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Abstract  
The extraordinary mass activity of Jagged Pt nanowires can substantially improve the 
economics of hydrogen evolution reaction (HER). However, it is a great challenge to fully 
unveil the HER kinetics driven by the jagged Pt nanowires with their multi-scale morphology. 
Herein we present an end-to-end framework that combines experiment, machine-learning, and 
multi-scale advances of the last decade to elucidate the HER kinetics catalyzed by jagged Pt 
nanowires in alkaline conditions. The bifunctional catalysis conventionally refers to the 
synergistic increase in activity by the combination of two different catalysts. We report that a 
mono-metal, such as jagged Pt nanowire, can exhibit bifunctional characteristics owing to its 
complex surface morphology where one site prefers electrochemical proton adsorption and 
another is responsible for activation, resulting in a four-fold increase in the activity. We find 
that the conventional design guideline that the sites with 0 eV Gibbs free energy of adsorption 
is optimal for HER does not hold in alkaline conditions, and rather, the energy between -0.2 
and 0.0 eV is shown to be optimal. At reaction temperatures, the high activity arises from low 
coordination number (≤7) Pt atoms exposed by the jagged surface. Our current demonstration 
raises an emerging prospect to understand highly complex kinetic phenomena in nanoscale in 
full by implementing end-to-end multi-scale strategies. 
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Introduction 
Deploying renewable hydrogen as fuel promises a low-carbon economy as it burns cleanly (no 
CO2 production) to provide a source for nighttime electricity.1 Yet, the current industrial 
production chain for hydrogen involves energy-intensive natural gas reforming. It is essential 
to develop economic, sustainable processes such as water-splitting electrolysis to steer the 
market towards the green energy future.2 Presently, commercial electrolysis cells use Pt-based 
catalysts for hydrogen evolution reaction (HER) due to their high activity and stability,3 but 
the catalyst cost is a major bottleneck.4 One direction to lowering the fuel cell cost is to 
dramatically reduce the amount of Pt used while maintaining high activity through morphology 
control,5,6 along with other strategies such as the Pt alloys7 and interfacial interaction 
engineering.8  Here, we focus on HER optimization via morphology control. 
Generally, three reactions are known to be involved in HER (see also the bottom left corner in 
Fig. 1):  

• Volmer reaction (H+ + e- + *→ H*, H2O + e- + *→ H* + OH-; * is a site),  
• Heyrovsky reaction (H+ + e- + H*→ H2 + *, H2O + e- + H*→ H2 + *+OH-), and  
• Tafel reaction (H* + H* → H2 + 2*).  
In acidic conditions, the Volmer reaction that proceeds via proton transfer from hydronium is 
accepted to be a fast reaction due to an abundance of protons in solution, while the Heyrovsky 
and Tafel reactions compete for H2 formation.9,10 For alkaline conditions, which are 
technologically attractive due to the development of anion exchange membrane and 
nonprecious metal oxygen evolution reaction (OER) catalysts under alkaline conditions, the 
importance of HER increases.11 To understand the origin of the slow HER kinetics in alkaline 
conditions compared to acidic conditions, three recent theoretical studies focused on the pH-
dependent HER kinetics for the Pt model surface.12-14 
Cheng et al. used Quantum Mechanics Molecular Dynamics to simulate the water/Pt(100) 
interface and demonstrated that the hydrogen binding strengthens with increasing pH as the 
Pt(100) repel water adsorption.12 Lamoureux et al. found that HER on Pt(111) proceeds via the 
Volmer-Heyrovsky pathway and the proton donor changes from hydronium to water with 
increasing pH.13 Intrinsically larger barrier for proton transfer from water in Helmholtz plane 
to the surface is the cause of slower HER kinetics in alkaline media. Liu et al. demonstrated 
similar conclusions but found that the HER proceeds through Volmer-Tafel.14  
Here, we report an end-to-end simulation of jagged Pt nanowire for HER in alkaline conditions 
using a machine learning multi-scale strategy15 with kinetic Monte Carlo (KMC) to reveal 
novel kinetic insights. This framework yields good agreement with the experimental 
measurements. We find that both Volmer and Tafel reactions are co-rate determining step 
(RDS), and notably, the monometallic jagged Pt nanowire offers a bifunctional mechanism: 
bridge sites more selective for Volmer, and top and hollow sites more selective for Tafel, with 
the two connected via fast diffusion of the adsorbed hydrogen atoms. The optimal hydrogen 
binding strength for HER is shown to be lower than zero (irrespective of site type), implying 
that the conventional design principle for HER to maximize the site activity with Gibbs free 
energy of adsorption of H being zero does not hold. The present analysis of surface kinetics 
reveals that top sites are the most active site for both Volmer and Tafel reaction, and those with 
low coordination numbers (≤7) are more active. These studies complement the recent report 
from Chen et al explaining the extremely high rate for the oxygen reduction reaction (ORR) on 
jagged Pt nanowires in terms of O* binding and H2O binding on adjacent sites.16 
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Results and discussions 
Simulation workflow and activity measurement of the jagged Pt nanowire. The kinetic 
simulation is performed using graph-theoretical KMC simulation.17 We model the alkaline 
HER system with Volmer, Heyrovsky, Tafel, and diffusion reactions. For the Volmer and 
Heyrovsky reactions, we considered proton transfer from H2O (basic) as we perform simulation 
at pH of 14.14 The Supplementary Section 1 describes the derivation of reaction energy and 
activation energy using computational hydrogen electrode (CHE) and BEP relations built with 
the constant electrode potential (CEP) model. To obtain adsorption energy on the jagged Pt 
nanowire, we leverage the ReaxFF forcefield and effective medium theory (EMT)18,19 to 
synthesize jagged Pt nanowire (structure of which is in close agreement with the experimental 
chracterization5,16) and generate the small jagged Pt slabs (see Supplementary Section 4) as a 
model surface of the jagged Pt nanowire.5,16 We perform DFT calculations to compute the 
adsorption energy of 3413 binding sites of the slabs, local environment of which are extracted15 
and converted to a labeled site representation to train machine learning model.20 We test four 
models to predict Gibbs free energy of hydrogen adsorption, Δ!𝐺"#$: Atom centered symmetric 
function (ACSF),21 crystal graph convolutional neural networks (CGCNN),22 Nearest atom 
distance-Gaussian process (NAD-GP; developed in this work)23 and SchNet.24 (see 
Supplementary Section 5). The best model is applied to the jagged Pt nanowire obtained using 
force field MD simulation.5 To account for lateral interaction, we develop and use the cluster 
expansion model derived from experiments as discussed in Supplementary Section 6 which 
sufficiently describe the H coverage on Pt surfaces.25 We derive the energetics (see 
Supplementary Section 1) and apply BEP relations (see Supplementary Section 1 and 3) and 
perform KMC simulation to elucidate the mechanisms. The overall framework is illustrated in 
Fig. 1 and demonstrates that the emerging theoretical and machine learning methods enable the 
detailed simulation of complex large scale surfaces.  

 
Fig. 1 | End-to-end workflow for the jagged Pt nanowire simulation. We combine the force field, density 
functional theory, machine learning, and kinetic modeling to perform multi-scale simulation of the alkaline HER 
of the jagged Pt nanowire. The model is validated by comparing the simulation result with experimental results, 
and the mechanism is analyzed. The graphic on the bottom left shows the alkaline HER mechanism involving 
Volmer, Heyrovsky, and Tafel reactions. 

