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Abstract Microbial communities feature an immense diversity of species and this diversity is

linked to outcomes ranging from ecosystem stability to medical prognoses. Yet the mechanisms

underlying microbial diversity are under debate. While simple resource-competition models don’t

allow for coexistence of a large number of species, it was recently shown that metabolic trade-offs

can allow unlimited diversity. Does this diversity persist with more realistic, intermittent nutrient

supply? Here, we demonstrate theoretically that in serial dilution culture, metabolic trade-offs allow

for high diversity. When a small amount of nutrient is supplied to each batch, the serial dilution

dynamics mimic a chemostat-like steady state. If more nutrient is supplied, community diversity

shifts due to an ’early-bird’ effect. The interplay of this effect with different environmental factors

and diversity-supporting mechanisms leads to a variety of relationships between nutrient supply

and diversity, suggesting that real ecosystems may not obey a universal nutrient-diversity

relationship.

Introduction
Microbial communities feature an immense diversity of organisms, with the typical human gut micro-

biota and a liter of seawater both containing hundreds of distinct microbial types (Lloyd-Price et al.,

2016; Ladau et al., 2013; Weigel and Pfister, 2019). These observations appear to clash with a

prediction of some resource-competition models, known as the competitive-exclusion principle –

namely, that steady-state coexistence is possible for only as many species as resources (Levin, 1970;

Armstrong and McGehee, 1980). This conundrum is familiarly known as the ‘paradox of the plank-

ton’ (Hutchinson, 1961). Solving this paradox may provide one key to predicting and controlling

outcomes ranging from ecosystem stability to successful cancer treatments in humans

(Ptacnik et al., 2008; van Elsas et al., 2012; Taur et al., 2014; Stein et al., 2013). Chesson, 2000

classified mechanisms that purport to solve this paradox into two broad categories: stabilizing and

equalizing. Stabilizing mechanisms prevent extinction by allowing species to recover from low popu-

lations, whereas equalizing mechanisms slow extinction by minimizing fitness differences between

species.

Many possible solutions of the paradox that rely on stabilizing mechanisms have been offered: (i)

interactions between microbes, such as cross-feeding or antibiotic production and degradation

(Goyal and Maslov, 2018; Kelsic et al., 2015), (ii) spatial heterogeneity (Murrell and Law, 2003;

Tilman, 1994), (iii) persistent non-steady-state dynamics (Hutchinson, 1961), and (iv) predation

(Thingstad, 2000). Equalizing mechanisms have been studied through neutral theory, in which all

species are assumed to have equal fitness (Hubbell, 2005), and recent work has proposed resource-

competition models that self-organize to a neutral state (Posfai et al., 2017). Many proposed
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solutions for the paradox assume a chemostat framework wherein nutrients are continuously sup-

plied and there is a continuous removal of biomass and unused nutrients (Palmer, 1994). However,

in nature nutrients are rarely supplied in a constant and continuous fashion. In particular, seasonal

variation is ubiquitous in ecology, influencing systems ranging from oceanic phytoplankton communi-

ties (Chang, 2003) to the microbiota of some human populations (Smits et al., 2017). How does a

variable nutrient supply influence diversity?

Existing literature on seasonality focuses on stabilizing mechanisms and generally finds that sea-

sonality either promotes or has little effect on coexistence (Chesson, 1994). But do these conclu-

sions extend to equalizing mechanisms? To address this question, we consider a known resource-

competition model that permits high diversity at steady state due to the equalizing effects of meta-

bolic trade-offs, which assume that microbes have a limited enzyme production capacity they must

apportion. Here, we investigate the equalizing effect of metabolic trade-offs in the context of serial

dilution, to reflect a more realistic variable nutrient supply.

Serial dilution, in which cultures of bacteria are periodically diluted and supplied with fresh

nutrients, is well-established as an experimental approach. For example, the bacterial populations in

the Lenski long-term evolution experiment (Lenski and Travisano, 1994), experiments on commu-

nity assembly (Goldford et al., 2018), and antibiotic cross-protection (Yurtsev et al., 2016) were all

performed in serial dilution. While previous models of serial dilution have characterized competition

between small numbers of species with trade-offs in their growth characteristics (Stewart and Levin,

1973; Smith, 2011), the theoretical understanding of diversity in serial dilution is much less devel-

oped than for chemostat-based steady-state growth.

Here, we show that under serial dilution, metabolic trade-offs can still support high diversity com-

munities, but that this coexistence is now sensitive to environmental conditions. Interestingly, sea-

sonality can both increase and decrease diversity in our model, contrasting what has been observed

for stabilizing mechanisms. In particular, we find a surprising dependence between community

eLife digest In most environments, organisms compete for limited resources. The number and

relative abundance of species that an ecosystem can host is referred to as ‘species diversity’. The

competitive-exclusion principle is a hypothesis which proposes that, in an ecosystem, competition

for resources results in decreased diversity: only species best equipped to consume the available

resources thrive, while their less successful competitors die off. However, many natural ecosystems

foster a wide array of species despite offering relatively few resources.

Researchers have proposed many competing theories to explain how this paradox can emerge,

but they have mainly focused on ecosystems where nutrients are steadily supplied. By contrast, less

is known about the way species diversity is maintained when nutrients are only intermittently

available, for example in ecosystems that have seasons.

To address this question, Erez, Lopez et al. modeled communities of bacteria in which nutrients

were repeatedly added and then used up. Depending on conditions, a variety of relationships

between the amount of nutrient supplied and community diversity could emerge, suggesting that

ecosystems do not follow a simple, universal rule that dictates species diversity. In particular, the

resulting communities displayed a higher diversity of microbes than the limit imposed by the

competitive-exclusion principle.

Further observations allowed Erez, Lopez et al. to suggest guiding principles for when diversity in

ecosystems will be maintained or lost. In this framework, ‘early-bird’ species, which rapidly use a

subset of the available nutrients, grow to dominate the ecosystem. Even though ‘late-bird’ species

are more effective at consuming the remaining resources, they cannot compete with the increased

sheer numbers of the ‘early-birds’, leading to a ‘rich-get-richer’ phenomenon.

Oceanic plankton, arctic permafrost and many other threatened, resource-poor ecosystems

across the world can dramatically influence our daily lives. Closer to home, shifts in the microbe

communities that live on the surface of the human body and in the digestive system are linked to

poor health. Understanding how species diversity emerges and changes will help to protect our

external and internal environments.
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diversity and the amount of nutrient provided to the community. These changes in diversity are

driven by an ‘early-bird’ effect in which species that efficiently consume nutrients that are initially

more abundant gain a population advantage early in the batch. To our knowledge, this is the first

time this effect has been identified as a major influencer of diversity in seasonal ecosystems.

This dependence between community diversity and the supplied nutrient concentration allowed

us to explore an unresolved question in ecology (Tilman, 1982; Abrams, 1995; Leibold, 1996):

what is the relationship between the amount of nutrient supplied and the resulting diversity of the

community? Experimental studies of this question have mainly been performed in macroecological

contexts (Mittelbach et al., 2001; Waide et al., 1999; Adler et al., 2011), though recently there

has been increased focus on microbial systems (Bienhold et al., 2012; Bernstein et al., 2017). In

microbial experiments, some evidence has supported the ‘hump-shaped’ unimodal trend predicted

by many theories (Kassen et al., 2000). However, a meta-analysis by Smith, 2007 found no consis-

tent trend across microbial experiments. What we observe here is concordant with Smith’s result:

even in our highly simplified model, there is no general relationship between nutrient supply and

diversity. Among the factors we find that influence this relationship are cross-feeding, relative

enzyme budgets, differences in enzyme affinities, and differences in nutrient yields. That so much

variation appears in a simple model suggests that real ecosystems are not likely to display a single

universal relationship between nutrient supply and diversity.

Results
We employ the serial dilution model depicted in Figure 1A (see Appendix 1—table 1). At the

beginning of each batch (t ¼ 0), we introduce the inoculum, defined as a collection of species fsg

with initial biomass densities �sð0Þ in the batch such that the total initial biomass density is

�0 ¼
P

s �sð0Þ. Together with the inoculum, we supply a nutrient bolus, defined as a mixture of p

nutrients each with concentration in the batch cið0Þ, i ¼ 1; . . . ; p such that the total nutrient concen-

tration is c0 ¼
Pp

i¼1
cið0Þ (we also consider the case of cycles of single nutrient boluses that approach

a mixture distribution, cf. Appendix 7—figure 1). It is assumed that all nutrients are substitutable

(i.e. all nutrients are members of a single limiting class of nutrients, e.g. nitrogen sources). For

Figure 1. Illustration of serial dilution resource-competition model. (A) Serial dilution protocol. Each cycle of batch

growth begins with a cellular biomass density �0 and total nutrient concentration c0. The system evolves according

to Equations 2-3 until nutrients are completely consumed. A sample of the total biomass is then used to inoculate

the next batch again at density �0. (B) Representation of particular enzyme-allocation strategies fasg (colored

circles) and nutrient supply composition ci=c0 (black diamond) on a 2-nutrient simplex, where the right endpoint

corresponds to c1=c0 ¼ 1. (C) Representation of particular strategies (circles) and nutrient supply (black diamond)

on a 3-nutrient simplex. Dashed blue - the convex hull of the enzyme-allocation strategies. Here, the nutrient

supply (black diamond) is inside the convex hull, implying coexistence of all species in the chemostat limit (see

text).
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simplicity, we assume ideal nutrient to biomass conversion, so that for a species to grow one unit of

biomass density, it consumes one unit of nutrient concentration (we consider the case of nutrient-

specific yields Yi in a later section). During each batch, the species biomass densities �sðtÞ increase

with time, starting at t ¼ 0, and growth continues until the nutrients are fully depleted,
Pp

i¼1
cið¥Þ» 0

(we consider the case of incomplete depletion in Appendix 7—figure 2). Thus, at the end of a

batch, the total biomass density of cells is
P

s �sð¥Þ ¼ �0 þ c0. The next batch is then inoculated with

a biomass density �0 with a composition that reflects the relative abundance of each species in the

total biomass at the end of the previous batch. This process is repeated until ‘steady state’ is

reached, i.e. when the biomass composition at the beginning of each batch stops changing.

In the model, a species s is defined by its unique enzyme strategy ~as ¼ ðas;i; . . . ;as;pÞ which

determines its ability to consume different nutrients. We assume that each species can consume mul-

tiple nutrients simultaneously, in line with the behavior of microbes at low nutrient concentrations

(Kovárová-Kovar and Egli, 1998), though this assumption may not hold for all microbial species.

