water quality (baseline and change),
and other continuous independent variables
are transformed with natural logs to fit non-
linear relationships in the data and ensure that
WTP approaches zero as these variables ap-
proach zero (Appendix Figure Al).
Producing estimates of WTP from this
function requires several steps to ensure con-
sistency with the assumptions of the under-
lying primary studies. While the Appendix
expands on this modeling, several of these
steps are worth emphasizing for their impli-
cations for the broader IAM. In particular, the
primary stated preference studies this func-
tion is based on solicited WTP for perma-
nent changes in water quality, typically at an
annual time scale; consequently, the models
used to measure change in the IAM approx-
imate a long-run equilibrium state of aver-
age annual water quality. Spatially, the stated
preference surveys asked about discrete water
bodies, though an estuary as large as Narra-
gansett Bay has different oceanographic and
use characteristics across its range and may be
best represented by multiple zones. Similarly,
geographic boundaries for impacted popu-
lations were a priori imposed in the source
WTP studies, leaving the researcher using this
WTP function to make a judgment call about
the affected market area.> Based on consulta-

20ther benefit transfer functions are available for use,
such as van Houtven, Powers, and Pattanayak’s (2007) and
Newbold, Simpson, et al.’s (2018). The selected benefit
transfer function was chosen due to its use in recent analyses
by the EPA.

3The metaregression benefit transfer model is not ex-
plicitly designed to calculate and sum benefits from joint
changes to large (likely) substitute areas of this type (John-
ston, Besedin, and Stapler 2017). Guidance in the practice
of applying metaregression models is emerging (Kling and
Phaneuf 2018; Johnston and Bauer 2019), and newer trans-
fer functions are increasingly capable of dealing with con-
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Figure 3
Benefit Transfer Model
Benefit transfer function Benefit transfer function variable descriptions
R Variable
WTP; = f(WQ,AWQ,GEO,DEM,;, RES) Variable Tyve Description
WTP — Willingness to pay/year/household (i} Water Quality wa Aggregate water quality index value in focal resource

WQ - Water quality index
GEO - Geospatial environmental variables

Change in Water Quality waQ

Change in water quality index value in focal resource

DEM — Demographic variables/household Proportion Ag Land GEO Ratio of agricultural land in adjacent counties
RES - Research variables
Area Ratio 1 GEO Ratio of affected area versus adjacent counties
Area Ratio 2 GEO Ratio of affected area versus adjacent HUC-10s
Water quallty index Relative Size GEO Ratio of affected shoreline versus affected area
6
W Proportion Change GEO Ratio of length of focal resource vs substitutes
wq=| |Q[ I, 0<WQ<100
i=1 River/Estuary GEO Indicator of river or estuary
Pollutant (Q,) Unit Weight (W,) Region GEO Indicators of U.5. geographic region
Dissolved Oxygen #mg/L .26 Income DEM Median income (2007 US$) for affected pop
Enterococcus cfu/100mL 25 Use DEM Indicators for use types considered: fishing, swimming,
Total Nitrogen #mg/L 15 boating, non-use value
Total Phosphorous #me/L 15 Lump Sum DEM Indicator of payment format (lump sum or annual)
Total Suspended Solids #mg/L 11 Research variables RES Fixed values associated with research design of sampled
Chorophyll-a # ug/L .08 studies used to estimate value transfer function

tion with local stakeholders and experts in the
watershed, we broke the study area into two
zones based on their different oceanographic
conditions and used the 848,735 households
in the Narragansett Bay watershed boundary
as the affected market area for each zone. The
IAM resolves pollutant movement at scales
smaller than the zone level and therefore could
be reapplied for any values of market area and
spatial zoning of the focal resource. For this
study, all water quality calculations and WTP
values were calculated based on the overall
WQI change induced by an intervention in the
respective watershed that corresponds to each
of the two zones.

Water Quality Index

The benefit transfer function uses a WQI to
relate multidimensional water quality to WTP.
There are more than 50 different water qual-
ity indices/indicators developed to track wa-

cerns about double counting with values for multiple water
bodies (Newbold, Walsh, et al. 2018; Corona et al. 2020);
however, there are theoretical and empirical challenges that
remain with these models that lie beyond current guidance.
For a review of these issues in the context of practical de-
cision-making on water quality, see Newbold, Simpson, et
al. (2018).

ter quality (Plummer, de Lo&, and Armitage
2012); here we selected an approach based
on the Oregon Water Quality Index (Dun-
nette 1979; Cude 2001) developed by the
EPA (EPA 2009).# Variants of this index have
been widely used to aggregate disparate water
quality attributes into a single index value that
can be translated to a public audience qual-
itatively, typically by demarking thresholds
of increasing water quality by use types: safe
for boating, fishing, swimming, and drinking
(Vaughan 1981; Carson and Mitchell 1993;
van Houtven, Powers, and Pattanayak 2007;
EPA 2009). The EPA WQI ranges from 0 to
100, where a value of 25 indicates safe for
boating, 45-50 indicates safe for fishing, and
70 indicates safe for swimming. Narragansett
Bay is a large estuarine system with biogeo-
chemical properties distinct from freshwater
systems; consequently, the WQI index we
used was modified by the EPA to include rele-