Validation of the model. Out of the four different machine learning models we tested for 
predicting Δ!𝐺"#$, ACSF showed the lowest out of sample error (0.043 eV mean absolute 
error), thus, from here on, ACSF is used to predict Δ!𝐺"#$ (see Fig. 2a and Supplementary 
Section 5). To quantitatively validate our kinetic simulation, we experimentally synthesized 

H2+OH-
H2O+e-

Heyrovsky

Pt

Pt
H

H2O+e-

Volmer

Pt
H H

Volmer

H2
Tafel

OH-

H2O+e-

OH-

Density Functional 
Theory

Build ML database 
BEP relations

Force Field

Synthesize nanowire 
and slab

Machine Learning

Predict Adsorption 
energy

Mechanistic
Insights

Structure Motifs

Kinetic Monte Carlo

TOF, mechanism

Experiment

Model refinement 
and validation

BEP Relations
Predict Barriers

Cluster Expansion
Predict lateral interaction

E



4 
 
 

jagged Pt nanowire using the method outlined in Ref5,6 and measured the exchange current 
density, symmetric factor, surface coverage, and Tafel slope (see Supplementary Section 8 for 
detail). To measure exchange current densities, i0, Butler-Volmer equation (–0.05 to 0.05 V vs. 
RHE), and micropolarization linear equation (–0.01 to 0.01 V vs. RHE) were fitted.26 The KMC 
simulation and experiment are performed at room temperature, pH 14, and 1 bar of H2(g), and 
the results are compared in Fig. 2. To reproduce the experiment, Tafel barriers and Volmer 
barriers are adjusted by +0.06 eV and -0.097 eV (more details are discussed later). The 
simulated exchange current density (0.81, and 0.83 mA cm-2 for Butler-Volmer and linear 
fitting, respectively) is in good agreement with the experimentally measured (0.87 and 0.70 
mA cm-2, respectively). The coverage (0.57 vs. 0.66 monolayers (ML) for simulation and 
experiment, respectively), and the Tafel slopes (72.9 vs. 73 mV/dec for simulation and 
experiment, respectively) are in close agreement as well. One discrepancy in the symmetric 
factor (0.45  vs. 0.13 for simulation and experiment, respectively) is due to the use of Pt(111) 
data of  Ref9 (0.44) in the model. The use of a more realistic symmetric factor for the Volmer 
reaction averaged over different binding sites for the jagged nanowire would improve the 
model. We discuss the uncertainty of our model below. 

 
Fig. 2 | Validation of the machine learning and the kinetic Monte Carlo model, and comparison with the 
experiment. a Δ!𝐺"#$ prediction machine learning architecture and the mean absolute error (MeanAE) for tested 
models. The local environment (< 7Å) of the binding site atoms (green color) is converted to labeled site 
representation,20 and piped through machine learning models. We tested Atom centered symmetric function 
(ACSF),21 crystal graph convolutional neural networks (CGCNN),22 Nearest atom distance-Gaussian process 
(NAD-GP; developed in this work)23 and SchNet,24 and used ACSF for the rest of the article (see Supplementary 
Section 5 for detail). b-c The reaction is performed at room temperature with pH 14 and 1 bar of H2(g) for (b) Tafel 
plot. The simulated exchange current density using Butler-Volmer and micropolaization, coverage (θ), and Tafel 
slope are shown in c and are in close agreement with the experiment. β is the symmetric factor. 

Hydrogen evolution reaction mechanism. The Gibbs free energy of hydrogen adsorption, 
Δ!𝐺"#$, at the zero coverage limit follows the Gaussian shape as shown in Fig. 3a. Due to the 
lateral interaction, Δ!𝐺"#$ shifts by 0.14 eV with the standard deviation of 0.08 eV. The Tafel 
and Volmer reactions are co-RDS as shown by the degree of rate control analysis27 in Fig. 3b 
in agreement with the previous microkinetic model study on Pt(111).14 The Heyrovsky reaction 
is too slow to have any kinetic contribution, but the diffusion process of the adsorbed hydrogen 
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between various surface sites is very fast, at least 5 orders of magnitude faster than either the 
Tafel or Volmer reactions. Fig. 3c shows the average turnover frequency of Volmer and Tafel 
reaction vs. the time-averaged Gibbs free energy of adsorption, Δ!𝐺"#$. In acidic condition, 
Volmer reaction (H transfer from H3O+) is too fast to be RDS,13,14 thus the binding site with 
Δ!𝐺"#$ ≅ 0  would be the optimal as it is thermodynamically the most favorable for site 
occupancy probability and H2 formation.28 However, in basic condition, the center of the 
Volmer (H transfer from H2O) and Tafel activity for our simulation is at Δ!𝐺"#$ = −0.17	eV 
and Δ!𝐺"#$ = −0.10	eV , respectively, as shown in Fig. 3c. If adsorption and associative 
desorption reactions are RDS, the optimal Δ!𝐺"#$ is observed at which the two reactions have 
equal activity.29 As Volmer reaction is faster for Δ!𝐺"#$ < 0, Δ!𝐺"#$ lower than 0 eV is more 
optimal for the alkaline condition. This indicates that the design principle (e.g., Δ!𝐺"#$ based 
screening) is not the same for the acidic and alkaline conditions. To understand the optimal 
Δ!𝐺"#$, we simulate a single site Pt system using mean-field microkinetic model, and plot the 
Δ!𝐺"#$ with the highest activity at 0 V vs. RHE, Δ!𝐺"#$,&'(, in Fig. 3d. The Δ!𝐺"#$,&'( is -0.16 
eV at pH 10 (where the alkaline Volmer is the adsorption RDS13,14) and increases to -0.09 eV 
at pH 14. 

 
Fig. 3 | Analysis of kinetics on jagged Pt nanowire at 298K. a zero coverage limit vs. dynamic ∆rGads calculated 
at pH 14 and -0.05 V vs. RHE. b the degree of rate control,27 𝑑 ln 𝑟% 𝑑(−𝐺°",',%/𝑅𝑇)⁄  at pH 14 and -0.05 V vs. 
RHE. c averaged turnover frequency vs. Δ!𝐺"#$ at -0.05 V vs. RHE where the shaded region indicates the 95% 
confidence interval and d the optimal Gibbs free energy of adsorption, Δ!𝐺"#$,()*, vs. the pH at 0 V vs. RHE. 

