Auto-bifunctional Mechanism of Jagged Pt Nanowire for Hydrogen
Evolution Kinetics via End-to-End Simulation

Geun Ho Gu', Juhyung Lim', Chengzhang Wan?, Tao Cheng’, Heting Pu* Sungwon Kim', Juhwan Noh',
Changhyeok Choi', Juhwan Kim', William A. Goddard, I11**, Xiangfeng Duan®*, Yousung Jung'*

'Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and
Technology (KAIST), 291 Dachak-ro 34141, Daejeon 305-335, South Korea

*Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive
East, Los Angeles, CA 90095-1569, USA.

*Institute of Functional Nano & Soft Materials, Soochow University Dushu-Lake Campus, Box 33, 199
Ren'ai Rd, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P.R. China

“*Materials and Process Simulation Center, California Institute of Technology, 1200 E California Blvd,
Pasadena CA 91125, USA.

Abstract

The extraordinary mass activity of Jagged Pt nanowires can substantially improve the
economics of hydrogen evolution reaction (HER). However, it is a great challenge to fully
unveil the HER kinetics driven by the jagged Pt nanowires with their multi-scale morphology.
Herein we present an end-to-end framework that combines experiment, machine-learning, and
multi-scale advances of the last decade to elucidate the HER kinetics catalyzed by jagged Pt
nanowires in alkaline conditions. The bifunctional catalysis conventionally refers to the
synergistic increase in activity by the combination of two different catalysts. We report that a
mono-metal, such as jagged Pt nanowire, can exhibit bifunctional characteristics owing to its
complex surface morphology where one site prefers electrochemical proton adsorption and
another is responsible for activation, resulting in a four-fold increase in the activity. We find
that the conventional design guideline that the sites with 0 eV Gibbs free energy of adsorption
is optimal for HER does not hold in alkaline conditions, and rather, the energy between -0.2
and 0.0 eV is shown to be optimal. At reaction temperatures, the high activity arises from low
coordination number (=7) Pt atoms exposed by the jagged surface. Our current demonstration
raises an emerging prospect to understand highly complex kinetic phenomena in nanoscale in
full by implementing end-to-end multi-scale strategies.
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Introduction

Deploying renewable hydrogen as fuel promises a low-carbon economy as it burns cleanly (no
CO; production) to provide a source for nighttime electricity.! Yet, the current industrial
production chain for hydrogen involves energy-intensive natural gas reforming. It is essential
to develop economic, sustainable processes such as water-splitting electrolysis to steer the
market towards the green energy future.? Presently, commercial electrolysis cells use Pt-based
catalysts for hydrogen evolution reaction (HER) due to their high activity and stability,® but
the catalyst cost is a major bottleneck.* One direction to lowering the fuel cell cost is to
dramatically reduce the amount of Pt used while maintaining high activity through morphology
control,>® along with other strategies such as the Pt alloys’ and interfacial interaction
engineering.® Here, we focus on HER optimization via morphology control.

Generally, three reactions are known to be involved in HER (see also the bottom left corner in
Fig. 1):

o Volmer reaction (H" + e + *— H*, H,O + e + *— H* + OH"; * is a site),
. Heyrovsky reaction (H" + ¢" + H*— H, + *, HoO + ¢ + H*— H; + *+OH"), and
o Tafel reaction (H* + H* — H; + 2%).

In acidic conditions, the Volmer reaction that proceeds via proton transfer from hydronium is
accepted to be a fast reaction due to an abundance of protons in solution, while the Heyrovsky
and Tafel reactions compete for H, formation.>!° For alkaline conditions, which are
technologically attractive due to the development of anion exchange membrane and
nonprecious metal oxygen evolution reaction (OER) catalysts under alkaline conditions, the
importance of HER increases.!! To understand the origin of the slow HER Kinetics in alkaline
conditions compared to acidic conditions, three recent theoretical studies focused on the pH-
dependent HER Kkinetics for the Pt model surface.!?-14

Cheng et al. used Quantum Mechanics Molecular Dynamics to simulate the water/Pt(100)
interface and demonstrated that the hydrogen binding strengthens with increasing pH as the
Pt(100) repel water adsorption.!? Lamoureux et al. found that HER on Pt(111) proceeds via the
Volmer-Heyrovsky pathway and the proton donor changes from hydronium to water with
increasing pH.!? Intrinsically larger barrier for proton transfer from water in Helmholtz plane
to the surface is the cause of slower HER kinetics in alkaline media. Liu et al. demonstrated
similar conclusions but found that the HER proceeds through Volmer-Tafel.!*

Here, we report an end-to-end simulation of jagged Pt nanowire for HER in alkaline conditions
using a machine learning multi-scale strategy'> with kinetic Monte Carlo (KMC) to reveal
novel kinetic insights. This framework yields good agreement with the experimental
measurements. We find that both Volmer and Tafel reactions are co-rate determining step
(RDS), and notably, the monometallic jagged Pt nanowire offers a bifunctional mechanism:
bridge sites more selective for Volmer, and top and hollow sites more selective for Tafel, with
the two connected via fast diffusion of the adsorbed hydrogen atoms. The optimal hydrogen
binding strength for HER is shown to be lower than zero (irrespective of site type), implying
that the conventional design principle for HER to maximize the site activity with Gibbs free
energy of adsorption of H being zero does not hold. The present analysis of surface kinetics
reveals that top sites are the most active site for both Volmer and Tafel reaction, and those with
low coordination numbers (<7) are more active. These studies complement the recent report
from Chen et al explaining the extremely high rate for the oxygen reduction reaction (ORR) on
jagged Pt nanowires in terms of O* binding and H>O binding on adjacent sites.!®



Results and discussions

Simulation workflow and activity measurement of the jagged Pt nanowire. The kinetic
simulation is performed using graph-theoretical KMC simulation.!” We model the alkaline
HER system with Volmer, Heyrovsky, Tafel, and diffusion reactions. For the Volmer and
Heyrovsky reactions, we considered proton transfer from H,O (basic) as we perform simulation
at pH of 14.!* The Supplementary Section 1 describes the derivation of reaction energy and
activation energy using computational hydrogen electrode (CHE) and BEP relations built with
the constant electrode potential (CEP) model. To obtain adsorption energy on the jagged Pt
nanowire, we leverage the ReaxFF forcefield and effective medium theory (EMT)'%!? to
synthesize jagged Pt nanowire (structure of which is in close agreement with the experimental
chracterization>'®) and generate the small jagged Pt slabs (see Supplementary Section 4) as a
model surface of the jagged Pt nanowire.>'® We perform DFT calculations to compute the
adsorption energy of 3413 binding sites of the slabs, local environment of which are extracted'?
and converted to a labeled site representation to train machine learning model.?® We test four
models to predict Gibbs free energy of hydrogen adsorption, A,.G,4s: Atom centered symmetric
function (ACSF),?! crystal graph convolutional neural networks (CGCNN),?? Nearest atom
distance-Gaussian process (NAD-GP; developed in this work)?® and SchNet?* (see
Supplementary Section 5). The best model is applied to the jagged Pt nanowire obtained using
force field MD simulation.’ To account for lateral interaction, we develop and use the cluster
expansion model derived from experiments as discussed in Supplementary Section 6 which
sufficiently describe the H coverage on Pt surfaces.?> We derive the energetics (see
Supplementary Section 1) and apply BEP relations (see Supplementary Section 1 and 3) and
perform KMC simulation to elucidate the mechanisms. The overall framework is illustrated in
Fig. 1 and demonstrates that the emerging theoretical and machine learning methods enable the
detailed simulation of complex large scale surfaces.
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Fig. 1 | End-to-end workflow for the jagged Pt nanowire simulation. We combine the force field, density
functional theory, machine learning, and kinetic modeling to perform multi-scale simulation of the alkaline HER
of the jagged Pt nanowire. The model is validated by comparing the simulation result with experimental results,
and the mechanism is analyzed. The graphic on the bottom left shows the alkaline HER mechanism involving
Volmer, Heyrovsky, and Tafel reactions.