Specifically, we assume that species s consumes nutrient i at a rate js;i (per unit biomass) that

depends on nutrient availability ci and on its enzyme-allocation strategy as;i according to

js;i ¼
ci

Kiþ ci
as;i: (1)

For simplicity, we take all Monod constants to be equal, Ki ¼K (a more general form of the

Figure 2. The nutrient bolus size c0 affects the relative abundance of species and even their coexistence at steady

state. (A) Schematic of the mutual invasibility condition for two species and two nutrients. Top: The red species

can be invaded by any species with a strategy to its left if the supply lies in the region marked by the hatched

rectangle. Middle: Similarly, showing the supplies for which blue can be invaded by any species with a strategy to

its right. Bottom: The intersection defines a mutual invasibility region of supplies for which the two species red and

blue will coexist. Triangles mark the boundaries of this coexistence region. (B–D) Example of the effect of c0 on

coexistence for more than two species: the approach to steady state, showing �s versus batch number (left

column) with the corresponding c0-dependent remapping of coexistence boundaries (right column). (B) For the

chemostat limit c0 � K, where K is the Monod constant for nutrient uptake, the triangles marking coexistence

boundaries coincide with the species’ strategies, as . (C) For c0 »K the triangles are remapped towards the center

of the simplex compared to the strategies fasg. In this example the nutrient supply (black diamond) ends up

outside the coexistence boundaries, so only one species survives. (D) For c0 � K the triangles again coincide with

the strategies fasg, leading again to coexistence.
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nutrient model is considered in a later section). During each batch, the dynamics of nutrient concen-

trations and biomass densities then follow from the rates js;i at which the species consume

nutrients:

dci

dt
¼�

X

s

�sjs;i; (2)

d�s
dt

¼ �s
X

i

js;i (3)

Since the level of one enzyme inevitably comes at the expense of another, we model this trade-

off via an approximately fixed total enzyme budget E. Formally, we take
P

ias;i ¼ Eþ "�s, where �s
is a zero-mean and unit-variance Gaussian variable. Without loss of generality we take E¼ 1; initially

we set "¼ 0, which we call exact trade-offs. This allows us to visualize the strategies ~as as points on

a simplex, depicted as colored circles embedded in: (i) the interval ½0;1� for two nutrients

(Figure 1B), or (ii) a triangle for three nutrients (Figure 1C), etc. One can plot the nutrient bolus

composition ci=c0 on the same simplex, as depicted by the black diamonds in Figure 1B and C. In

what follows, we focus on the case of two nutrients, though the main results extend to an arbitrarily

large number of nutrients.

Connection between serial dilution and chemostat models
One can intuit that our serial dilution model at very low nutrient bolus size will mimic a chemostat.

Adding a small nutrient bolus, letting it be consumed, then removing the additional biomass, and

repeating is tantamount to operating a chemostat with a fixed nutrient supply and dilution rate.

Indeed, the limit c0 � K yields the same steady state as a chemostat. Thus, our results for serial dilu-

tion include and generalize those obtained for a closely related chemostat model (Posfai et al.,

2017).

For completeness, we now briefly describe the chemostat results from Posfai et al., 2017. In the

presence of metabolic trade-offs, the chemostat can support a higher species diversity than pre-

scribed by the competitive exclusion principle as we demonstrate theoretically in Appendix 4. Spe-

cifically, if the nutrient supply lies within the convex hull of the strategies on the simplex (visualized

by stretching a rubber band around the outermost strategies, see Figure 1B–C), an arbitrarily large

number of species can coexist at steady state. In the chemostat, such species coexistence is attained

when the system organizes such that all nutrient levels are driven towards equality by consumption.

Dynamically, if one nutrient level is high, the species that consume it increase in population, leading

to faster consumption of that nutrient, thus acting to return the nutrients to equal steady-state lev-

els. Such a self-organized neutral state is an attractor of the chemostat dynamics (Posfai et al.,

2017) and, correspondingly, of the c0 � K limit of the serial dilution model. Note that the coexis-

tence steady state is not a single fixed point, but rather a degenerate manifold of possible solutions

(details in Appendix 4).

Thus, in the chemostat-limit of the cases shown in Figure 1B and C all the species will coexist.

Conversely, if the supply lies outside the convex hull, (e.g., if we swapped the positions of the left-

most species and the supply in Figure 1B) the number of surviving species would be strictly less

than the number of nutrients, consistent with competitive exclusion. To understand the convex-hull

rule, note that a state of arbitrarily high coexistence can only occur if the chemostat self-organizes to

a ‘neutral’ state in which the nutrient concentrations are all equal, and thus all strategies have the

same growth rate. This state is achieved if and only if the total enzyme abundances lie along the

same vector as the nutrient supply, which is achievable only if the supply lies within the convex hull

of the strategies present.

As in the chemostat model, the serial dilution model can support either coexistence or competi-

tive exclusion. However, if one chooses system parameters near the transition between these two

states, it requires a very large number of batches for the simulation to reach steady state. This is a

manifestation of the well-known phenomenon of critical slowing down (Dakos and Bascompte,

2014). Though in principle, critical slowing down is not a simulation artifact and could manifest in

similar real-world systems, we expect that a variety of factors outside our modeling framework would

preclude observation of this critical behavior.
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We define the serial dilutions ‘steady state’ to be reached when the relative species abundances

after the nutrients are depleted (time tf after starting the batch) scale with the relative abundances

at the beginning of that batch (time 0), that is, �sðtf Þ ¼
�0þc0
�0

�sð0Þ. We can expand the implicit equa-

tion for the steady state to first order in c0=K (details can be found in Appendix 4),

c0

�0
¼
X

i

as;icið0Þ
P

s0 as0 ;i�s0ð0Þ
þO

c0

K

� �2

: (4)

Dividing both sides by tf and defining,

~d¼
c0

�0tf
; si ¼

cið0Þ

tf
; (5)

we reach the c0=K � 1 steady-state condition for the serial dilution system:

~d¼
X

i

as;isi
P

s0 as0;i�s0ð0Þ
: (6)

Averaged over a batch, si is the average rate that nutrient i is supplied, and ~d is the average rate

that all the nutrients are supplied per unit inoculum biomass. In analogy to the chemostat model,

one can think of si as the rate nutrient i is continuously supplied. Moreover, for a chemostat, the

parameter ~d which would be the rate all nutrients are continuously supplied per unit biomass, would

need to equal the dilution rate of the chemostat, d, to maintain steady state. A detailed analysis of

the effects of larger bolus size, to second order in c0=K, can be found in Appendix 4.

Effect of total nutrient bolus on coexistence
In the chemostat limit, increasing the nutrient supply rate simply proportionally increases the steady-

state population abundances. However, away from this limit we find that the magnitude of the nutri-

ent bolus can qualitatively affect the steady-state outcome of serial dilutions. To understand this

effect, we first consider a simple case of two nutrients and two species as depicted in Figure 2A.

The two species will coexist if each species is invasible by the other. In our example, we first deter-

mine the invasibility of species R (strategy indicated by red circle) by species with strategies lying to

its left. To this end, we choose a nutrient supply and perform model serial dilutions until steady state

is reached. For a particular finite bolus size, we find that for all supplies within the hatched region an

infinitesimal inoculum of any species lying to the left of R will increase more than R during a batch,

and therefore can invade R. Similarly, we determine the invasibility of species B (strategy indicated

by blue circle) by any species with a strategy lying to its right, and find the second hatched region.

The intersection of these hatched regions for which (1) B can invade R and (2) R can invade B is the

supply interval of mutual invasibility where these two species will stably coexist. The coexistence

interval is bounded by the red and blue triangles, and each of these coexistence boundaries is a

unique property of its corresponding species. We call these species-specific boundaries remapped

because they generally lie at different locations on the simplex than the strategies they originated

from, with the extent of remapping depending on the nutrient bolus size. At a more technical level,

the remapped boundary for a given species and bolus size is the nutrient supply for which, over the

course of a batch, all nutrients are equally valuable and so, a species with any strategy can neutrally

invade and persist. This equality of nutrient value is defined in terms of the Monod function integrals

for each nutrient (for details see Appendix 3).

Since the remapped coexistence boundaries depend on the nutrient bolus size c0, changing bolus

size can qualitatively change the steady-state outcome of serial dilutions. Figure 2B–D depicts an

example of how c0 affects remapping, and the consequences for species coexistence. At low bolus

size, c0 � K, corresponding to the chemostat limit, Figure 2B (left) shows that all species present

achieve steady-state coexistence. This follows because the nutrient supply (black diamond) lies inside

the convex hull. When c0 is increased to c0 »K (Figure 2C), the coexistence boundaries are

remapped towards the center of the simplex (dashed arrow). In this example, the nutrient supply

now lies outside the convex hull. This results in one winner species (the dark blue one nearest the

supply), with all others decreasing exponentially from batch to batch. This loss of coexistence with

increasing nutrient bolus size is reminiscent of Rosenzweig’s ‘paradox of enrichment’ in predator-
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prey systems (Rosenzweig, 1971). Strikingly, however, as bolus size is further increased to c0 � K,

the coexistence boundaries are remapped back to their original positions, so that the nutrient supply

once again lies within the convex hull, and so steady-state coexistence of all species is recovered.

What causes the remapping of the coexistence boundaries inwards as c0=K ! 1? Let us consider

a single species growing on two nutrients supplied in the same proportion as its strategy (i.e. the

fraction of Nutrient 1 is equal to as;1). At low c0=K, this marks the remapped coexistence boundary

and both nutrients will be equally valuable over the course of a batch. The balance is achieved

because the nutrient with a higher initial abundance is more rapidly exhausted, while the nutrient

with lower initial abundance is consumed more slowly and is therefore available for a longer span of

time. At small c0=K, the more rapid initial consumption of the more abundant nutrient does not influ-

ence the consumption rate of the less abundant nutrient because the bolus size is small relative to

the initial population size, so the population does not grow substantially during the batch. This

changes as c0=K increases: the rapid initial consumption of the more abundant nutrient leads to a

substantial increase in the total population. The remaining low initial abundance nutrient is now con-

sumed more quickly and is less available to an invader with a more balanced enzyme strategy. The

nutrients are no longer equally valuable on average, and remedying this requires a more equally bal-

anced nutrient bolus. Thus, the remapped coexistence boundary moves inwards (see Appendix 7—

figure 3). In essence, as c0=K increases it is more difficult for the invader to grow because the resi-

dent gains an ‘early-bird’ advantage: its initial growth allows it to more effectively exhaust the

nutrients.

Why does the coexistence boundary of a species map back to its original strategy in the limit of

large bolus size, c0 � K? In this limit, the nutrient uptake functions in Equation 1 will be saturated

during almost the entire period of a batch. Each species will therefore consume nutrients strictly in

proportion to its strategy as;i. For the case of two nutrients (e.g., as shown in Figure 1B), if there is

only a single species present then if the supply lies anywhere to the left of its strategy, at some time

during the batch there will be some of Nutrient 2 remaining after the bulk of Nutrient 1 has been

consumed. Thus a single species can be invaded by any strategy to its left, provided the supply also

lies to its left. Similarly, a species can be invaded by any strategy to its right if the supply lies to its

Figure 3. Remapping of strategies at finite nutrient supply generally reduces species diversity. (A) As shown for

the case of two nutrients, the remapping of strategies (i.e., the shift of coexistence boundaries) is non-monotonic

with nutrient bolus size c0 (colors indicate 21 equally spaced strategies). (B) Heat map of the extent of remapping

for strategy ð0:2; 0:8Þ as a function of nutrient bolus size c0=K and inoculum size �0=K. (C) Steady-state effective

number of species me as a function of bolus size c0=K with equal initial inocula adding up to �0=K ¼ 10
�3; the

same initial conditions apply for panels C-D. Colors correspond to different nutrient supply compositions

c1=ðc1 þ c2Þ. Dashed black line: maximum diversity (equal species abundances) is attained when nutrient

composition is ð0:5; 0:5Þ. (D) Steady-state species abundances f�sg for nutrient composition ð0:5; 0:5Þ (top) and

ð0:05; 0:95Þ (bottom).
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right. This is exactly the condition for the coexistence boundary of a species to coincide with its

actual strategy (details in Appendix 5).

We have rationalized coexistence in our serial dilution model in terms of mutual invasibility, but

have not explicitly stated the condition for an arbitrary number of species to coexist in steady state.