Auto-bifunctional mechanism of jagged Pt nanowire. The co-rate determining steps, the 
difference in the center of activity with respect to Δ!𝐺"#$, and the wide Δ!𝐺"#$ distribution 
indicates that the jagged Pt nanowire has a bifunctional mechanism. To demonstrate this, we 
analyzed the micro-spatial reaction network of the jagged Pt nanowire as shown in Fig. 4. The 
bifunctional catalyst uses a combination of two active sites to overcome two rate-determining 
steps to improve the overall activity. Conventionally, the two different catalysts are physically 
mixed or co-synthesized to create the bifunctional catalyst. Here, we find that a mono-metallic 
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catalyst can exhibit bifunctional characteristics via morphology. For a site with Δ!𝐺"#$ of 0.0 
eV, Volmer reaction is the RDS with the Gibbs free energy of activation (Fig. 4a), 𝐺",), of 0.68 
eV, while, for sites with Δ!𝐺"#$ of -0.12 eV as an example, the Tafel reaction is the RDS with 
𝐺",), of 0.74 eV (Fig. 4b). On the jagged Pt nanowire, both of these sites co-exist on the surface, 
hence a monometallic auto-bifunctional mechanism is observed where proton 
electrochemically adsorb on one site (Volmer favored sites) and diffuse to a site with faster 
Tafel reaction to form hydrogen (Tafel favored sites).  
Fig. 4d visualizes the difference in the Volmer and Tafel reaction rate and the diffusion between 
sites showing the bifunctional chemistry of the jagged Pt nanowire. The benefit of the 
bifunctionality can be measured by comparing the current density with and without hydrogen 
diffusion. We find that the activity increases by four-fold (461%) with hydrogen diffusion. To 
understand the bifunctional effect, we build a microkinetic model with two sites, Δ!𝐺"#$ of 
which are different from each other. Fig. 5 shows the activity gain resulting from coupling the 
two sites, which demonstrates that the combination of a site with Δ!𝐺"#$ > 0 and a site with 
Δ!𝐺"#$ < 0 can lead to more than two orders of magnitude increase in activity. This bifunctional 
gain has been hypothethically predicted to occur in certain conditions,30 where we indeed 
confirm that the bifunctional gain occurs in the jagged Pt nanowire. 
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Fig. 4 | Bifunctional catalysis of the jagged Pt nanowire. a-b demonstrates the hydrogen evolution energetics 
for Δ!𝐺"#$ of (a) 0.0 eV and (b) -0.12 eV. For a, and b, Volmer and Tafel reactions are rate-determining steps 
(RDS), respectively. The energetics in the top right corner of c demonstrates the bifunctional mechanism where 
the proton can electronically adsorb at Volmer favorable site and diffuse to Tafel favorable site to form H2(g). The 
nanowire visualization in d demonstrates the binding sites’ reaction preference in colored symbols (Circle, square, 
and triangles are top, bridge, and hollow sites, respectively) where the blue and red color indicates a faster rate in 
Tafel, and Volmer reaction, respectively. We use the range between 5 and -5 as the standard deviation of the 
activity difference is ~5.11 s-1.  The arrows represent the direction of the net flux of hydrogen diffusion where 
darker black indicates larger net flux. The bifunctional mechanism accounts for a four-fold increase in activity. 
The reaction condition is pH 14, 298 K, and -0.05 V vs. RHE. 
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Fig. 5 | Bifunctional gain in activity with a combination of two sites. A two-site microkinetic model is built 
where ∆rGads,1 and ∆rGads,2 are the adsorption energy of the two sites. The color represents the bifunctional gain 
ratio where rcoupled and rdecoupled  are the ratio of HER rate when two sites are coupled and decoupled, respectively. 
More than two orders of magnitude gain in activity can be observed for the combination of two sites with negative 
and positive adsorption energy. The reaction condition is pH 14, 298K, and -0.05 V vs. RHE.  

 
Volmer and Tafel activity by site type. We find that the activity is correlated to the binding 
site type. The activity of the Volmer and Tafel reaction is the highest for the top site as shown 
in Fig. 6a and c. The top sites behave as the active centers on the jagged Pt nanowire due to the 
favorable Δ!𝐺"#$  distribution as shown in Fig. 6d and e. The difference between the site-
averaged activity of the Volmer and Tafel reactions shows that Volmer reaction is faster for 
the bridge site and Tafel reaction is faster for the top and hollow site (Fig. 6b). Thus, the top 
sites consume all of the hydrogen atoms diffused from other top sites, and, as the Tafel reaction 
is faster, top sites also consume other hydrogen atoms diffused from the bridge sites.  

 

Jagged Pt Nanowire
(-0.4 eV, 0.4 eV)
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Fig. 6 | The HER activity of jagged Pt nanowire by the site. The average rate, 𝑟̅, of Volmer (a), Tafel (c), and 
their difference (b) by sites. The distribution of Δ!𝐺"#$ of sites (d) and the sums of Δ!𝐺"#$ of  two connected sites 
(e). The top sites are high in both Volmer and Tafel activity. The higher density of the top sites at Δ!𝐺"#$ < 0.0 
eV results in higher Volmer activity. For Tafel activity, the optimum occurs at 0.0 eV as it optimizes the activation 
energy and the site occupation probability. The top sites have the highest Tafel activity as top-bridge and top-
hollow pairs are dense near Δ!𝐺"#$=0.0 eV 

 
Identification of active sites. We assess the correlation between activity and local binding site 
environment using unsupervised learning methods: smooth overlap of atomic positions 
(SOAP),31 average kernel,32 and t-stochastic neighbor embedding (t-SNE) dimensional 
reduction analysis.33 The SOAP and the kernel compute the similarity between the binding 
sites’ environment, and t-SNE reduces the binding site environments into two-dimensional space. Fig. 7a plots 
the two-dimensional representation of binding site environments with Δ!𝐺"#$ as color. Not surprisingly we find 
that the Δ!𝐺"#$ is correlated to the coordination number (CN) as shown in 

 Fig. S10.34 We plot CN vs. Δ!𝐺"#$ in Fig. 7b. For the top site, the correlation between CN and 
Δ!𝐺"#$  is obvious, and the sites with CN ≤ 7 are more optimal. Synthesizing the low 
coordinated Pt atoms can further improve the activity. The correlation between CN and Δ!𝐺"#$  
is weak for the bridge site and disappears for the hollow site. To identify structural motif 
besides CN, we manually compared structures of optimal and non-optimal sites, but no 
apparent trend could be found. Hence, the machine learning models can understand structural 
motifs beyond comprehensible motifs. Also, we plot the Δ!𝐺"#$ and coordination number of 
top sites of the nanowire segment in Fig. 7c to demonstrate that exposed, low coordination sites 
are closer to the optimal Δ!𝐺"#$. 
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Fig. 7 | Visualization of the active binding sites. a Points and the distance between them represent the site and 
the dissimilarity between the sites visualized using SOAP descriptor,31 average kernel,32 and t-SNE dimensional 
reduction analysis.33 The points are colored by sites’ Δ!𝐺"#$ for top, bridge, and hollow. As shown in Fig. S10, 
the structural unsupervised learning aligns the site environments based on the local Pt density (number of Pt atoms 
within 7 Å of the site) along the circular shape, while the direction orthogonal to the circle is correlated with the 
coordination number. The change in Δ!𝐺"#$ (heat color) is more evident in the orthogonal direction, indicating 
that the Δ!𝐺"#$  correlates with the coordination number. b Subsequently, the Δ!𝐺"#$  is plotted against the 
coordination number. c A segment of Pt nanowire is visualized where the Pt atoms are colored by the distance 
from the optimal Δ!𝐺"#$ ≅ −0.1 eV. The magnification shows that the Pt atoms with low coordination number 
have more optimal Δ!𝐺"#$. 

