nature FOCUS | REVIEW ARTICLE

https://doi.org/10.1038/541593-020-00734-z

neuroscience

‘ '.) Check for updates ‘

Quantifying behavior to understand the brain

Talmo D. Pereira®’, Joshua W. Shaevitz®23 and Mala Murthy ®

Over the past years, numerous methods have emerged to automate the quantification of animal behavior at a resolution not
previously imaginable. This has opened up a new field of computational ethology and will, in the near future, make it possible to
quantify in near completeness what an animal is doing as it navigates its environment. The importance of improving the tech-
niques with which we characterize behavior is reflected in the emerging recognition that understanding behavior is an essential
(or even prerequisite) step to pursuing neuroscience questions. The use of these methods, however, is not limited to studying
behavior in the wild or in strictly ethological settings. Modern tools for behavioral quantification can be applied to the full
gamut of approaches that have historically been used to link brain to behavior, from psychophysics to cognitive tasks, augment-
ing those measurements with rich descriptions of how animals navigate those tasks. Here we review recent technical advances
in quantifying behavior, particularly in methods for tracking animal motion and characterizing the structure of those dynamics.
We discuss open challenges that remain for behavioral quantification and highlight promising future directions, with a strong
emphasis on emerging approaches in deep learning, the core technology that has enabled the markedly rapid pace of progress
of this field. We then discuss how quantitative descriptions of behavior can be leveraged to connect brain activity with animal

movements, with the ultimate goal of resolving the relationship between neural circuits, cognitive processes and behavior.

Tracking, from coarse to fine

Quantitative descriptions of behavior begin by tracking movements.
In this section we describe the computational tools for extracting
measurements of animal motion from video recordings and the
challenges associated with capturing progressively more detailed
descriptions such as pose (Fig. 1a).

Animal centroids, ellipses and identities. At its coarsest, animal
behavior can be quantified by estimating the position of its centroid
(i.e., the midpoint or the center of mass) over time. These centroid
trajectories, quantified as sequences of image coordinates, reflect the
motion of an animal within its environment and can be used to mea-
sure spatial navigation or locomotion behavior. The centroid treats
the animal as a single point, which fails to capture its heading, but
this description can be augmented by finding the major and minor
axes of an ellipse encircling the animal (Fig. 1b). This is a conve-
niently universal description, as most animals with a CNS share a
similar body plan, in which a spinal or ventral nerve cord forms a
line at the center of an elongated body.

Classical approaches to estimating centroids and ellipses pri-
marily relied on background subtraction, an algorithm that identi-
fies the image pixels belonging to the animal (i.e., the foreground)
from which the centroid can be computed by finding the midpoint
of their coordinates. When the background contrasts with the ani-
mal, such as in backlit arenas, background subtraction can be per-
formed through simple thresholding of the image intensity. If the
background is static, it can be modeled by finding the median image
frame; however, this fails often if the animal does not move for pro-
longed periods of time. Classical approaches employ robust algo-
rithms to model the background', but newer methods have begun
to use deep learning to better deal with more complex backgrounds,
affording the ability to track animals in more naturalistic conditions.

Extending ellipse tracking to multiple animals adds even more
richness to behavioral descriptions, where quantities such as rela-
tive distances and orientations can be used to infer complex social
interactions. For example, close interactions that occur dur-
ing aggression or courtship may be detectable using the distance
between centroids, while the relative angle between animals can
indicate the directedness of the behavior, such as chasing.

Assuming centroids or ellipses can be detected reliably within
individual images, the multi-animal setting introduces the par-
ticularly challenging problem of estimating identity, i.e., the task
of associating animal detections correctly over time (Fig. 1c). In
the broader domain of multi-object tracking, the most common
approach to the identity assignment problem is tracking by detec-
tion, in which objects (for example, animals) are detected within
single images and then subsequently linked together across frames.
These algorithms must contend with challenging cases such as
objects occluding one another, disappearing for periods of time or
failing to be detected in the first stage. We refer the reader to pre-
vious reviews for more in-depth analyses of classical multi-animal
tracking methodology’~.

Modern approaches to multi-animal tracking typically address
the association problem by modeling the appearance and/or motion
of the animals. This allows for identity association by matching new
detections to previous tracks based on their similarity to the mod-
eled features. Motion models will typically make constant velocity
assumptions to enable extrapolation from past trajectories®. These
types of models will often fail when animals are closely (socially)
interacting with each other, as is common in multi-animal experi-
ments. Techniques that leverage machine learning to model appear-
ance may rely on artificial distinguishing visual features, such as
painting the animals’ fur with unique patterns’ or using a different
colored tag for each animal®. Some approaches may rely on com-
bining videography with implanted radio-frequency identification
(RFID) tags, enabling reliable and wireless identification for highly
robust tracking, making them particularly well-suited for moni-
toring behavior over longer timescales’. These potentially invasive
manipulations, however, may be prohibitively laborious when using
many animals and may hinder the ethological validity of experi-
ments intended to measure natural behavior'.