4There is a broad array of potential water quality indi-
ces that could be substituted into the IAM; we selected this
WQI as it has been used previously in the United States
for rulemaking by the EPA, is compatible with the benefit
transfer function of Johnston, Besedin, and Stapler (2017),
and has a degree of scientific support having been developed
through expert elicitation and subject to review for consis-
tency (Swamee and Tyagi 2000; Walsh and Wheeler 2012).
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vant marine water quality indicators including
dissolved oxygen, fecal coliform, chlorophyll
a, TN, TP, and total suspended solids. We di-
rectly substituted enterococcus for fecal coli-
form concentrations based on updated federal
guidance for using enterococcus as the water
quality standard for recreational waters.

Translating estimated raw contaminant
concentrations to a total WQI value for use in
the benefit transfer function and the broader
IAM involves several steps. As our IAM is
designed to enable spatial scenario prediction
and to trace the marginal damage or benefit
of changes in water quality back to users and
nonusers from spatial interventions such as
land use change, we cannot rely completely
on observed data and must employ some form
of predictive modeling for scenario analysis.
Even estimating contaminant concentrations
across the entire watershed requires some
modeling, as there is insufficient monitoring
coverage for all six of the contaminants in the
WQI. Therefore, a first step toward calculat-
ing a WQI is obtaining data on each of the
contaminants in the watershed and evaluating
modeling approaches for each. The approach
taken to model each pollutant is described in
detail below; however, we continue here with
the WQI to provide context for modeling
choices. The second main step is to convert
the concentration estimates for these six pol-
lutants to “subindex” values for each contam-
inant expressed on a 0 to 100 scale. The sub-
index transformation curves used are given in
the Appendix (Table A1) and are sourced from
the EPA (2009). Finally, these subindices are
combined to arrive at the final WQI value by
using a weighted geometric mean function,
shown in Figure 3.> For our case study of Nar-
ragansett Bay, values for the raw concentra-
tions, subindex values, and overall WQI value
were calculated by zone for all scenarios, and
these WQI values were used as inputs to the
WTP benefit transfer function.

This IAM extends prior efforts by spatially
modeling a suite of six water pollutants; how-

5The weighted geometric mean function used for aggre-
gation has been qualitatively shown to have more consistent
properties than other aggregation approaches based on first
principles (Walsh and Wheeler 2012), though more rigorous
testing is warranted to see how it corresponds to actual use
patterns. Weights across all pollutants sum to 1.
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ever, it 1s worthwhile to reflect on the nature
of this particular WQI function and whether
this additional effort is warranted by explor-
ing how the WQI varies if only a subset of
pollutants is considered or if some contami-
nants are held at baseline values:

Omission. In applications using only TN, if
TN is at maximum quality (100) but all other
unobserved pollutants are at minimum quality
(10), the resulting WQI calculation of 100
would miss that the unobserved pollutants
would reduce this to a value of 14 (out of
100). Even in a more favorable setup, where
we assume the researcher includes TN and
TP and accounts for the relationship these
have on dissolved oxygen and chlorophyll a
concentrations (as modeled below), setting
the known pollutants at max quality and the
unknown pollutants (enterococcus and total
suspended solids) at minimum quality results
in a WQI of 44 versus 100.

Held at baseline. Holding pollutants at baseline
levels in a scenario analysis ensures that the
baseline water quality will not be biased
(unless some pollutants are also omitted).
This is important as baseline water quality is
a factor in the WTP function. However, doing
this will impact the change analysis if factors
assumed constant change during the scenario.
In a worst case scenario, modeling a change
in TN from 10 (minimum) to another value
while holding all other factors constant (at
minimum levels) could miss up to 90 points
of WQI change, depending on how much the
other pollutants changed.

This simple exercise demonstrates that
there is significant scope for differences in
baseline water quality and change depending
on the inclusion and measurement of change in
pollutants. While we have established bounds
on the potential bias, reflecting on this in an
applied context as we do here will help char-
acterize the practical extent of this problem.

Modeling Nitrogen, Phosphorus, and
Sediment

For modeling pollutants that link point- and
nonpoint-source interventions to water qual-
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ity, we evaluated a wide array of approaches
that range on the continuum of mostly pro-
cess based to mostly statistical in nature. Pro-
cess-based hydrological models readily allow
for spatial analysis and more straightforward
interpretation of results due to supporting the-
ory, and are particularly suitable for scenario
analysis because they can be used, with ap-
propriate caveats, to evaluate changes outside
the range of historical observations (Nearing
et al. 1989). However, research on the six
contaminants differs widely, and for several
of these contaminants there is limited theo-
retical understanding about the downstream
effects of typical management interventions,
in particular for pathogenic bacteria. For this
IAM, which is oriented toward applied deci-
sion-making, we prioritized our selection on
process-based models and ease of use, sub-
ject to data availability and consistency with
the assumptions and form of the WQI and
the benefit transfer function.® These consid-
erations resulted in modeling TN, TP, and
sediment using the process-oriented InNVEST
ecosystem services modeling platform (Sharp
etal. 2014) and developing reduced-form em-
pirical models for enterococcus, chlorophyll
a, and dissolved oxygen.