Limitations of the Model. Due to the multiscale nature of the phenomena and various 
associated methodologies used here, we address uncertainties of our results and discuss several 
limitations in this section. As mentioned previously, Tafel barriers and Volmer barriers are 
adjusted by a constant shift of +0.06 eV and -0.097 eV in constructing the BEP relation to 
reproduce the experimental current density as a function of applied potential. We note that the 
Tafel reaction BEP relations thus obtained fall within the data points constructed in Skúlason 
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et al9 for Pt(111), Pt(110), and Pt(100) (Fig. S7). These constant adjustments are similar to 
those of the microkinetic model developed on Pt(111)14 where Volmer barriers were adjusted 
by -0.07 eV and -0.03 eV for 0 ML and 0.83 ML, and Tafel barriers were adjusted by +0.05 
eV for 0.83 ML. Also, the adjustment is within the standard deviation of Tafel and Volmer 
barriers calculated on Pt(111) using BEEF-ensemble35 by Lamoureux et al (0.31 and 0.12 eV, 
respectively).13 
We quantify the impact of the important parameters’ uncertainty on the reproduced 
measurements and conclusions. In addition to Volmer and Tafel reactions (Fig. 3), the lateral 
interaction parameter is a sensitive parameter with a degree of rate control of 0.431. Thus, using 
the 95% confidence interval of Volmer barriers, Tafel barriers and lateral interaction parameter, 
the upper and lower bound of the Tafel slope, and exchange current density are calculated 
(Table S3). Overall, the experiment reproducibility is not significantly affected. The Tafel slope 
has the highest uncertainty from the Tafel barriers (71.1 to 85.7 mV/dec). While the Volmer 
reaction has the highest uncertainty in i0 (0.36 to 1.72 mA cm-2), the i0 is reproduced within an 
order of magnitude. The uncertainty in the bifunctional gain ratio is the largest with the Tafel 
barriers (278% to 612%; see Table S3). Overall, the bifunctional mechanism is consistently 
observed well within the uncertainty. We also assess the ∆rGads distribution vs. CN within the 
uncertainty for the active site identification (Fig. S8). The lateral interaction parameter has the 
highest uncertainty in ∆rGads, but the lower coordinated Pt atoms remain as the active sites. 

Our explicit/implicit hybrid DFT calculations have limitations in describing the Pt/water 
interface such as the pH-dependent interfacial water structure12,36,37 and cation effect.38-41 The 
hydrogen binding strength correlates to the peaks in the underpotential deposition region and 
has shown to become stronger with increasing pH on Pt(100).36 The quantum mechanics 
molecular dynamics study demonstrated that the enhanced binding on Pt(100) is due to the 
stronger electric potential used in alkaline conditions.12 Also, the water structure becomes more 
rigid in strong electric field which may slow down the overall HER kinetics.37 Cations form 
hydration shell in Helmholtz plane,38,39,41 and the HER activity and activation energy changes 
depending on the cation element.38,40 Quantifying these effects computationally for the jagged 
Pt nanowire is difficult due to the computational cost of the large scale explicit simulation, but 
some adjustments made to our model to reproduce the experimental current density may have 
contributed to implicitly and partially account for these fine effects. 

Conclusions 
We demonstrated the end-to-end framework to simulate the kinetics of jagged Pt nanowires 
with complex morphology using machine learning multiscale strategy, in good agreement with 
the experimental results in alkaline conditions. As Tafel and Volmer reactions are co-rate 
determining steps with distinct BEP relations, we find that the optimal Δ!𝐺"#$ for the overall 
rate in alkaline conditions is lower than that in the acidic condition (Δ!𝐺"#$ < 0). Owing to the 
co-rate determining step and the wide distribution of Δ!𝐺"#$, the jagged Pt nanowire shows the 
auto-bifunctional mechanism where the stronger binding sites adsorb proton and weaker 
binding site activates hydrogen. The top sites are the most active for both Volmer and Tafel 
reactions, but, as the Tafel reaction is faster, top sites also consume hydrogen diffused from 
bridge sites. Unsupervised-learning demonstrates that Δ!𝐺"#$ is correlated to the coordination 
number, and we find that sites with CN ≤ 7 are associated with high activity. Beyond the single 
metal catalyst, we believe that the demonstrated end-to-end simulation framework has the 
potential to elucidate the synergistic mechanisms of multi-component alloys and metal-support 
catalysts, and aid in the design of effective catalysts.  
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Methods  
Energetics. To compute the Gibbs free energy of reaction, ∆!𝐺, and activation, 𝐺",), we use 
the computational hydrogen electrode (CHE). ∆!𝐺 for the four reactions are 
 

 

Volmer: ∆!𝐺 = ∆!𝐺"#$,* + e𝑈+,- + ln 10 	𝑘.𝑇pH 

Heyrovsky: ∆!𝐺 = −∆!𝐺"#$,* + 𝑒𝑈+,- + ln 10 	𝑘/𝑇pH	 
Tafel: ∆!𝐺 = −∆!𝐺"#$,* − ∆!𝐺"#$,0 	 

Diffusion: ∆!𝐺 = ∆!𝐺"#$,* − ∆!𝐺"#$,0 		

(1) 

 

where ∆!𝐺"#$,* is the Gibbs free energy of H2 adsorption for site i, USHE is electrode potential 
referenced from the standard hydrogen electrode, kB is the Boltzman constant, and T is the 
temperature. For Tafel reaction, i and j indiciates the two site undergoing the hydrogen 
coupling, and, for diffusion reaction, hydrogen is diffusing from site j to i. 𝐺",) are computed 
by 
 

 

Volmer: 𝐺",) = 𝛼(∆!𝐺"#$,*) + (1 − β)e𝑈+,- + 𝐺°",) 
Heyrovsky: 𝐺",) = 𝛼(−∆!𝐺"#$,*) + (1 − β)e𝑈+,- + 𝐺°",) 
Tafel: 𝐺",) = 𝛼Δ!𝐺"#$(−∆!𝐺"#$,* − ∆!𝐺"#$,0) + (1 − β)e𝑈+,- + 𝐺°",) 

Diffusion: 𝐺",) = 0.435∆!𝐺"#$,* − 0.565∆!𝐺"#$,1 + 0.184 

(2) 

 
where 𝛼 is the slope of for the dependence of 𝐺",) on coverage, β is the symmetric factor, 𝐺°",) 
is the 𝐺",) at Δ!𝐺"#$ = 𝑈+,- = pH = 0. We used the parameters from the literature if available. 
Otherwise, we used DFT with CEP method42 to parameterize them. The derivation of these 
equations, the source of parameters, and the computation of the constants are discussed in 
Supplementary Section 1. The DFT calculation details and the DFT calculation of missing 
parameters are discussed in Supplementary sections 2 and 3, respectively. 
Adsorption energy calculation using machine learning. We compute the adsorption energy 
of hydrogen using a machine learning model. To train our model, we used DFT to compute 
3413 adsorption energies of various sites on jagged Pt slabs made using ReaxFF (see 
Supplementary Section 4). We used atom centered symmetric function21 to compute binding 
energy as it performed the best out of several models we tested. We used the labeled site 
representation and ensemble method discussed in our previous work.20 To identify binding sites 
on jagged Pt nanowire, we used the alpha shape algorithm which yields surface area close to 
those obtained with the cyclic voltammetry curve.5,20 The details of the alpha shape algorithm, 
model cross-validation, and implementation are discussed in Supplementary Section 5. 
Coverage effect. We derived a cluster expansion model to calculate differential adsorption 
energy with respect to the coverage from 11 experimental data of Pt(111), Pt(100), and Pt(100). 
We find that the change in differential adsorption energy is fairly constant with respect to the 
spatial hydrogen surface density. We exploit this to increase the energy of the system during 
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KMC simulation by 0.098 eV, for every pair of hydrogen within 2.78 Å. The details of the 
derivation are discussed in Supplementary Section 6. 
Kinetic Monte Carlo simulation. We implement the graph-theoretical kinetic Monte Carlo 
algorithm as outlined in Stamatakis et al,17 and implemented the reaction constant scaling 
presented by Núñez et al43 to speed up the simulation. The detailed pseudo-code is provided in 
Supplementary Section 7. The Volmer and Tafel rate of a site i is calculated by 

 

𝑟2&345!,* =
𝑁2&345!,*

𝑡 	 

𝑟6")53,* =
1
𝑡F

𝑁6")53,*,0
2

0

 
(3) 

where t is the total KMC simulation time, NVolmer,i is the number of Volmer reaction occurred 
involving site i, NTafel,i,j is the number of Tafel reaction occurred from the site i and j.  