Although identity association in multi-object tracking remains
an open problem, the state-of-the-art techniques now rely on deep
learning for learning distinguishable appearance features without
artificial markers''. A common approach is to employ a technique
known as contrastive learning: the objective is to find a mapping in
which images with the same identity are closer to each other than
to images with different identities; this is the basis of modern facial
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Fig. 1| Tracking, from coarse to fine. a, Representations extracted by different forms of tracking, ranging from a single point to full 3D pose. b, Single
mouse tracked with ellipse and orientation?. ¢, Multi-animal tracking of ants with reliable identity assignment'. d, Multi-animal pose tracking of a pair of
socially interacting fruit flies®'. e, 3D pose estimation of a monkey from multiple camera views*°. Images in a adapted with permission from SciDraw.io" or
created with BioRender.com™; in b from ref. 2, Nature Publishing Group; in ¢ from ref. %, Nature Publishing Group; in e from ref. “, Nature Publishing Group.

recognition systems'? and has also been applied to animal facial rec-
ognition". In the domain of animal tracking, this approach has been
demonstrated to be highly effective with socially behaving animals
in complex environments'*'*. Despite their impressive performance,
the downside to these methods is that they typically require more
training data to adapt to new animals, new imaging conditions and
new experimental settings. This requirement is particularly burden-
some, because manual annotation of animal identities over video
frames can be prohibitively laborious as it may require annotators to
step through the video frame-by-frame to ensure they do not mis-
label animals when they are closely interacting. Some approaches
to ameliorate this bootstrap the labeling using classical tracking for
self-supervised learning', and advances in unsupervised learning
may soon enable fully automated deep-learning-based tracking
without previous annotations'®.

Animal pose estimation. Centroid and ellipse tracking, though
highly descriptive, fail to capture the movements of limbs and
appendages and consequently cannot be used to detect behaviors
such as grooming, rearing, tapping and locomotor coordination.
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Animal pose, on the other hand, is represented by the location of
all of its body-part landmarks (typically at the skeleton joints). Pose
estimation is able to capture nearly all of the degrees of freedom of
body motion—and by extension, the degrees of freedom that the
brain can actuate via its motor system.

Human pose estimation has long been studied, both from the
perspective of biological motion perception'”', i.e., how humans
and animals perceive the motion of other organisms, and from the
engineering point of view, i.e., the design of algorithms to retrieve
pose'”. While the former provides a theoretical grounding for the
use of pose as a biologically relevant representation of behavior—
particularly in social contexts—the latter has enabled accurate and
automated pose estimation from conventional videography.

State-of-the-art deep-learning-based approaches to human
pose estimation have drastically improved accuracy over classi-
cal methods, owing to the effectiveness of neural networks for
computer vision tasks in general, but more specifically due to the
development of the heatmap (also referred to as confidence map;
Fig. 2a) representation of landmark locations®-*%. This representa-
tion encodes the location of each landmark as the density function
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of a two-dimensional (2D) Gaussian distribution centered on the
ground-truth image coordinates of each landmark, i.e., a heatmap
image in which the brightest pixel is at the location of the landmark
within the image. This representation is particularly well-suited for
convolutional neural networks (CNNs), which excel at learning
complex transformations of image patches. Pose estimation CNNs
are trained to predict heatmaps from input images by learning from
labeled examples where the ground truth landmark coordinates are
known, enabling the correct heatmaps to be computed for compari-
son with the CNN’s prediction. Once trained, the landmark coor-
dinates on unlabeled images can be decoded from the predicted
heatmaps via peak detection.

Although conceptually there is no difference between human
and animal heatmaps, the biggest challenge to adapting the
deep-learning-based approach to animal pose estimation is the
need for labeled training data. To enable human pose estimation
‘in the wild’ that generalizes to arbitrary viewpoints, illumina-
tion, body sizes, clothing and other variability in image features,
the computer vision community has generated datasets with sizes
ranging from tens of thousands to millions of labeled images*-*.
Efforts to generate these employed crowdsourcing and required
thousands of hours of manual labor, but these costs are amortized
over time, as human anatomy is static. In contrast, a CNN that is
trained to locate human hands would not be able to generalize to
predict insect leg tips.

To address the labeling problem, three main approaches have
been employed to enable pose estimation for new animals when no
training data is available: transfer learning and efficient neural net-
work design. The first of these, transfer learning, formed the basis
and main contribution of the widely used animal pose estimation
software DeepLabCut”. Transfer learning is a widely used method
for reducing the need for large datasets; it works by reusing the
parameters (and therefore visual feature detectors) learned in CNNs
trained on a broader set of natural images (typically ImageNet”).
This relies on the assumption that reducing the need for learning
general-purpose visual features, such as oriented edges and textured
patches, will facilitate fine-tuning the parameters of the network
with less training data. This approach is a topic of active research
in computer vision, and recent empirical studies have reported
conflicting results on its advantages for general computer vision
tasks?** and for animal pose estimation®*>*'.

In contrast, the second approach formed the primary contribu-
tions of the LEAP software framework™ and was improved upon in
DeepPoseKit™. Efficient neural network design, in which the CNN
architecture is kept small, has fewer parameters to tune than the
general-purpose architectures normally used in transfer learning™.
This reduction is justified by the assumption that variability of imag-
ing conditions in animal behavioral data is relatively low—a founda-
tional feature of reproducible laboratory experimental design—and
therefore requires lower representational capacity. The added ben-
efit of designing neural networks to the needs of the data is that it is
considerably faster to train and predict, making human-in-the-loop
training more efficient, but this approach may not be as well suited
to the prediction of animal pose in less constrained, non-laboratory
settings.

Active learning, closely related to human-in-the-loop train-
ing®, is a technique that can drastically reduce the time required
for generating large datasets by proposing images to label that are
representative of diverse data features; these can then be used to
train CNNs with a small number of very distinct images. After
training with few labels and generating predictions on unlabeled
data, new labels can be generated by simply correcting the pre-
dictions, iteratively reducing the time required to label with every
training loop. This approach has been adopted by all major animal
pose estimation frameworks to reduce the effort required to label
new datasets.
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The success and accessibility of these methods have spurred a
revolution in fields dealing with animal movement, from neurosci-
ence’ to ecology”. Future research in animal pose estimation will
continue to reduce the need for labeled data through the use of tech-
niques such as self-supervised learning and domain adaptation®-*!
and to improve the precision of landmark localization by incorpo-
rating temporal information without new labels'>*.