Validation of the model. Out of the four different machine learning models we tested for
predicting A.G,4s, ACSF showed the lowest out of sample error (0.043 eV mean absolute
error), thus, from here on, ACSF is used to predict A.G,q4s (see Fig. 2a and Supplementary
Section 5). To quantitatively validate our kinetic simulation, we experimentally synthesized
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jagged Pt nanowire using the method outlined in Ref* and measured the exchange current
density, symmetric factor, surface coverage, and Tafel slope (see Supplementary Section 8 for
detail). To measure exchange current densities, io, Butler-Volmer equation (—0.05 to 0.05 V vs.
RHE), and micropolarization linear equation (-0.01 to 0.01 V vs. RHE) were fitted.? The KMC
simulation and experiment are performed at room temperature, pH 14, and 1 bar of Ha), and
the results are compared in Fig. 2. To reproduce the experiment, Tafel barriers and Volmer
barriers are adjusted by +0.06 eV and -0.097 eV (more details are discussed later). The
simulated exchange current density (0.81, and 0.83 mA cm™ for Butler-Volmer and linear
fitting, respectively) is in good agreement with the experimentally measured (0.87 and 0.70
mA cm?, respectively). The coverage (0.57 vs. 0.66 monolayers (ML) for simulation and
experiment, respectively), and the Tafel slopes (72.9 vs. 73 mV/dec for simulation and
experiment, respectively) are in close agreement as well. One discrepancy in the symmetric
factor (0.45 vs. 0.13 for simulation and experiment, respectively) is due to the use of Pt(111)
data of Ref’® (0.44) in the model. The use of a more realistic symmetric factor for the Volmer
reaction averaged over different binding sites for the jagged nanowire would improve the
model. We discuss the uncertainty of our model below.
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Fig. 2 | Validation of the machine learning and the kinetic Monte Carlo model, and comparison with the
experiment. a A.G, 4 prediction machine learning architecture and the mean absolute error (MeanAE) for tested
models. The local environment (< 7A) of the binding site atoms (green color) is converted to labeled site
representation,”® and piped through machine learning models. We tested Atom centered symmetric function
(ACSF),?! crystal graph convolutional neural networks (CGCNN),?? Nearest atom distance-Gaussian process
(NAD-GP; developed in this work)** and SchNet,?* and used ACSF for the rest of the article (see Supplementary
Section 5 for detail). b-¢ The reaction is performed at room temperature with pH 14 and 1 bar of Ha(g) for (b) Tafel
plot. The simulated exchange current density using Butler-Volmer and micropolaization, coverage (), and Tafel
slope are shown in ¢ and are in close agreement with the experiment. £ is the symmetric factor.

Hydrogen evolution reaction mechanism. The Gibbs free energy of hydrogen adsorption,
A, G,q4s, at the zero coverage limit follows the Gaussian shape as shown in Fig. 3a. Due to the
lateral interaction, A.G,q4s shifts by 0.14 eV with the standard deviation of 0.08 eV. The Tafel
and Volmer reactions are co-RDS as shown by the degree of rate control analysis?’ in Fig. 3b
in agreement with the previous microkinetic model study on Pt(111).!* The Heyrovsky reaction
is too slow to have any kinetic contribution, but the diffusion process of the adsorbed hydrogen
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between various surface sites is very fast, at least 5 orders of magnitude faster than either the
Tafel or Volmer reactions. Fig. 3c shows the average turnover frequency of Volmer and Tafel
reaction vs. the time-averaged Gibbs free energy of adsorption, A,.G,4s. In acidic condition,
Volmer reaction (H transfer from H30") is too fast to be RDS,!*:!# thus the binding site with
A,G,qs = 0 would be the optimal as it is thermodynamically the most favorable for site
occupancy probability and H, formation.?® However, in basic condition, the center of the
Volmer (H transfer from H>O) and Tafel activity for our simulation is at A, G,qs = —0.17 eV
and A.G,qs = —0.10 eV, respectively, as shown in Fig. 3c. If adsorption and associative
desorption reactions are RDS, the optimal A.G, 4 is observed at which the two reactions have
equal activity.?® As Volmer reaction is faster for A.G,qs < 0, A;G,4s lower than 0 eV is more
optimal for the alkaline condition. This indicates that the design principle (e.g., A.G .45 based
screening) is not the same for the acidic and alkaline conditions. To understand the optimal
A, G,qs, We simulate a single site Pt system using mean-field microkinetic model, and plot the
A, G,q4s with the highest activity at 0 V vs. RHE, A Gyags opt, in Fig. 3d. The A G,qs opt 18 -0.16
eV at pH 10 (where the alkaline Volmer is the adsorption RDS!*!%) and increases to -0.09 eV
at pH 14.
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Fig. 3 | Analysis of kinetics on jagged Pt nanowire at 298K. a zero coverage limit vs. dynamic A:Gags calculated
at pH 14 and -0.05 V vs. RHE. b the degree of rate control,”” d Inr;/d(—G°,¢;/RT) at pH 14 and -0.05 V vs.
RHE. ¢ averaged turnover frequency vs. A.G,q4s at -0.05 V vs. RHE where the shaded region indicates the 95%
confidence interval and d the optimal Gibbs free energy of adsorption, A,G,qs opt> V- the pH at 0 V vs. RHE.

Auto-bifunctional mechanism of jagged Pt nanowire. The co-rate determining steps, the
difference in the center of activity with respect to A.G,q4s, and the wide A.G,4s distribution
indicates that the jagged Pt nanowire has a bifunctional mechanism. To demonstrate this, we
analyzed the micro-spatial reaction network of the jagged Pt nanowire as shown in Fig. 4. The
bifunctional catalyst uses a combination of two active sites to overcome two rate-determining
steps to improve the overall activity. Conventionally, the two different catalysts are physically
mixed or co-synthesized to create the bifunctional catalyst. Here, we find that a mono-metallic
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catalyst can exhibit bifunctional characteristics via morphology. For a site with A.G,45 of 0.0
eV, Volmer reaction is the RDS with the Gibbs free energy of activation (Fig. 4a), G, ¢, of 0.68
eV, while, for sites with A.G,4s 0f -0.12 €V as an example, the Tafel reaction is the RDS with
Gaf, 0£0.74 eV (Fig. 4b). On the jagged Pt nanowire, both of these sites co-exist on the surface,
hence a monometallic auto-bifunctional mechanism is observed where proton
electrochemically adsorb on one site (Volmer favored sites) and diffuse to a site with faster
Tafel reaction to form hydrogen (Tafel favored sites).

