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Tracking, from coarse to fine
Quantitative descriptions of behavior begin by tracking movements. 
In this section we describe the computational tools for extracting 
measurements of animal motion from video recordings and the 
challenges associated with capturing progressively more detailed 
descriptions such as pose (Fig. 1a).

Animal centroids, ellipses and identities. At its coarsest, animal 
behavior can be quantified by estimating the position of its centroid 
(i.e., the midpoint or the center of mass) over time. These centroid 
trajectories, quantified as sequences of image coordinates, reflect the 
motion of an animal within its environment and can be used to mea-
sure spatial navigation or locomotion behavior. The centroid treats 
the animal as a single point, which fails to capture its heading, but 
this description can be augmented by finding the major and minor 
axes of an ellipse encircling the animal (Fig. 1b). This is a conve-
niently universal description, as most animals with a CNS share a 
similar body plan, in which a spinal or ventral nerve cord forms a 
line at the center of an elongated body.

Classical approaches to estimating centroids and ellipses pri-
marily relied on background subtraction, an algorithm that identi-
fies the image pixels belonging to the animal (i.e., the foreground) 
from which the centroid can be computed by finding the midpoint 
of their coordinates. When the background contrasts with the ani-
mal, such as in backlit arenas, background subtraction can be per-
formed through simple thresholding of the image intensity. If the 
background is static, it can be modeled by finding the median image 
frame; however, this fails often if the animal does not move for pro-
longed periods of time. Classical approaches employ robust algo-
rithms to model the background1, but newer methods have begun 
to use deep learning to better deal with more complex backgrounds, 
affording the ability to track animals in more naturalistic conditions2.

Extending ellipse tracking to multiple animals adds even more 
richness to behavioral descriptions, where quantities such as rela-
tive distances and orientations can be used to infer complex social 
interactions. For example, close interactions that occur dur-
ing aggression or courtship may be detectable using the distance 
between centroids, while the relative angle between animals can 
indicate the directedness of the behavior, such as chasing.

Assuming centroids or ellipses can be detected reliably within 
individual images, the multi-animal setting introduces the par-
ticularly challenging problem of estimating identity, i.e., the task 
of associating animal detections correctly over time (Fig. 1c). In 
the broader domain of multi-object tracking, the most common 
approach to the identity assignment problem is tracking by detec-
tion, in which objects (for example, animals) are detected within 
single images and then subsequently linked together across frames. 
These algorithms must contend with challenging cases such as 
objects occluding one another, disappearing for periods of time or 
failing to be detected in the first stage. We refer the reader to pre-
vious reviews for more in-depth analyses of classical multi-animal 
tracking methodology3–5.

Modern approaches to multi-animal tracking typically address 
the association problem by modeling the appearance and/or motion 
of the animals. This allows for identity association by matching new 
detections to previous tracks based on their similarity to the mod-
eled features. Motion models will typically make constant velocity 
assumptions to enable extrapolation from past trajectories6. These 
types of models will often fail when animals are closely (socially) 
interacting with each other, as is common in multi-animal experi-
ments. Techniques that leverage machine learning to model appear-
ance may rely on artificial distinguishing visual features, such as 
painting the animals’ fur with unique patterns7 or using a different 
colored tag for each animal8. Some approaches may rely on com-
bining videography with implanted radio-frequency identification 
(RFID) tags, enabling reliable and wireless identification for highly 
robust tracking, making them particularly well-suited for moni-
toring behavior over longer timescales9. These potentially invasive 
manipulations, however, may be prohibitively laborious when using 
many animals and may hinder the ethological validity of experi-
ments intended to measure natural behavior10.

Although identity association in multi-object tracking remains 
an open problem, the state-of-the-art techniques now rely on deep 
learning for learning distinguishable appearance features without 
artificial markers11. A common approach is to employ a technique 
known as contrastive learning: the objective is to find a mapping in 
which images with the same identity are closer to each other than 
to images with different identities; this is the basis of modern facial 
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recognition systems12 and has also been applied to animal facial rec-
ognition13. In the domain of animal tracking, this approach has been 
demonstrated to be highly effective with socially behaving animals 
in complex environments14,15. Despite their impressive performance, 
the downside to these methods is that they typically require more 
training data to adapt to new animals, new imaging conditions and 
new experimental settings. This requirement is particularly burden-
some, because manual annotation of animal identities over video 
frames can be prohibitively laborious as it may require annotators to 
step through the video frame-by-frame to ensure they do not mis-
label animals when they are closely interacting. Some approaches 
to ameliorate this bootstrap the labeling using classical tracking for 
self-supervised learning14, and advances in unsupervised learning 
may soon enable fully automated deep-learning-based tracking 
without previous annotations16.

Animal pose estimation. Centroid and ellipse tracking, though 
highly descriptive, fail to capture the movements of limbs and 
appendages and consequently cannot be used to detect behaviors 
such as grooming, rearing, tapping and locomotor coordination. 

Animal pose, on the other hand, is represented by the location of 
all of its body-part landmarks (typically at the skeleton joints). Pose 
estimation is able to capture nearly all of the degrees of freedom of 
body motion—and by extension, the degrees of freedom that the 
brain can actuate via its motor system.