Animal pose estimation in three dimensions. For many ani-
mals, 2D pose estimation will be insufficient to capture all body
landmarks, as some will typically be occluded in any single fixed
viewpoint. This issue is especially compounded in highly deform-
able animals such as mice whose skeleton landmarks may be dif-
ficult to localize through fur* and during out-of-plane behaviors
such as rearing. The standard approach to three-dimensional (3D)
pose estimation, then, is to record behavior using multiple cameras
arranged such that they collectively capture all of the landmarks of
interest across viewpoints (Fig. 1e).

The standard approach to 3D pose estimation consists of three
steps: 2D pose estimation, triangulation and refinement (Fig. 2b).
The 2D pose estimation step is typically performed as described for
the monocular case, but 3D animal pose estimation frameworks will
often leverage the ability to map points from one view to another to
reduce the labeling effort**°. The triangulation step is preceded by
a one-time calibration procedure, in which an object with distinct
features (typically a checkerboard-like pattern) is used to compute
the camera calibration matrices that enable projection of 2D points
in the image plane to consistent 3D world coordinates. In prac-
tice, triangulation is noisy, so some form of refinement is typically
employed to eliminate false detections and resolve inconsistencies
in projections of the same point from different views. Tools for 3D
animal pose estimation have employed a variety of approaches to
refinement, such as incorporating constraints on the geometry of
the animal’s body (for example, limb lengths)**, temporal smooth-
ing"® or parametric shape modeling*~’. The rapid pace of progress
in 3D animal pose estimation is likely to yield a series of advances
in the coming years; the 3D human pose estimation field provides
an outlook on what's to come, in particular, lifting from monocu-
lar 2D, which will reduce the technical challenges associated with
multicamera animal behavioral setups®.

While 3D landmark localization helps to improve the complete-
ness of behavioral representations, it may still fail to capture move-
ment of non-rigid parts of the body, particularly in animals with
amorphous body shapes, such as hydra®. One approach to captur-
ing the full shape information of animals is to fit articulated 3D
models of animals to new images*****. This model-based technique
can be robust and may require relatively little training data, but
comes at the cost of professional 3D computer-aided design (CAD)
expertise to design and articulate (‘rig’) models for new animal
body types, and it would not be robust to large deformations such as
in experiments that employ amputations of body parts. A more gen-
eral approach is to explicitly fit a deformable surface to capture the
detailed shape of animals within images; although this is an active
area of research in computer vision, early results hold promise~’
for development of general-purpose tools to enable the routine use
of animal shape estimation for behavioral quantification.

Multi-animal pose tracking. The level of description afforded
by pose estimation is uniquely advantageous when quantify-
ing social behaviors, as relative features such as inter-body-part
distances and orientations can be used to detect directed inter-
actions between animals (Fig. 1d). Just as in multi-animal cen-
troid and ellipse tracking, however, extending pose estimation to
multiple animals introduces new technical challenges. First, part
association: dealing with multiple animals with the same body
plan means that sets of detected landmarks must be correctly
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Fig. 2 | Anatomy of pose estimation systems. a, In single-instance pose estimation®’, each body-part type is encoded as a confidence map that is predicted
by a convolutional neural network given an image as input (left). The network is trained to predict confidence maps (CMs) with only a single peak per
channel (middle), enabling the coordinates to be decoded by finding the global peak in each channel of the confidence maps (right). b, The 3D pose
estimation system employed in DeepFly3D (ref. “°). These systems may use a single neural network (left) to predict 2D confidence maps (middle) for each
independent view. These landmarks are then triangulated based on the geometry of the cameras and the consistency of the 2D predictions (right). ¢, A
top-down multi-animal pose estimation system employed in SLEAP*'. All instances of an ‘anchor part’ are first located by a CNN trained to predict anchor
part confidence maps (left). The image is cropped around each anchor (middle) and a CNN trained to predict all part confidence maps is applied to each
crop (right). d, A bottom-up multi-animal pose estimation system employed in SLEAP?'. A single neural network detects all instances of all body parts

and simultaneously predicts part affinity fields (PAFs)>%, a representation of the connectivity between body parts (left). The grouping of body parts to the
appropriate animals via a matching procedure uses the PAFs to score candidate connections (right). Images in b adapted with permission from ref. *°, eLife.

assigned to each animal. Second, identity assignment: detec-
tions in one frame must be correctly associated with detections
belonging to the same animal in subsequent frames. Approaches
to multi-instance pose estimation (in both humans and animals)
can generally be categorized as either ‘top-down, in which the
animals are first detected (for example, by finding their centroids)
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and then their body parts are located within a cropped image of
the animal, or ‘bottom-up, in which all body parts first located
and then grouped by animal.

Top-down pose estimation systems (Fig. 2c) solve the
part-association problem implicitly by using the location of image
features relative to the center of the crop. In this approach individual
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Box 1| Choosing a tracking system

Selecting the appropriate behavioral quantification tool is an im-
portant decision that should be made at the experimental design
stage. Some types of experiments may preclude some forms of
tracking altogether, for example, multi-camera setups. Constraints
on the data acquisition, such as resolution, illumination and arena
size should be balanced with the desire to get as much information
out of the behavioral recordings as possible.

The primary consideration is the level of description necessary
for capturing the behavioral signals that best test a given hypothesis.
Centroid and orientation tracking may suffice, for example, to
obtain coarse locomotor statistics, information about navigational
strategies, place preference or characteristics of some social
interactions. For single animal tracking, a classical tracker such as
Ctrax' or ToxTrac® may be a practical solution because additional
labeling is not required. If imaging conditions are not optimal,
for example, due to low illumination or complex backgrounds, it
may be preferable to use a deep-learning-based solution even for
centroid tracking’. When tracking multiple animals, addressing
the identity assignment problem will be the primary challenge
in ensuring the quality of the tracking. If the animals frequently
occlude one another or disappear from the field of view, it may be
necessary to employ a deep-learning-based multi-animal tracker
such as idtracker.ai (https://idtrackerai.readthedocs.io/en/latest/)
to minimize identity switches'*.