Nitrogen and phosphorus transport mod-
eling for nonpoint-source pollution was done
using the InVEST nutrient delivery ratio
(NDR) model (Redhead et al. 2018). This
model uses a mass-balance approach to hy-
drologically route nutrients (TN and TP) from
diffuse sources, estimating long-term steady-
state surface and subsurface nutrient flow to
streams. Nutrient sources and retention rates
for different land categories are combined with
a topographic routing model and a nutrient
transport index to estimate the net landscape
contribution of nutrients at the watershed
outlet. The InVEST sediment delivery ratio
(SDR) model was used to produce estimates
of sediment transport to catchment outlets on
Narragansett Bay (Hamel et al. 2015; Hamel
et al. 2017). Similar to the NDR model, the

6These selection criteria, while informal, contrast to
convention in hydrology research where model selection
is largely driven by legacy and regional model preferences
versus methodological considerations (Addor and Melsen
2019).
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SDR model calculates net soil loss using land
characteristics related to land use and other
forcing factors via the revised universal soil
loss equation (Renard et al. 1997), as well as a
sediment transport index that moves sediment
through space based on the hydrological con-
nectivity of the watershed. The SDR and NDR
models produce annual estimates of sediment,
TN, and TP load at the catchment outlet; no
in-stream processes are included in the mod-
els.” The advantage of using the spatially dis-
tributed SDR and NDR models is that both
models produce maps of pixel-level net export
at the resolution of the land cover map used
in the analysis. As a result, net export can be
traced back to particular locations within the
watershed and can be aggregated at different
potential intervention scales, and land cover
maps featuring different nonpoint-source in-
terventions can be compared to estimate spa-
tial differences in pollutant export.

The basic process for parameterizing and
calibrating these models was as follows: First,
the model for each pollutant (TP, TN, and sed-
iment) was run using a land cover map rep-
resenting each time period or scenario, land
use specific loading and retention factors,
climate variables (e.g., precipitation, rainfall
erosivity), and soil characteristics. The results
are spatially distributed estimates of non-
point-source pollutant export from the land-
scape. Next, these estimates were adjusted
to account for the retention of sediment and
TN by dams, and then adjusted to account
for point-source loadings of TN and TP from
wastewater treatment facilities. Sensitivity
analyses were then conducted to evaluate
model performance, and models were cali-
brated to watersheds where data were avail-
able. Calibrated model parameters were then
applied, and the models were rerun for the
study area to produce final estimates of loads
for these pollutants. More detail is provided in
the Appendix.

Several additional steps were necessary
to estimate sediment and nutrient concentra-
tions; here we briefly discuss dams, point-
source loading of nutrients, and surface water

7In-stream processes related to nitrogen and sediment are,
however, included in the IAM via the role of dams and reser-
voirs, as described in the main text and the Appendix.
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flow. There are 352 dams in the watershed
that have been shown to act as point sinks
for nitrogen (Seitzinger et al. 2002; Gold et
al. 2016) and sediment (Meade 1982; Ren-
wick et al. 2005). We modeled the retention
effect for nitrogen using estimated retention
factors (% of TN load retained annually) de-
rived for all known dams in the watershed,
sourced from Gold et al. (2016). As many
reaches feature multiple dams, we estimated
the cumulative spatial retention factor using
a directed graph algorithm, an approach used
to address indexing and relating nested water-
sheds (Leonard, MacEachren, and Madduri
2017). This algorithm spatially delineated the
set of upstream watersheds for all dams and
accumulated retention while moving down
the watershed, providing cumulative retention
estimates for all subwatersheds (Yang and Lu
2014). An analytically identical approach was
taken to estimate sediment retention by reser-
voirs across space, where the retention factor
for each dam was calculated using a Brune
curve (Brune 1953). These maps were then
multiplied by the export maps to create net
export maps of TN and sediment and total an-
nual nonpoint loads for each zone in the bay.
The effect of dams on phosphorus retention,
cycling, and remobilization is complex and
site specific, and as a result reservoirs may act
as either a source or a sink for phosphorus.
While research is progressing on developing
approaches for predictive modeling of phos-
phorus transport through dams,? we opted not
to include it in this study.

Annual point-source TN and TP loading
from wastewater treatment facilities into each
zone in Narragansett Bay was gathered from
a recent nutrient budget analysis in the bay
(NBEP 2017). Wastewater treatment facilities
were grouped by zone, and total load values
were calculated by summing across these fa-
cilities for each zone and for the relevant anal-
ysis years, 2001 and 2011 (Appendix Table
A2).