Human pose estimation has long been studied, both from the 
perspective of biological motion perception17,18, i.e., how humans 
and animals perceive the motion of other organisms, and from the 
engineering point of view, i.e., the design of algorithms to retrieve 
pose19. While the former provides a theoretical grounding for the 
use of pose as a biologically relevant representation of behavior—
particularly in social contexts—the latter has enabled accurate and 
automated pose estimation from conventional videography.

State-of-the-art deep-learning-based approaches to human 
pose estimation have drastically improved accuracy over classi-
cal methods, owing to the effectiveness of neural networks for 
computer vision tasks in general, but more specifically due to the 
development of the heatmap (also referred to as confidence map; 
Fig. 2a) representation of landmark locations20–22. This representa-
tion encodes the location of each landmark as the density function 
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Fig. 1 | Tracking, from coarse to fine. a, Representations extracted by different forms of tracking, ranging from a single point to full 3D pose. b, Single 
mouse tracked with ellipse and orientation2. c, Multi-animal tracking of ants with reliable identity assignment14. d, Multi-animal pose tracking of a pair of 
socially interacting fruit flies31. e, 3D pose estimation of a monkey from multiple camera views46. Images in a adapted with permission from SciDraw.io119 or 
created with BioRender.com120; in b from ref. 2, Nature Publishing Group; in c from ref. 14, Nature Publishing Group; in e from ref. 46, Nature Publishing Group.
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of a two-dimensional (2D) Gaussian distribution centered on the 
ground-truth image coordinates of each landmark, i.e., a heatmap 
image in which the brightest pixel is at the location of the landmark 
within the image. This representation is particularly well-suited for 
convolutional neural networks (CNNs), which excel at learning 
complex transformations of image patches. Pose estimation CNNs 
are trained to predict heatmaps from input images by learning from 
labeled examples where the ground truth landmark coordinates are 
known, enabling the correct heatmaps to be computed for compari-
son with the CNN’s prediction. Once trained, the landmark coor-
dinates on unlabeled images can be decoded from the predicted 
heatmaps via peak detection.

Although conceptually there is no difference between human 
and animal heatmaps, the biggest challenge to adapting the 
deep-learning-based approach to animal pose estimation is the 
need for labeled training data. To enable human pose estimation 
‘in the wild’ that generalizes to arbitrary viewpoints, illumina-
tion, body sizes, clothing and other variability in image features, 
the computer vision community has generated datasets with sizes 
ranging from tens of thousands to millions of labeled images23–25. 
Efforts to generate these employed crowdsourcing and required 
thousands of hours of manual labor, but these costs are amortized 
over time, as human anatomy is static. In contrast, a CNN that is 
trained to locate human hands would not be able to generalize to 
predict insect leg tips.

To address the labeling problem, three main approaches have 
been employed to enable pose estimation for new animals when no 
training data is available: transfer learning and efficient neural net-
work design. The first of these, transfer learning, formed the basis 
and main contribution of the widely used animal pose estimation 
software DeepLabCut26. Transfer learning is a widely used method 
for reducing the need for large datasets; it works by reusing the 
parameters (and therefore visual feature detectors) learned in CNNs 
trained on a broader set of natural images (typically ImageNet27). 
This relies on the assumption that reducing the need for learning 
general-purpose visual features, such as oriented edges and textured 
patches, will facilitate fine-tuning the parameters of the network 
with less training data. This approach is a topic of active research 
in computer vision, and recent empirical studies have reported 
conflicting results on its advantages for general computer vision 
tasks28,29 and for animal pose estimation30,31.

In contrast, the second approach formed the primary contribu-
tions of the LEAP software framework32 and was improved upon in 
DeepPoseKit33. Efficient neural network design, in which the CNN 
architecture is kept small, has fewer parameters to tune than the 
general-purpose architectures normally used in transfer learning34. 
This reduction is justified by the assumption that variability of imag-
ing conditions in animal behavioral data is relatively low—a founda-
tional feature of reproducible laboratory experimental design—and 
therefore requires lower representational capacity. The added ben-
efit of designing neural networks to the needs of the data is that it is 
considerably faster to train and predict, making human-in-the-loop 
training more efficient, but this approach may not be as well suited 
to the prediction of animal pose in less constrained, non-laboratory 
settings.

Active learning, closely related to human-in-the-loop train-
ing35, is a technique that can drastically reduce the time required 
for generating large datasets by proposing images to label that are 
representative of diverse data features; these can then be used to 
train CNNs with a small number of very distinct images. After 
training with few labels and generating predictions on unlabeled 
data, new labels can be generated by simply correcting the pre-
dictions, iteratively reducing the time required to label with every 
training loop. This approach has been adopted by all major animal 
pose estimation frameworks to reduce the effort required to label 
new datasets.

The success and accessibility of these methods have spurred a 
revolution in fields dealing with animal movement, from neurosci-
ence36 to ecology37. Future research in animal pose estimation will 
continue to reduce the need for labeled data through the use of tech-
niques such as self-supervised learning and domain adaptation38–41 
and to improve the precision of landmark localization by incorpo-
rating temporal information without new labels42,43.

Animal pose estimation in three dimensions. For many ani-
mals, 2D pose estimation will be insufficient to capture all body 
landmarks, as some will typically be occluded in any single fixed 
viewpoint. This issue is especially compounded in highly deform-
able animals such as mice whose skeleton landmarks may be dif-
ficult to localize through fur44 and during out-of-plane behaviors 
such as rearing. The standard approach to three-dimensional (3D) 
pose estimation, then, is to record behavior using multiple cameras 
arranged such that they collectively capture all of the landmarks of 
interest across viewpoints (Fig. 1e).