Experiment. The experimental detail is discussed in Supplementary Section 8. 
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1. Gibbs free energy of reaction and activation 
Our model for Gibbs free energy of reaction (∆rG) and activation (Ga) for the electrochemical 
reaction of a proton on the surface depends on three factors: (1) pH, (2) electrode potential and 
(3) coverage. Here, we summarize the derivation of ∆rG and Ga which is an extension of Ref.1,2 
Though we only simulate alkaline chemistry (proton transfer from H2O), we summarize 
derivation for acidic conditions (proton transfer from H3O+) as well. 
1.1. Computational hydrogen electrode 
The computational hydrogen electrode (CHE) pioneered by Nørskov and coworkers provides 
a convenient way to account for the electrode potential for electrochemical reactions.3 The key 
for this method is to treat the electrochemical reaction as the removal/addition of a proton and 
an electron and the usage of the standard hydrogen electrode (SHE) as the reference electrode. 
For SHE reference electrode, the electrode potential is zero when  

 

 H("8): + e; →
1
2H<(=) 

(4) 

 
is in equilibrium at the H2(g) pressure of 1 bar and pH of 0. Thus, the sum of chemical potentials 
at each side of the reaction is equal. 
 

 𝜇°,(,-)/ + 𝜇50>? =
1
2𝜇°,1(2) 	

(5) 

 

where 𝜇*
@345 indicates the chemical potential of species i at the SHE referenced potential of 

𝑈+,-. To compute the chemical potential of proton and electron, the equation is rearranged and 
𝜇50
@345 is added to both side of the equation: 

 

 𝜇°,(,-)/ + 𝜇50
@345 =

1
2𝜇°,1(2) − e𝑈+,-, 𝑒𝑈+,- = 𝜇50>? − 𝜇50

@345 	 (6) 

 

To account for the change in the chemical potential due to the pH, 𝜇°,(,-)/ = 𝜇,(,-)/ −
ln 10 	𝑘.𝑇pH is substituted: 
 

 𝜇,(,-)/ + 𝜇50
@345 =

1
2𝜇°,1(2) − e𝑈+,- − ln 10 	𝑘.𝑇pH	

(7) 

 
The equation (7) can be conveniently used to calculate the energetics for electrochemical 
reactions involving proton and electrons using DFT as it only requires the DFT calculation of 
hydrogen gas. 
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1.2. Gibbs free energy of reaction 

The Volmer reaction, H("8): + e; +∗→ H∗, is the electrochemical adsorption of proton where 
* indicates the binding site. The ∆rG of this reaction is 

 

 ∆!𝐺 = 𝜇,∗,* − 𝜇∗,* − 𝜇,(,-)/ − 𝜇50
@345 		 (8) 

 

for a site i. Substituting the equation (7) to the (8) results in  
 

 ∆!𝐺 = 𝜇,∗,* − 𝜇∗,* −
1
2𝜇°,1(2) + e𝑈+,- + ln 10 	𝑘.𝑇pH	

(9) 

 

The first three terms are equivalent to the Gibbs free energy of hydrogen adsorption at site i, 
 

 ∆!𝐺"#$,* = 𝜇,∗,* − 𝜇∗,* −
1
2𝜇°,1(2) 	

(10) 

 

Thus ∆rG for the Volmer reaction is 
  

 Volmer: ∆!𝐺 = ∆!𝐺"#$,* + e𝑈+,- + ln 10 	𝑘.𝑇pH	 (11) 

 

Similarly, the previous steps can be applied to Heyrovsky reaction, H("8): + e; + H∗ →
H<(=) +∗, resulting in: 

 

 Heyrovsky: ∆!𝐺 = −∆!𝐺"#$,* + 𝑒𝑈BCD + ln 10 	𝑘/𝑇pH		 (12) 

 

The Tafel reaction, H∗ + H∗ → H<(=) + 2 ∗, does not involve proton and electron, and the 
electrode potential dependence is trivial,4 thus it is 

 

 Tafel: ∆!𝐺 = −∆!𝐺"#$,* − ∆!𝐺"#$,0 		 (13) 

 
where ∆!𝐺"#$,* is the hydrogen adsorption energy for a site i. In the case of an alkaline reaction, 
using that the water dissociation, H<O(3) → H("8): + OH("8); , is fast and equilibrated simplifies 
the derivation. 

 

 𝜇,1E(6) = 𝜇,(,-)/ + 𝜇E,(,-)0 	 (14) 
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For example, the ∆rG of the basic Volmer reaction, H<O(3) + e; +∗→ H∗ + OH("8); , is: 

 

 ∆!𝐺 = ∆!𝐺"#$ + 𝜇E,(,-)0 	 − 𝜇,1E(6) − 𝜇50
@345 	 (15) 

 
Substituting the equation (14) to (15) results in (8), thus the ∆rG for the acidic and basic Volmer 
reaction is the same, which is also the case for the Heyrovsky reaction. The diffusion between 
site is a non-electrochemical reaction thus the reaction energy is the difference in the adsorption 
energy: 
 

 Diffusion: ∆!𝐺 = ∆!𝐺"#$,* − ∆!𝐺"#$,0 		 (16) 

 
where hydrogen atom diffuses from site j to site i. We note that the coverage effect – the 
interaction between the adsorbates – are included in the calculation ∆!𝐺"#$ which we discuss 
in section 6.  
 

1.3. Gibbs free energy of activation 
The pH, electrode potential, and coverage effects manifest to the Gibbs free energy by affecting 
the energy of various states as summarized in Fig. S1 for Volmer reaction. Four states are 
considered for the acidic and basic condition: (1) H("8): + e; +∗ , (2) H(,F): + e; +∗  (3) 
transition state, and (4) H∗ for acidic and, (1) H<O(3) + e; +∗, (2) transition state (3) H∗ +
OH(,F); , and (4) H∗ + OH("8);  for alkaline. H("8):  and OH("8);  represents the proton and OH; in 
the bulk liquid as opposed to H(,F):  and OH(,F);   in the Helmholtz plane. Thus, the energetic 
difference between the (HP) and (aq) states represents the energy to shuttle the ion from the 
bulk liquid to the near-surface. Hence, H(,F): + e; +∗ represents the initial state that one would 
use to compute the barrier of proton transfer reaction using DFT and vice versa for OH(,F); . 
Another point to note is that, for the acidic proton transfer, since the initial state represents 
proton in the non-bulk state, DFT calculated TS needs to be referenced from the final state (H*) 
as it only has water in the Helmholtz plane. 
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Fig. S1 | pH, potential, and coverage dependent reaction energetics for acidic and basic Volmer reaction. The 
same strategy can be applied to Heyrovsky reaction. 