In the chemostat, all species coexist when the concentrations of all nutrients are equal, implying the

same growth rate for all strategies. However, for serial dilutions the nutrient concentrations are gen-

erally not equal and are not even constant in time. Instead, it is the integrated growth contribution

of every nutrient that must be equal to allow for arbitrary coexistence. In the case of equal enzyme

budgets (" ¼ 0), this condition occurs when the time integrals of the nutrient Monod functions within

a batch are all equal, that is,

Ii ¼

Z
¥

0

ci

Kiþ ci
dt¼ const: (7)

To understand this condition for coexistence beyond competitive exclusion, note that the instan-

taneous rate of growth of a species s is
P

ias;ici=ðKi þ ciÞ, so that the fold increase of a species dur-

ing a batch is expð~as �~IÞ. This fold increase will be equal for all species if and only if Equation 7

holds. When there are two nutrients, Equation 7 holds at steady state whenever the supply is inside

the convex hull of the coexistence boundaries of the species present (details in Appendix 3). For

more nutrients, the corresponding condition is that the region of coexistence is bounded by con-

tours that connect the outermost remapped nodes.

Given a fixed set of species and a choice of initial populations, repeating the growth-dilution

batch procedure results in a steady state where the populations at the beginning of a batch do not

change from batch to batch. The steady-state populations depend on the initial populations, with

the set of all possible steady-state populations defining a coexistence manifold.

Steady-state diversity
As is apparent in Figure 2C, not all strategies are remapped to the same extent. In Figure 3A, we

plot the remapping of coexistence boundaries as a function of nutrient bolus c0. Note that: (i) the

specialists ð0; 1Þ and ð1; 0Þ and the perfect generalist ð0:5; 0:5Þ are not remapped at all; (ii) remapping

is maximal for c0 »K; (iii) there is no remapping in both the c0 ! 0 and c0 ! ¥ limits (see also Appen-

dix 7—figure 4). The extent of remapping also depends on the inoculum size �0 as shown in

Figure 3B, which demonstrates that remapping is maximal for �0 � K and vanishes for �0 � K.

How does nutrient bolus size influence steady-state species diversity? A useful summary statistic

for quantifying diversity (Jost, 2006) is the effective number of species me ¼ eS with the Shannon

diversity S ¼ �
P

s Ps lnPs and Ps ¼ ��sð0Þ=�0, with ��sð0Þ the steady-state species abundances at the

beginning of a batch. Diversity as measured by me is shown in Figure 3C for six choices of nutrient

bolus composition. Notably, if the two nutrients are supplied equally (top curve, magenta), me is

independent of c0 and coincides with the maximal possible diversity (dashed black line), namely

equal steady-state abundances of all species (Figure 3D, top). Conversely, if Nutrient 1 comprises

only 5% of supplied nutrient (Figure 3C, bottom curve, cyan), the number of effective species me is

lower than maximal even in the chemostat-limit of small bolus sizes c0 � K and drops even further

for c0 »K. This loss of diversity is due to the dramatically lowered steady-state abundances of strate-

gies that favor Nutrient 1 (Figure 3D, bottom). Two different effects underlie this change in commu-

nity structure. The first is the early-bird effect described above: species specializing in more

abundant nutrients gain a population advantage that allows them to rapidly consume less abundant

nutrients that would otherwise support species with different enzyme specializations. The second

effect is a well-known property of single nutrient competition and can be viewed as a ‘single-nutri-

ent’ early-bird effect. In this case, species that are superior competitors for a nutrient gain an expo-

nential population advantage over inferior competitors, increasing their share of total nutrient

beyond the ratio of initial consumption rates. Both of these effects increase in strength with larger

bolus size because the early-bird advantage increases as growth proceeds. The combination of these

effects results in the species specialized in consuming the most abundant nutrients consuming a

larger fraction of all nutrients. However, for very large bolus sizes, saturation of nutrient uptake rates

mitigates these two effects, leading to a lack of remapping for c0 � K and diversity returning to its
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chemostat-limit. Though here we focused on the case of two nutrients, these results extend to more

nutrients (for three nutrients see Appendix 7—figure 5).

Models with fewer simplifying assumptions
In this final Results section, we consider the effects of relaxing some of our simplifying assumptions.

We first assess the effect or different enzyme affinities, Ki 6¼ K, and different nutrient yields Yi 6¼ Y.

This is followed by a model that allows cross-feeding of metabolites. Finally, we consider population

bottlenecks and what happens when the fixed-enzyme-budget constraint is relaxed. We show that in

Figure 4. Differences in enzymes affinities, Ki, and nutrient yields, Yi, lead to different relationships between

diversity and bolus size. (A) Steady-state effective number of species me as a function of bolus size c0=K2, as

in Figure 3C, but with K1 ¼ 10
�3 and K2 ¼ �0 ¼ 1. Colors correspond to different nutrient supply compositions,

solid curves for c1=c0 2 ½0; 0:5� and dashed curves for c1=c0 2 ½0:5; 1�. Dashed black line: maximum diversity (equal

species abundances) is no longer attained when nutrient composition is ð0:5; 0:5Þ. (B) Steady-state species

abundances f�sg for nutrient composition ð0:5; 0:5Þ (top) and ð0:05; 0:95Þ (bottom), as in Figure 3D. (C) Steady-

state effective number of species me as a function of bolus size c0=K, as in Figure 3C, but with Y1 ¼ 10 and

Y2 ¼ �0 ¼ 1. Note that the nutrient compositions are normalized to yield such that ð0:5�; 0:5�Þ is actually

ð0:5=Y1; 0:5=Y2Þ. Colors the same as in A. (D) Steady-state species abundances f�sg for nutrient composition

ð0:5�; 0:5�Þ (top) and ð0:2�; 0:8�Þ (bottom).

Figure 5. Cross-feeding alters the relationship between diversity and bolus size. (A) Steady-state effective number

of species me as a function of bolus size, as in Figure 3C but with two trophic layers, with Nutrient 1 a byproduct

of metabolizing Nutrient 2. The byproduct fraction G is chosen so that Nutrient 1 is produced at fractions

according to the colorbar in A. (B) Steady-state species abundances f�sg for nutrient composition ð0:5; 0:5Þ (top)

and ð0:05; 0:95Þ (bottom), as in Figure 3D.
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all these cases, the dependence on bolus size can be understood as manifestations of the early-bird

effect.

Unequal enzyme affinities and nutrient yields
We have thus far made the simplifying assumption that all enzymes have the same substrate affinity,

such that Ki � K. However, in nature different nutrients may have drastically different values of K.

For example, the methanogen Methanosarcina barkeri has Ki for the consumption of hydrogen and

acetate that differ by approximately three orders of magnitude (Robinson and Tiedje, 1984;

Wandrey and Aivasidis, 1983). How would such a large difference in the Ki values impact diversity

in our serial dilution ecosystem? In Figure 4A we show diversity as a function of bolus size for a sys-

tem with a large difference in Ki (K1 ¼ 10
�3, K2 ¼ 1). Since the symmetry between nutrients is broken

by the unequal Ki, we now show the entire range of nutrient proportions, not just the first half. In the

chemostat limit, the diversity values are similar to those found in the system with equal Ki. This

makes sense: in a chemostat the nutrients with higher Ki can accumulate to higher levels to compen-

sate for their slow consumption, leaving the steady-state behavior unchanged. However, outside the

chemostat regime, differences in the Ki have a drastic effect: when the nutrient with the lower Ki is

scant in supply, diversity generally increases with increasing c0, while the opposite occurs when the

nutrient with the lower Ki is higher in supply.

We can understand these Ki-driven shifts in the nutrient-diversity relationship as due to changes

in the identity of the early bird. In a model with equal Ki, the identity of the early bird is determined

by which nutrient is more abundant: if the two nutrients have equal Ki, a species can gain an early-

bird advantage by preferentially consuming the more abundant nutrient. This changes if one nutrient

has a much lower Ki than the other. In this case it may be advantageous to preferentially consume

the nutrient with the lower Ki, even if it is the less abundant nutrient. If the nutrient with the lower Ki

is also the more abundant nutrient, this will intensify the early-bird advantage. Why does this change

in the early bird’s identity change the form of the nutrient-diversity relationship? This change arises

from a clash between optimal feeding behavior in the chemostat and seasonal regimes. In the che-

mostat, it is advantageous to focus on the most abundant nutrient, regardless of the value of Ki.

Thus, in the chemostat limit, species focusing on the more abundant nutrient have an advantage. In

the case of equal Ki (or Ki favoring the more abundant nutrient), this advantage is intensified by the

early-bird effect, increasing the biomass of already abundant species and lowering diversity. By con-

trast, if the low abundance nutrient has a low Ki, the early-bird effect will have the opposite effect on

diversity. Now the early-bird effect benefits species that were disadvantaged in the chemostat limit,

leading to more equal abundances and higher diversity. This shift in abundances is shown in

Figure 4B. The change in the identity of the early bird can also explain more complex relationships

between diversity and bolus size (see Appendix 7—figure 6).

In addition to unequal enzyme affinities, it is possible for different nutrients to have different

yields, Yi. In Figure 4C we show the relationship between bolus and diversity for a system with

Y1 ¼ 10 and Y2 ¼ 1. As expected, at low c0 the diversity is similar to that in the case of equal Yi. As

c0=K increases, the diversity decreases initially and the symmetry-related bolus-composition cases

(e.g. [0.2,0.8] and [0.8,0.2]) eventually diverge, with one’s diversity rising and the other’s continuing

to fall. This behavior is explainable by the same logic as in the variable Ki case: diversity rises or falls

depending on whether the early-bird species was also favored in the chemostat limit. However,

unlike the case of variable Ki, the diversity curves do not eventually return to the chemostat limit.

Regardless of which nutrient the Yi favor, the diversity eventually begins decreasing monotonically as

c0=K increases. This difference between the variable Ki and variable Yi cases can be understood by

considering what occurs when both nutrients are saturating. In the variable Ki case, saturating

nutrients are equal in value, implying a return to the chemostat limit as the early-bird effect weakens.

In contrast, for variable Yi, there remains a difference in the value of the two nutrients in the satu-

rated regime, meaning that the early-bird effect will grow stronger and the early bird will take over

the population. The beginning of this takeover can be seen at high bolus sizes in Figure 4D. Note

that for both variable Ki and variable Yi, these trends are also reflected in the remapping (see

Appendix 7—figure 7).

Despite the large variation in relationships between diversity and bolus size, these phenomena

can all be understood as consequences of the early-bird effect. As the model becomes more
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complex there are additional factors to consider in determining which nutrient will provide an early-

bird advantage, but the fundamental mechanism of exploiting early growth advantages remains.

Cross-feeding
It is possible to extend Equations 2 and 3 beyond a single trophic layer, allowing for consumption

of metabolic byproducts. This is a form of cross-feeding, which has generally been found to promote

diversity (Goyal and Maslov, 2018) and stable community structure (Goldford et al., 2018). Here,

cross-feeding is introduced through the byproduct matrix Gs
i;i0 , which converts the consumption of

nutrient i0 to production of nutrient i such that,

dci

dt
¼�

X

s

�s js;i �
X

i0

Gs
i;i0 js;i0

 !

: (8)

In this framework, nutrient i0 is converted to nutrient i at no extra enzymatic cost, meaning that

nutrient i is simply a byproduct whenever nutrient i0 is consumed for growth (it would be straightfor-

ward to modify this framework so that nutrient conversion can be carried out independently from

growth). We focus on the simplest case: initially supplying only Nutrient 2, with Nutrient 1 solely

derived as a metabolic byproduct via Gs
i;i0 ¼

0 G
0 0

� �

for all species. When G¼ 1, upon consumption

Nutrient 2 is perfectly converted to Nutrient 1, leading to an equal total supply of the two nutrients.

More generally,
R
¥

0

P

s �sjs;1 dt¼ Gc2ð0Þ which allows a direct comparison between the unitrophic and

bitrophic regimes: starting with c2ð0Þ results in ðGþ 1Þc2ð0Þ total nutrient, and hence the Nutrient 1

fraction is G
1þG of the total.