The standard approach to 3D pose estimation consists of three 
steps: 2D pose estimation, triangulation and refinement (Fig. 2b). 
The 2D pose estimation step is typically performed as described for 
the monocular case, but 3D animal pose estimation frameworks will 
often leverage the ability to map points from one view to another to 
reduce the labeling effort45,46. The triangulation step is preceded by 
a one-time calibration procedure, in which an object with distinct 
features (typically a checkerboard-like pattern47) is used to compute 
the camera calibration matrices that enable projection of 2D points 
in the image plane to consistent 3D world coordinates. In prac-
tice, triangulation is noisy, so some form of refinement is typically 
employed to eliminate false detections and resolve inconsistencies 
in projections of the same point from different views. Tools for 3D 
animal pose estimation have employed a variety of approaches to 
refinement, such as incorporating constraints on the geometry of 
the animal’s body (for example, limb lengths)45,46, temporal smooth-
ing48 or parametric shape modeling49,50. The rapid pace of progress 
in 3D animal pose estimation is likely to yield a series of advances 
in the coming years; the 3D human pose estimation field provides 
an outlook on what’s to come, in particular, lifting from monocu-
lar 2D51, which will reduce the technical challenges associated with 
multicamera animal behavioral setups52.

While 3D landmark localization helps to improve the complete-
ness of behavioral representations, it may still fail to capture move-
ment of non-rigid parts of the body, particularly in animals with 
amorphous body shapes, such as hydra53. One approach to captur-
ing the full shape information of animals is to fit articulated 3D 
models of animals to new images39,40,54. This model-based technique 
can be robust and may require relatively little training data, but 
comes at the cost of professional 3D computer-aided design (CAD) 
expertise to design and articulate (‘rig’) models for new animal 
body types, and it would not be robust to large deformations such as 
in experiments that employ amputations of body parts. A more gen-
eral approach is to explicitly fit a deformable surface to capture the 
detailed shape of animals within images; although this is an active 
area of research in computer vision, early results hold promise55–57 
for development of general-purpose tools to enable the routine use 
of animal shape estimation for behavioral quantification.

Multi-animal pose tracking. The level of description afforded 
by pose estimation is uniquely advantageous when quantify-
ing social behaviors, as relative features such as inter-body-part 
distances and orientations can be used to detect directed inter-
actions between animals (Fig. 1d). Just as in multi-animal cen-
troid and ellipse tracking, however, extending pose estimation to 
multiple animals introduces new technical challenges. First, part 
association: dealing with multiple animals with the same body 
plan means that sets of detected landmarks must be correctly 
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assigned to each animal. Second, identity assignment: detec-
tions in one frame must be correctly associated with detections 
belonging to the same animal in subsequent frames. Approaches 
to multi-instance pose estimation (in both humans and animals) 
can generally be categorized as either ‘top-down’, in which the 
animals are first detected (for example, by finding their centroids) 

and then their body parts are located within a cropped image of 
the animal, or ‘bottom-up’, in which all body parts first located 
and then grouped by animal.

Top-down pose estimation systems (Fig. 2c) solve the 
part-association problem implicitly by using the location of image 
features relative to the center of the crop. In this approach individual  
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animals are first detected within the frame, such as by standard 
centroid detection methods (see “Animals, centroids, ellipses and 
identities” section above) or by a neural network trained to generate 
region proposals. These regions are cropped such that the animal is 
centered within the image. Given these crops, the neural network 
responsible for part localization is trained to predict confidence 
maps with a single peak, just as in the single-instance case, even if 
body parts of other animals are present within the crop.

In contrast, bottom-up pose estimation systems (Fig. 2d) encode 
all instances of each body part in the same set of confidence maps 
and encode their connectivity or grouping separately. A commonly 
used representation of the connectivity between body parts are part 
affinity fields58, which are composed of vectors whose orientation 
follow the direction of the animal’s skeleton within the image. A 
grouping procedure uses the similarity between the line integral of 
part affinity field vectors between body parts and the line segment 
between the two points as a scoring function for grouping pairs of 
body part detections.

While there is a variety of theoretical trade-offs between the two 
approaches, empirical studies indicate that selecting the appropriate  

one may depend on features specific to the dataset, such as the 
morphology of the animals and the relative scale of their image fea-
tures31. See Box 1 for more details on these and other considerations 
for practitioners.

In the multi-animal context, the problem of pose estimation is 
naturally promoted to that of pose tracking due to the second prob-
lem: identity assignment. The primary challenge in identity assign-
ment with multi-animal pose tracking, as opposed to multi-animal 
centroid tracking, is the considerably increased manual annota-
tion requirements of labeling consecutive frames with both pose 
and identity. In lieu of labor-intensive labeling, the same solutions 
employed for multi-object centroid tracking can address this prob-
lem through conventional motion models (see “Animal centroids, 
ellipses and identities” above) to track the centroid59 or collections 
of keypoints60,61. More sophisticated approaches that rely on iden-
tity and pose annotation in consecutive frames may yield consider-
able improvements for animal pose tracking by leveraging temporal 
information to perform top-down detection within clips rather 
than single images62. In the bottom-up approach, however, the 
representations used for part association must be explicitly extended 

Box 1 | Choosing a tracking system

Selecting the appropriate behavioral quantification tool is an im-
portant decision that should be made at the experimental design 
stage. Some types of experiments may preclude some forms of 
tracking altogether, for example, multi-camera setups. Constraints 
on the data acquisition, such as resolution, illumination and arena 
size should be balanced with the desire to get as much information 
out of the behavioral recordings as possible.