Fig. 4d visualizes the difference in the Volmer and Tafel reaction rate and the diffusion between
sites showing the bifunctional chemistry of the jagged Pt nanowire. The benefit of the
bifunctionality can be measured by comparing the current density with and without hydrogen
diffusion. We find that the activity increases by four-fold (461%) with hydrogen diffusion. To
understand the bifunctional effect, we build a microkinetic model with two sites, A,.G,qs Of
which are different from each other. Fig. 5 shows the activity gain resulting from coupling the
two sites, which demonstrates that the combination of a site with A.G,4s > 0 and a site with
A, G,qs <0 can lead to more than two orders of magnitude increase in activity. This bifunctional
gain has been hypothethically predicted to occur in certain conditions,’® where we indeed
confirm that the bifunctional gain occurs in the jagged Pt nanowire.
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Fig. 4 | Bifunctional catalysis of the jagged Pt nanowire. a-b demonstrates the hydrogen evolution energetics
for A.G,qs 0f (a) 0.0 eV and (b) -0.12 eV. For a, and b, Volmer and Tafel reactions are rate-determining steps
(RDS), respectively. The energetics in the top right corner of ¢ demonstrates the bifunctional mechanism where
the proton can electronically adsorb at Volmer favorable site and diffuse to Tafel favorable site to form Ha). The
nanowire visualization in d demonstrates the binding sites’ reaction preference in colored symbols (Circle, square,
and triangles are top, bridge, and hollow sites, respectively) where the blue and red color indicates a faster rate in
Tafel, and Volmer reaction, respectively. We use the range between 5 and -5 as the standard deviation of the
activity difference is ~5.11 s'. The arrows represent the direction of the net flux of hydrogen diffusion where
darker black indicates larger net flux. The bifunctional mechanism accounts for a four-fold increase in activity.
The reaction condition is pH 14, 298 K, and -0.05 V vs. RHE.
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Volmer and Tafel activity by site type. We find that the activity is correlated to the binding
site type. The activity of the Volmer and Tafel reaction is the highest for the top site as shown
in Fig. 6a and c. The top sites behave as the active centers on the jagged Pt nanowire due to the
favorable A,G,q4s distribution as shown in Fig. 6d and e. The difference between the site-
averaged activity of the Volmer and Tafel reactions shows that Volmer reaction is faster for
the bridge site and Tafel reaction is faster for the top and hollow site (Fig. 6b). Thus, the top
sites consume all of the hydrogen atoms diffused from other top sites, and, as the Tafel reaction
is faster, top sites also consume other hydrogen atoms diffused from the bridge sites.
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Fig. 6 | The HER activity of jagged Pt nanowire by the site. The average rate, 7, of Volmer (a), Tafel (¢), and
their difference (b) by sites. The distribution of A.G 4, of sites (d) and the sums of A,.G, 45 of two connected sites
(e). The top sites are high in both Volmer and Tafel activity. The higher density of the top sites at A,.G,45 < 0.0
eV results in higher Volmer activity. For Tafel activity, the optimum occurs at 0.0 eV as it optimizes the activation
energy and the site occupation probability. The top sites have the highest Tafel activity as top-bridge and top-
hollow pairs are dense near A.G,4,=0.0 eV

Identification of active sites. We assess the correlation between activity and local binding site
environment using unsupervised learning methods: smooth overlap of atomic positions
(SOAP),*!  average kernel,® and t-stochastic  neighbor  embedding (t-SNE)  dimensional
reduction analysis.>®> The SOAP and the kernel compute the similarity between the binding
sites’ environment, and t-SNE reduces the binding site environments into two-dimensional space. Fig. 7a plots
the two-dimensional representation of binding site environments with A,.G, 4 as color. Not surprisingly we find
that the A, G4 is correlated to the coordination number (CN) as shown in

Fig. S10.3* We plot CN vs. A.G,4s in Fig. 7b. For the top site, the correlation between CN and

A.G,qs 1s obvious, and the sites with CN < 7 are more optimal. Synthesizing the low
coordinated Pt atoms can further improve the activity. The correlation between CN and A.G 45
is weak for the bridge site and disappears for the hollow site. To identify structural motif
besides CN, we manually compared structures of optimal and non-optimal sites, but no
apparent trend could be found. Hence, the machine learning models can understand structural
motifs beyond comprehensible motifs. Also, we plot the A.G,4s and coordination number of
top sites of the nanowire segment in Fig. 7c to demonstrate that exposed, low coordination sites
are closer to the optimal A.G,q4s.
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Fig. 7 | Visualization of the active binding sites. a Points and the distance between them represent the site and
the dissimilarity between the sites visualized using SOAP descriptor,’! average kernel,*? and t-SNE dimensional
reduction analysis.>* The points are colored by sites’ A.G,4s for top, bridge, and hollow. As shown in Fig. S10,
the structural unsupervised learning aligns the site environments based on the local Pt density (number of Pt atoms
within 7 A of the site) along the circular shape, while the direction orthogonal to the circle is correlated with the
coordination number. The change in A.G,4, (heat color) is more evident in the orthogonal direction, indicating
that the A.G,qs correlates with the coordination number. b Subsequently, the A.G,4s is plotted against the
coordination number. ¢ A segment of Pt nanowire is visualized where the Pt atoms are colored by the distance
from the optimal A.G,qs = —0.1 eV. The magnification shows that the Pt atoms with low coordination number
have more optimal A,.G 4.

Limitations of the Model. Due to the multiscale nature of the phenomena and various
associated methodologies used here, we address uncertainties of our results and discuss several
limitations in this section. As mentioned previously, Tafel barriers and Volmer barriers are
adjusted by a constant shift of +0.06 eV and -0.097 eV in constructing the BEP relation to
reproduce the experimental current density as a function of applied potential. We note that the
Tafel reaction BEP relations thus obtained fall within the data points constructed in Sktilason
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et al’ for Pt(111), Pt(110), and Pt(100) (Fig. S7). These constant adjustments are similar to
those of the microkinetic model developed on Pt(111)!* where Volmer barriers were adjusted
by -0.07 eV and -0.03 eV for 0 ML and 0.83 ML, and Tafel barriers were adjusted by +0.05
eV for 0.83 ML. Also, the adjustment is within the standard deviation of Tafel and Volmer
barriers calculated on Pt(111) using BEEF-ensemble®> by Lamoureux et al (0.31 and 0.12 eV,
respectively).!3

We quantify the impact of the important parameters’ uncertainty on the reproduced
measurements and conclusions. In addition to Volmer and Tafel reactions (Fig. 3), the lateral
interaction parameter is a sensitive parameter with a degree of rate control of 0.431. Thus, using
the 95% confidence interval of Volmer barriers, Tafel barriers and lateral interaction parameter,
the upper and lower bound of the Tafel slope, and exchange current density are calculated
(Table S3). Overall, the experiment reproducibility is not significantly affected. The Tafel slope
has the highest uncertainty from the Tafel barriers (71.1 to 85.7 mV/dec). While the Volmer
reaction has the highest uncertainty in io (0.36 to 1.72 mA cm), the iy is reproduced within an
order of magnitude. The uncertainty in the bifunctional gain ratio is the largest with the Tafel
barriers (278% to 612%; see Table S3). Overall, the bifunctional mechanism is consistently
observed well within the uncertainty. We also assess the A:Gags distribution vs. CN within the
uncertainty for the active site identification (Fig. S8). The lateral interaction parameter has the
highest uncertainty in A:Gads, but the lower coordinated Pt atoms remain as the active sites.

Our explicit/implicit hybrid DFT calculations have limitations in describing the Pt/water
interface such as the pH-dependent interfacial water structure!%3¢37 and cation effect.*®*! The
hydrogen binding strength correlates to the peaks in the underpotential deposition region and
has shown to become stronger with increasing pH on Pt(100).>® The quantum mechanics
molecular dynamics study demonstrated that the enhanced binding on Pt(100) is due to the
stronger electric potential used in alkaline conditions.!? Also, the water structure becomes more
rigid in strong electric field which may slow down the overall HER kinetics.’” Cations form
hydration shell in Helmholtz plane,*®-%4! and the HER activity and activation energy changes
depending on the cation element.*®*° Quantifying these effects computationally for the jagged
Pt nanowire is difficult due to the computational cost of the large scale explicit simulation, but
some adjustments made to our model to reproduce the experimental current density may have
contributed to implicitly and partially account for these fine effects.