How does cross-feeding influence diversity in our serial dilution model? In Figure 5A we compare

bitrophic diversity for six values of G to their unitrophic equivalents (in Figure 3C). We note that: (i)

bitrophy still supports diversity greater than the competitive-exclusion limit; (ii) in the chemostat

regime, c0 � K, the unitrophic and bitrophic schemes have identical values of me, and these drop as

c0 ! K; (iii) but for bitrophy the me does not recover for c0 � K; (iv) even when the total supply of

both nutrients is equal (G ¼ 1), bitrophy leads to lower than maximal me outside the chemostat limit.

Figure 6. Diversity of small communities with migration. Each batch was inoculated with 1008 cells: 958 cells

sampled without replacement from the previous batch, 50 cells sampled from 21 equally abundant, equally spaced

strategies. (A) Effective number of species me for different compositions of two nutrients (colors) as a function of

nutrient bolus size c0=K. (B) Average steady-state species abundances f�sg for nutrient composition ð0:5; 0:5Þ (top)

and ð0:05; 0:95Þ (bottom). (C) As A, but with random species-specific total enzyme budget specified by " ¼ 0:1. (D)

As B but with species-specific enzyme budgets from C. Asterisk (*) indicates the species with the largest enzyme

budget.
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These features are clarified in Figure 5B, which shows steady-state species abundances for G values

leading to a total Nutrient 1 supply fraction of 0.5 and 0.05, and highlights the lower diversity for

bitrophy compared to unitrophy for large nutrient bolus size. This difference is due to an early-bird

effect: the species consuming supplied nutrient early in the batch can build a sizable population

before the competing species that rely on its byproduct. The early-bird population then outcom-

petes the others for byproduct consumption. As such, this effect increases with c0=�0. The effect also

becomes stronger at low c0=K (with constant c0=�0), since this allows the early-bird species more

time to grow before the byproduct accumulates to high enough levels to be significantly consumed

(Appendix 7—figure 8). Note that this effect is dependent on metabolite byproducts being also

consumed by their producer. If the species in each trophic layer are single-nutrient specialists, then

changes in c0=K have no impact on community diversity.

The behavior of the model with cross-feeding shows that the early-bird effect extends beyond

simple metabolic trade-offs. More broadly, when species compete for multiple resources that are

supplied in batches, a species’ survival depends on more than its ability to efficiently consume

nutrients. An early-bird species, being more specialized in consuming the nutrients that are initially

more abundant, gains a population advantage early in the batch. This population advantage may

allow the early-bird species to out-compete other species even when consuming nutrients it is not

specialized to consume. Despite its consumption inefficiencies, through sheer numbers the early-

bird species can consume more of the remaining nutrients than its more specialized competitors.

Population bottlenecks
So far we have considered deterministic dynamics, which is appropriate for large populations. In nat-

ural settings, however, there are often small semi-isolated communities. For these communities, fluc-

tuations can play an important role. In particular, population bottlenecks can lead to large

demographic changes (Abel et al., 2015). In our model, how does the nutrient supply affect diver-

sity in such communities? To address this question, we applied discrete sampling of a finite popula-

tion when diluting from one batch to the next (see Appendix 1). With this protocol, an ‘extinction’

occurs when sampling yields zero individuals of a species. For a long enough series of dilutions such

extinctions would ultimately lead to near-complete loss of diversity. For small real-world populations,

however, diversity may be maintained by migration. To model such migration we augmented the

population at each dilution with a ‘spike-in’ from a global pool of species, in the spirit of MacArthur’s

theory of island biogeography (MacArthur and Wilson, 2001). Specifically, in the spike-in proce-

dure, to prevent extinctions caused by sampling fluctuations, every new batch is inoculated with a

small number of the original, founder species.

In Figure 6A we show results of spike-in serial dilutions for a population bottleneck of 1008 cells.

95% of these cells are sampled from the previous batch, while 5% are sampled from a global pool,

with equal abundances of 21 equally spaced strategies (cf. Figure 3A). The resulting me vs. c0 curves

have maximal me for all six nutrient fractions in the regime c0 � K where the 5% spike-in dominates

sampling noise. As expected, for a balanced nutrient supply at any c0, all species have the same

average abundance (Figure 6B top). By contrast, when Nutrient 1’s fraction is low (Figure 6A cyan

and 6B bottom), increasing c0 increases the abundance gaps between the species, reflecting the

uneven competition for Nutrient 2. Overall, the spike-in protocol leads to higher diversity at low c0
than the deterministic case (starting from equal species abundances but with no spike-in,

Figure 3C). For large c0, the me vs. c0 curves for these two protocols are indistinguishable. The only

noticeable difference is that the spike-in maintains a higher level of the least competitive strains, but

since these abundances are still low, this difference in not reflected in the me values.

Unequal enzyme budgets
While we have assumed exact trade-offs to achieve diversity within a resource-competition model,

the trade-offs present among real microorganisms will not be exact. For the serial dilution protocol

with spike-ins, diversity is maintained by migration and so it is possible to relax the constraint of

exact trade-offs. How does diversity depend on the nutrient supply if we allow species to have differ-

ent enzyme budgets? We implemented random differences in species enzyme budgets by setting

" ¼ 0:1, that is, a standard deviation of 10%, and plotted effective number of species me in

Figure 6C. As in the " ¼ 0 limit (Figure 6A), at sufficiently small c0 the spike-in procedure dominates
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both sampling noise and differential growth rates due to unequal enzyme budgets. Raising c0 leads

to a drop in me (albeit still above the competitive-exclusion limit). Examining the species abundances

in Figure 6D, we note that differences in enzyme budget establish a fitness hierarchy even when

nutrient fractions are equal (top), with those species with the highest budgets increasing in relative

abundance as c0 increases. The asterisk (*) marks the species with the highest total enzyme budget,

which becomes the most abundant for c0 � K. Reducing Nutrient 1’s fraction to 0.05 results in a

shifting abundance hierarchy (Figure 6D, bottom): at low c0 the highest abundance species is the

one that consumes only Nutrient 2, as in the equivalent " ¼ 0 case. However, increasing c0 results in

increased abundance for the species with the highest enzyme budget – which would ultimately lead

to its domination for sufficiently large c0. This increasing dominance of the species with the highest

enzyme budget is another manifestation of the early-bird effect: as the amount of growth in a batch

increases, the advantage of a larger enzyme budget further compounds. In short, for spike-in serial

dilutions the influence of unequal enzyme budgets depends on the nutrient supply, such that the

species with the largest budgets dominate for large, unbiased supplies.

Discussion
Natural ecosystems experience variations in the timing and magnitude of nutrient supply, and the

impact of these variations on species diversity is not fully understood (Smith, 2011; Smith, 2007).

To explore the impact of variable nutrient supply, we modeled resource competition in a serial dilu-

tion framework and analyzed the model’s steady states. We found that variable nutrient supply still

allows for the high diversity seen in the continuous supply (‘chemostat’) version of the model.

Indeed, the serial dilution steady state mimics that of a chemostat when the amount of nutrients sup-

plied in each batch is small. Surprisingly, however, supplying the nutrients as a bolus led to a depen-

dence of diversity on the amount of supplied nutrients.

In contrast to existing literature on seasonality, we find that environmental fluctuations can both

weaken and strengthen coexistence in this model. This occurs as the result of an ‘early-bird’ effect

associated with supplying nutrients as large seasonal boluses instead of continuously. Some species

can capitalize on rapid initial growth on an abundant nutrient to reach a large population size, which

then allows them to deplete the remaining nutrients at the expense of their competitors. This early-

bird effect can both restrict and expand the range of environments in which communities can self-

organize to a neutral state. We show that even when metabolic trade-offs are combined with stabi-

lizing mechanisms, the impact of the early-bird effect remains. For example, in the case of cross-

feeding, the community diversity falls as a function of c0=K due to the early-bird advantages gained

by species at higher trophic levels.

While the idea of species gaining early advantages has been explored, such as in the literature on

founder effects and speciation (Barton and Charlesworth, 1984; Brown,, 1957), to the best of our

knowledge this is the first demonstration of the influence of the early-bird effect on the diversity of

seasonal ecosystems. We believe that this effect will occur in a variety of such ecosystems, as its only

fundamental requirement is competition for multiple nutrients that are supplied in a time-dependent

manner. Interestingly, while the early-bird effect plays a large role in our model, it is not the only

bolus-dependent effect that influences diversity. We also observe another effect that can be viewed

as a ‘single-nutrient’ version of the early-bird effect. This effect arises from a well-studied property

of competition: as growth proceeds, a superior competitor for a nutrient gains an exponential

advantage over inferior competitors for that nutrient. Like the early-bird effect, this shifts the sys-

tem’s biomass towards species more specialized in initially abundant nutrients, particularly for large

but non-saturating nutrient bolus sizes. This single-nutrient effect can co-occur with the early-bird

effect, for example in competition for an abundant nutrient between two early-bird species.

The form of seasonality we explore in this manuscript, where mixed boluses are supplied periodi-

cally, is only one possible form of seasonal nutrient supply. The impact of the early-bird effect and

single-nutrient competition will likely differ between different forms of seasonality. For example, we

show in Appendix 7—figure 1 that supplying cycles of single nutrient boluses that approach an

equal distribution of nutrients results in lower diversity than supplying mixed equal nutrient boluses.

While this form of seasonality differs from the one we characterized, we can still understand the loss

of diversity as arising from the single-nutrient competition effect initially observed in our mixed-bolus
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models. We expect the principles gleaned from our models to be of use in understanding diversity

in a variety of seasonal ecosystems.

Finding a general relation between the amount of nutrient supplied to a community and its diver-

sity is a long-standing goal of theoretical ecology (Tilman, 1982; Abrams, 1995; Leibold, 1996).

We found that in our model the form of the nutrient-diversity relation (NDR) can change based on

model details. The model has two regimes: a low diversity and a high diversity regime. The former

satisfies competitive exclusion (no more species coexisting than resources), whereas the latter

exceeds competitive exclusion and occurs when the nutrient supply lies within the convex hull of the

remapped metabolic strategies present (Posfai et al., 2017). At the bifurcation point between the

two regimes, we observe critical slowing down in that the number of dilutions required to reach

steady state diverges.

In the high diversity regime, the NDR can take several forms, resulting from the interplay of the

early-bird effect and other mechanisms. Even with a single trophic layer, the NDR can be U-shaped,

hump-shaped, monotonically decreasing, or have multiple peaks. These trends can then be further

modified by the addition of more trophic layers, differences in enzyme budgets, etc.

Experimental studies that characterize the NDRs of microbial ecosystems have reached similarly

variable conclusions. For example, one work studying bacterial communities in Arctic deep-sea sedi-

ments found an increasing trend between energy input and richness (Bienhold et al., 2012), while a

study on photosynthetic microbial mats found a negative relationship between energy input and

richness (Bernstein et al., 2017). A meta-analysis of aquatic microbial ecosystems found examples

of both monotonic and non-monotonic NDRs, with no single form dominating (Smith, 2007). Our

theoretical results, together with these experimental findings, indicate that there may be no single

universal NDR in microbial ecosystems. This conclusion suggests that the best approach for charac-

terizing the NDR of a given ecosystem is not to apply a one-size-fits-all theory, but to analyze the

role of different factors such as cross-feeding, trade-offs, and immigration in determining that partic-

ular ecosystem’s NDR. While we have focused on microbial systems, the absence of a universal NDR

is consistent with results from recent work in plants (Adler et al., 2011).

We found that the stringency of metabolic trade-offs has a large impact on community diversity.