Ifa pose estimation system is optimal, it is important to consider
the resolution required to capture the smallest feature of an
animal. For insects with thin appendages, high spatial resolution is
required, which must be balanced with the size of the field of view;
for rodents, a lower resolution may suffice, but note that some body
parts like the tail may require additional considerations if imaging
against a low-contrast background. Next, consider the viewpoint
of the camera. For ideal 2D pose estimation, movements out of
the image plane should be minimized, which is most commonly
achieved by carefully aligned cameras either overhead or from
below a transparent floor of an elevated arena. For immobilized
animals, higher resolution may be more easily achieved, but it
may be difficult to get a viewpoint where movements are within
the image plane. Finally, ensure that the signal-to-noise ratio of
the images is maximized by providing sufficient, constant and
uniform illumination (potentially in infrared to reduce corruption

animals are first detected within the frame, such as by standard
centroid detection methods (see “Animals, centroids, ellipses and
identities” section above) or by a neural network trained to generate
region proposals. These regions are cropped such that the animal is
centered within the image. Given these crops, the neural network
responsible for part localization is trained to predict confidence
maps with a single peak, just as in the single-instance case, even if
body parts of other animals are present within the crop.

In contrast, bottom-up pose estimation systems (Fig. 2d) encode
all instances of each body part in the same set of confidence maps
and encode their connectivity or grouping separately. A commonly
used representation of the connectivity between body parts are part
affinity fields*, which are composed of vectors whose orientation
follow the direction of the animal’s skeleton within the image. A
grouping procedure uses the similarity between the line integral of
part affinity field vectors between body parts and the line segment
between the two points as a scoring function for grouping pairs of
body part detections.

While there is a variety of theoretical trade-offs between the two
approaches, empirical studies indicate that selecting the appropriate

FOCUS | REVIEW ARTICLE

by room light), focused camera optics to reduce spatial blur and
low camera exposure time to reduce temporal blur.

In the majority of «cases, any of the mature
animal-pose-estimation frameworks (for example,DeepLabCut®,
SLEAP* and DeepPoseKit™) should produce satisfactory results
and can be configured to achieve similar speed and accuracy.
All of these frameworks provide a shared base set of features:
graphical user interfaces (GUI) for labeling and inspecting
results, usage documentation with example data, active learning,
multiple neural network architectures with optional pretraining
for transfer learning, and Python-based implementations. Their
differences derive primarily from their capacity for customization
and extension for specialized applications. DeepLabCut has a
large user base that has adapted it to a diverse range of specialized
applications; DeepPoseKit provides a minimalist implementation
of the core functionality required to build a pose estimation
system; and SLEAP provides a flexible codebase, developed with
a standardized code style and documentation formats, continuous
integration, and native multiplatform support and modular
application programming interfaces to facilitate extensibility and
customization for specialized applications.

For multi-animal tracking, all three frameworks support
top-down approaches; a recent update to DeepLabCut provides
experimental support for bottom-up, while SLEAP offers native
support for both. MARS"' provides an alternative solution for
tracking rodents with different fur colors and is integrated with
tools for advanced downstream analyses. The SLEAP GUI offers
functionality for proofreading tracking, as it was designed with
special emphasis on multi-animal pose tracking.

When extending to 3D, it is important to first consider
how many cameras may be necessary and to ensure that
they are synchronized and calibrated. For larger animals,
such as non-human primates that can occupy large spaces,
OpenMonkeyStudio® describes a state-of-the-art system using
an array of 62 cameras. For smaller animals, DeepFly3D* and
Anipose* provide flexible general-purpose toolkits to deal with
calibration and triangulation of 2D landmarks. At the cutting
edge, the 3D-from-2D pose estimation framework LiftPose3D*>
may be suitable for settings in which multicamera triangulation
is not possible.

one may depend on features specific to the dataset, such as the
morphology of the animals and the relative scale of their image fea-
tures’’. See Box 1 for more details on these and other considerations
for practitioners.

In the multi-animal context, the problem of pose estimation is
naturally promoted to that of pose tracking due to the second prob-
lem: identity assignment. The primary challenge in identity assign-
ment with multi-animal pose tracking, as opposed to multi-animal
centroid tracking, is the considerably increased manual annota-
tion requirements of labeling consecutive frames with both pose
and identity. In lieu of labor-intensive labeling, the same solutions
employed for multi-object centroid tracking can address this prob-
lem through conventional motion models (see “Animal centroids,
ellipses and identities” above) to track the centroid™ or collections
of keypoints®¢'. More sophisticated approaches that rely on iden-
tity and pose annotation in consecutive frames may yield consider-
able improvements for animal pose tracking by leveraging temporal
information to perform top-down detection within clips rather
than single images®. In the bottom-up approach, however, the
representations used for part association must be explicitly extended
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Box 2 | Choosing a behavioral feature representation

Tracking data, whether at the resolution of centroids or pose, is
ultimately represented as a set of coordinates in space, typically in
units of pixels in the reference frame of the camera. Converting
these into a meaningful representation amenable to interpreta-
tion and analysis requires the choice of a feature representation
that can be derived from the raw coordinates. This step precedes
the analysis of dynamics, and most methods for quantifying dy-
namical structure are agnostic to the specific behavioral feature
(Fig. 3a) on which they operate.