The primary consideration is the level of description necessary 
for capturing the behavioral signals that best test a given hypothesis. 
Centroid and orientation tracking may suffice, for example, to 
obtain coarse locomotor statistics, information about navigational 
strategies, place preference or characteristics of some social 
interactions. For single animal tracking, a classical tracker such as 
Ctrax1 or ToxTrac6 may be a practical solution because additional 
labeling is not required. If imaging conditions are not optimal, 
for example, due to low illumination or complex backgrounds, it 
may be preferable to use a deep-learning-based solution even for 
centroid tracking2. When tracking multiple animals, addressing 
the identity assignment problem will be the primary challenge 
in ensuring the quality of the tracking. If the animals frequently 
occlude one another or disappear from the field of view, it may be 
necessary to employ a deep-learning-based multi-animal tracker 
such as idtracker.ai (https://idtrackerai.readthedocs.io/en/latest/) 
to minimize identity switches14.

If a pose estimation system is optimal, it is important to consider 
the resolution required to capture the smallest feature of an 
animal. For insects with thin appendages, high spatial resolution is 
required, which must be balanced with the size of the field of view; 
for rodents, a lower resolution may suffice, but note that some body 
parts like the tail may require additional considerations if imaging 
against a low-contrast background. Next, consider the viewpoint 
of the camera. For ideal 2D pose estimation, movements out of 
the image plane should be minimized, which is most commonly 
achieved by carefully aligned cameras either overhead or from 
below a transparent floor of an elevated arena. For immobilized 
animals, higher resolution may be more easily achieved, but it 
may be difficult to get a viewpoint where movements are within 
the image plane. Finally, ensure that the signal-to-noise ratio of 
the images is maximized by providing sufficient, constant and 
uniform illumination (potentially in infrared to reduce corruption 

by room light), focused camera optics to reduce spatial blur and 
low camera exposure time to reduce temporal blur.

In the majority of cases, any of the mature 
animal-pose-estimation frameworks (for example,DeepLabCut26, 
SLEAP31 and DeepPoseKit33) should produce satisfactory results 
and can be configured to achieve similar speed and accuracy. 
All of these frameworks provide a shared base set of features: 
graphical user interfaces (GUI) for labeling and inspecting 
results, usage documentation with example data, active learning, 
multiple neural network architectures with optional pretraining 
for transfer learning, and Python-based implementations. Their 
differences derive primarily from their capacity for customization 
and extension for specialized applications. DeepLabCut has a 
large user base that has adapted it to a diverse range of specialized 
applications; DeepPoseKit provides a minimalist implementation 
of the core functionality required to build a pose estimation 
system; and SLEAP provides a flexible codebase, developed with 
a standardized code style and documentation formats, continuous 
integration, and native multiplatform support and modular 
application programming interfaces to facilitate extensibility and 
customization for specialized applications.

For multi-animal tracking, all three frameworks support 
top-down approaches; a recent update to DeepLabCut provides 
experimental support for bottom-up, while SLEAP offers native 
support for both. MARS121 provides an alternative solution for 
tracking rodents with different fur colors and is integrated with 
tools for advanced downstream analyses. The SLEAP GUI offers 
functionality for proofreading tracking, as it was designed with 
special emphasis on multi-animal pose tracking.

When extending to 3D, it is important to first consider 
how many cameras may be necessary and to ensure that 
they are synchronized and calibrated. For larger animals, 
such as non-human primates that can occupy large spaces, 
OpenMonkeyStudio46 describes a state-of-the-art system using 
an array of 62 cameras. For smaller animals, DeepFly3D45 and 
Anipose48 provide flexible general-purpose toolkits to deal with 
calibration and triangulation of 2D landmarks. At the cutting 
edge, the 3D-from-2D pose estimation framework LiftPose3D52 
may be suitable for settings in which multicamera triangulation 
is not possible.
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to the temporal dimension, such as in temporal associative embed-
dings63 or spatiotemporal affinity fields64, but they provide the same 
benefits as the single-image bottom-up approaches.

Quantifying the dynamics of behavior
Behavior is a dynamic phenomenon that involves changes to an 
animal’s pose over time. Unlike the tracking of body parts, quanti-
fication of this temporal structure is a fundamentally difficult prob-
lem without a clear ground truth. It is often assumed that behavior 
can be described as a sequence of discrete behavioral states, such 
as ‘walking’ or ‘grooming’. The techniques discussed below use 
advances in machine learning to classify these states from video 
data or features derived from tracking (Box 2). This type of behav-
ioral quantification can facilitate comparison between instances of 
individual behaviors (for example, in response to specific sensory 
inputs or across experimental conditions) and generate hypotheses 
about the neural circuitry that gives rise to them (for example, by 
demarcating event boundaries or timescales of computation).