We imposed a metabolic enzyme budget on each species to reflect the reality that microbial cells

have a finite capacity to synthesize proteins and must carefully apportion their proteome

(Basan et al., 2015). However, while it is true that microbes have limited biosynthetic capacity, it is

unclear how strict are the resulting trade-offs. For this reason, we characterized versions of the

model with both exact and inexact trade-offs. Our results show that the form of an ecosystem’s NDR

can depend on the stringency of metabolic trade-offs. This finding is not exclusive to the serial dilu-

tion model. The stringency of trade-offs was also important in the original chemostat setting: in a

birth-death-immigration framework, small violations of the enzyme budget still allowed for high lev-

els of coexistence, but large violations disrupted coexistence (Posfai et al., 2017). These results sug-

gest that an experimental characterization of the stringency of metabolic trade-offs among microbes

would provide a valuable ecological parameter. Note that metabolic trade-offs are only one of the

many types of trade-offs microbes are subject to; other types of trade-offs, such as constraints

between biomass yield and growth rate (Wortel et al., 2018), may also shape a community’s NDR.

In constructing a model, we made a number of assumptions about the way in which microbes

consume and utilize nutrients. Some of these assumptions do not apply to all microbial communities,

and the impact of relaxing these assumptions can affect the NDR. For example, we mostly focused

on communities where all nutrients are equally valuable (i.e. Yi ¼ Yj 8i; j). However, biomass yields

can vary between nutrients and between species, which we explored in Figure 4C–D. Notably,

unequal yields create differences between nutrients even in the saturating regime (c0 � K), leading

to a departure from the chemostat limit at large nutrient boluses. Coexistence in the serial dilution

model is robust to varying yield, as long as all species have the same yield on a given nutrient. The

scenario where species have different biomass yields on the same nutrient is conceptually similar to

the case of inexact trade-offs, since some species will have a strict advantage over others. Thus, it is

likely that these unequal yields between species will lead to a reduction in community diversity. How-

ever, varying the yield in this manner also allows for the inclusion of new trade-offs that may impact

diversity, such as the aforementioned trade-off between yield and growth rate (Wortel et al., 2018).

We also explored the effects of unequal Monod constants for different nutrients (cf. Figure 4A–B).

We found that if a low-abundance nutrient also has a low Ki, the early-bird effect favors species that
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were disadvantaged in the chemostat limit, thus reversing the equal-Ki NDR and leading to hump-

shaped NDR curves. Indeed, large differences in Ki values can lead to a multi-peaked NDR as shown

in Appendix 7—figure 6.

Our model assumes that all nutrients are substitutable (i.e. only one of the multiple nutrients is

required for growth). In real ecosystems, microbes can require multiple complementary nutrients to

grow, e.g. sources of carbon, nitrogen, and phosphorus. In cases where one class of complementary

nutrient is strongly limiting, a model with both complementary and substitutable resources would

essentially reduce to the current model of only substitutable resources. This case is likely the more

common one, e.g. as many soils are carbon limited (Aldén et al., 2001; Demoling et al., 2007).

However, in cases where no single nutrient is strongly limiting, the presence of complementary

nutrients would possibly lead to different NDRs, which will be an interesting direction for future

study.

Our modeling predictions, e.g. the convex hull condition and the changes in diversity due to the

early-bird effect, are in principle testable. To connect our modeling assumptions to real microbial

systems, we compare our growth model of substitutable and simultaneous nutrient consumption to

previously published experimental data from Escherichia coli growing in batch and chemostat condi-

tions. We find that our modeling assumptions are consistent with both datasets and outline potential

future experiments to test the model’s multispecies predictions, detailed in Appendix 6. As is appar-

ent in Appendix 6—figure 1, the growth dynamics of E. coli at low nutrient levels is well described

by our modeling framework. The experiments we compared were performed with the same strain of

E. coli, meaning that inclusion of different microbes would be needed to test the multispecies pre-

dictions. To determine the strategies of other microbes, including other strains of E. coli, the most

practical approach would likely be batch culturing. Once strains with different strategies have been

identified, nutrient-diversity relationships could then be obtained by competing strains in serial dilu-

tion culture and measuring the community diversity (e.g. via fluorescent tags or by 16S rRNA

sequencing) as a function of the total concentration of multiple, substitutable nutrients provided at

the start of each batch.
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Appendix 1

Methods
This section describes the simulation methods used in this manuscript. All code and data used in this

manuscript can be found at https://github.com/AmirErez/SeasonalEcosystem (Erez, 2020; copy

archived at https://github.com/elifesciences-publications/SeasonalEcosystem).

Deterministic dynamics
We numerically solve the ODEs within each batch using a custom MATLAB-coded fourth-order

Runge-Kutta solver with adaptive step size. Step size at a given time step is chosen such that the rel-

ative change of all state variables is below a predetermined threshold.

Population bottleneck sampling
We implement discrete sampling when diluting from one batch to the next by picking without

replacement �0 individuals from a total end-of-batch population of �0 þ c0. If there are non-integer

populations at the end of a batch (as can occur with deterministic dynamics), they are rounded up if

�s � floorð�sÞ>Uð0; 1Þ where floor rounds down to the nearest integer and Uð0; 1Þ is a uniform ran-

dom variable between 0 and 1. For all simulations with stochastic bottlenecks, we allow the simula-

tion to equilibrate for 10,000 dilutions and average over 10,000 further dilutions.

Appendix 1—table 1. Annotation glossary.

Symbol Description

t Time measured from the beginning of a batch

p Number of nutrients

m Number of species introduced at time t ¼ 0

me Effective number of species at steady state

i ð1:::pÞ Latin index enumerating nutrients

ciðtÞ Time dependent concentration of nutrient i

c0
Pp

i¼1
cið0Þ; total nutrient concentration at time t ¼ 0

Ki Monod half-velocity constant for nutrient i

Ii
R
¥

0

ci
Kiþci

dt; nutrient Monod function time integral

Yi Biomass yield on nutrient i

D The fraction of nutrient remaining at the end of the batch

si Average rate that nutrient i is continuously supplied at the chemostat limit

~d Average rate all nutrients are continuously supplied at the chemostat limit

d Continuous chemostat dilution rate at the chemostat limit

s;s0; ::: ð1:::mÞ Greek indices enumerating species

�sðtÞ Species s biomass density at time t since a start of the batch

~as ðas;1; :::;as;pÞ; enzyme allocation strategy for species s

e Standard deviation in enzyme budget

E E ¼
P

i as;i ¼ 1 for " ¼ 0; enzyme budget

Gs
i;i0 Byproduct matrix converting nutrient i0 to nutrient i

js;i Nutrient i consumption rate by species s
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Appendix 2

General form of the model
The most general form of the model considered in this manuscript includes variable nutrient yield Yi,

Monod half-velocity constant ~Ki, and enzyme cost wi:

d�s
dt

¼
X

i

~Yi~asi�s
~ci

~Kiþ ~ci
(9)

d~ci
dt

¼�
X

s

~asi�s
~ci

~Kiþ ~ci
(10)

E¼
X

i

wi~asi : (11)

The enzyme costs wi and total enzyme budget E of the original equations can be removed by

rescaling the strategies and nutrient concentrations such that ~asi ¼ ðE=wiÞasi and ~ci ¼ ðE=wiÞci. This

rescaling leads to a new effective Monod half-velocity constant and yield such that ~Ki ¼ ðE=wiÞKi and
~Yi ¼ ðwi=EÞYi. The simplified equations are therefore:

d�s
dt

¼
X

i

Yiasi�s
ci

Kiþ ci
(12)

dci

dt
¼�

X

s

asi�s
ci

Kiþ ci
(13)

1¼
X

i

asi : (14)

A further rescaling with c0i ¼ ciYi, K
0
i ¼KiYi, and a0

si ¼ asiYi reveals the impact of Yi:

d�s
dt

¼
X

i

a0
si�s

c0i
K 0
i þ c0i

(15)

dc0i
dt

¼�
X

s

a0
si�s

c0i
K 0
i þ c0i

(16)

1¼
X

i

a0
si

Yi

� �

: (17)
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Appendix 3

Mutual invasibility condition for coexistence beyond competitive
exclusion
In our model, coexistence of an unlimited number of species can be traced back to the conditions

for the coexistence of a smaller number of species. This is because in a system with p nutrients, once

p species coexist they create an environment where all nutrients are equally valuable and all species

can coexist. For example, understanding the conditions for unlimited coexistence in two nutrient

competition requires us to examine the conditions that allow two species to coexist. In order for two

species to coexist, they must be able to invade each other. This means that in an environment domi-

nated by Species 1, Species 2 will have higher fitness and vice versa.

Under what nutrient supplies, cið0Þ=c0, can two species invade each other? In the chemostat ver-

sion of the model, these invasibility conditions are simple to determine. Consider two species where

~a1 is to the left of ~a2 on the 1-simplex. Species 2 can invade Species 1 if the nutrient supply is to the

right of ~a1. Species 1 can invade Species 2 if the nutrient supply is to the left of ~a2. Therefore, the

two species can mutually invade and coexist if and only if the nutrient supply lies between ~a1 and ~a2.

This is precisely the convex hull condition, with no remapping.

For the same pair of species, how do we determine the nutrient supplies for which Species 1 can

be invaded by Species 2 in the serial dilution version of the model? The fitness of a species in this

model is the growth exponent
P

i as;iIi, meaning that Species 2 can invade Species 1 at nutrient sup-

plies where Species 1 creates an environment such that I2>I1. The nutrient supply at which Species 1

creates an environment where I1 ¼ I2 therefore bounds the region of nutrient supplies for which Spe-

cies 2 can invade. By the same logic, the border for the region where Species 1 can invade Species 2

is the nutrient supply at which Species 2 creates an environment where I1 ¼ I2. Therefore, the mutual

invasibility region is now defined by the nutrient supplies where each species growing in isolation

creates an environment where I1 ¼ I2. These points are what we refer to as the ”remapped coexis-

tence boundaries’ and, unlike in the chemostat version of the model, these generally do not corre-

spond to the species’ strategies.
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Appendix 4

Perturbation theory for c0=K � 1

In the main text, we provide an explanation why in the limit of small nutrient bolus size c0=K, the

serial dilution model effectively becomes a chemostat. In this section, we prove this chemostat limit

using a perturbation expansion to first order in c0=K. Essentially, the Monod constant K acts as the

unit of nutrient and biomass in the system, which are measured in dimensionless units c0=K and

�0=K, respectively. Alternatively, one might choose to expand around a third ratio, c0=�0, which

would be useful to model extremely nutrient-dilute conditions as found in some marine microbial

ecosystems.

We define a perturbation expansion with respect to the small parameter f ¼ c0=K,

�sðtÞ ¼ �sð0Þþf�ð1Þs ðtÞþf2�ð2Þs ðtÞþ :::

ciðtÞ ¼fc
ð1Þ
i ðtÞþf2c

ð2Þ
i ðtÞþ :::

�ðk>0Þs ð0Þ ¼ 0

c
ðk>1Þ
i ð0Þ ¼ 0 :

(18)

We note that at Oð1Þ we have �sðtÞ ¼ �sð0Þ and ciðtÞ ¼ 0 as expected. We begin by expanding the

Monod function,

ci

ciþK
»
ci

K
�

ci

K

� �2

»
fc

ð1Þ
i þf2c

ð2Þ
i þ :::

K

 !

�
fc

ð1Þ
i þf2c

ð2Þ
i þ :::

K

 !2

»f
c
ð1Þ
i

K

 !

þf2
c
ð2Þ
i

K

 !