Conclusions

We demonstrated the end-to-end framework to simulate the kinetics of jagged Pt nanowires
with complex morphology using machine learning multiscale strategy, in good agreement with
the experimental results in alkaline conditions. As Tafel and Volmer reactions are co-rate
determining steps with distinct BEP relations, we find that the optimal A.G,4 for the overall
rate in alkaline conditions is lower than that in the acidic condition (A.G,4s < 0). Owing to the
co-rate determining step and the wide distribution of A.G,4s, the jagged Pt nanowire shows the
auto-bifunctional mechanism where the stronger binding sites adsorb proton and weaker
binding site activates hydrogen. The top sites are the most active for both Volmer and Tafel
reactions, but, as the Tafel reaction is faster, top sites also consume hydrogen diffused from
bridge sites. Unsupervised-learning demonstrates that A,.G,4s is correlated to the coordination
number, and we find that sites with CN < 7 are associated with high activity. Beyond the single
metal catalyst, we believe that the demonstrated end-to-end simulation framework has the
potential to elucidate the synergistic mechanisms of multi-component alloys and metal-support
catalysts, and aid in the design of effective catalysts.
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Methods

Energetics. To compute the Gibbs free energy of reaction, A.G, and activation, G, ¢, we use
the computational hydrogen electrode (CHE). A,.G for the four reactions are

Volmer: A.G = A,Gyqs; + €Usyg +1n10 kgTpH
Heyrovsky: A,G = —AGuqs; + eUsyg +1n10 kpTpH
Tafel: A,G = —ArGags; — ArGags,j

Diffusion: A G = A Gags; — ArGags,j

()

where A.G,qs; 1s the Gibbs free energy of H» adsorption for site i, Usur is electrode potential
referenced from the standard hydrogen electrode, kg is the Boltzman constant, and 7 is the
temperature. For Tafel reaction, i and j indiciates the two site undergoing the hydrogen
coupling, and, for diffusion reaction, hydrogen is diffusing from site j to i. G, ¢ are computed
by

Volmer: G,¢ = a(ArGags,i) + (1 — feUsyg + G ¢

Heyrovsky: G, ¢ = a(—A;Gaqsi) + (1 — f)eUsyg + G4

Tafel: Gy = @ArGags(—ArGads,i — ArGads,j) + (1 — f)eUsyg + G4
Diffusion: G,¢ = 0.435A,Gags; — 0.565A,Goqs; + 0.184

)

where a is the slope of for the dependence of G, ¢ on coverage, fis the symmetric factor, G°, ¢
isthe G, ¢ at A Goqs = Usyg = pH = 0. We used the parameters from the literature if available.
Otherwise, we used DFT with CEP method*? to parameterize them. The derivation of these
equations, the source of parameters, and the computation of the constants are discussed in
Supplementary Section 1. The DFT calculation details and the DFT calculation of missing
parameters are discussed in Supplementary sections 2 and 3, respectively.

Adsorption energy calculation using machine learning. We compute the adsorption energy
of hydrogen using a machine learning model. To train our model, we used DFT to compute
3413 adsorption energies of various sites on jagged Pt slabs made using ReaxFF (see
Supplementary Section 4). We used atom centered symmetric function®! to compute binding
energy as it performed the best out of several models we tested. We used the labeled site
representation and ensemble method discussed in our previous work.?° To identify binding sites
on jagged Pt nanowire, we used the alpha shape algorithm which yields surface area close to
those obtained with the cyclic voltammetry curve.’>?° The details of the alpha shape algorithm,
model cross-validation, and implementation are discussed in Supplementary Section 5.

Coverage effect. We derived a cluster expansion model to calculate differential adsorption
energy with respect to the coverage from 11 experimental data of Pt(111), Pt(100), and Pt(100).
We find that the change in differential adsorption energy is fairly constant with respect to the
spatial hydrogen surface density. We exploit this to increase the energy of the system during
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KMC simulation by 0.098 eV, for every pair of hydrogen within 2.78 A. The details of the
derivation are discussed in Supplementary Section 6.

Kinetic Monte Carlo simulation. We implement the graph-theoretical kinetic Monte Carlo
algorithm as outlined in Stamatakis et al,'” and implemented the reaction constant scaling
presented by Nufiez et al*? to speed up the simulation. The detailed pseudo-code is provided in
Supplementary Section 7. The Volmer and Tafel rate of a site i is calculated by

_ NVolmer,i
rVolmer,i - t

_ 1 NTafel,i,j
T'Tafel,i - ? 2

J

)

where ¢ is the total KMC simulation time, Nvolmer,i is the number of Volmer reaction occurred
involving site 7, Ntafeli; s the number of Tafel reaction occurred from the site i and ;.

Experiment. The experimental detail is discussed in Supplementary Section 8.

Data availability

All data used to generate the results in this paper is found at https://github.com/kaist-amsg. The
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1. Gibbs free energy of reaction and activation

Our model for Gibbs free energy of reaction (A;G) and activation (Ga) for the electrochemical
reaction of a proton on the surface depends on three factors: (1) pH, (2) electrode potential and
(3) coverage. Here, we summarize the derivation of A:G and G, which is an extension of Ref.!-?
Though we only simulate alkaline chemistry (proton transfer from H>0O), we summarize
derivation for acidic conditions (proton transfer from H3O") as well.

1.1. Computational hydrogen electrode

The computational hydrogen electrode (CHE) pioneered by Nerskov and coworkers provides
a convenient way to account for the electrode potential for electrochemical reactions.® The key
for this method is to treat the electrochemical reaction as the removal/addition of a proton and
an electron and the usage of the standard hydrogen electrode (SHE) as the reference electrode.
For SHE reference electrode, the electrode potential is zero when

+ - 1 4
Hag +e™ = 7Ha ®

is in equilibrium at the Ha(g) pressure of 1 bar and pH of 0. Thus, the sum of chemical potentials
at each side of the reaction is equal.

o oV _ o
Konty T He =5 1y ®)

where ,ul{] SHE indicates the chemical potential of species i at the SHE referenced potential of
Usyg- To compute the chemical potential of proton and electron, the equation is rearranged and

uJSHE is added to both side of the equation:

1
. U
'u—on-aq) + ‘Lle_SHE = Eﬂon(g) - eUSHE, eUSHE — 'u_gY — Me_SHE (6)

To account for the change in the chemical potential due to the pH, ‘uOHE'aq) =ty
In 10 kgTpH is substituted:

1
Mot + ”g_SHE - E”OHZ(g) —eUsyg —In10 kgTpH (7)

The equation (7) can be conveniently used to calculate the energetics for electrochemical
reactions involving proton and electrons using DFT as it only requires the DFT calculation of
hydrogen gas.
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1.2. Gibbs free energy of reaction

The Volmer reaction, HZ’aq) + e~ +*— H”, is the electrochemical adsorption of proton where
* indicates the binding site. The A:G of this reaction is

U
ArG = HUyxi — Hai — MH-('-aq) - Me_SHE (®)
for a site i. Substituting the equation (7) to the (8) results in

1
ArG = Ui — P — EHOHZ(?J + eUsyg +1n10 kgTpH ©)

The first three terms are equivalent to the Gibbs free energy of hydrogen adsorption at site 7,

1

ArGads,i = Uys«i — M*,i - E.uon(g) (10)
Thus A:G for the Volmer reaction is
Volmer: A.G = A,Gyqs; + €Usyg +1n10 kgTpH (11)

Similarly, the previous steps can be applied to Heyrovsky reaction, HE’aq) +e +H" -
Hy(g) +x*, resulting in:

Heyrovsky: A,G = —AGuqs; + eUsyp +1In10 kpTpH (12)

The Tafel reaction, H* + H* - Hy(g) + 2 *, does not involve proton and electron, and the
electrode potential dependence is trivial,* thus it is

Tafel: A,G = —ArGags,i — ArGags,j ()

where A.G,qs; 1s the hydrogen adsorption energy for a site i. In the case of an alkaline reaction,
using that the water dissociation, H,0) = HELaq) + OH(,q), Is fast and equilibrated simplifies
the derivation.

Huy0q) = Myt + Hong,,, (14)
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For example, the ArG of the basic Volmer reaction, H,O(y + e~ +*— H* + OH(,), is:

U
ArG = ArGags + .uOH(_aq) - 'uH20(1) - ‘ue_SHE (15)

Substituting the equation (14) to (15) results in (8), thus the A;G for the acidic and basic Volmer
reaction is the same, which is also the case for the Heyrovsky reaction. The diffusion between
site is a non-electrochemical reaction thus the reaction energy is the difference in the adsorption
energy:

Diffusion: A,G = A Gags; — ArGags,j (16)

where hydrogen atom diffuses from site j to site i. We note that the coverage effect — the
interaction between the adsorbates — are included in the calculation A.G,4s which we discuss
in section 6.