A simple and effective approach when dealing with pose is to
adjust the coordinates to an egocentric representation, which can
be achieved by centering the coordinates such that the origin is
at a fixed anatomical position (e.g., thorax in insects, spine base
in rodents or centroid more generally). With a second reference
point, such as the head or neck, the remaining points can then
be rotated such that the animal is always facing in a consistent
orientation, enabling a fully egocentric reference frame for the
pose coordinates”. In 3D, a third point of reference is required
to ensure this rotational invariance, and its selection depends
on the available landmarks and the animal’s anatomy***>*’. Once
transformed to egocentric coordinates, displacements can be
interpreted in relation to the body, and their occupancy reflects
body configuration independent of global position or orientation.

From coordinates, a number of hand-crafted features can easily
be derived, such as velocities, distances and orientations, both
between body parts and in relation to other animals or objects in the
environment. A number of these have been previously described for
various species and experimental contexts">®. Some frameworks
facilitate the computation of exhaustive sets of combinations
of pairwise features, such as all-to-all distances, angles and
velocities®>*>””; these can provide a superset of behavioral features
agnostic to their semantic interpretation, but much less precise
than deliberately designed features. For behaviors involving highly
periodic movements, such as locomotion or grooming, spectral
features can provide an effective representation by expressing the
behavioral feature in time-frequency space’’>'*.

An alternative approach that may be better suited to capturing
the correlation structure between postural coordinates (or even

to the temporal dimension, such as in temporal associative embed-
dings® or spatiotemporal affinity fields*, but they provide the same
benefits as the single-image bottom-up approaches.

Quantifying the dynamics of behavior

Behavior is a dynamic phenomenon that involves changes to an
animal’s pose over time. Unlike the tracking of body parts, quanti-
fication of this temporal structure is a fundamentally difficult prob-
lem without a clear ground truth. It is often assumed that behavior
can be described as a sequence of discrete behavioral states, such
as ‘walking’ or ‘grooming’ The techniques discussed below use
advances in machine learning to classify these states from video
data or features derived from tracking (Box 2). This type of behav-
ioral quantification can facilitate comparison between instances of
individual behaviors (for example, in response to specific sensory
inputs or across experimental conditions) and generate hypotheses
about the neural circuitry that gives rise to them (for example, by
demarcating event boundaries or timescales of computation).

Animal behavior, as defined by humans. The simplest way to
define a behavior is by defining a fixed set of rules that describe
the criteria that must be met to determine its occurrence at a given
instant. These can be as simple as classifying instances when the
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between pairwise features) is to employ dimensionality-reduction
techniques. Principal component analysis (PCA), for example, is
often used to describe body shape in few dimensions, as it naturally
takes advantage of the high correlation between articulated
body segments in the kinematic tree of animal skeletons. This
is particularly useful for animals such as worms* and fish”®
that have many degrees of articulation along a centerline. More
complex correlation structure may be analogously identified using
nonlinear dimensionality reduction on the coordinates or pairwise
features, such as variational auto-encoders™.

Some dynamics may not be effectively captured by tracking,
particularly for non-rigid and ‘blobby’ body parts, such as subtle
facial movements*. For these, traditional methods for extracting
behavioral features operate directly on the images, typically by
performing dimensionality reduction on egocentrically aligned
crops of the animals’*" or on regions of interest in immobilized
animals*~'*»'**. In one notable application, a facial emotion
recognition technique was applied to mouse faces to extract
estimates of their emotional state from facial image features
directly'®. A recently described database of animal faces may be
of particular interest for future work on general purpose animal
face features”.

Finally, while many approaches to quantifying dynamics may be
effective at capturing the structure and describing the correlation
between semantically meaningful behavioral features (body
kinematics), for the task of directly classifying behaviors from
video frames, methods that capture general image motion may
improve accuracy over pose-based features. In the human action
recognition field, while some methods do operate on pose'*,
many opt instead to use deep neural networks to learn to extract
motion features by training them to classify actions directly from
raw video frames'”’. In animals, ABRS'** and DeepEthogram'*
describe systems for classifying behaviors directly from video
by using optical flow features and other learned image features.
These techniques alone, however, do not lend themselves directly
to understanding the neural control of behavior, which necessarily
involves motion and actuation of specific body parts, but can be
useful tools to predict the occurrence of well-defined behaviors.

animal’s centroid is moving at a speed greater than a minimum
threshold as ‘locomotion, but can quickly become complex when
establishing detailed inclusion and exclusion criteria based on
fine descriptions of postural features’. Although easy to evaluate
and interpret, fixed rules may fail to capture the full variability of
behaviors that can be flexibly expressed, particularly when subject
to experimental manipulations that may alter the statistics of the
features used in the classification criteria®.

A common approach that strikes a balance between human defi-
nitions and computer-aided classification is to leverage supervised
machine learning. Given user-provided examples of times when
particular behaviors are (or are not) occurring, these methods derive
classification criteria using specific features (for example, body-part
positions or speeds) extracted from the raw data (Fig. 3b). Popular
toolkits use decision trees (or random forest ensembles)®*~* to learn
potentially complex or abstract classifiers from animal tracking fea-
tures. These methods leverage data to avoid the tedious and poten-
tially flawed manual design of classification criteria, in addition to
providing measures of robustness to overfitting through standard
statistical techniques such as cross-validation.