8 Recent research is changing this, and this could soon be
a ready addition to the TAM. Maavara et al. (2015) appear to
be the first to derive and parameterize a process-based ap-
proach for estimating phosphorus retention by dams, using a
dataset of 155 dams.
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The load-based outputs of previous steps
were combined with information on flow to
estimate mean annual concentrations. River
flow into Narragansett Bay is monitored
from several main tributaries (NBEP 2017);
however, a significant area is ungauged and
needed to be estimated to provide full cov-
erage for all tributaries in the watershed. To
estimate annual flow volumes for both water-
shed zones in Narragansett Bay, we used esti-
mates of mean annual runoff volume per land
area in the Narragansett Bay watershed (Ries
1990), producing estimates of total annual
flow by zone using the respective zone sizes.
We then calculated mean annual concentra-
tions for TN, TP, and sediment by dividing
their respective total loads (point-source load-
ing from wastewater treatment facilities and
nonpoint sources as estimated using the NDR
and SDR models) by the flow for each zone.
These are representative of the mean annual
concentrations of each contaminant entering
into each zone from upland and are the values
we used in the IAM to calculate water quality
in each zone. This freshwater is not explicitly
mixed into Narragansett Bay using an ocean-
ographic model and as such becomes less rep-
resentative of bay water quality farther from
shore.”

Modeling Dissolved Oxygen, Chlorophyll
a, and Enterococcus

The other three pollutants were modeled us-
ing watershed data and regression models
informed by the supporting peer-reviewed lit-
erature for each. This work is explained in de-
tail in the Appendix. The main goal was to use
these models in a predictive way in the IAM,
linking point- and nonpoint-source interven-
tions to changes in the concentration of these
contaminants where supported by theory and
data. Dissolved oxygen and chlorophyll a
concentrations have been found in a wide ar-
ray of studies to be correlated in estuarine wa-
ter samples with an array of water attributes,
including nitrogen and phosphorus concen-

9While this was beyond the scope of our study, see Toft
et al. (2013) for an example of linking some of the pro-
cess-based models used in this IAM for a marine water qual-
ity model developed for Puget Sound.
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trations (Ryther and Dunstan 1971; Hoyer
et al. 2002; Prasad et al. 2011; Bbalali et al.
2013; Rai and Rajashekhar 2014). In specify-
ing regression models for these three pollut-
ants there was a practical balance to be made
between fit and data availability, where data
availability was a two-fold issue: first, was
there enough data within sample to include
the desired predictors; and second, was there
enough data out of sample to extrapolate the
regression results to the broader study area?
These limitations were a practical concern for
modeling dissolved oxygen and chlorophyll a.
While we were able to estimate more compre-
hensive models that included other potentially
relevant predictors such as water temperature,
salinity, pH, and other commonly sampled
water attributes, there is limited coverage of
these pollutants in the bay and not enough
data to support the estimation of mean annual
values for each zone.!? Because of these data
limitations, we limited the predictors to TN
and TP and an interaction term of these to esti-
mate dissolved oxygen and chlorophyll a con-
centrations (Appendix Tables A13 and AlS).
It is clear from the range of model specifica-
tions that this comes at the cost of model fit.
Moreover, this creates a dependency between
the models for TN, TP, dissolved oxygen, and
chlorophyll a, where errors in the TN and TP
models will propagate through these other
contaminant estimates. However, constructing
the model in this way allowed us to estimate
the induced effect of interventions that we
otherwise would have a difficult time linking
in a direct way back to changes in point- and
nonpoint-source management.

Enterococcus concentrations were esti-
mated using a regression approach linking
key drivers observed in the supporting lit-
erature to enterococcus levels observed in
Narragansett Bay with a longitudinal dataset
from the Rhode Island Department of Health.
The peer-reviewed literature investigating the
effect of various human uses and watershed
characteristics on pathogenic bacterial con-
tamination is dominated by statistical studies
with varying conclusions about the effect of
drivers like land use, population density, on-

10We characterize the potential biases from omitting these
relevant variables in the Appendix.
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site water treatment system (septic system)
density, wastewater treatment network cov-
erage, livestock density, rainfall, and more
(Fisher et al. 2000; Frenzel and Couvillion
2002; Tong and Chen 2002; Walters, Thebo,
and Boehm 2011; Sowah et al. 2014; Sowah
et al. 2017; Vitro et al. 2017). We estimated a
variety of models using combinations of many
of these factors, settling on one with predic-
tors for urban/forest/agricultural land use (%
of the watershed by area), prior 7 day rain-
fall (inches), wastewater network coverage
(% of watershed by area), and onsite water
treatment system density (number of facilities
per kilometer?). We modeled this relation-
ship only for coastal subwatersheds (HUC-12
level) directly adjacent to the bay, in both the
estimation and the prediction step, following
approaches in the literature and under the
assumption that this would provide the best
chance to observe significant effects given the
weak prior results in other studies.

3. Results

What was the change in pollutant loading
from watersheds flowing into the bay from
2001 to 2011? Are specific water quality con-
taminants more of a problem than others?
How has this differed for point- versus non-
point-source pollution?