�
c
ð1Þ
i

K

 !2
0

@

1

AþOðf3Þ :

(19)

Accordingly, in the kinetic equation for ci,

_ci ¼�
ci

Kþ ci

X

s

as;i�s ; (20)

substituting the expansion in Equation 19 and keeping the leading order, c
ð1Þ
i , gives,

_c
ð1Þ
i ¼�c

ð1Þ
i

X

s

as;i�sð0Þ

K
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

gi

¼) c
ð1Þ
i ¼ c

ð1Þ
i ð0Þe�git :

(21)

We next solve for �ð1Þs using c
ð1Þ
i , and then we will use �ð1Þs to solve for c

ð2Þ
i . It is possible but not

necessary for our purposes to iterate further. The kinetic equation for the biomass density �s is,

_�s ¼ �s
X

i

as;i
ci

Kþ ci
: (22)

Substituting the f expansion gives, to leading order,

_�ð1Þs ¼ �sð0Þ
X

i

as;ic
ð1Þ
i

K

¼ �sð0Þ
X

i

as;ic
ð1Þ
i ð0Þe�git

K

�ð1Þs ¼ �sð0Þ
X

i

as;ic
ð1Þ
i ð0Þ

Kgi

1� e�gi tð Þ :

(23)

Taking the long-time limit, t� 1

gi
, we obtain,
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�ð1Þs ðt� g�1

i Þ ¼ �sð0Þ
X

i

as;ic
ð1Þ
i ð0Þ

Kgi

: (24)

Focusing on the leading order, we conclude that,

�sðt� g�1

i Þ ¼ �sð0Þþf�sð0Þ
X

i

as;ic
ð1Þ
i ð0Þ

Kgi

: (25)

Substituting for gi and for c
ð1Þ
i ð0Þ ¼ cið0Þ=f, we have,

�sðt� g�1

i Þ»�sð0Þþ�sð0Þ
X

i

as;icið0Þ
P

s0 as0;i�s0ð0Þ
: (26)

Explicitly stating the batch number d, at the end of the batch, that is, at time t¼ tf � g�1

i , the bio-

mass density is,

�sðd; tf Þ» 1þ
X

i

as;icið0Þ
P

s0 as0;i�s0ðd;0Þ

 !

�sðd;0Þ : (27)

In the serial dilution model with complete consumption of all nutrients c0 and initial biomass �0,

the inoculum populations in batch dþ 1 can be computed from the populations at the time of com-

plete nutrient consumption, tf, in batch d,

�sðdþ 1;0Þ ¼
�0

�0 þ c0
�sðd; tf Þ ¼

�sðd; tf Þ

1þ c0=�0

¼
�sðd;0Þ

1þ c0=�0
1þ

X

i

as;icið0Þ
P

s0 as0 ;i�s0ðd;0Þ

 !

:

(28)

At steady state, we require that �sðdþ 1;0Þ ¼ �sðd;0Þ:

1þ c0=�0 ¼ 1þ
X

i

as;icið0Þ
P

s0 as0;i�s0ðd;0Þ
: (29)

Our calculation, to order f, gives,

c0

�0
¼
X

i

as;icið0Þ
P

s0 as0;i�s0ð0Þ
: (30)

Dividing both sides by tf and defining,

~d¼
c0

�0tf
; si ¼

cið0Þ

tf
; (31)

we finally reach the c0=K � 1 steady-state condition for the serial dilution system:

~d¼
X

i

as;isi
P

s0 as0;i�s0ð0Þ
: (32)

Averaged over a batch, si is the average rate that nutrient i is supplied, and ~d is the average rate

that all the nutrients are supplied per unit inoculum biomass. If this were a chemostat rather than a

serial dilution model, then one could think of si as the rate nutrient i is continuously supplied. More-

over, for a chemostat, the parameter ~d, which would be the rate all nutrients are continuously sup-

plied per unit biomass, would need to equal d, the dilution rate of the chemostat to maintain steady

state. Indeed, Equation 32 is precisely the steady-state condition for the chemostat (Equation 4

from Posfai et al., 2017) with si and ~d¼ d interpreted as above.

Thus we complete the proof that in c0=K � 1, the steady state of our serial dilution model is iden-

tical to the steady state of the equivalent chemostat model.
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Appendix 4—figure 1. Numerical solution and analytical perturbation theory results for remapping

of the coexistence boundaries at low c0. The analytic solution is derived from 8i : Ii ¼ const using the

second-order expansion in Equation 40.
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Appendix 4—figure 2. Numerical solution and analytical perturbation theory results for the steady-

state solution manifold at low c0. The analytic solution is derived from Equation 47 and the

chemostat solution is from Equation 43. Outer curves: 3 species with strategies

fð0:1; 0:9Þ; ð0:45; 0:55Þ; ð1; 0Þg. Inner curves: 3 species with strategies fð0; 1Þ; ð0:5; 0:5Þ; ð1; 0Þg. In both

cases, �0=K ¼ 1 and the nutrient supply is ð0:55; 0:45Þ.

Second-order corrections to remapping of the coexistence boundaries for
c0=K � 1

We have demonstrated above that the leading terms in an expansion for small nutrient supply

retrieve the steady-state solution of the chemostat model. However, we know from numerical simula-

tions, that as c0=K � f is increased, the coexistence boundaries become remapped, away from the

enzyme strategies. Since there is no remapping in the chemostat limit, equivalent to an expansion to
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order f as proved above, to capture the remapping we expand to order f2 in ciðtÞ. To this end, we

return to the f expansion and extract the f2 contribution,

_c
ð2Þ
i

K
¼

c
ð1Þ
i

K

 !2

gi�
c
ð2Þ
i

K

 !

gi�
c
ð1Þ
i

K

 !
X

s

as;i�
ð1Þ
s

K
: (33)

which gives,

c
ð2Þ
i

K
¼

c
ð1Þ
i ð0Þ

K

 !2

e�gi t � e�2git
� �

�
c
ð1Þ
i ð0Þ

K

X

s

as;i�sð0Þ

K

X

j

as;jc
ð1Þ
j ð0Þ

Kgj

te�git �
e�git � e�ðgiþgjÞt

gj

 !

: (34)

Now we can solve for the growth-function integrals Ii for the case of a single species growing in

isolation. We expand the growth-function integral,

Ii ¼

Z
¥

0

ciðt
0Þ

ciðt0ÞþK
dt0 ¼fI

ð1Þ
i þf2I

ð2Þ
i þ ::: (35)

Substituting the order f from Equation 22 and integrating, gives:

I
ð1Þ
i ¼

Z
¥

0

c
ð1Þ
i ðt0Þ

K
dt0 ¼

c
ð1Þ
i ð0Þ

Kgi

: (36)

For a single species growing in isolation, gi ¼
1

K
as;i�sð0Þ. Thus, to order f, the chemostat limit, we

obtain, (in the chemostat limit, for a single species),

Ii ¼fI
ð1Þ
i ¼

cið0Þ

as;i�sð0Þ
: (37)

Thus, to satisfy the coexistence boundary conditions: 8i : Ii ¼ const, to order f it must be that

8i : cið0Þ=as;i ¼ const. This is precisely the coexistence condition for the chemostat, explained in

Appendix 3. To obtain the remapping of the coexistence boundaries, we must expand Ii to order f2.

To order f2 we substitute Equation 22 for c
ð1Þ
i and Equation 34 for c

ð2Þ
i and integrate, giving:

I
ð2Þ
i ¼

Z
¥

0

c
ð2Þ
i

K
�

c
ð1Þ
i

K

 !2
2

4

3

5dt0 ¼�
c
ð1Þ
i ð0Þ

K

X

s

as;i�sð0Þ

K

X

j

as;jc
ð1Þ
j ð0Þ

gjK

1

g2
i

�
1

gigj

þ
1

gjðgiþgjÞ

 !

; (38)

which upon substituting gi for a single species simplifies to:

f2I
ð2Þ
i ¼�

cið0Þ

�sð0Þas;i

X

j

cjð0Þ

�sð0Þas;j

a2

s;j

as;iþas;j

¼�fI
ð1Þ
i

X

j

fI
ð1Þ
j

a2

s;j

as;i þas;j
:

(39)

Collecting terms to order f2 gives

Ii ¼fI
ð1Þ
i 1�

X

j

fI
ð1Þ
j

a2

s;j

as;iþas;j

 !

þOðf3Þ : (40)

As before, the coexistence boundaries are defined by Ii ¼ const. To order f2, Equation 40 can be

used to solve for this remapping analytically. Equation 40 also clarifies why perfect generalists

(8i; j : as;i ¼ as;j) do not get remapped, as stated in the main text. This is because for a generalist

8i; j : a2

s;j=ðas;iþas;jÞ ¼ const., meaning that the second-order Ii will all be equal if the first-order Ii are

all the same. Moreover, the term I
ð1Þ
j / ��1

s ð0Þ multiplies the order f2 correction to the coexistence

boundary, and as a result, the larger �sð0Þ, the smaller the remapping. A comparison between the

analytic form of the remapping at small c0=K and its numerical form is shown in Appendix 4—figure
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1. As is apparent, the agreement is excellent and extends to higher c0=K as �0=K increases because

at high �0=K the remapping is small.

Second-order corrections to the steady-state abundance manifold for
c0=K � 1

Intuitively, one expects that at steady state, the capacity to consume a nutrient will match the total

amount of nutrient supplied. Indeed, this was previously shown in the chemostat, and we will extend

this statement beyond the chemostat limit, to second order in c0=K. First, we review the results for a

chemostat with dilution rate d and nutrient supply rate si (Posfai et al., 2017),

d¼
X

i

as;isi
P

s0 as0;i��s0

: (41)

We use the asterisk in ��s0 to make explicit that the abundances are the steady-state abundances,

after the system has moved from its initial conditions. As a result, the steady state constrains the

abundances ��s, such that they must lie on a manifold of solutions that satisfy
P

s as;i�
�
s ¼

E
d
si. This is

precisely the requirement that the total nutrient consumption rate matches the nutrient supply rate.

As demonstrated earlier in this section, by identifying ~d ¼ c0
�0tf

and si ¼
cið0Þ
tf
, to first order in

f � c0=K � 1, the steady-state condition for the serial dilution system is identical to the steady state

of the equivalent chemostat. Thus, to order f,

c0

�0
¼
X

i

as;icið0Þ

Kgi

(order f). (42)

In the serial-dilution framework, to leading order in f, the chemostat limit of the serial-dilutions

steady state is,

Kgi ¼
X

s

as;i�
�
sð0Þ ¼ �0E

cið0Þ

c0
þOðf2Þ : (43)

We note that Kgi from Equation 43 is a solution of Equation 42, with
P

ias;i ¼ E. Having estab-

lished Equation 43 as the leading order (chemostat limit) term in an expansion in f, we proceed to

calculate Kgi to order f2 to obtain corrections to the chemostat limit.