Though these methods can achieve high accuracy, they often
rely on user-defined features derived from the input data, such
as numerical derivatives®, generic dimensionality reduction®,
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Fig. 3 | Quantifying behavioral dynamics. a, A snippet of behavioral dynamics during which two types of behavior occur. Behavior 1 (blue) is characterized
by slow, step-like dynamics, whereas behavior 2 (red) is characterized by fast oscillations with sharp peaks. b, In supervised classification, a human first
annotates examples of each type of behavior (top). A classifier such as a decision tree will learn criteria to classify new data based on the examples
provided (bottom). ¢, In clustering, examples are grouped by their similarity rather than human annotations. The resulting clusters correspond to distinct
behaviors. Points represent short windows of time reduced to two dimensions for visualization. d, In dynamical models, behaviors are represented by
states that the model is permitted to transition between (top). These states parametrize the models that generate the state-specific dynamics (middle).
The observed dynamics are assumed to come from the model that is most likely to generate similar dynamics (bottom). e, Clusters of zebrafish hunting
behaviors based on the similarity of their postural trajectories (depicted within the bubbles)®°. Points correspond to individual bouts after applying
nonlinear dimensionality reduction to the zebrafish pose trajectories as a preprocessing step. f, Manifold embedding of fruit fly gait with the cyclical
continuous structure of different gait modes highlighted”. Note that although this representation does not capture cluster-like structure, it does identify
both the phase of gait strides (circles) and a continuous axis of variation that transitions smoothly from slow (non-canonical) to fast (tripod) locomotion.
Images in e adapted with permission from ref. °°, Cell Press; in f from ref. 7', eLife.

or exhaustive combinations of relative features®. These may fail
to capture more complex relationships in higher-dimensional
descriptions (for example, multi-animal poses) or higher-order
temporal patterns. A promising direction for more robust
general-purpose supervised behavioral classification in animals is
to adopt state-of-the-art techniques from human action recogni-
tion (i.e., human ‘behaviors’), in which deep-learning-based sys-
tems have excelled at data-driven feature extraction from kinematic
features® (Box 2).

Animal behavior, as defined by the data. Supervised behavior
classification, though more robust than classification using hand-
crafted criteria, still suffers from the bias of subjective human
annotation. Studies demonstrating the large degree of disagreement
even among experts with clear guidelines for when to annotate a
behavior reveal the shortcomings of depending on human defini-
tions of a behavior’*’2. An alternative approach is to ask a computer
to learn patterns from the data alone using unsupervised classifica-
tion methods. In these techniques, the statistics of the behavioral
time series themselves are used to determine the criteria used to
classify a given time point into a distinct ‘cluster’ or ‘state’ The com-
mon assumption across these methods is that data belonging to the
same state exhibit similar, stereotyped dynamics given some mea-
sure of similarity”>".
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The simplest form of unsupervised classification involves clus-
tering (Fig. 3¢). In the typical clustering workflow, dimensional-
ity reduction and feature extraction (for example, using principal
component analysis, spectral estimation and manifold embedding
techniques such as t-stochastic neighbor embedding (t-SNE)”) are
applied to the raw data (which can be videos or pose data derived
from videos). The similarity between behaviors at two points in
time is then quantified using a similarity metric between the two
feature vectors (for example, using the Euclidean distance or a prob-
abilistic measure of similarity such as the Kullback-Leibler diver-
gence). Given a set of time points and the similarity between them,
clustering algorithms attempt to group the points into discrete sets
in which each point is more similar to the other members of its set
than it is to points outside the set. The simplest algorithms, such
as k-means and Gaussian mixture models’, have been used suc-
cessfully to categorize behaviors, but they require the researcher to
specify the number of clusters a priori (though this can be estimated
using statistical testing). Density-based clustering, using algorithms
such as the watershed transform”, avoid having the user specify the
exact number of behaviors to be found by identifying peaks in the
estimated distribution of time points in the space of extracted fea-
tures. This approach, first introduced in MotionMapper™, is widely
used and has been effective at clustering behavioral dynamics across
species and input representation types (Fig. 3e)*»*>47>77-50,
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Fig. 4 | Approaches to linking brain to behavior. a, Tracking centroids and orientations of animals enables the reconstruction of their sensory inputs by
simulating a first-person view of their environment®. b, Zebrafish tracking and whole-brain imaging during hunting behavior shows how representations of
internal states (exploration vs exploitation) are revealed when aligning to behavioral data'®. ¢, Model of courting flies captures the shape and timescale
of visual sensory inputs (mfDist; distance between animals) that predicts behavioral output (courtship song) modulated by internal state. d, An ANN
can learn to control a simulated rat via motor commands to perform a tapping task. Top: rendering of the simulated rat performing the task. Bottom: latent
representations learned by the ANN that is used to drive the behavior'. Images in a adapted with permission from ref. °, Nature Publishing Group; in b
from ref. 14, Nature Publishing Group; in ¢ from ref. "°, Nature Publishing Group; in d from ref. ', arXiv.

Interpretation of the behavioral clusters will depend on the
application. These clusters describe groupings of points that are
self-similar, but do not directly describe what precisely distinguishes
one cluster from another. The first pass approach to interpreting
behavioral clusters relies on qualitative observation of raw data
exemplars from each group, such as video clips™. Visual inspection
may reveal that one cluster corresponds to locomotor behavior and
another to grooming, but may fail to provide an explanation for why
one cluster of locomotor behavior differs from a separate locomotor
cluster. The next step in interpreting these clusters is to compute
the empirical feature distributions of the data that falls within the
clusters. These may reveal that one form of locomotion is distinct
from another based on the peak frequency of limb oscillations™, but
may be more difficult to interpret when differences are small or the
input data is too high-dimensional to easily interpret differences.

Although clustering is an effective method when little is known
about the structure of the behavioral dynamics, more sophisticated
approaches afford the ability to explicitly model the characteristics
that define the representation of the behavioral dynamics (Fig. 3d).
These have the advantage of being potentially more interpretable
through direct examination of the model parameters, and some
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have the added benefit of being able to generate new examples
sampled from the model rather than relying on exemplars in the
data. One such class of methods that build on probabilistic graphi-
cal models are termed state-space models. Rather than attempting
to divide the data based on its similarity, these models assume that
there exist unobservable (hidden) discrete ‘states’ that parametrize
the processes underlying the data. MoSeq®' uses autoregressive gen-
erative processes with a sticky hidden Markov model to identify the
hidden states and the transition structure between states. This form
of modeling can also be combined with simpler generative pro-
cesses like a multivariate Gaussian distribution®. Other approaches
leverage non-parametric Bayesian statistics to model recurrent
dependencies in the transitions between different linear dynami-
cal systems, combining the expressivity of graphical models for
describing sequence structure with the algebraic interpretability of
a linear dynamical system®. An alternative approach to leveraging
linear dynamical systems uses an adaptive segmentation algorithm
based on statistical model testing rather than an explicit model of
transitions between states®™.