Recalling that observations alone in the
watershed do not provide enough coverage to
estimate water quality using the WQI for the
years 2001 and 2011, we first present the re-
sults of our water quality estimation for both
zones using the IAM (Table 2). Water qual-
ity conditions in 2001 and 2011 are given
as pollutant-specific water quality subindex
values (0-100) and raw concentration val-
ues (in parentheses). In 2001, sediment, dis-
solved oxygen, and enterococcus levels were
low enough to result in relatively higher wa-
ter quality subindex values than for the other
three contaminants across both zones, with
sediment being more of an issue in zone 2 and
dissolved oxygen more of an issue in zone 1.
Nitrogen and phosphorus concentrations were
high enough to drive poor subindex values for
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Table 2
Water Quality Modeling Results for 2001 and 2011

2001 2011

Contaminant Zone 1 Zone 2 Zone 1 Zone 2
Total nitrogen (mg/1) 28 (2.8) 47 (1.6) 48 (1.6) 58 (1.2)
Total phosphorus (mg/1) 38 (0.21) 40 (0.20) 58 (0.14) 39 (0.20)
Sediment (mg/1) 100 (17.5) 67 (52.6) 100 (19.5) 65 (54.2)
Dissolved oxygen (mg/l) 84 (7.9) 97 (9.7) 99 (10.2) 100 (10.3)
Chlorophyll a ( pg/l) 10 (60.9) 19 (29.7) 31 (21.0) 36 (18.5)
Enterococcus (cfu/100 ml) 98 (40.1) 98 (20.3) 97 (64.8) 98 (25.4)
Overall 57 64 75 70

those contaminants as well as induce low wa-
ter quality with respect to chlorophyll a, with
zone 1 being worse on all values versus zone
2. Overall, water quality in zone 1 was 57 and
in zone 2 was 65, values that fall between a
water quality level adequate for fishing and
for swimming.

Nearly all subindex values increased be-
tween 2001 and 2011 due to lower loads and
concentrations, with decreases in TN and TP
loading pushing the overall water quality for
both zones above the level considered ade-
quate for swimming (EPA 2009). Net loads
for TN and TP decreased markedly due to
wastewater treatment facility upgrades over
the time period (Appendix Table A2), despite
slightly higher estimated loads from non-
point sources of roughly 1% for both zones
and contaminants. Sediment concentration
increased by 11% in zone 1 and 3% in zone
2; however, this trend did not push zone 1 be-
low the threshold for maximum water quality
for the sediment subindex (28 mg/l), but did
reduce the sediment subindex in zone 2. En-
terococcus concentrations also increased in
both zones in 2011, due to greater rain totals
that year and a modest trend toward urbaniza-
tion, though this had a negligible effect on the
subindex water quality value as it had previ-
ously been well below the threshold for the
maximum possible value (50 cfu/100 ml).!!

I'The maximum possible score for enterococcus is 98
due to the uncertainty of analytical procedures for counting
bacteria (Cude 2001). Observed values for onsite wastewater
treatment and wastewater treatment facilities remained con-
stant between 2001 and 2011, largely due to data gaps that
did not allow us to characterize changes through time. The
predicted outputs are driven entirely by the land use catego-
ries and prior 7 day rainfall.

Chlorophyll a and dissolved oxygen both im-
proved across zones from reduced TN and TP
from point sources.

How has recreational use value and nonuse
value of Narragansett Bay changed due to
changes in water quality?

The overall water quality change between
2001 and 2011 translated to an annual house-
hold WTP estimate of $59.21 for zone 1 and
$44.58 for zone 2, or $50.3 million and $37.8
million, respectively, for the 848,735 house-
holds in the Narragansett Bay watershed (Ta-
ble 3).

What are the well-being impacts of sediment
and nitrogen retention by dams and reser-
voirs?

We estimated the net effect dams play in
ongoing sediment and nitrogen retention by
conducting a heuristic exercise of removing
all dams and comparing that WQI to the exist-
ing WQI in 2011 in both zones. We find that
dam removal in the watersheds of zone 1 and
zone 2 would reduce water quality by 6.3 and
2.5 points in their respective zones in the bay.
This change would be nearly entirely due to
sediment retention effects, as annual sediment
loading increased 271% in zone 1 and 29%
in zone 2 (TN increases by only 8% in both
zones). A longstanding observed empirical
differential between WTP for a water quality
gain and willingness to accept payment for an
equal water quality loss (Kling, Phaneuf, and
Zhao 2012) suggests that the negative WTP
estimates here are no better than a first-order
estimate of potential lost social welfare and
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Table 3
Willingness to Pay across Scenarios (2011 dollars)
Baseline Water Quality Water Quality Annual WTP Total WTP
Scenario Zone (100 point scale) Change (points) ($/household) ($M/year)
2001-2011 1 56.5 17.9 59.21 50.3
2 64.4 5.4 44.58 37.8
Remove all dams (2011) 1 74.4 -6.3 -45.50 -38.6
2 69.8 2.5 -36.17 -30.7
Alternative WQI Aggregations for 2001-2011 Analysis
WQ =f(TN,TP) 1 327 20.2 63.47 53.9
2 435 4.0 41.92 35.6
WQ =f(TN,TP,DO,ChA) 1 413 22.6 64.47 54.7
2 54.3 7.6 49.53 42.0
WQ =f(TN,TP,S.E) 1 59.7 14.2 55.29 46.9
o 2 63.6 23 35.05 29.7
WQ =f(TN,TP,DO,ChA,S E) 1 56.5 8.9 48.48 41.2
o 2 64.4 1.7 32.26 27.4
WQ =f(TN,TP,DO,ChA,S ,E) 1 56.5 18.2 59.47 50.5
2 64.4 5.6 45.03 38.2

Note: WQI, water quality index; WTP, willingness to pay.

highlight a shortcoming of the WTP function
used in the IAM in that it cannot currently be
used to estimate willingness to accept.