1.3. Gibbs free energy of activation

The pH, electrode potential, and coverage effects manifest to the Gibbs free energy by affecting
the energy of various states as summarized in Fig. S1 for Volmer reaction. Four states are
considered for the acidic and basic condition: (1) H(+aq) +e +x*, (2) H(J“HP) +e” +x* (3)
transition state, and (4) H" for acidic and, (1) H,O(jy + €™ +x*, (2) transition state (3) H* +
OH ypy, and (4) H* + OH_,, for alkaline. HELaq) and OH ) represents the proton and OH™ in
the bulk liquid as opposed to HE’HP) and OHyp) in the Helmholtz plane. Thus, the energetic

difference between the (HP) and (aq) states represents the energy to shuttle the ion from the
bulk liquid to the near-surface. Hence, HEFHP) + e~ +x* represents the initial state that one would

use to compute the barrier of proton transfer reaction using DFT and vice versa for OH yp).

Another point to note is that, for the acidic proton transfer, since the initial state represents
proton in the non-bulk state, DFT calculated TS needs to be referenced from the final state (H*)
as it only has water in the Helmholtz plane.
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Acidic Volmer Basic Volmer

pH Effect
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0G4

W OH-(aqV*—H*

Fig. S1 | pH, potential, and coverage dependent reaction energetics for acidic and basic Volmer reaction. The
same strategy can be applied to Heyrovsky reaction.

When the pH changes, only the chemical potential of H@q) is affected, as it represents the bulk
proton chemical potential. On the other hand, a proton in the Helmholtz plane (HE“HP) )
represents the particular, rarely observed configuration of water where the proton is near the
surface, thus its chemical potential is not affected by the pH. Similarly, for basic reaction, only
the chemical potential of OH g is affected. As a result, only Gur, and Ga, are affected by pH
for the reaction involving the proton transfer from hydronium, and water, respectively. Thus,
Gae(pH) = G°,¢ +1In 10 kgTpH for acidic transfer and G, .(pH) = G°; —In 10 kgTpH for
alkaline transfer.

For the change in the electrode potential, stable states involving electrons are shifted by
—eUgyg. In the case of the transition state, energy is only shifted by the amount of the electron
transfer involved in the transition state, which is the charge transfer coefficient, f. The energy
of the transition state is shifted by —feUsyg. Since the energy of the initial states also shifts
for the proton transfer reactions, G, ¢(Usyg) = G°¢ + (1 — B)eUsye.

The change in reaction energy due to the coverage has been well-studied in the field. The
increase in coverage increases the energy of H*, uy,, by laterally interacting with other
adsorbates and ultimately increases A.G,4s via equation (10). The change in the G, are often
described using Bronsted—Evans—Polanyi (BEP) relation: G, ¢ = @A, G,qs + G°, ¢ for Volmer
reaction, G,¢= a(—A.G,qs) + G°¢ for Heyrovsky reaction, G,f= a(—A.Gagsi —
A Gags,j) + G°4 ¢ for Tafel reaction, respectively. For Tafel reaction, i and j represent the two
binding site involved in the Tafel reaction. We discuss in detail in section 6 below how lateral
interaction dependent py,is computed.
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In summary, the G, ¢ are computed by:

Acidic reaction

Volmer: G,¢ = a(AGagsi) + (1 — feUsyg +1In10 kgTpH + G°, ¢

Heyrovsky: G, ¢ = a(—A Gaqs;) + (1 — f)eUsyg + In10 kgTpH + G°, ¢

Basic reaction

Volmer: G,¢ = a(ArGags,i) + (1 — PeUsyg + G ¢ (17)
Heyrovsky: G, ¢ = a(—AyGaqsi) + (1 — f)eUsyg + G4

Surface reaction

Tafel: Ga,f = a(_ArGads,i - ArGads,j) + Goa,f

Here, the G°,¢ is defined at A.G,qs = Usyg = pH = 0. The parameters, a, B, and G°, ¢ are
retrieved from the previous works on the H/Pt system when possible (Table S1). We could not
find a for the basic Volmer and Heyrovsky reaction so we develop the BEP relationship as
discussed below. Also, £ for the basic Volmer reaction is missing, which we assume is the same
as the acidic Volmer reaction.

Table S1 | The parameters and their source for computing G, ¢ using the equation (2). The bold value in parenthesis
indicates a model adjustment to reproduce experimental observation.

Reaction o S G ¢ 0. source p source G°, ¢ source
Basic Volmer 0.881 0.44 1.270(1.173) This work  Ref*® Ref?
Basic Heyrovsky  0.511  0.59  1.360 This work  Ref? Ref?

Tafel 0.462 0.514 (0.574) Ref* Refsh

2 f of acidic Volmer reaction from the reference used.

b Data sets for (111), (100), (110) are combined to calculate this parameter.

The diffusion-reaction is non-electrochemical and we use the diffusion BEP relationship
universal for various adsorbates and elements® where

Gar = —0.13Gys — 0.11 (18)

Here, Gig represents the binding energy of hydrogen relative to its gaseous state:
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1
GIS = UH« — Us — .uoH(g) = ArGads,i - MOH(g) + EHOHZ(g) (19)

This method only uses the initial state energy, thus the forward barrier calculated using the
binding energy of the initial site and the reverse barrier calculated using the final site are not
consistent (i.e. Ear# Ea; + A:E). To ensure thermodynamic consistency, we use the average
of the two barriers. We note that the averaging does not affect the result as diffusion reaction

is not a rate determining step. Using _.UOH(g) + % ,u°H2(g) = —2.27 eV, G,¢ for hydrogen
diffusion from site j to i is

Diffusion: G, ¢ = 0.435A.Gags; — 0.565A,Gygs; + 0.184 20)
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2. Density functional theory calculation details

In this work, we use density functional theory (DFT) for (1) computation of A,.G,q4s to train
prediction machine learning model, and (2) development of BEP relationship. Here we
summarize the DFT parameter sets used. We perform DFT calculations using the Vienna Ab
initio Simulation Package (VASP).” Exchange and correlation energies are computed with the
revised Perdew, Burke, and Ernzerhof (RPBE) functional,® where the core electrons are treated
with the projector augmented-wavefunction (PAW) method.”*!* We use a plane-wave basis set
with a 400 eV kinetic energy cutoff for the valence electrons. The Brillouin zone is integrated
using a 2x2x1 Monkhorst-Pack k-mesh!! for the machine learning data (cell size equivalent to
4x4 Pt(111) and Pt(100) slab), and 3x3x1 Monkhorst-Pack k-mesh for the BEP relationship
data (c(4x4) Pt(111) slab) with a Gaussian Methfessel-Paxton smearing of 0.1.!2 The geometric
optimization is performed until the residual force is less than 0.05 eV/A.

For the calculation of the BEP relationship, the implicit solvation calculations are performed
using the generalized Poisson-Boltzmann model as implemented in the VASPsol,'*!4 and the
constant electrode potential (CEP) method.!> The bulk relative permittivity of the water (78.4)
is used. The Debye length is set to 3 A, corresponding to a 1 M concentration of electrolyte
(e.g. IM KOH in our experiment). We add OV correction to address the spurious interaction
between the finitely separated the slabs, where the Q and V are the net charges of the slab and
the negative value of the electrostatic potential of bulk electrolyte, respectively.!®
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3. Bronsted—Evans—Polanyi (BEP) relation development

To build a database for alkaline Volmer and Heyrovsky BEP relations, we employed a three-
layer slab of c¢(3x4) with an optimized crystal lattice constant of 3.990 A. To find the transition
state (TS) structure, we used the nudged elastic band to obtain the TS structure!” which is
refined at 0 V vs. SHE using the improved dimer method.!® We considered Heyrovsky reaction
at 0.08, 0.50, 1.00, 1.08, and 1.25 monolayer (ML), and for Volmer reaction at 0.00, 0.25, 0.42,
0.50, 0.58, 0.75, 0.83, 0.92, 1.00 and 1.25 ML. The established BEP relationship is shown in
Fig. S2. Here, we only extracted the slope, a, for the G, ¢ calculation as shown in Table S1 for
the reasons we describe below. The obtained slopes for basic Volmer (0.881) and Heyrovsky
(0.511) are similar to those obtained for acidic Volmer (0.71) and Heyrovsky reactions (0.59).°
The slope for the basic Volmer reaction is also similar to the slope of the basic Volmer reaction
(0.827) of Liu et al."” A recent publication?® discusses that the CEP method inconsistently
describes the electrode potential due to multiple capacitances in the system, which can result
in the deviation of G°, (intercept). The G, ¢ obtained from Ref® using the constant charge
method is 0.42 eV and 1.20 eV for Volmer and Heyrovsky at pH of 14, H* coverage of 0.00
ML and 0.08 ML in ¢(3x4) slab. At the same pH and H* coverage, we obtain 0.804 eV and
1.961 eV using the CEP method, respectively, which deviate significantly. Thus, we use the
G°, ¢ of the constant charge method by referencing to the G, ¢ at pH 14, and H* coverage of
0.00 ML and 0.08 ML.