Behavioral programs operate at many timescales and can be
described at different levels of abstraction, all of which could
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potentially be useful representations of underlying neural compu-
tations. For example, it may be desirable to describe the fast tim-
escale kinematics of locomotion while simultaneously representing
the longer timescale motivational state of the animal that sets up
its navigational goal. Hierarchical clustering can capture structure
in behavioral dynamics in a similar way to simple clustering, with
the added benefit of decomposing higher-order behavioral clusters
into progressively finer-grained subtypes®. Information theoretic
techniques for grouping behaviors based on the structure of state
transitions have shown a link between a hierarchical temporal orga-
nization of the behaviors and the similarity between behaviors®.
Explicitly hierarchical dynamical models such as the hierarchi-
cal hidden Markov model* or adaptive segmentation algorithm®
organize behavioral states in a hierarchy based on the structure of
their generating processes, affording additional interpretability to
the multiscale representations. Assuming a flat discretization of
behavioral states, higher-order sequence models such as those used
in bioinformatic algorithms to discover motifs in genetic data® or
formal grammars used to model natural language® can be co-opted
to describe behavioral state sequences.

Though these methods address the problems of representing
behavior across multiple timescales, they do not effectively provide
a solution to the problem of simultaneously occurring behaviors
such as walking and sniffing. Though recognizing parallel behaviors
is possible through supervised classification by simply using mul-
tiple independent classifiers, an unsupervised solution has not yet
been proposed. Future work in this domain may be able to achieve
this by taking into account that parallel dynamical processes involve
different appendages, for example.

Adding continuous structure to discrete representations.
Although the typical behavior map presumes strictly discrete
boundaries between distinct behaviors, the execution of motor
commands is ultimately expressed through continuous motion™.
For example, while walking and jogging may require distinct motor
programs, slow walking and fast walking may differ only in the fre-
quency of the stride cycle, smoothly transitioning through ‘mod-
erate walking. Ultimately, a complete representation of behavior
would include both discrete boundaries between behaviors and the
continuous variation within them.

Dimensionality reduction methods such as principal compo-
nent analysis are an effective means of discovering continuous pat-
terning within a behavior, as they compress behavioral dynamics
into fewer dimensions, along which the dynamics smoothly vary.
This approach has been used to describe worm postural dynamics,
revealing an oscillator structure during locomotion®, as well as to
describe continuous dynamics of postural trajectories within zebraf-
ish locomotion’ and hunting” behaviors. More complex kinemat-
ics that are not as easily reduced can be captured through nonlinear
manifold embedding algorithms and have been employed, for
example, to reveal complex periodic structure in fruit fly locomo-
tion (Fig. 3f)°' (akin to the worm oscillator).

Recent methods have begun to employ neural networks as a
means of extracting continuous dynamic representations from
behavioral time series. These methods afford greater flexibility by
enabling robust feature extraction while simultaneously inferring
discrete clusters in tandem with continuous representations’” or
by imposing variational constraints on the distribution of the repre-
sentations, thereby encouraging more interpretable quantities to be
captured in the manifold of dynamics®*.

Linking brain activity and behavior

A core application of the methods described above is to use descrip-
tions of behavior to understand the neural activity that generates it.
As we have discussed above, tools for tracking movement quantify
the motor output of the brain, from coarse centroid tracking that
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Box 3 | Quantifying acoustic behaviors

Not all motor output can be quantified using conventional vid-
eography. In particular, vocalizations and other forms of acoustic
communication are either not clearly visible or are produced at
frequencies much higher than the frame rates of standard video
cameras. Acoustic behaviors, however, can be easily measured
using microphones placed in proximity of interacting animals.
Similar to the challenges described for tracking and segment-
ing behaviors from video, the primary challenge in quantifying
acoustic behaviors is detecting and classifying individual acous-
tic events, such as courtship song syllables.

Classical approaches rely on signal processing techniques to
filter and extract acoustic events based on spectral and temporal
features of animal songs. These have been used with much
success to detect, for example, Drosophila courtship song'*,
zebra finch song"*! and mouse vocalizations'*>'**. The automated
detection of fly song has facilitated analysis of large behavioral
datasets linking visual feedback cues (the moving female fly) to
the dynamic patterning of male song, which would not have been
possible otherwise'**. Newer approaches have been developed to
ease the difficulty of hand-crafting specialized signal-processing
pipelines by leveraging deep learning to learn from user
annotations”'. These tools are crucial in improving the
robustness of acoustic behavior detection to new experimental
conditions with different noise properties.

However, these methods are limited by a priori knowledge of
the syllables or modes that comprise song. A parallel approach
to the supervised techniques leverages unsupervised learning
to discover new acoustic behavioral subtypes, analogous to the
unsupervised approaches for tracking. Manifold embedding has
enabled the discovery of previously undiscovered fruit fly song
types'** and immature songbird sequences'”, as well as mapping
of less-stereotyped mouse vocalizations'*"-*2.

describes spatial navigation to fine-grained pose estimation that
captures the dynamics of muscle control (Fig. 1). Since these tools
can locate the sensory organs of the animal, they also make it pos-
sible to reconstruct the sensory inputs animals receive. For example,
the visual field of an animal can be estimated from the position of
objects in its environment relative to its eyes (Fig. 4a). This is partic-
ularly advantageous in freely-moving behavioral setups, which sac-
rifice the ability to control (and therefore precisely know) the visual
stimuli in a given psychophysics or virtual reality experiment®".
Stimuli of other sensory modalities, such as mechanosensation, can
also be estimated from videography, while others such as acoustic
stimuli will require different instrumentation and methods for fea-
ture extraction (Box 3).