Under 2011 conditions, what are natural
areas’ contribution to well-being based on
their influence over water quality in the bay?
Where are priority natural areas to conserve
Jfor water quality?

We addressed the question of where to
prioritize conservation in the watershed by
estimating the change in the WQI (for the
appropriate tributary zone) when converting
all natural area in a (HUC-12) subwatershed
to development and attributing the value of
that change back to the natural areas in that
subwatershed.'> We visualize this using a
marginal values map (Ricketts and Lonsdorf
2013), where each subwatershed’s value is
the marginal contribution of that particular
watershed, with all other watersheds held at
baseline values (Figure 4). This provides an
estimate of the nonpoint-source pollution re-
tention value of natural ecosystems in a wa-

12“Natural areas” includes the following National Land
Cover Database land cover classes: Barren Land, Decid-
uous/Evergreen/Mixed Forest, Shrub/Scrub, Grassland/
Herbaceous, Woody Wetlands, and Emergent Herbaceous
Wetlands.

tershed relative to an alternative of developed
land, and by holding all else constant we
avoid complexities associated with the strong
landscape interdependency of hydrological
routing (Guswa et al. 2014).

Estimated changes were modest, with a
maximum change between —0.99 and 0.43
points on the 0-100 water quality scale.!3 This
reflects several different important factors
within the case study application of the IAM:
(1) A significant portion of land adjacent to
the bay is already urbanized, with lower po-
tential water quality impact from conversion
of natural lands to developed lands, all else
equal. (2) Dams play a role in retaining nitro-
gen and sediment in-stream, leading to lower
influence of upstream export or retention by
natural lands, all else equal. (3) Transitioning
to development from natural areas reduces
sediment loading to the bay by trapping sed-
iments from eroding (lowest C factor of all
land classes in the USLE equation used in
the sediment model), a process that largely
accounts for the increased water quality ob-
served in subwatersheds flowing into zone
2 (where sediment levels are responsible for

13We did not monetize these changes, as they are small
enough that they are inconsistent with the scale of water
quality change that respondents were asked about in the
WTP benefit transfer function metadata.
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Figure 4
Marginal Water Quality Index (WQI) Change Map for HUC-12 Subwatersheds
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low water quality). (4) These results implic-
itly capture existing pollution regulations for
this region that may mitigate pollution that
would occur in the absence of these laws. (5)
Several of the pollutant concentrations are be-
low their respective thresholds necessary for a
maximum subindex quality score in the 2011
results; therefore, increases in these contam-
inants from development would change the
score only if the increase is large enough to
push the contaminant level past the threshold.

WQI and WTP Bias from Alternate Water
Quality Estimation Approaches

As a contribution of this work is to explore
the implications of using this WQI and benefit
transfer function with contaminants beyond
nitrogen and/or phosphorus, we present the
results of our retrospective analysis from 2001
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to 2011 using five alternative formulations of
the WQI (Table 3). The first three omit some
of the six pollutants from the WQI and re-
weight the WQI proportionately (weights still
sum to 1) to simulate a study that only went as
far as to include these contaminants. The last
two include all six pollutants but hold subsets
of them constant in the change analysis.

Each of the alternative WQI specifications
includes TN and TP, as they are commonly
included in water quality assessments, and
integrates the correlated (chlorophyll a and
dissolved oxygen) and uncorrelated (sedi-
ment and enterococcus) pollutants in turn.
The main takeaway from the three alternative
specifications that omit pollutants is that these
produce both biased baseline water quality
and biased change estimates versus estimat-
ing the WQI with all six pollutants used in
this study. Bias in baseline and change esti-
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mates originates from two key factors: (1) as
weights vary widely between pollutants, re-
weighting proportionately cannot make up for
lost information from the omitted pollutants;
and (2) even when pollutants are correlated,
they are not correlated 1:1, and so the relative
change across subincides will vary. As base-
line water quality and change are both a factor
in WTP, these factors bias WTP estimates.!4
In this case, we observe +/— approximately $5
per household per year, depending on which
pollutants are omitted.