2.5
<20 F
d
(;‘;"1.5 i Volmer
Heyrovsky
1.0 1 1 1 1 1

-06-04-0.2 0.0 0.2 04 0.6
ArGads [eV]

Fig. S2 | The coverage dependent alkaline BEP relationship for Volmer and Heyrovsky. The dotted line indicates
the 95 confidence interval of the relations.

4. ReaxFF MD Simulation of the jagged Pt nanowire

To get a realistic structure of jagged Pt nanowire, we implement the force field based methods
outlined in Ref?! which reproduces experimental characterization. Specifically

1. The infinite nanowire (1D system) is constructed based on the fcc Pt crystal structure
where the z-axis of the nanowire is along the (111) direction. Along the x- and y-axis there are
13 and 9 Pt atoms. This choice was made to expose (100) facets.

2. The 1D model is replicated to 220 individual unit cells along the z-axis of the wire.

3. 85% of the Pt atoms are randomly selected and removed to simulate the Ni dealloying
of 85:15 Ni:Pt nanowire.
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4. The conjugate-gradient local relaxation is performed with a fixed-cell using the ReaxFF
force field. The maximum change in Cartesian coordinates is limited to 0.1 A to avoid
disruption of the original structure. The nanowire is converged to 4x10° eV on the energy and
4x10® eV/A on the force.

5. Another relaxation is performed with a relaxed cell along the z-direction at a pressure
of 1 atm.

6. The NPT Molecular Dynamics (MD) simulation is performed at 343 K for 520 ps (20
ps equilibration followed by a 500 ps run).

7. The least coordinated atoms which would be leached away during ORR cycling are
removed.

8. Another NPT Molecular Dynamics (MD) simulation is performed at 343 K for 520 ps
(20 ps equilibration followed by a 500 ps run)

9. We relax the final structure using an EMT force field.?

Step 3 - 9 is applied to 4x4 Pt(111) and Pt(100) slabs to build a training set for the machine
learning model where the number of slab layers is modified so the resulting slab would contain
64 Pt atoms.
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5. Gibbs free energy of adsorption prediction via machine learning
model development

As the jagged Pt nanowire surface is highly irregular and large, DFT is impractical to predict
binding energy. Here, we leverage the machine learning model to make fast predictions on

Ar.“ads-
5.1. The Gibbs free energy of adsorption database

We sampled 200 structures for Pt(111) and Pt(100) each from the ReaxFF MD simulation
protocol discussed above. We identified five to six binding sites, and their A.G,45 Were
calculated using the DFT calculations (section 2), resulting in a total of 3413 data points. For
geometric optimization, the Pt atom positions were fixed to preserve the geometry, while the
H was allowed to move freely.

Our property of interest is A.Gaqs = Ups — Use — %,u°H2(g) as discussed above. Here, u, is the
DFT calculated empty slab energy, (i°y, © is the Gibbs free energy of the hydrogen gas at 1

bar where we account for the translational, rotational, and vibrational degree of freedom, and
Un. 1s the Gibbs free energy of adsorbed hydrogen where the vibrational degree of freedom has
been accounted for. For the vibrational contribution, we used the vibrational frequency
obtained from Pt(111) hollow site for all 3413 calculations to reduce the computational cost.

5.2. Data preprocessing for machine learning model training

In this work, we tested the predictive accuracy of four different models: Atom centered
symmetric function (ACSF), crystal graph convolutional neural networks (CGCNN),*
SchNet,> and Gaussian Process.?® For the neural network model, we use the labeled site
representation.?’” The labeled site is a simple representation involving labeling the binding site
atoms. In this work, we label the binding site atoms by substituting the elements of the
hydrogen interacting Pt with an element.?” To find the binding site atoms, we use the alpha
shape to identify top, bridge, and hollow binding sites and designate the binding site closest to
the hydrogen as the hydrogen interacting binding site. The alpha shape is a shape formed by
tetrahedral polygons of a set of points where a sphere of radius larger than a user-defined size
cannot enter the polygons (See Ref?’ for the detailed explanation). By defining the sphere size
as the sum of Van der Waals radius of hydrogen and platinum (2.84 A), we can define the Pt
surface where hydrogen gas would not be able to diffuse through without covalently interacting
with the Pt surface. After the surface is defined, surface points, connection between points, and
the center of the trigons of tetrahedral polygons become the top, bridge, and hollow site
respectively. At this sphere size, the calculated electrochemical surface area (ECSA) is 106.8
m?/g comparable to the experimental ECSA of 112.9+5.4 m?/g?® and 118 m?%/g.?!

To convert the DFT converged structures to machine (neural network) understandable
representation, we focus on the local environment of the binding site similar to those introduced
by Chen et al.>® We used 7.0 A from the binding site as a cutoff distance based on the first peak
at 3.5 A in the Pt-Pt radial distribution functions in jagged Pt nanowire to create machine
learning representation. For the preparation of Gaussian process descriptors, we extracted the
distance between the Pt atoms and the binding site for the 12 nearest Pt atoms. We designate
this model as the nearest atom distance (NAD).
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5.3. Model training and validation

In our previous work, we found that using the average of multiple models reduced model bias
and improve the binding energy prediction accuracy, so-called ensemble modeling.?” Here, we
also use ensemble methods for predicting binding energy. To test our model, we hold out 10%
of the dataset for testing and performed 5-fold CV using the rest of the data set (Fig. S3). Thus,
we form five models for each method, and predictions are made to the 10% test set where the
predictions are averaged before comparing with the true binding energies. As shown in Table
S2, using the average prediction of five models shows higher accuracy than using one model
alone. We also tested averaging the predictive accuracy of multiple model frameworks (e.g.,
ACSF and CGCNN), but the improvement was minimal. Here, we find that the ensemble of
ACSF models shows the best performance with a mean absolute error of 0.043 eV, thus we use
ACSF for predicting binding energies.

Test Validation Training

Fig. S3 | Test, validation training split visualization for the 5-fold cross-validation used in this work.

Table S2 | Out-of-sample (test) set error statistics for various models considered. The red values indicate the
lowest value within the columns. The plus sign indicates the combination of multiple machine learning methods.
NAD is the Gaussian process method that uses the distance of Pt atoms nearest to the binding site as descriptors.

Root

Mean Max
Model absolute gcllff;?e d absolute

error (eV) - error (eV)
ASCF* 0.046 0.060 0.227
NAD* 0.057 0.073 0.283
CGCNN* 0.057 0.072 0.267
SchNet* 0.069 0.088 0.306
ASCF 0.043 0.056 0.221
NAD 0.057 0.073 0.287
CGCNN 0.056 0.071 0.243
SchNet 0.068 0.088 0.336
ASCF+NAD 0.046 0.059 0.211

S12



ASCF+CGCNN 0.044 0.057 0.214

ASCF+SchNet 0.049 0.064 0.202
NAD+CGCNN 0.051 0.066 0.243
NAD+SchNet 0.057 0.074 0.279
CGCNN+SchNet 0.057 0.074 0.240
ASCF+NAD+CGCNN 0.046 0.059 0.207
ASCF+NAD+SchNet 0.049 0.063 0.231
ASCF+CGCNN+SchNet 0.049 0.063 0.201
NAD+CGCNN+SchNet 0.054 0.069 0.252
ASCF+NAD+CGCNN+SchNet  0.048 0.062 0.223

*Best model out of five

5.4. Application to Jagged Pt Nanowire

To apply our model to the various Pt surfaces considered for KMC simulation, the alpha shape
strategy discussed in section 5.2 is applied to the force field obtained Pt surfaces to find binding
site atoms. Then, the site labeling and local environment pruning (see section 5.2.) are applied
to predict binding energies.