As tools to measure behavioral features improve, so does the
resolution of the estimated representations of the inputs and out-
puts to the nervous system. Here we highlight the major classes of
approaches that have successfully leveraged behavioral quantifica-
tion to dissect brain function.

Peri-behavior time histograms. Analogously to how peristimulus
time histograms enable circuit interrogation by aligning the activity
of neurons relative to onset or offset of stimuli, a major approach to
linking neural function to behavior is to describe the distribution
of behavioral quantities surrounding neural events. For example,
manipulation of neural activity through genetic tools has enabled
brain-wide screens that associate activation of precise subsets of
neurons with the animal’s entire behavioral repertoire®'»!°!,

While neuromodulation experiments provide precise temporal
control over stimulation, techniques for awake and freely-moving
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in vivo recording can be used to align neural activity to more nat-
uralistic and spontaneous behaviors. Combined with tracking and
quantification of dynamics, this approach has been successfully
used to discover neural correlates of a number of behavioral fea-
tures described in this review. Instantaneous animal pose has been
found to be represented across cortical regions in freely-moving
rodents'”. Discrete behavioral motifs identified using state-space
models such as MoSeq®, as well as their sequences, have been
associated with neural activity in the striatum, revealing a code
for action selection'””. Higher-order behavioral states (hierar-
chies), such as the exploration-versus-exploitation dichotomy in
zebrafish hunting behavior, have been associated with internal
neural states through the use of whole-brain imaging and pose
estimation (Fig. 4b)'**. Multi-timescale behavioral structures have
been found to correlate with a hierarchy of neural dynamics in
freely moving worms, connecting population-level codes with
fast timescale motor control'®.

Finally, simultaneous recording of neural activity across multiple
animals has recently been used to identify neural correlates of social
behavioral features in both bats and mice'*'"””. By aligning neural
activity to social behavior quantified from multi-animal tracking,
neural representations were discovered that encode both fast times-
cale features, such as the current and future behavior of the animal’s
social partner, as well as higher-order cognitive features, such as
their social hierarchy. These codes appear to be synchronized across
animals, revealing a potential mechanistic basis for coordination
of social behaviors, reflecting previous reports of synchronization
identified from behavioral data alone'”.

Models of sensorimotor transformations. Given representations
of sensory inputs and motor outputs, another way to link behavior
to neural activity is through explicit modeling of this sensorimotor
transformation. Modeling the transformation from sensory input
to motor output can recover stimulus filters'” and even infer inter-
nal states''’. These models attempt to fit simple but easily interpre-
table transformations between sensory input and behavioral output
(Fig. 4c). This level of modeling has the benefit of being a
general-purpose approach to discovering the relative importance of
different sensory features and their timescales.

Approaches that more comprehensively model the internal com-
putations of the sensorimotor transformation afford the ability to
incorporate knowledge about the underlying biological structure
of the computations at the cost of increased model complexity. By
simulating known neural connectivity and their biophysics, these
forms of models enable in silico experimentation''"''?. For example,
performing ablations of specific model neurons and observing the
changes in behavioral responses can provide insights into the com-
putations being performed, which can be validated with analogous
experiments in vivo.

Designing network models becomes increasingly difficult as the
behaviors they attempt to predict become more detailed and less
constrained, as is the case in freely moving and naturally behaving
animals. An emerging approach to address this is to use artificial
neural networks (ANNs) that can learn to perform the sensorimotor
transformations while abstracting away details about the underlying
biological neural networks. This form of modeling naturally leads to
agent-based models, i.e., models that can perceive and respond to
their environment. If the environment can be fully simulated, these
agents are able to be trained without any data by providing them
with a behavioral task and constraining their kinematics to realistic
biomechanics. Recently, it was demonstrated that an agent-based
model of rodents trained to perform classical cognitive-behavioral
tasks, such as the two-tap task or navigating a Y-maze, are not only
able to attain comparable performance to real animals, but also
learn to compute internal representations of motor planning and
control from sensory inputs (Fig. 4d)"*!!.
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Finally, an approach called imitation learning combines the abil-
ity of ANNS to efficiently learn complex transformations with the
ability to impose biological fidelity derived from empirical data.
These are constructed as agent-based models, but rather than being
trained in simulation, they instead learn from behavioral data to
predict motor outputs (for example, changes in pose) from recon-
structed sensory inputs (for example, visual field-of-view). These
have been applied to fruit fly data and shown to be capable of learn-
ing high-level representations of the computations underlying
unconstrained behavior'>''. ANNs can also be constructed with
architectures based on biological neuroanatomy to further constrain
the types of representations it learns (a feature that is particularly
useful in light of recent advances in connectomics''’). Recent work
has shown that the computations learned by these models exhibit a
remarkable degree of similarity to physiology, even when trained on
behavioral data alone''*.

Conclusion

In this Review we have detailed the existing and emerging meth-
ods in quantifying animal behavior to better understand the brain.
From tracking to dynamics, it is clear that advances in deep learn-
ing and computer vision have revolutionized our ability to extract
increasingly detailed descriptions of behavior. Further, as modeling
frameworks continue to evolve, so will our ability to use behavior as
a means of comparing neural dynamics and structure across diverse
animals and experimental paradigms, toward developing holistic
theories of brain function. We believe that these advances position
behavioral quantification as a core instrument in the neuroscience
toolbox, essential to the quest of understanding the brain.
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