The two specifications that employ all six
pollutants but hold subsets constant in sce-
nario analysis fare better than the omitted pol-
lutant estimates, as the baseline water quality
estimates are unbiased. Bias in change esti-
mates depends on the degree of unobserved
change in pollutants held at baseline levels. In
our case study, holding sediment and entero-
coccus constant did not meaningfully affect
the WQI or WTP, as these pollutants changed
only modestly as a result of actions in the wa-
tershed from 2001 to 2011. However, if we
had not estimated changes in chlorophyll a
and dissolved oxygen, our overall change es-
timates would have been off by greater than
50% in both zones as compared to the refer-
ence WQI that estimates change in all six pol-
lutants.

4. Conclusions

Here we report on an IAM that can charac-
terize water quality in a focal resource with
incomplete information on contaminants, as
well as spatially simulate the effects of com-
mon point- and nonpoint-source interventions
on water quality. These effects are reported as
changes in raw contaminant levels for a suite
of six key drivers of water quality, as well
as qualitatively on their own and integrated

14The functional form of the chosen benefit transfer
function quickly plateaus as a function of WQI change and
is relatively insensitive to a shift in baseline water quality
(Appendix Figure Al), so if this particular benefit transfer
function is used as part of an IAM for water quality, then
WTP estimates may not differ significantly from alternate
specifications. For our alternate specifications explored here,
the mean absolute value of bias in WQI change was 31%,
while the absolute value of bias in WTP was only 11%.
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together using subindices and an aggregate
WQI. The IAM links these water quality met-
rics to a benefit transfer function to allow for
the estimation of recreational use and nonuse
WTP values that arise from changes in water
quality. We applied this IAM in the context
of a watershed experiencing dynamic point-
and nonpoint-source changes in pollution
over recent years to estimate the change in
social welfare attributable to the effect these
changes have had on a regionally important
downstream resource, Narragansett Bay. This
analysis demonstrates that significant regional
value has been created mainly as a function of
improvements to wastewater treatment facili-
ties since 2001.

Because the IAM is spatially explicit, we
were able to investigate the role that existing
natural areas play, relative to an alternative de-
velopment use, in maintaining water quality
in Narragansett Bay. We did so by conduct-
ing a marginal mapping analysis, evaluating
each subwatershed in turn by simulating a
land use conversion where all natural areas
are replaced by development. While forests,
grasslands, and wetlands play a retention role
in the transport of nutrients and sediment into
adjacent streams (Allan 2004), here we were
more accurately measuring the net effect of
natural area removal and an alternate devel-
opment use, each with its own unique export
and retention factors, mediated by the reten-
tion effect of dams. We find modest marginal
WQI impacts from this transition across the
watershed: in some areas this is due to an ex-
isting high proportion of urban land, in others
it is due to cumulative dam retention. Overall
this watershed features very little agriculture
and fertilization relative to other commonly
impaired watersheds with severe downstream
impacts, such as the Mississippi River basin
(Rabotyagov et al. 2014). While it may be
tempting to assume that conservation would
have limited impact in these watersheds, it is
important to note that there is likely a greater
cumulative effect at larger scales than the
HUC-12 subwatershed level, though such
large-scale interventions are typically beyond
the scope of even process-based models.!d

15Nonmarginal change tends to break assumptions of wa-
ter quality models; however, smaller-scale change tends to



96(4)

We did not evaluate localized water quality
effects on freshwater resources that are also
extremely valuable in this watershed, such
as the Scituate Reservoir, which supplies
drinking water to over 60% of the residents
of Rhode Island. We also did not evaluate
WTP for drinking water or any of the other
ecosystem services provided by natural areas.
While most of these are beyond the scope of
the IAM, modeling freshwater water quality
for recreational and nonuse purposes is an ob-
vious potential extension.

We also took advantage of the IAM’s flex-
ibility to investigate an often overlooked, but
increasingly important part of addressing a
significant legacy of small-scale dams in the
United States (Gold et al. 2016). Dams pro-
vide an ongoing retention effect over several
key drivers of decreased downstream water
quality, and while individually the effect of a
dam removal is relatively small in our study
area, the cumulative effect could be large
enough to warrant inclusion in a comprehen-
sive watershed management plan. Valuing
this service can provide a fuller accounting
of costs when investigating trade-offs against
potential benefits of dam removal (Roy et al.
2018). Given the differential effect of sedi-
ment and nitrogen in this case study on water
quality, a useful next step would be an assess-
ment similar to this one that provides practi-
cal guidance for contexts where accounting
for dam retention would be important to avoid
biased water quality estimates.

Finally, we extended prior implementa-
tions of this index by incorporating a broader
suite of pollutants in the scenario analysis.
Assuming the WQI we used is representative
of the way people perceive water quality, we
investigated bias in alternative specifications
that omit pollutants completely and reweight
the WQI, or hold them at baseline levels in
the scenario analysis. We find that there is the
potential for wide discrepancy in both base-
line WQI and WQI change, depending on the
specification of the index in the applied setting

run the risk of losing a significant signal in the estimates
(Guswa et al. 2014). Therefore, the analysis resolution of
marginal change maps needs to carefully weigh the two and
often is best presented at the watershed scale, where most
hydrological models are derived.
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of a coastal watershed system. When conduct-
ing scenario analysis with the TAM, holding
pollutants at observed/estimated baseline lev-
els generally fares better than omitting pollut-
ants, as baseline conditions remain unbiased;
however, all alternate specifications provide
biased change estimates. Since the main ret-
rospective water quality changes in Narra-
gansett Bay were to nitrogen and phosphorus
point-source loading and induced changes in
dissolved oxygen and chlorophyll a, holding
sediment and enterococcus steady produced
little bias in WQI change estimates. While it
would have been reasonable to leave them at
their sample means, this does not hold gen-
erally, and relationships, both direct and indi-
rect, between all drivers of change and pollut-
ants in a given application must be established
to gauge the potential for bias if insufficient
data or effort precludes modeling all relevant
pollutants.