 

When the pH changes, only the chemical potential of H("8):  is affected, as it represents the bulk 
proton chemical potential. On the other hand, a proton in the Helmholtz plane (H(,F): ) 
represents the particular, rarely observed configuration of water where the proton is near the 
surface, thus its chemical potential is not affected by the pH. Similarly, for basic reaction, only 
the chemical potential of OH("8);  is affected. As a result, only Ga,f , and Ga,r are affected by pH 
for the reaction involving the proton transfer from hydronium, and water, respectively. Thus, 
𝐺",)(pH) = 𝐺°",) + ln 10 	𝑘.𝑇pH for acidic transfer and 𝐺",!(pH) = 𝐺°",! − ln 10 	𝑘.𝑇pH for 
alkaline transfer. 
For the change in the electrode potential, stable states involving electrons are shifted by 
−𝑒𝑈+,-. In the case of the transition state, energy is only shifted by the amount of the electron 
transfer involved in the transition state, which is the charge transfer coefficient, β. The energy 
of the transition state is shifted by −𝛽𝑒𝑈+,-. Since the energy of the initial states also shifts 
for the proton transfer reactions, 𝐺",)(𝑈+,-) = 𝐺°",) + (1 − 𝛽)e𝑈+,-.  

The change in reaction energy due to the coverage has been well-studied in the field. The 
increase in coverage increases the energy of H*, 𝜇,∗ , by laterally interacting with other 
adsorbates and ultimately increases ∆!𝐺"#$ via equation (10). The change in the 𝐺" are often 
described using Brønsted−Evans−Polanyi (BEP) relation: 𝐺",) = 𝛼∆!𝐺"#$ + 𝐺°",) for Volmer 
reaction, 𝐺",) = 𝛼(−∆!𝐺"#$) + 𝐺°",)  for Heyrovsky reaction, 𝐺",) = 𝛼(−∆!𝐺"#$,* −
∆!𝐺"#$,0) + 𝐺°",) for Tafel reaction, respectively. For Tafel reaction, i and j represent the two 
binding site involved in the Tafel reaction. We discuss in detail in section 6 below how lateral 
interaction dependent 𝜇,∗is computed. 



S6 
 

In summary, the 𝐺",) are computed by: 

 

 

Acidic reaction 

Volmer: 𝐺",) = 𝛼(∆!𝐺"#$,*) + (1 − β)e𝑈+,- + ln 10 𝑘/𝑇pH + 𝐺°",) 
Heyrovsky: 𝐺",) = 𝛼(−∆!𝐺"#$,*) + (1 − β)e𝑈+,- + ln 10 𝑘/𝑇pH + 𝐺°",) 
Basic reaction 

Volmer: 𝐺",) = 𝛼(∆!𝐺"#$,*) + (1 − β)e𝑈+,- + 𝐺°",) 
Heyrovsky: 𝐺",) = 𝛼(−∆!𝐺"#$,*) + (1 − β)e𝑈+,- + 𝐺°",) 
Surface reaction 

Tafel: 𝐺",) = 𝛼(−∆!𝐺"#$,* − ∆!𝐺"#$,0) + 𝐺°",) 

 

(17) 

Here, the 𝐺°",)  is defined at Δ!𝐺"#$ = 𝑈+,- = pH = 0. The parameters, α, β, and 𝐺°",)  are 
retrieved from the previous works on the H/Pt system when possible (Table S1). We could not 
find α for the basic Volmer and Heyrovsky reaction so we develop the BEP relationship as 
discussed below. Also, β for the basic Volmer reaction is missing, which we assume is the same 
as the acidic Volmer reaction.  
 

 
 
Table S1 | The parameters and their source for computing 𝐺",' using the equation (2). The bold value in parenthesis 
indicates a model adjustment to reproduce experimental observation. 

Reaction α β 𝐺°",) α source β source 𝐺°",) source 

Basic Volmer 0.881 0.44 1.270 (1.173) This work Ref5a Ref2 

Basic Heyrovsky 0.511 0.59 1.360 This work Ref2 Ref2 

Tafel 0.462  0.514 (0.574) Ref5b  Ref5b 

a β of acidic Volmer reaction from the reference used. 
b Data sets for (111), (100), (110) are combined to calculate this parameter. 
 

The diffusion-reaction is non-electrochemical and we use the diffusion BEP relationship 
universal for various adsorbates and elements6 where 
 

 𝐺",) = −0.13𝐺G+ − 0.11	 (18) 

 

Here, 𝐺G+ represents the binding energy of hydrogen relative to its gaseous state: 
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 𝐺G+ = 𝜇,∗ − 𝜇∗ − 𝜇°,(2) = ∆!𝐺"#$,* − 𝜇°,(2) +
1
2𝜇°,1(2) 	

(19) 

 
This method only uses the initial state energy, thus the forward barrier calculated using the 
binding energy of the initial site and the reverse barrier calculated using the final site are not 
consistent (i.e. EA,f ≠ EA,r + ∆rE). To ensure thermodynamic consistency, we use the average 
of the two barriers. We note that the averaging does not affect the result as diffusion reaction 
is not a rate determining step.  Using −𝜇°,(2) +

H
<
𝜇°,1(2) = −2.27	eV , 𝐺",)  for hydrogen 

diffusion from site j to i is 

 

 Diffusion: 𝐺",) = 0.435∆!𝐺"#$,* − 0.565∆!𝐺"#$,1 + 0.184	 (20) 
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2. Density functional theory calculation details 
In this work, we use density functional theory (DFT) for (1) computation of Δ!𝐺"#$ to train 
prediction machine learning model, and (2) development of BEP relationship. Here we 
summarize the DFT parameter sets used. We perform DFT calculations using the Vienna Ab 
initio Simulation Package (VASP).7 Exchange and correlation energies are computed with the 
revised Perdew, Burke, and Ernzerhof (RPBE) functional,8 where the core electrons are treated 
with the projector augmented-wavefunction (PAW) method.9,10 We use a plane-wave basis set 
with a 400 eV kinetic energy cutoff for the valence electrons. The Brillouin zone is integrated 
using a 2×2×1 Monkhorst-Pack k-mesh11 for the machine learning data (cell size equivalent to 
4×4 Pt(111) and Pt(100) slab), and 3×3×1 Monkhorst-Pack k-mesh for the BEP relationship 
data (c(4×4) Pt(111) slab) with a Gaussian Methfessel-Paxton smearing of 0.1.12 The geometric 
optimization is performed until the residual force is less than 0.05 eV/Å.  
For the calculation of the BEP relationship, the implicit solvation calculations are performed 
using the generalized Poisson-Boltzmann model as implemented in the VASPsol,13,14 and the 
constant electrode potential (CEP) method.15 The bulk relative permittivity of the water (78.4) 
is used. The Debye length is set to 3 Å, corresponding to a 1 M concentration of electrolyte 
(e.g. 1M KOH in our experiment). We add QV correction to address the spurious interaction 
between the finitely separated the slabs, where the Q and V are the net charges of the slab and 
the negative value of the electrostatic potential of bulk electrolyte, respectively.16  
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3. Brønsted−Evans−Polanyi (BEP) relation development 
To build a database for alkaline Volmer and Heyrovsky BEP relations, we employed a three-
layer slab of c(3×4) with an optimized crystal lattice constant of 3.990 Å. To find the transition 
state (TS) structure, we used the nudged elastic band to obtain the TS structure17 which is 
refined at 0 V vs. SHE using the improved dimer method.18 We considered Heyrovsky reaction 
at 0.08, 0.50, 1.00, 1.08, and 1.25 monolayer (ML), and for Volmer reaction at 0.00, 0.25, 0.42, 
0.50, 0.58, 0.75, 0.83, 0.92, 1.00 and 1.25 ML. The established BEP relationship is shown in 
Fig. S2. Here, we only extracted the slope, α, for the 𝐺",) calculation as shown in Table S1 for 
the reasons we describe below. The obtained slopes for basic Volmer (0.881) and Heyrovsky 
(0.511) are similar to those obtained for acidic Volmer (0.71) and Heyrovsky reactions (0.59).5 
The slope for the basic Volmer reaction is also similar to the slope of the basic Volmer reaction 
(0.827) of Liu et al.19 A recent publication20 discusses that the CEP method inconsistently 
describes the electrode potential due to multiple capacitances in the system, which can result 
in the deviation of 𝐺°",), (intercept). The 𝐺",) obtained from Ref2 using the constant charge 
method is 0.42 eV and 1.20 eV for Volmer and Heyrovsky at pH of 14, H* coverage of 0.00 
ML and 0.08 ML in c(3×4) slab. At the same pH and H* coverage, we obtain 0.804 eV and 
1.961 eV using the CEP method, respectively, which deviate significantly. Thus, we use the 
𝐺°",) of the constant charge method by referencing to the 𝐺",) at pH 14, and H* coverage of 
0.00 ML and 0.08 ML. 