From Equation 3, we obtain �sðtÞ ¼ �0ð0Þe
P

i
as;iIi , so that,

Ii ¼ fI
ð1Þ
i þf2I

ð2Þ
i ;

�sðtÞ ¼ �sð0Þ 1þf
X

i

as;iI
ð1Þ
i þf2

X

i

as;iI
ð2Þ
i

"

þ
1

2
f2

X

i

as;iI
ð1Þ
i

 !2
3

5þOðf3Þ :

(44)

At steady state, dilution at the end of the batch brings the system to its initial conditions, such

that for some time tf when the nutrients in a batch have been consumed, the steady-state species

abundances ��sð0Þ obey

��sð0Þ ¼
�0

�0 þ c0
��sðtf Þ

¼
��sð0Þ

1þ c0=�0
1þf

X

i

as;iI
ð1Þ
i þf2

X

i

as;iI
ð2Þ
i

"

þ
1

2
f2

X

i

as;iI
ð1Þ
i

 !2
3

5 :

(45)

Indeed, ��sð0Þ cancels, yielding the serial-dilutions steady-state to order f2,
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c0

�0
¼f

X

i

as;i
~I
ð1Þ
i 1þ

f

2

X

j

as;j
~I
ð1Þ
j þf

~I
ð2Þ
i

~I
ð1Þ
i

" #

: (46)

We have added a tilde sign, as in ~I
ð1Þ
i , to stress that we use leading order in f, having already

explicitly accounted for f in the expansion, and so, take f~I
ð1Þ
i ¼ c0

�0E
. Substituting for ~I

ð2Þ
i similarly,

reduces Equation 46 to,

Kgi ¼
X

s

as;i�
�
sð0Þ

¼ cið0ÞE
�0
c0

1þ
c0

�0

1

2
�Xi

� �� �

;

Xi ¼
c0

�0E2

X

s

as;i�
�
sð0Þ

X

j

as;j
cjð0Þ=cið0Þ

cið0Þþ cjð0Þ
:

(47)

Comparing Equation 47 with Equation 43 we note the small, order c0=�0 , corrections to the che-

mostat limit. We overlay the perturbation theory solution, Equation 47, on the numerical solution,

showing good agreement for c0=K<1, plotted in Appendix 4—figure 2. We note that for the case

of balanced nutrients, 8i : cið0Þ ¼ c0=p, we have Xi ¼
1

2
, and therefore, when the nutrient supply is bal-

anced, there are no second order corrections to the chemostat solution. Moreover, for balanced

supply, the exact numerical solution also does not deviate from the chemostat limit.

Erez et al. eLife 2020;9:e57790. DOI: https://doi.org/10.7554/eLife.57790 27 of 37

Research article Ecology Physics of Living Systems

https://doi.org/10.7554/eLife.57790


Appendix 5

Remapping of the coexistence boundaries for c0=K � 1

Here we show that at high c0=K the coexistence boundaries remap to their chemostat positions.

When a large nutrient bolus is present, the growth function is effectively always saturated such that

d�s
dt

¼ �s
Xp

i¼1

as;i
ci

Kþ ci
»�s

X

i

as;i ¼ �sE; (48)

where
P

ias;i ¼ E is in units of 1/time, without loss of generality E can be set to unity, but we keep it

here to make the units explicit. Solving for �ðtÞ yields �ðtÞ ¼ �0e
Et. The assumption that ci �K can

then be applied to the nutrient dynamics, yielding:

dci

dt
¼�as;i�sðtÞ

ci

Kþ ci
» �as;i�0e

Et : (49)

Solving for the nutrient dynamics leads to ciðtÞ ¼ cið0Þþ
as;i

E
�0ð1� eEtÞ. Since the growth function is

nearly always saturated (giving an integrand value of 1), the growth-function integral Ii ¼
R
¥

0

ci
Kiþci

dt

approximately equals the time of nutrient exhaustion. Thus for a given nutrient i, the time when that

nutrient is depleted ti;f is given by:

ti;f ¼ Ii ¼
1

E
ln 1þ

cið0ÞE

as;i�0

� �

: (50)

Note that the coexistence boundaries are defined by 8i : Ii ¼ const which is satisfied when the frac-

tion of nutrients in the initial bolus matches the strategies,

8i : cið0Þ=asi ¼ const : (51)

This is precisely the result in Appendix 3, indicating that in the c0=K � 1 limit the coexistence

boundaries return to their chemostat values.
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Appendix 6

Comparison of growth model assumptions with experimental data
We have explored the implications of our model in a variety of contexts, but our modeling frame-

work drastically simplifies bacterial growth, ignoring many factors relevant for microbial coexistence,

e.g., lag times for the recovery of growth and various responses to stresses including starvation. In

this section we compare certain key aspects of our growth model assumptions with experimental

data.

A well-known form of nutrient utilization in the microbiology literature is sequential utilization,

where a preferred sugar (often glucose) is consumed before others (Monod, 1942). However, this

mechanism applies to high sugar levels (on the order of grams per liter), such as those found in labo-

ratory media. Many natural environments, such as marine systems and feces, contain low concentra-

tions of sugars (Münster, 1993; Flourie et al., 1986). At such low concentrations, simultaneous

utilization of multiple substitutable sugars is observed (Kovárová-Kovar and Egli, 1998; Egli et al.,

1993; Lendenmann et al., 1996). We therefore compared our modeling for single-species growth

to previously published data from chemostat and batch experiments on E. coli supplied with multiple

sugars at low concentrations.

We use chemostat data from Lendenmann et al., 1996 who measured the steady-state concen-

trations of biomass and sugars, with E. coli continuously supplied with mixtures of glucose, fructose,

and ribose. We applied the chemostat version of the model (Posfai et al., 2017) and constrained

the fit with previously measured values of the Monod constants Ki for this strain (Lendenmann and

Egli, 1998). From the fit, we estimated the consumption strategies ai for glucose, fructose, and

ribose, with the rest of the parameters being defined experimentally (see the end of this section for

details of the fitting procedure). As shown in Appendix 6—figures 1A and B, the resulting model

matches the data well with strategies, measured in ðmg sugarÞðmg biomassÞ�1h�1, of

agluc ¼ 1:96� 0:12, afruc ¼ 2:04� 0:11, and aribo ¼ 1:41� 0:01. This corresponds to a normalized strat-

egy of (0.36, 0.38, 0.26). The only notable deviations between the best-fit model and the data occurs

for two fructose steady states. These deviations would be corrected if Kfruc was larger, suggesting

that the Kfruc used here may not reflect the actual value in the experiment. The model also accurately

predicts the resulting steady-state biomass concentrations, which are a constant 47 mg/L in the

experiment and approximately constant at 45 mg/L in our model. This agreement suggests that our

growth model assumptions are consistent with the behavior of E. coli growing at low nutrient con-

centration with a continuous nutrient supply. Despite being supplied with a variety of different sugar

mixtures, E. coli maintains a constant steady-state biomass in these experiments because all of the

carbon sources are substitutable.

Erez et al. eLife 2020;9:e57790. DOI: https://doi.org/10.7554/eLife.57790 29 of 37

Research article Ecology Physics of Living Systems

https://doi.org/10.7554/eLife.57790


Appendix 6—figure 1. Fitting of fixed-enzyme-budget model to experimental data. (A–B) Fit of the

chemostat version of the model to data from chemostat experiments from Lendenmann et al.,

1996. The experimental data are steady-state concentrations of sugars in E. coli chemostats

supplied with different mixtures of glucose, fructose, and ribose. The strategy ai for each sugar is

inferred, whereas all other parameters are derived from the experimental conditions and

measurements. The solid curves show the model prediction, with the shaded region marking the

95% prediction bound (see Appendix 1 for details). (A) Comparison of model to data from

chemostats supplied with glucose and fructose with a constant total feed concentration of 100 mg/

L. (B) Comparison of model to data from chemostats supplied with glucose and ribose with a

constant total feed concentration of 100 mg/L. (C) Comparison of serial dilution model fit to batch

growth data from Egli et al., 1993. Solid curves are model predictions and the shaded area is the

95% prediction bound. ‘Effective biomass’ refers to the total biomass within the system:

MðtÞ ¼ �ðtÞ þ YðcglucðtÞ þ cgalðtÞÞ. Since the data for the three timeseries were measured at slightly

different times, the effective biomass for the experimental data was obtained by linear interpolation

of the data points. The inferred parameters were the strategy (a1, a2) for the two sugars, glucose

and galactose, and the yield Y.

To explicitly test growth dynamics, though for a single species only, we compared our model to

batch growth data from Egli et al., 1993. In this experiment, timecourses of biomass and nutrient

concentrations were measured in a culture of E. coli supplied with a mixture of glucose and galac-

tose. The E. coli used to seed this culture came from a glucose-limited chemostat (we also compared

our model to a batch seeded with E. coli from a galactose-limited chemostat, see Appendix 6—fig-

ure 2). For this data we used our serial dilution model with Monod kinetics and Ki values from meas-

urements on the same strain (Lendenmann and Egli, 1998). As shown in Appendix 6—figure 1C,

the agreement between the best-fit model and the experimental data is generally quite good over

the entire time course. The estimated ai, measured in units of (mg sugar)(mg biomass)–1h–1, were

0.46 � 0.04 and 0.41 � 0.03 for glucose and galactose, respectively. The estimated yield was

0.42 � 0.03, similar to the experimentally measured yield used in the chemostat model of 0.45

(mg biomass)(ms sugar)–1. Our model captures the glucose and biomass trends very well, but some

galactose data points fall outside of the confidence interval. In addition to possible experimental

noise, this may be due to small variations in yield during growth, as a constant yield would imply

that accurately modeling biomass and glucose would necessarily also accurately capture galactose

(cgalðtÞ ¼ const � �ðtÞ � YcglucðtÞ). Qualitatively, the data support the assumptions of substitutable and

simultaneous nutrient consumption, while the strong quantitative fit to our model supports the

assumption that enzyme strategies do not vary significantly within a batch.
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Appendix 6—figure 2. Comparison of serial dilution model fit to batch growth data from

Lendenmann et al., 2000. This data is similar to that in Appendix 6—figure 1C, except that the

inoculum was taken from galactose-limited conditions instead of glucose limited conditions. Solid

curves are model predictions and the shaded area is the 95% prediction bound (see Appendix 1 for

details). ‘Effective biomass’ refers to the total biomass within the system:

MðtÞ ¼ �ðtÞ þ Yðc1ðtÞ þ c2ðtÞÞ. Since the data for the three timeseries were measured at slightly

different times, the effective for the experimental data was obtained by linear interpolation of the

data points. The inferred parameters were the strategy (a1, a2) for the two sugars, glucose and

galactose, and the yield Y. The estimated ai, measured in units of (mg sugar)(mg biomass)–1h–1,

were 0.43 � 0.06 and 0.57 � 0.04 for glucose and galactose, respectively. The estimated yield of

0.37 � 0.03 was similar to that inferred in Appendix 6—figure 1C.

While we only compare our model to data from E. coli, substitutable and simultaneous growth on

multiple nutrients has been observed in other bacteria such as Lactobacillus brevis (Kim et al.,

2009), and has even been observed in non-prokaryotic organisms. For example, the eukaryote

Kloeckera sp. 2201 has been shown to simultaneously utilize methanol and glucose as carbon sour-

ces (Kovárová-Kovar and Egli, 1998). Similarly, the methanogenic archaeon Methanosarcina barkeri

can simultaneously utilize methanol and acetate in batch culture (Scherer and Sahm, 1981). How-

ever, it should be noted that our simple model cannot describe the growth kinetics of all microbes in

all conditions. For example, the inferred strategy of E. coli for glucose varied between the batch and

chemostat experiments examined here, suggesting that the total metabolic enzyme budget of

microbes changes in different conditions. Such variation is likely due to other cell functions, such as

ribosome synthesis (Scott et al., 2010), consuming different fractions of the cell’s total material and

energy budget, something we do not explicitly model. Indeed, our goal is not to precisely model all

microbial growth phenomenon, but rather to construct a widely applicable approximation of micro-

bial growth in order to better understand ecological dynamics.