S13



6. Coverage effect model development

To apply the coverage effect introduced in Section 1, we need to model the lateral interaction,
the repulsive interaction between the adsorbates. Here, we derive the hydrogen-hydrogen
interaction energy from the experiments using the mean-field Ising (cluster expansion) model.
We collected differential energy of adsorption for Pt(111), Pt(100), and Pt(110) from three
different studies®*-*? and plotted it against the hydrogen surface density as shown in Fig. S4.
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Fig. S4 | Differential energy, enthalpy, and Gibbs free energy of adsorption vs, the hydrogen surface for Pt(111)
(Square), Pt(100) (diamond), and Pt(110) (triangle). Blue, gray, yellow, orange, and green colors from Ref,*°
Ref,>* Ref,** Ref,3! and Ref,*? respectively. Y-axis value of Blue is Gibbs free energy (AG), those of gray and
yellow are electronic energy (AE), and those of orange and green are enthalpy (AH) of adsorption.

Here, the change in adsorption energy (the slope in the figure) is fairly consistent between
different surfaces and studies when plotted against the hydrogen surface density (2.1 £ 0.76
eV-A2-atom), thus we use this information to estimate hydrogen-hydrogen lateral interaction.
It has been shown that the nearest neighbor pair-wise interaction (Ising model) is sufficient to
reproduce cyclo voltammetry data** thus we parameterize the Ising model using the
experimental data.

Using the Ising model formulation, system energy can be written as

N N
E= Z Eio-i +]Z O'iO'j (21)
i <i,j>

where E; is the binding energy of site 7, and o;1s the occupancy where 0 is the unoccupied, and
1 is the occupied site, N is the number of sites. In the case of KMC simulation, equation (21)
can be directly used as E; and o; are rigorously calculated. We estimate J from

Fig. S4 by using mean-field theory to correlate to the experimental result. 6; can be written as
the fluctuation from its mean value, m.
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N N
E= Z Eio-l' +]Z (mi + dO'i)(mi + dO']) (22)
i <ij>
where do; = 6; — m;, the fluctuation. Expanding the equation:
N N
E = Z Eio-i +]Z (mlm] + mldO'] + mde'i + dO'ldO']) (23)
i <i,j>

The last term is the product of two fluctuations, which is negligible at the limit of a large
surface. Also, we assume that every site is equivalent in terms of lateral interaction for the
simple parameterization (i.e., m=m; = m;). By accounting for these factors, and substituting the
do; = 6; — m;,

N N
E= Z Eio-i +]Z (mz + Zm(O'l' - m))
i <i,j>

N N
= Z Eio-i +]Z (—mz + Zmal-)
i <i,j>

The summation over <i,j> can be written as X%, ;s =1/2 %Y ¥ jcnn) where Y is to account
for the double-counting, and nn(i) indicates the nearest-neighbor of i. Simplifying this
expression result in:

24)

ZN Jm?Nz ZN
E = EiUi - > +]mZ g; (25)
i ,

l

where N is the total number of sites, and z is the coordination number, i.e. the number of
adjacent sites. This is the mean-field theory solution to the Ising model. Equation (25)
represents the energy of the entire surface and

Fig. S4 is adsorption energy per site differentiated by hydrogen surface density py = I\;V—Hps,
where Ny = YN g, is the number of hydrogen, and pg is the surface site density. Dividing the
Equation (25) by N; to get energy per site and using that m = %, and E;is consistent for single
facet (=Eo), Equation (25) simplifies to:

p

Taking the first derivative results in the slope of
S15



Fig. S4:

dE/Ny ]z
dpy 2ps

27)

Here, we use pg equal to 0.14 atom/A?, the average of 0.15, 0.13, and 0.14 atom/A? for (111),
(100), and (110) — (1x2) respectively. In all three surfaces, z is 6, by considering only the sites
that are filled by hydrogen before the over-saturation (>1 ML), resulting in J = 0.098 + 0.035
eV. The sites on nanowire may have more than 6 nearest neighbor sites thus local
oversaturation is plausible, but the oversaturation is not observed until very low potential which
is not considered in this study. The distances between sites in single crystal surfaces are all
within 2.78 A, thus, for nanowire, sites within 2.78 A radius are identified for each site and are
considered nearest-neighbors for lateral interactions.

To apply this model to our system, py, can be further expanded:

« = Ulh. + JANY_
Uy Uy JAny_y 28)

where u°y, indicates the energy of adsorbed hydrogen at the zero-coverage limit, Any_y is the
change in the number of H-H interactions (number of hydrogen pairs are within 2.78 A)
between the final and initial states. The zero-coverage limit is the coverage where lowering the
coverage no-longer changes the adsorption energy. For the Gibbs free energy of adsorption
database we have built, the hydrogen atoms are sufficiently far apart across the periodic
boundary that the lateral interaction is not felt across the periodic boundary. For the KMC
simulation, graph theory can be used to compute Any_y.

7. Graphic theoretical kinetic Monte Carlo simulation

The graphic theoretical kinetic Monte Carlo provides site-resolved insights into catalysis that
are otherwise not possible using the mean-field microkinetic models and experiments. In this
method, each binding site is explicitly defined and a reaction is simulated one at a time, thus
provides a high-resolution picture into catalysis as shown in Fig. S5 with a Pt(111) example.
A great review is provided in ref.?* In this section, we summarize the methodology for Pt
surface graph generation, the graphical definition of reactions, the Kinetic Monte Carlo
algorithm, and the model validation and adjustments.
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Fig. S5 | An Pt(111) example of a graph theoretical kinetic Monte Carlo. The green and blue fill represents the
adsorbate and the empty binding sites. In graphical kinetic Monte Carlo reactions are simulated one at a time with

the site-resolved picture to provide catalytic insights.

7.1. Pt surface graph generation, and reaction graph definition

To generate the surface graph, we use the alpha shape procedure introduced in section 5.2.
From the ReaxFF, we sampled the jagged Pt nanowire’s structure, and alpha shape is used to
convert its surface the polygonal shape, where the points are the atoms/top sites, the edges of
the polygons are the bridge site and the center of the triangle is the hollow site. The Volmer
and Heyrovsky reactions are available to all sites, whereas Tafel and diffusion reactions are

defined for a pair of adjacent sites as shown in Fig. S6.
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Fig. S6 | The change in the surface graph for each reaction type.



7.2. Kinetic Monte Carlo algorithm

We used the graph-theoretical kinetic Monte Carlo algorithm as outlined in Stamatakis et al*

and we also implemented the reaction scaling method by Nufiez et al*® to speed up the
simulation. Reaction constants are calculated using the transition state theory and
thermodynamic equilibrium:

h
ke
kr = E (29)
K (—AFG)
= exp kT

The pseudo-code for the KMC algorithm is provided below:

Start

Initialize all reaction constants

Run parallel KMC simulations until 1000 events

Rescale the fast equilibrated reactions as described in Ref3°

Set the termination time for the next run to be twice the first run
Run paralle]l KMC simulation until the termination time

Rescale the fast equilibrated reactions

R

Repeat 4 — 6 until the system reaches the steady-state (which we define as when the
noise in the current density is within ~10%)

We used the rejection-free KMC algorithm as it is the fastest algorithm for our system.