 
Fig. S2 | The coverage dependent alkaline BEP relationship for Volmer and Heyrovsky. The dotted line indicates 
the 95 confidence interval of the relations. 

4. ReaxFF MD Simulation of the jagged Pt nanowire 
To get a realistic structure of jagged Pt nanowire, we implement the force field based methods 
outlined in Ref21 which reproduces experimental characterization. Specifically 
1. The infinite nanowire (1D system) is constructed based on the fcc Pt crystal structure 
where the z-axis of the nanowire is along the (111) direction. Along the x- and y-axis there are 
13 and 9 Pt atoms. This choice was made to expose (100) facets. 
2. The 1D model is replicated to 220 individual unit cells along the z-axis of the wire. 
3. 85% of the Pt atoms are randomly selected and removed to simulate the Ni dealloying 
of 85:15 Ni:Pt nanowire.  
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4. The conjugate-gradient local relaxation is performed with a fixed-cell using the ReaxFF 
force field. The maximum change in Cartesian coordinates is limited to 0.1 Å to avoid 
disruption of the original structure. The nanowire is converged to 4×10-6 eV on the energy and 
4×10-8 eV/Å on the force. 
5. Another relaxation is performed with a relaxed cell along the z-direction at a pressure 
of 1 atm. 
6. The NPT Molecular Dynamics (MD) simulation is performed at 343 K for 520 ps (20 
ps equilibration followed by a 500 ps run). 
7. The least coordinated atoms which would be leached away during ORR cycling are 
removed. 
8. Another NPT Molecular Dynamics (MD) simulation is performed at 343 K for 520 ps 
(20 ps equilibration followed by a 500 ps run) 
9. We relax the final structure using an EMT force field.22 
Step 3 - 9 is applied to 4×4 Pt(111) and Pt(100) slabs to build a training set for the machine 
learning model where the number of slab layers is modified so the resulting slab would contain 
64 Pt atoms. 
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5. Gibbs free energy of adsorption prediction via machine learning 
model development 
As the jagged Pt nanowire surface is highly irregular and large, DFT is impractical to predict 
binding energy. Here, we leverage the machine learning model to make fast predictions on 
∆!𝜇"#$.  
5.1. The Gibbs free energy of adsorption database 
We sampled 200 structures for Pt(111) and Pt(100) each from the ReaxFF MD simulation 
protocol discussed above. We identified five to six binding sites, and their ∆!𝐺"#$  were 
calculated using the DFT calculations (section 2), resulting in a total of 3413 data points. For 
geometric optimization, the Pt atom positions were fixed to preserve the geometry, while the 
H was allowed to move freely.  

Our property of interest is ∆!𝐺"#$ = 𝜇,∗ − 𝜇∗ −
H
<
𝜇°,1(2)  as discussed above. Here, 𝜇∗ is the 

DFT calculated empty slab energy, 𝜇°,1(2)  is the Gibbs free energy of the hydrogen gas at 1 
bar where we account for the translational, rotational, and vibrational degree of freedom, and 
𝜇,∗ is the Gibbs free energy of adsorbed hydrogen where the vibrational degree of freedom has 
been accounted for. For the vibrational contribution, we used the vibrational frequency 
obtained from Pt(111) hollow site for all 3413 calculations to reduce the computational cost. 
5.2. Data preprocessing for machine learning model training 
In this work, we tested the predictive accuracy of four different models: Atom centered 
symmetric function (ACSF),23 crystal graph convolutional neural networks (CGCNN),24 
SchNet,25 and Gaussian Process.26 For the neural network model, we use the labeled site 
representation.27 The labeled site is a simple representation involving labeling the binding site 
atoms. In this work, we label the binding site atoms by substituting the elements of the 
hydrogen interacting Pt with an element.27 To find the binding site atoms, we use the alpha 
shape to identify top, bridge, and hollow binding sites and designate the binding site closest to 
the hydrogen as the hydrogen interacting binding site. The alpha shape is a shape formed by 
tetrahedral polygons of a set of points where a sphere of radius larger than a user-defined size 
cannot enter the polygons (See Ref27 for the detailed explanation). By defining the sphere size 
as the sum of Van der Waals radius of hydrogen and platinum (2.84 Å), we can define the Pt 
surface where hydrogen gas would not be able to diffuse through without covalently interacting 
with the Pt surface. After the surface is defined, surface points, connection between points, and 
the center of the trigons of tetrahedral polygons become the top, bridge, and hollow site 
respectively. At this sphere size, the calculated electrochemical surface area (ECSA) is 106.8 
m2/g comparable to the experimental  ECSA of 112.9±5.4 m2/g28 and 118 m2/g.21 
To convert the DFT converged structures to machine (neural network) understandable 
representation, we focus on the local environment of the binding site similar to those introduced 
by Chen et al.29 We used 7.0 Å from the binding site as a cutoff distance based on the first peak 
at 3.5 Å in the Pt-Pt radial distribution functions in jagged Pt nanowire to create machine 
learning representation. For the preparation of Gaussian process descriptors, we extracted the 
distance between the Pt atoms and the binding site for the 12 nearest Pt atoms. We designate 
this model as the nearest atom distance (NAD). 
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5.3. Model training and validation 
In our previous work, we found that using the average of multiple models reduced model bias 
and improve the binding energy prediction accuracy, so-called ensemble modeling.27 Here, we 
also use ensemble methods for predicting binding energy. To test our model, we hold out 10% 
of the dataset for testing and performed 5-fold CV using the rest of the data set (Fig. S3). Thus, 
we form five models for each method, and predictions are made to the 10% test set where the 
predictions are averaged before comparing with the true binding energies. As shown in Table 
S2, using the average prediction of five models shows higher accuracy than using one model 
alone. We also tested averaging the predictive accuracy of multiple model frameworks (e.g., 
ACSF and CGCNN), but the improvement was minimal. Here, we find that the ensemble of 
ACSF models shows the best performance with a mean absolute error of 0.043 eV, thus we use 
ACSF for predicting binding energies.  

 
Fig. S3 | Test, validation training split visualization for the 5-fold cross-validation used in this work.  

 
 
Table S2 | Out-of-sample (test) set error statistics for various models considered. The red values indicate the 
lowest value within the columns. The plus sign indicates the combination of multiple machine learning methods. 
NAD is the Gaussian process method that uses the distance of Pt atoms nearest to the binding site as descriptors.  