Fitting to experimental data
To fit our model to the experimental data in Lendenmann et al., 1996, we first digitally extracted

the steady-state data points from the experimental figures. We used the model from Posfai et al.,

2017 with Monod kinetics. The Ki of glucose, ribose, and fructose were taken as 73, 132, and 125

mg/L sugar, respectively (Lendenmann and Egli, 1998). The model was fit to the data and the stan-

dard error of parameters were estimated using the MATLAB curve fitting toolbox. The only parame-

ters estimated were the ai of glucose, ribose, and fructose. It was assumed that all sugars had a

biomass yield of Y ¼ 0:45, as measured experimentally (Lendenmann et al., 1996). The supply rates

for a given simulation were computed as Si ¼ cf ;id, where Si is the nutrient supply rate of nutrient i,

cf ;i is the concentration in the feed of nutrient i, and d is the dilution rate of the chemostat. The fit-

ting process minimized only the sum of squared errors between the model and the nutrient concen-

tration data, since steady-state biomass within the model is approximately constant and determined

by measured parameters (�ss »
Y
P

i
Si

d
). Confidence intervals for parameters were estimated using

MATLAB’s confint function, which computes the interval using an estimate of the diagonal elements

of the covariance matrix of the coefficients multiplied by the inverse of the Student’s t distribution.

The prediction bounds (shaded regions) are calculated using MATLAB’s predint function, which uses
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the estimated covariance matrix and the Jacobian of the fitted values to the parameters to predict

the bounds.

The data fitting procedure for the batch experimental data was similar to that employed for the

chemostat experimental data. We digitally extracted the data points from the figure in Egli et al.,

1993 and used the MATLAB curve fitting toolbox. The biomass was reported as OD546 and was con-

verted to mg/L using a conversion factor measured for the same strain (Lendenmann et al., 1996).

Two sugar data points that were taken before the first biomass measurement were removed so that

the initial conditions of the system would be well-defined. We estimated the parameters of the serial

dilution model developed in this paper assuming Monod kinetics (Equation 1). It was further

assumed that both sugars had the same yield, Y. The yield was not measured in the experimental

study and was therefore left as a fitting parameter. The Ki for glucose and galactose were 73 and 98

mg/L, respectively (Lendenmann and Egli, 1998). The three fitting parameters were the yield Y and

the strategies ai for glucose and galactose. The data points of the sugar and biomass measurements

were taken at slightly different times, so the effective biomass for the experimental data was

obtained by linear interpolation of the data points. Confidence intervals and prediction bounds were

estimated using the same methods as for the chemostat model.

Erez et al. eLife 2020;9:e57790. DOI: https://doi.org/10.7554/eLife.57790 32 of 37

Research article Ecology Physics of Living Systems

https://doi.org/10.7554/eLife.57790


Appendix 7

Supplemental figures
In this section we present supplemental figures that support the main text. Each figure’s caption

contains all pertinent information.

Appendix 7—figure 1. Serial dilution model with cycling bolus compositions. In this work we largely

consider the case of nutrient boli that contain a defined mixture of nutrient. However, in nature the

nutrient boli may not themselves contain a mixture of nutrients, but instead approach a mixed

distribution of nutrients over time. To explore we compare the case of mixed boli with that of cycled

single-nutrient boli that are varied in time to approach a mixed distribution. (A) Mean steady-state

population abundances in communities supplied with boli containing an equal mixture of two

nutrients (dashed line) or alternating boli each containing a single nutrient (solid curves). Population

abundances are averaged over a single cycle. The community is composed of 21 equally-spaced

species. For the cycling bolus case, the species that are more specialized for either nutrient become

more abundant due to a ‘single-nutrient’ early-bird effect as c0=K is increased. (B) Effective number

of species as a function of c0=K for communities supplied with cycling single nutrient boli.

Communities consist of 21 equally spaced strategies are supplied a cycle of boli approaching an

average nutrient 1 fraction of 1/2 or 1/3. The effective number of species decreases as a function of

c0=K due to the ‘single-nutrient’ early-bird effect.
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Appendix 7—figure 2. Serial dilution model with incomplete nutrient depletion. We have thus far

assumed that batches run until the nutrient is entirely depleted. However, batches might be

terminated before nutrients are completely depleted. Here we characterize the steady state of a

community of 21 equally spaced species when the batch is terminated early such that
P

ci=c0 ¼ D,

where D is the fraction of nutrient remaining at the end of the batch. In these simulations,

�0 ¼ c0 ¼ K ¼ 1, with nutrient composition ð1=3; 2=3Þ. Batches are repeated until either a relative

error tolerance is met (less than 10
�8 change between batches) or 40,000 batches have elapsed (the

large batch limit is there to account for possible critical slowing down). As can be seen, coexistence

is fairly robust with respect to incomplete nutrient consumption until D» 0:45 after which point

diversity rapidly collapses. The reduction in diversity in the system can be explained by the early-bird

effect. In a batch where complete nutrient depletion occurs, the early bird gains an early advantage

by rapidly depleting the more abundant nutrient, and then is able to consume a larger share of the

non-abundant nutrient. Therefore, if the batch is terminated early, the amount of non-abundant

nutrient consumed within the batch becomes smaller. While this makes the early bird less able to

consume the non-abundant nutrient, it more severely impacts non-early-bird species, as their growth

is more reliant on the non-abundant nutrient. As the batch terminates earlier and earlier, the system

effectively becomes competition for a single nutrient (the more abundant one). Thus, the most fit

early bird (the specialist for the more abundant nutrient) completely takes over the population.

Appendix 7—figure 3. Cumulative growth function integrals at different values of c0=K for a species

with as ¼ ð0:8; 0:2Þ growing with nutrient supplied with proportion ð0:8; 0:2Þ and initial population

�0 ¼ 1. (A) Cumulative growth integrals with c0=K ¼ 0:001. (B) Cumulative growth integrals with

c0=K ¼ 0:1. (C) Cumulative growth integrals with c0=K ¼ 10. (D) Cumulative growth integrals with

c0=K ¼ 100. When c0 � K and c0 � �0, the consumption rate of each nutrient is proportional to its
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own abundance, ci=ðK þ ciÞ » ci=K, and there is little relative change in biomass, �ðtÞ» �0. The more

abundant nutrient is consumed faster (since the strategy is matched to nutrient proportions) and the

majority of it is consumed quickly. The less abundant nutrient is consumed more slowly and a

significant portion of it remains after the more abundant nutrient is almost completely depleted. In

this way, the growth timecourse integrals are balanced to be equal. Once c0 increases relative to �0,

but c0 is not large compared to K this balance is broken. The more abundant nutrient will still be

depleted quickly. However, now that c0 is larger this initial consumption results in an increased

abundance of the consumer. This means that the less abundant nutrient is depleted more quickly,

leading a smaller growth timecourse integral for this nutrient relative to the more abundant nutrient.

Thus, in this regime, the difference between the growth timecourse integrals increases with c0.

Restoring them to equality requires more equal starting distributions of nutrients. Once c0 increases

such that c0 � K and c0 � �0, the increase in c0 now drives the growth timecourse integrals towards

equality. The growth function is now almost always saturated and this neutralizes the effect of one

nutrient starting at a much larger concentration. There will now be a significant buildup of biomass

before the nutrients are exhausted, meaning that the growth timecourses will subsequently drop

very quickly. As the growth function becomes more and more saturated, the nutrients will be

consumed in proportion to their strategy. Thus, the growth timecourse integrals will once again be

equal since the strategies match the nutrient proportions and the ’crash’ times will therefore be

similar for both nutrients.
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Appendix 7—figure 4. Dependence of coexistence boundary remapping on c0=K. As a further

exposition to Figure 3A in the main text, shown here is the difference between the remapped

coexistence boundaries and the corresponding metabolic strategies as a function of c0=K and

metabolic strategy with �0=K ¼ 10
�3.

Appendix 7—figure 5. Serial dilution model with three nutrients. (A) Example of remapping on the

three-nutrient simplex, similar to Figure 2 from the main text. Here we show how the remapping

analysis presented in the main text for two nutrients can be extended to three nutrients. Remapping

of three strategies for c0=K ¼ 1 and �0 ¼ 10
�2. Outer circles: strategies f~asg; inner triangles:

remapped nodes; lines connecting outer circles: supplies within this convex hull of strategies lead to

coexistence of all species in the chemostat regime c0=K � 1; dashes connecting inner circles:

approximate remapped convex hull boundary defining region of supplies leading to coexistence for

c0=K ¼ 1. Note that, as in the two-nutrient case, the strategies map inwards on the simplex for

c0=K » 1. (B) Steady-state effective number of species me versus c0=K for equal initial inocula of 64

species equally spaced throughout the triangular simplex competing for three nutrients. Effective

number of species shows the same trend of loss in diversity when c0=K » 1 as in the two-nutrient case

in Figure 2C.
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Appendix 7—figure 6. Large differences between Ki values can lead to multi-peaked relationships

between diversity and bolus size. Here, we present a magnified version of the community growing

with nutrient compositon ð0:3; 0:7Þ in Figure 4A, with K1 ¼ 10
�3 and K2 ¼ �0 ¼ 1. The change in the

identity of the early bird can explain how multiple diversity peaks occur in the curve shown. If the

system is near maximum diversity in the chemostat limit and the early-bird effect favors the species

that is disadvantaged in the chemostat, the system will initially be driven towards maximum diversity

with increasing c0. However, as the early-bird effect continues to strengthen, the formerly

disadvantaged species will begin to dominate the community, lowering community diversity. Then,

as c0 continues to increase and the early-bird effect weakens, the early bird’s dominance will wane,

again driving the system towards maximum diversity. Finally, the non-early-bird species will overtake

the early bird in the high c0 chemostat limit, driving diversity back downwards.

Appendix 7—figure 7. Remapping in the serial dilution model with unequal Ki and Yi. Here we show
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that varying the values of Ki and Yi can influence the direction and magnitude of the remapping,

using as1 ¼ 0:2 with �0 ¼ 1 as an example. (A) Remapping with different combinations of Ki. The

strategy we are examining devotes most of its enzyme budget to consuming nutrient 2. When there

is a large different in Ki that favors nutrient 2, inward remapping is enhanced. When there is a large

difference that favors nutrient 1, outward remapping is enhanced. Eventually, the remapping returns

to the chemostat limit. (B): Remapping with different combinations of Yi. Note that when yields are

variable the condition for the remapped point is Ii ¼
R
¥

0
Yi

ci
Kiþci

dt ¼ const. The remapped points

shown are normalized to yield (if the remapped point is ðx; 1� xÞ the normalized form is ðx�; 1� x�Þ

where x� ¼ Y1x
Y1xþð1�xÞY2

). Similar to the unequal Ki case, inward remapping is enhanced when there are

large differences in Yi favoring nutrient 2. When the Yi favor nutrient 1, outward remapping is

enhanced. Unlike in the unequal Yi case, the remapping does not return to the chemostat limit.

Appendix 7—figure 8. Batch timecourses of a bitrophic model with only two species. To further

investigate the difference between the unitrophic and bitrophic scenarios, we consider a toy system

with only two species, Species 1 with strategy ð0:05; 0:95Þ and Species 2 with strategy ð0:95; 0:05Þ.

We set the byproduct matrix for perfect conversion, G1;2 ¼ 1 and the nutrient bolus composition so

that only Nutrient 2 is provided. By the end of each batch, the same amounts of Nutrient 1 and

Nutrient 2 have been consumed. (A) Simulations with constant c0=�0 and variable c0=K. The ’early-

bird’ effect becomes stronger with decreasing c0=K, since this allows the dominant species to grow

more before the byproduct can be readily consumed. (B) Simulations with variable c0=�0 and

constant c0=K. The ’early-bird’ effect is stronger at higher c0=�0 because the larger amount of

supplied nutrient allows the dominant species to build a large population which can then

outcompete other species. Conversely, if instead of cross-feeding we were to supply in the nutrient

bolus equal quantities of Nutrients 1 and 2, the result would be equal abundance of both species.

Erez et al. eLife 2020;9:e57790. DOI: https://doi.org/10.7554/eLife.57790 37 of 37

Research article Ecology Physics of Living Systems

https://doi.org/10.7554/eLife.57790