7.3. Model validation, degree of rate control analysis, uncertainty, and adjustments

The followings are the supplementary figures and tables regarding the model validation.
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Fig. S7 | Tafel reaction BEP trends obtained from ref® for Pt(111) (green), Pt(110) (red), and Pt(100) (Yellow). In
our model, we use the black trend line which falls well within the distribution of the data.

Table S3 | Higher and lower bounds of reproduced measurements based on 95% confidence intervals of sensitive
parameters. BV and M indicate Butler-Volmer and micropolarization fitting, respectively.

Lateral Interaction (/) Tafel BEP relation Volmer BEP relation

Tafel Slope (mV/dec) | 72.9 (72.5, 77.5) 729 (71.1,85.7)  72.9(72.1,75.5)
BV io (mA cm?) 0.81 (0.60, 1.12) 0.81(0.62,0.83)  0.81(0.36, 1.72)
BV S 0.46 (0.45, 0.48) 0.46 (0.45,0.52)  0.46 (0.46, 0.47)
M io (mA cm™) 0.83 (0.60, 1.12) 0.83 (0.63,0.85)  0.83 (0.40, 1.72)

Bifunctional Gain

4.61 (3.10, 4.81)

4.61 (2.78, 6.12)

4.61 (3.02, 4.67)

a b 0.6 c 06
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Fig. S8 | Change in A:Gads vs. CN within the 95 confidence interval of (a) J (HH cluster interaction energy) (b)
Tafel barriers and (¢) Volmer barriers. The blue, red, and green colors indicate the norm, upper, and lower interval.
Overall the conclusion that Pt atom with lower CN is the active centers remains the same.

7.4. Effect of jagged Pt nanowire length

We made 46.1 nm nanowire using the force field approach, and we cut the wire at various
lengths to produce the Figures in this study. To check the validity using a shorter wire, we plot
the zero coverage Gibbs free energy of adsorption, A.G,450, at various lengths, as shown in
Fig. S9. The larger wire length results in a smoother normal distribution. We test the normality
of the distribution using a 2-sided chi-squared probability for skewness and kurtosis, which is
all below 0.296% of 2.3 nm signifying their normality (Table S4). We find that the current
density is within 10% of each other for all tested lengths (2.3, 4.6, 9.2, and 23.0 nm) of the wire
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(Table S4). At the minimum, we used a 2.3 nm wire length to produce results that are sufficient
to reproduce the macroscopic behavior.

-0.2 0.0 0.2
ArGads,O [EV]

Fig. S9 | The distribution of zero coverage Gibbs free energy of adsorption, A.G,qs 0, for various length of the
jagged Pt nanowire (with an offset of 0.5 for each increase in length)
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Table S4 | A 2-sided chi-squared probability for normality (skewness and kurtosis test) for zero coverage Gibbs
free energy of adsorption, A.G,qs Of jagged Pt nanowire at various length, L at pH 14, 298K and -0.05 V vs.

RHE and 1 bar H>

23

4.6

6.9

92

11.5
13.8
16.1
18.4
20.7
23.0
254
27.7
30.0
323
34.6
36.9
39.2
41.5
43.8
46.1

Ar Gads,O

2.96x107
2.28x10™
3.18x10™
2.08x10°
6.01x10®
8.64x10°
5.54x10
2.76x10°
5.14x10™
2.64x1072
3.52x10™
2.84x107"
2.53x1078
1.39x10™"
4.84x107"
9.56x10%
3.24x10
4.19x102
2.28x10%
7.84x102¢

Steady State
L (nm) normality X> i (mA cm)

1.76 £ 0.08
1.71 £0.02

1.75 £ 0.02

1.96 +0.02

Output Figures and Tables

Fig. 2, Table S3, Fig. S8
Fig. 4

Fig. 3bc, Fig. 6

Fig. 3a, Fig. 7, Fig. S10
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8. Experimental details
8.1. Synthesis of PtNi alloy nanowire on carbon

All chemicals were purchased from Sigma-Aldrich unless otherwise specified. In a typical
synthesis, 20 mg Pt(acac), and 40 mg Ni(acac), were mixed with 130 mg glucose, 1.7 mg
W(CO)s and 60 mg PVP (molecular weight: 40000) in a glass vial, with 3 ml of oleylamine
and 2 mL octadecene as co-solvent. The mixture was heated to 140 °C for 6 h to form Pt—NiO
core—shell nanowires. The resulting nanowires were collected via centrifuge at 7,000 r.p.m. for
20 min. After loading the nanowires on pretreated Vulcan 72 carbon black, the catalysts were
then annealed under 450 °C in argon/hydrogen (97:3) atmosphere for 12 h to obtain the PtNi
alloy nanowires supported on carbon black.

8.2. Electrochemical dealloying of PtNi nanowire to synthesize jagged Pt nanowire

The ink was prepared by dispersing 1 mg catalysts and 10 uL Nafion solution in 1 mL ethanol
using sonication. 10 uL ink was then dropcasted on the rotating disk electrode (RDE: 0.196
cm?) as the working electrode. The Ag/AgCl electrode and the Pt wire were used as the
reference electrode and the counter electrode, respectively. The potential of the reference
electrode has been pre-calibrated under 1 atmosphere H>. An electrochemical dealloying
process was performed via 200 cyclic voltammetry (CV) cycles of working electrode between
0.05 Vand 1.10 V versus RHE in 0.1 M HCIO4 at a scan rate of 100 mV/s to completely remove
the nickel species. N2 gas was continuously purged to remove the O» from the electrolyte. After
complete dealloying, the remained Pt surface then became a jagged surface which has been
characterized by previous works.

8.3. Electrochemical hydrogen evolution/oxidation reaction test

After dealloying, the working electrode was carefully washed using deionized water and
transferred into 1 M KOH electrolyte (N2 ) purge and scan CV from 0.05 V to 1.10 V vs. RHE
at a scan rate of 100 mV/s until the CV is stable. The reference electrolyte and counter electrode
used in 1 M KOH were Hg/HgO electrode and graphite rod electrode, respectively. The
HER/HOR tests were then performed via linear scan voltammetry (LSV) from -0.05 V to 0.10
V vs. RHE at a scan rate of 10 mV/s with continuous H» purging. All the presented HER/HOR
polarization curves and following data analysis are iR-corrected.

8.4. Obtaining exchange current density, symmetric factor, and Tafel slope from the
HER/HOR Polarization curve

After obtaining the HER/HOR polarization curve, the HOR branch was corrected by
Koutecky—Levich equation (eq. (30)), where j is the current density collected on the working
electrode and ji is the kinetic current density and ju is the Hz-diffusion limiting current density.
The corrected HER/HOR polarization curve was then fitted from -0.05 V to 0.05 V using
Butler—Volmer equation (eq. (31)), and fitted from -0.01 V to 0.01 V using micropolarization
linear fitting (eq. (32)), to get symmetric factor f and the exchange current density jo, rpe
(normalized by RDE geometric surface area). Here, R is the universal gas constant, 7 is the
temperature in Kelvin, F is the Faraday’s constant, and # is the overpotential. The Tafel slope
was then directly measured from the Butler—Volmer plot.

11 1
-=—+— 30
] Jk Jd ( )
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BFn (B—1)Fn

Jk = Jorpe X (€ RT —e RT ) (1)
o nF (32)

= X —

J = Jo,RDE RT

After obtaining jo, zpe, the intrinsic exchange current density io, ecsa was determined by the
following simple calculation (33). Here the Amypa is the hydrogen underpotential deposition
area of the jagged Pt nanowires, which was determined from its CV plot in 1 M KOH.

0196
lo = Jo,RDE 1 (33)
Hupd
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9. Supplementary Figures and Tables
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Fig. S10 | Visualization of the optimized latent coordinate of sites based on the similarity between sites for each
site type: top (a, b, ¢), bridge (d, e, f), and hollow sites (g, h, i). The colors represent A:Gads (a, d, g), coordination
number (CN) (b, e, h), and local Pt density (¢, f, i). The t-SNE optimized sites’ latent coordinates based on the
CN and the local Pt density. The examination shows that CN is correlated to the ArGads.
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