Animal behavior, as defined by humans. The simplest way to 
define a behavior is by defining a fixed set of rules that describe 
the criteria that must be met to determine its occurrence at a given 
instant. These can be as simple as classifying instances when the 

animal’s centroid is moving at a speed greater than a minimum 
threshold as ‘locomotion’, but can quickly become complex when 
establishing detailed inclusion and exclusion criteria based on 
fine descriptions of postural features9. Although easy to evaluate 
and interpret, fixed rules may fail to capture the full variability of 
behaviors that can be flexibly expressed, particularly when subject 
to experimental manipulations that may alter the statistics of the 
features used in the classification criteria65.

A common approach that strikes a balance between human defi-
nitions and computer-aided classification is to leverage supervised 
machine learning. Given user-provided examples of times when 
particular behaviors are (or are not) occurring, these methods derive 
classification criteria using specific features (for example, body-part 
positions or speeds) extracted from the raw data (Fig. 3b). Popular 
toolkits use decision trees (or random forest ensembles)66–68 to learn 
potentially complex or abstract classifiers from animal tracking fea-
tures. These methods leverage data to avoid the tedious and poten-
tially flawed manual design of classification criteria, in addition to 
providing measures of robustness to overfitting through standard 
statistical techniques such as cross-validation.

Though these methods can achieve high accuracy, they often 
rely on user-defined features derived from the input data, such 
as numerical derivatives66, generic dimensionality reduction67, 

Box 2 | Choosing a behavioral feature representation

Tracking data, whether at the resolution of centroids or pose, is 
ultimately represented as a set of coordinates in space, typically in 
units of pixels in the reference frame of the camera. Converting 
these into a meaningful representation amenable to interpreta-
tion and analysis requires the choice of a feature representation 
that can be derived from the raw coordinates. This step precedes  
the analysis of dynamics, and most methods for quantifying dy-
namical structure are agnostic to the specific behavioral feature 
(Fig. 3a) on which they operate.

A simple and effective approach when dealing with pose is to 
adjust the coordinates to an egocentric representation, which can 
be achieved by centering the coordinates such that the origin is 
at a fixed anatomical position (e.g., thorax in insects, spine base 
in rodents or centroid more generally). With a second reference 
point, such as the head or neck, the remaining points can then 
be rotated such that the animal is always facing in a consistent 
orientation, enabling a fully egocentric reference frame for the 
pose coordinates32. In 3D, a third point of reference is required 
to ensure this rotational invariance, and its selection depends 
on the available landmarks and the animal’s anatomy46,50,80. Once 
transformed to egocentric coordinates, displacements can be 
interpreted in relation to the body, and their occupancy reflects 
body configuration independent of global position or orientation.

From coordinates, a number of hand-crafted features can easily 
be derived, such as velocities, distances and orientations, both 
between body parts and in relation to other animals or objects in the 
environment. A number of these have been previously described for 
various species and experimental contexts1,9,50. Some frameworks 
facilitate the computation of exhaustive sets of combinations 
of pairwise features, such as all-to-all distances, angles and 
velocities66,68,79; these can provide a superset of behavioral features 
agnostic to their semantic interpretation, but much less precise 
than deliberately designed features. For behaviors involving highly 
periodic movements, such as locomotion or grooming, spectral 
features can provide an effective representation by expressing the 
behavioral feature in time–frequency space32,75,122.

An alternative approach that may be better suited to capturing 
the correlation structure between postural coordinates (or even 

between pairwise features) is to employ dimensionality-reduction 
techniques. Principal component analysis (PCA), for example, is 
often used to describe body shape in few dimensions, as it naturally 
takes advantage of the high correlation between articulated 
body segments in the kinematic tree of animal skeletons. This 
is particularly useful for animals such as worms89 and fish78 
that have many degrees of articulation along a centerline. More 
complex correlation structure may be analogously identified using 
nonlinear dimensionality reduction on the coordinates or pairwise 
features, such as variational auto-encoders95.

Some dynamics may not be effectively captured by tracking, 
particularly for non-rigid and ‘blobby’ body parts, such as subtle 
facial movements44. For these, traditional methods for extracting 
behavioral features operate directly on the images, typically by 
performing dimensionality reduction on egocentrically aligned 
crops of the animals75,81 or on regions of interest in immobilized 
animals44,123,124. In one notable application, a facial emotion 
recognition technique was applied to mouse faces to extract 
estimates of their emotional state from facial image features 
directly125. A recently described database of animal faces may be 
of particular interest for future work on general purpose animal 
face features13.

Finally, while many approaches to quantifying dynamics may be 
effective at capturing the structure and describing the correlation 
between semantically meaningful behavioral features (body 
kinematics), for the task of directly classifying behaviors from 
video frames, methods that capture general image motion may 
improve accuracy over pose-based features. In the human action 
recognition field, while some methods do operate on pose126, 
many opt instead to use deep neural networks to learn to extract 
motion features by training them to classify actions directly from 
raw video frames127. In animals, ABRS128 and DeepEthogram129 
describe systems for classifying behaviors directly from video 
by using optical flow features and other learned image features. 
These techniques alone, however, do not lend themselves directly 
to understanding the neural control of behavior, which necessarily 
involves motion and actuation of specific body parts, but can be 
useful tools to predict the occurrence of well-defined behaviors.
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or exhaustive combinations of relative features68. These may fail 
to capture more complex relationships in higher-dimensional 
descriptions (for example, multi-animal poses) or higher-order 
temporal patterns. A promising direction for more robust 
general-purpose supervised behavioral classification in animals is 
to adopt state-of-the-art techniques from human action recogni-
tion (i.e., human ‘behaviors’), in which deep-learning-based sys-
tems have excelled at data-driven feature extraction from kinematic  
features69 (Box 2).