There are a wide array of limitations and
avenues for improvement for this IAM, most
of which are common to the current state of
hydrological or benefit transfer modeling.!6
The foremost issue unique to this work is that
large integrated models increase the number
of potential sources of uncertainty, something
we explore here in a very limited way in the
modeling for each pollutant and do not at-
tempt to compound throughout the model. The
addition of four pollutants to the set typically
used to model water quality scenarios relied
on fairly limited or conflicting peer-reviewed
evidence linking these additional pollutants
either directly or indirectly to common man-
agement interventions. This was particularly
the case with enterococcus modeling, where
prior studies provide conflicting evidence that
land use plays a role in observed concentra-
tions, suggesting this might be highly con-
text specific and/or the underlying processes
are not well understood theoretically. This
underscores the broader model uncertainty
across all pollutants due to a lack of unifying
theoretical models in hydrology (Clark et al.
2016; Mizukami et al. 2017). While model

16See Johnston and Rosenberger (2010) for a review
of methodological and practical considerations for benefit
transfer and Guswa et al. (2014) for a similar review of hy-
drology in the context of applied decision-making.



472 Land Economics

uncertainty will be a longer-term issue in the
respective subfields that comprise this IAM,
a clearer understanding of parameter uncer-
tainty would be a valuable next step for this
model to increase confidence in our hydrolog-
ical results,!” especially at scales smaller than
the entire watershed, where WQI values are
small in magnitude.

Modeled changes from most of the inter-
ventions in this case study produced small
(<5 points) changes in water quality; this
includes all simulated nonpoint-source inter-
ventions and even removing all dams in the
watershed. However, the mean water quality
change observed in the metadata for the ben-
efit transfer function was 18.3 points (SD =
1.83). This exceeds the estimated change
from recent wastewater treatment upgrades in
this watershed that removed 42% and 30% of
all nitrogen and phosphorus loading, respec-
tively, into Narragansett Bay from 2001 to
2011. This raises concerns about the validity
of extrapolating WTP measures out of sample
to small changes in water quality and whether
we have a good understanding of whether
these values may systematically deviate from
larger changes. Given that (1) small changes
are the norm, not the exception, in this water-
shed and in most contemporary EPA regula-
tions promulgated under the Clean Water Act
(Newbold, Simpson, et al. 2018), (2) this sort
of temperate coastal watershed with limited
agricultural presence is common in the United
States and adjacent to large population centers
in the Mid-Atlantic, Northeast, and Northwest
(Drummond and Loveland 2010), and (3) we
observed significant stakeholder interest in
outreach about the value of small-scale inter-
ventions like forest conservation and riparian
buffers, a better understanding of how people
value small water quality changes would have
significant applied value.

While this analysis established that an in-
clusive TAM for water quality is possible,
replicating such an effort elsewhere would re-
quire significant effort currently. In particular,

17With sufficient parameter variation, rank ordering could
easily shift between conservation options in our marginal
mapping exercise, which has been shown to have the poten-
tial to easily erode the efficiency of a conservation program
(Johnson et al. 2012).
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gathering and preprocessing data was chal-
lenging, and assessment of the rural-urban
gradient in this watershed required significant
effort to properly reflect wastewater treatment
networks in the analysis. Incorporating dams
into the analysis was facilitated by a recent
study in the area that catalogued dams and
estimated their nitrogen retention (Gold et al.
2016), and the bacterial analysis also relied
on data that are not nationally available in the
United States. The peer-reviewed science be-
hind the bacteria and dam analyses could also
use additional supporting research to confi-
dently include them in a water quality IJAM.
Finally, estuarine applications of this IAM that
extend beyond our case study to oceanograph-
ically mix pollutants into coastal waterways
will face significant additional challenge, as
estuarine mixing is context dependent and
will likely require locally calibrated models.

Despite these challenges, this work greatly
benefited from an expanding set of tools that
helped automate portions of the IAM and took
advantage of many data sources with national,
and in some cases global, coverage. Continu-
ing to expand data availability and tools to
help facilitate workflows in this IAM, such
as the work covered by Corona et al. (2020),
can make these sorts of models more wieldy
and extensible in new locations and contexts.
More contributions toward establishing best
practices for water quality IAMs, as we pres-
ent here when considering how inclusive to be
when including pollutants, will help identify
scientific priorities while providing practical
guidance for estimating water quality changes
as these efforts continue.
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