Animal behavior, as defined by the data. Supervised behavior 
classification, though more robust than classification using hand-
crafted criteria, still suffers from the bias of subjective human 
annotation. Studies demonstrating the large degree of disagreement 
even among experts with clear guidelines for when to annotate a 
behavior reveal the shortcomings of depending on human defini-
tions of a behavior70–72. An alternative approach is to ask a computer 
to learn patterns from the data alone using unsupervised classifica-
tion methods. In these techniques, the statistics of the behavioral 
time series themselves are used to determine the criteria used to 
classify a given time point into a distinct ‘cluster’ or ‘state’. The com-
mon assumption across these methods is that data belonging to the 
same state exhibit similar, stereotyped dynamics given some mea-
sure of similarity73,74.

The simplest form of unsupervised classification involves clus-
tering (Fig. 3c). In the typical clustering workflow, dimensional-
ity reduction and feature extraction (for example, using principal 
component analysis, spectral estimation and manifold embedding 
techniques such as t-stochastic neighbor embedding (t-SNE)75) are 
applied to the raw data (which can be videos or pose data derived 
from videos). The similarity between behaviors at two points in 
time is then quantified using a similarity metric between the two 
feature vectors (for example, using the Euclidean distance or a prob-
abilistic measure of similarity such as the Kullback–Leibler diver-
gence). Given a set of time points and the similarity between them, 
clustering algorithms attempt to group the points into discrete sets 
in which each point is more similar to the other members of its set 
than it is to points outside the set. The simplest algorithms, such 
as k-means and Gaussian mixture models76, have been used suc-
cessfully to categorize behaviors, but they require the researcher to 
specify the number of clusters a priori (though this can be estimated 
using statistical testing). Density-based clustering, using algorithms 
such as the watershed transform75, avoid having the user specify the 
exact number of behaviors to be found by identifying peaks in the 
estimated distribution of time points in the space of extracted fea-
tures. This approach, first introduced in MotionMapper75, is widely 
used and has been effective at clustering behavioral dynamics across 
species and input representation types (Fig. 3e)32,45,46,75,77–80.
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Interpretation of the behavioral clusters will depend on the 
application. These clusters describe groupings of points that are 
self-similar, but do not directly describe what precisely distinguishes 
one cluster from another. The first pass approach to interpreting 
behavioral clusters relies on qualitative observation of raw data 
exemplars from each group, such as video clips75. Visual inspection 
may reveal that one cluster corresponds to locomotor behavior and 
another to grooming, but may fail to provide an explanation for why 
one cluster of locomotor behavior differs from a separate locomotor 
cluster. The next step in interpreting these clusters is to compute 
the empirical feature distributions of the data that falls within the 
clusters. These may reveal that one form of locomotion is distinct 
from another based on the peak frequency of limb oscillations32, but 
may be more difficult to interpret when differences are small or the 
input data is too high-dimensional to easily interpret differences.

Although clustering is an effective method when little is known 
about the structure of the behavioral dynamics, more sophisticated 
approaches afford the ability to explicitly model the characteristics 
that define the representation of the behavioral dynamics (Fig. 3d). 
These have the advantage of being potentially more interpretable 
through direct examination of the model parameters, and some 

have the added benefit of being able to generate new examples 
sampled from the model rather than relying on exemplars in the 
data. One such class of methods that build on probabilistic graphi-
cal models are termed state-space models. Rather than attempting 
to divide the data based on its similarity, these models assume that 
there exist unobservable (hidden) discrete ‘states’ that parametrize 
the processes underlying the data. MoSeq81 uses autoregressive gen-
erative processes with a sticky hidden Markov model to identify the 
hidden states and the transition structure between states. This form 
of modeling can also be combined with simpler generative pro-
cesses like a multivariate Gaussian distribution49. Other approaches 
leverage non-parametric Bayesian statistics to model recurrent 
dependencies in the transitions between different linear dynami-
cal systems, combining the expressivity of graphical models for 
describing sequence structure with the algebraic interpretability of 
a linear dynamical system82. An alternative approach to leveraging 
linear dynamical systems uses an adaptive segmentation algorithm 
based on statistical model testing rather than an explicit model of 
transitions between states83.

Behavioral programs operate at many timescales and can be 
described at different levels of abstraction, all of which could 
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potentially be useful representations of underlying neural compu-
tations. For example, it may be desirable to describe the fast tim-
escale kinematics of locomotion while simultaneously representing 
the longer timescale motivational state of the animal that sets up 
its navigational goal. Hierarchical clustering can capture structure 
in behavioral dynamics in a similar way to simple clustering, with 
the added benefit of decomposing higher-order behavioral clusters 
into progressively finer-grained subtypes84. Information theoretic 
techniques for grouping behaviors based on the structure of state 
transitions have shown a link between a hierarchical temporal orga-
nization of the behaviors and the similarity between behaviors85. 
Explicitly hierarchical dynamical models such as the hierarchi-
cal hidden Markov model86 or adaptive segmentation algorithm83 
organize behavioral states in a hierarchy based on the structure of 
their generating processes, affording additional interpretability to 
the multiscale representations. Assuming a flat discretization of 
behavioral states, higher-order sequence models such as those used 
in bioinformatic algorithms to discover motifs in genetic data87 or 
formal grammars used to model natural language88 can be co-opted 
to describe behavioral state sequences.

Though these methods address the problems of representing 
behavior across multiple timescales, they do not effectively provide 
a solution to the problem of simultaneously occurring behaviors 
such as walking and sniffing. Though recognizing parallel behaviors 
is possible through supervised classification by simply using mul-
tiple independent classifiers, an unsupervised solution has not yet 
been proposed. Future work in this domain may be able to achieve 
this by taking into account that parallel dynamical processes involve 
different appendages, for example.

Adding continuous structure to discrete representations. 
Although the typical behavior map presumes strictly discrete 
boundaries between distinct behaviors, the execution of motor 
commands is ultimately expressed through continuous motion73. 
For example, while walking and jogging may require distinct motor 
programs, slow walking and fast walking may differ only in the fre-
quency of the stride cycle, smoothly transitioning through ‘mod-
erate walking’. Ultimately, a complete representation of behavior 
would include both discrete boundaries between behaviors and the 
continuous variation within them.

Dimensionality reduction methods such as principal compo-
nent analysis are an effective means of discovering continuous pat-
terning within a behavior, as they compress behavioral dynamics 
into fewer dimensions, along which the dynamics smoothly vary. 
This approach has been used to describe worm postural dynamics, 
revealing an oscillator structure during locomotion89, as well as to 
describe continuous dynamics of postural trajectories within zebraf-
ish locomotion78 and hunting90 behaviors. More complex kinemat-
ics that are not as easily reduced can be captured through nonlinear 
manifold embedding algorithms and have been employed, for 
example, to reveal complex periodic structure in fruit fly locomo-
tion (Fig. 3f)91 (akin to the worm oscillator).

Recent methods have begun to employ neural networks as a 
means of extracting continuous dynamic representations from 
behavioral time series. These methods afford greater flexibility by 
enabling robust feature extraction while simultaneously inferring 
discrete clusters in tandem with continuous representations92,93 or 
by imposing variational constraints on the distribution of the repre-
sentations, thereby encouraging more interpretable quantities to be 
captured in the manifold of dynamics94,95.

Linking brain activity and behavior
A core application of the methods described above is to use descrip-
tions of behavior to understand the neural activity that generates it. 
As we have discussed above, tools for tracking movement quantify 
the motor output of the brain, from coarse centroid tracking that 

describes spatial navigation to fine-grained pose estimation that 
captures the dynamics of muscle control (Fig. 1). Since these tools 
can locate the sensory organs of the animal, they also make it pos-
sible to reconstruct the sensory inputs animals receive. For example, 
the visual field of an animal can be estimated from the position of 
objects in its environment relative to its eyes (Fig. 4a). This is partic-
ularly advantageous in freely-moving behavioral setups, which sac-
rifice the ability to control (and therefore precisely know) the visual 
stimuli in a given psychophysics or virtual reality experiment96–99. 
Stimuli of other sensory modalities, such as mechanosensation, can 
also be estimated from videography, while others such as acoustic 
stimuli will require different instrumentation and methods for fea-
ture extraction (Box 3).

As tools to measure behavioral features improve, so does the 
resolution of the estimated representations of the inputs and out-
puts to the nervous system. Here we highlight the major classes of 
approaches that have successfully leveraged behavioral quantifica-
tion to dissect brain function.

Peri-behavior time histograms. Analogously to how peristimulus 
time histograms enable circuit interrogation by aligning the activity 
of neurons relative to onset or offset of stimuli, a major approach to 
linking neural function to behavior is to describe the distribution 
of behavioral quantities surrounding neural events. For example, 
manipulation of neural activity through genetic tools has enabled 
brain-wide screens that associate activation of precise subsets of 
neurons with the animal’s entire behavioral repertoire84,100,101.

While neuromodulation experiments provide precise temporal 
control over stimulation, techniques for awake and freely-moving 

Box 3 | Quantifying acoustic behaviors

Not all motor output can be quantified using conventional vid-
eography. In particular, vocalizations and other forms of acoustic 
communication are either not clearly visible or are produced at 
frequencies much higher than the frame rates of standard video 
cameras. Acoustic behaviors, however, can be easily measured 
using microphones placed in proximity of interacting animals. 
Similar to the challenges described for tracking and segment-
ing behaviors from video, the primary challenge in quantifying 
acoustic behaviors is detecting and classifying individual acous-
tic events, such as courtship song syllables.

Classical approaches rely on signal processing techniques to 
filter and extract acoustic events based on spectral and temporal 
features of animal songs. These have been used with much 
success to detect, for example, Drosophila courtship song130, 
zebra finch song131 and mouse vocalizations132,133. The automated 
detection of fly song has facilitated analysis of large behavioral 
datasets linking visual feedback cues (the moving female fly) to 
the dynamic patterning of male song, which would not have been 
possible otherwise134. Newer approaches have been developed to 
ease the difficulty of hand-crafting specialized signal-processing 
pipelines by leveraging deep learning to learn from user 
annotations135–137. These tools are crucial in improving the 
robustness of acoustic behavior detection to new experimental 
conditions with different noise properties.

However, these methods are limited by a priori knowledge of 
the syllables or modes that comprise song. A parallel approach 
to the supervised techniques leverages unsupervised learning 
to discover new acoustic behavioral subtypes, analogous to the 
unsupervised approaches for tracking. Manifold embedding has 
enabled the discovery of previously undiscovered fruit fly song 
types138 and immature songbird sequences139, as well as mapping 
of less-stereotyped mouse vocalizations140–142.
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in vivo recording can be used to align neural activity to more nat-
uralistic and spontaneous behaviors. Combined with tracking and 
quantification of dynamics, this approach has been successfully 
used to discover neural correlates of a number of behavioral fea-
tures described in this review. Instantaneous animal pose has been 
found to be represented across cortical regions in freely-moving 
rodents102. Discrete behavioral motifs identified using state-space 
models such as MoSeq81, as well as their sequences, have been 
associated with neural activity in the striatum, revealing a code 
for action selection103. Higher-order behavioral states (hierar-
chies), such as the exploration-versus-exploitation dichotomy in 
zebrafish hunting behavior, have been associated with internal 
neural states through the use of whole-brain imaging and pose 
estimation (Fig. 4b)104. Multi-timescale behavioral structures have 
been found to correlate with a hierarchy of neural dynamics in 
freely moving worms, connecting population-level codes with 
fast timescale motor control105.

Finally, simultaneous recording of neural activity across multiple 
animals has recently been used to identify neural correlates of social 
behavioral features in both bats and mice106,107. By aligning neural 
activity to social behavior quantified from multi-animal tracking, 
neural representations were discovered that encode both fast times-
cale features, such as the current and future behavior of the animal’s 
social partner, as well as higher-order cognitive features, such as 
their social hierarchy. These codes appear to be synchronized across 
animals, revealing a potential mechanistic basis for coordination 
of social behaviors, reflecting previous reports of synchronization 
identified from behavioral data alone108.

Models of sensorimotor transformations. Given representations 
of sensory inputs and motor outputs, another way to link behavior 
to neural activity is through explicit modeling of this sensorimotor 
transformation. Modeling the transformation from sensory input 
to motor output can recover stimulus filters109 and even infer inter-
nal states110. These models attempt to fit simple but easily interpre-
table transformations between sensory input and behavioral output  
(Fig. 4c). This level of modeling has the benefit of being a 
general-purpose approach to discovering the relative importance of 
different sensory features and their timescales.

Approaches that more comprehensively model the internal com-
putations of the sensorimotor transformation afford the ability to 
incorporate knowledge about the underlying biological structure 
of the computations at the cost of increased model complexity. By 
simulating known neural connectivity and their biophysics, these 
forms of models enable in silico experimentation111,112. For example, 
performing ablations of specific model neurons and observing the 
changes in behavioral responses can provide insights into the com-
putations being performed, which can be validated with analogous 
experiments in vivo.

Designing network models becomes increasingly difficult as the 
behaviors they attempt to predict become more detailed and less 
constrained, as is the case in freely moving and naturally behaving 
animals. An emerging approach to address this is to use artificial 
neural networks (ANNs) that can learn to perform the sensorimotor 
transformations while abstracting away details about the underlying 
biological neural networks. This form of modeling naturally leads to 
agent-based models, i.e., models that can perceive and respond to 
their environment. If the environment can be fully simulated, these 
agents are able to be trained without any data by providing them 
with a behavioral task and constraining their kinematics to realistic 
biomechanics. Recently, it was demonstrated that an agent-based 
model of rodents trained to perform classical cognitive–behavioral 
tasks, such as the two-tap task or navigating a Y-maze, are not only 
able to attain comparable performance to real animals, but also 
learn to compute internal representations of motor planning and 
control from sensory inputs (Fig. 4d)113,114.

Finally, an approach called imitation learning combines the abil-
ity of ANNs to efficiently learn complex transformations with the 
ability to impose biological fidelity derived from empirical data. 
These are constructed as agent-based models, but rather than being 
trained in simulation, they instead learn from behavioral data to 
predict motor outputs (for example, changes in pose) from recon-
structed sensory inputs (for example, visual field-of-view). These 
have been applied to fruit fly data and shown to be capable of learn-
ing high-level representations of the computations underlying 
unconstrained behavior115,116. ANNs can also be constructed with 
architectures based on biological neuroanatomy to further constrain 
the types of representations it learns (a feature that is particularly 
useful in light of recent advances in connectomics117). Recent work 
has shown that the computations learned by these models exhibit a 
remarkable degree of similarity to physiology, even when trained on 
behavioral data alone118.

Conclusion
In this Review we have detailed the existing and emerging meth-
ods in quantifying animal behavior to better understand the brain. 
From tracking to dynamics, it is clear that advances in deep learn-
ing and computer vision have revolutionized our ability to extract 
increasingly detailed descriptions of behavior. Further, as modeling 
frameworks continue to evolve, so will our ability to use behavior as 
a means of comparing neural dynamics and structure across diverse 
animals and experimental paradigms, toward developing holistic 
theories of brain function. We believe that these advances position 
behavioral quantification as a core instrument in the neuroscience 
toolbox, essential to the quest of understanding the brain.
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