Model 
Mean 
absolute 
error (eV) 

Root 
mean 
squared 
error (eV) 

Max 
absolute 
error (eV) 

ASCF* 0.046 0.060 0.227 

NAD* 0.057 0.073 0.283 
CGCNN* 0.057 0.072 0.267 

SchNet* 0.069 0.088 0.306 
ASCF 0.043 0.056 0.221 

NAD 0.057 0.073 0.287 
CGCNN 0.056 0.071 0.243 

SchNet 0.068 0.088 0.336 
ASCF+NAD 0.046 0.059 0.211 

Test Validation Training
72%10% 18%
72%10% 18%
72%10% 18%
72%10% 18%
72%10% 18%
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ASCF+CGCNN 0.044 0.057 0.214 

ASCF+SchNet 0.049 0.064 0.202 
NAD+CGCNN 0.051 0.066 0.243 

NAD+SchNet 0.057 0.074 0.279 
CGCNN+SchNet 0.057 0.074 0.240 

ASCF+NAD+CGCNN 0.046 0.059 0.207 
ASCF+NAD+SchNet 0.049 0.063 0.231 

ASCF+CGCNN+SchNet 0.049 0.063 0.201 
NAD+CGCNN+SchNet 0.054 0.069 0.252 

ASCF+NAD+CGCNN+SchNet 0.048 0.062 0.223 

*Best model out of five 

 
5.4. Application to Jagged Pt Nanowire 
To apply our model to the various Pt surfaces considered for KMC simulation, the alpha shape 
strategy discussed in section 5.2 is applied to the force field obtained Pt surfaces to find binding 
site atoms. Then, the site labeling and local environment pruning (see section 5.2.) are applied 
to predict binding energies. 
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6. Coverage effect model development 
To apply the coverage effect introduced in Section 1, we need to model the lateral interaction, 
the repulsive interaction between the adsorbates. Here, we derive the hydrogen-hydrogen 
interaction energy from the experiments using the mean-field Ising (cluster expansion) model. 
We collected differential energy of adsorption for Pt(111), Pt(100), and Pt(110) from three 
different studies30-32 and plotted it against the hydrogen surface density as shown in Fig. S4.  

 

 
Fig. S4 | Differential energy, enthalpy, and Gibbs free energy of adsorption vs, the hydrogen surface for Pt(111) 
(Square), Pt(100) (diamond), and Pt(110) (triangle). Blue, gray, yellow, orange, and green colors from Ref,30 
Ref,33 Ref,34 Ref,31 and Ref,32 respectively. Y-axis value of Blue is Gibbs free energy (∆G), those of gray and 
yellow are electronic energy (∆E), and those of orange and green are enthalpy (∆H) of adsorption.  

Here, the change in adsorption energy (the slope in the figure) is fairly consistent between 
different surfaces and studies when plotted against the hydrogen surface density (2.1 ± 0.76 
eV·Å2·atom-2), thus we use this information to estimate hydrogen-hydrogen lateral interaction. 
It has been shown that the nearest neighbor pair-wise interaction (Ising model) is sufficient to 
reproduce cyclo voltammetry data34 thus we parameterize the Ising model using the 
experimental data. 

Using the Ising model formulation, system energy can be written as  
 

 E = 	F 𝐸*𝜎*
I

*
+ 𝐽F 𝜎*𝜎0

I

J*,0K
 (21) 

 

where Ei is the binding energy of site i, and σi is the occupancy where 0 is the unoccupied, and 
1 is the occupied site, N is the number of sites. In the case of KMC simulation, equation (21) 
can be directly used as Ei and σi are rigorously calculated. We estimate J from 
 Fig. S4 by using mean-field theory to correlate to the experimental result. σi can be written as 
the fluctuation from its mean value, m. 
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 E = 	F 𝐸*𝜎*
I

*
+ 𝐽F (𝑚* + 𝑑𝜎*)S𝑚* + 𝑑𝜎0T

I

J*,0K
 (22) 

 
where dσi = σi – mi, the fluctuation. Expanding the equation: 

 

 E = 	F 𝐸*𝜎*
I

*
+ 𝐽F S𝑚*𝑚0 +𝑚*𝑑𝜎0 +𝑚0𝑑𝜎* + 𝑑𝜎*𝑑𝜎0T

I

J*,0K
 (23) 

 
The last term is the product of two fluctuations, which is negligible at the limit of a large 
surface. Also, we assume that every site is equivalent in terms of lateral interaction for the 
simple parameterization (i.e., m=mi = mj). By accounting for these factors, and substituting the 
dσi = σi – mi, 
 

 
E = 	F 𝐸*𝜎*

I

*
+ 𝐽F (𝑚< + 2𝑚(𝜎* −𝑚))

I

J*,0K

=F 𝐸*𝜎*
I

*
+ 𝐽F (−𝑚< + 2𝑚𝜎*)

I

J*,0K
 

(24) 

 

The summation over <i,j> can be written as ∑ =I
J*,0K 1/2∑ ∑ 	0∈MM(*)

I
* 	where ½ is to account 

for the double-counting, and nn(i) indicates the nearest-neighbor of i. Simplifying this 
expression result in: 
 

 E = 	F 𝐸*𝜎*
I

*
−
𝐽𝑚<𝑁𝑧
2 + 𝐽𝑚𝑧F 𝜎*

I

*
 (25) 

 
where N is the total number of sites, and z is the coordination number, i.e. the number of 
adjacent sites. This is the mean-field theory solution to the Ising model. Equation (25) 
represents the energy of the entire surface and  

Fig. S4 is adsorption energy per site differentiated by hydrogen surface density 𝜌, =
I4
I
𝜌+, 

where 𝑁, = ∑ 𝜎*N
*  is the number of hydrogen, and 𝜌+ is the surface site density. Dividing the 

Equation (25) by Ns to get energy per site and using that m = I7I , and Ei is consistent for single 
facet (=E0), Equation (25) simplifies to: 

 

 
𝐸
𝑁,

=	𝐸> +
𝐽𝑧
2
𝜌,
𝜌+
 (26) 

	
Taking the first derivative results in the slope of  
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Fig. S4: 

 

 
𝑑𝐸/𝑁,
𝑑𝜌,

=	
𝐽𝑧
2𝜌+
 (27) 

 

Here, we use 𝜌+ equal to 0.14 atom/Å2, the average of 0.15, 0.13, and 0.14 atom/Å2 for (111), 
(100), and (110) – (1×2) respectively. In all three surfaces, z is 6, by considering only the sites 
that are filled by hydrogen before the over-saturation (>1 ML), resulting in J = 0.098 ± 0.035 
eV. The sites on nanowire may have more than 6 nearest neighbor sites thus local 
oversaturation is plausible, but the oversaturation is not observed until very low potential which 
is not considered in this study. The distances between sites in single crystal surfaces are all 
within 2.78 Å, thus, for nanowire, sites within 2.78 Å radius are identified for each site and are 
considered nearest-neighbors for lateral interactions. 

To apply this model to our system, 𝜇,∗ can be further expanded: 
 

 
𝜇,∗ = 𝜇°,∗ + 𝐽∆𝑛,;, 

 
(28) 

where 𝜇°,∗ indicates the energy of adsorbed hydrogen at the zero-coverage limit, ∆𝑛,;, is the 
change in the number of H-H interactions (number of hydrogen pairs are within 2.78 Å) 
between the final and initial states. The zero-coverage limit is the coverage where lowering the 
coverage no-longer changes the adsorption energy. For the Gibbs free energy of adsorption 
database we have built, the hydrogen atoms are sufficiently far apart across the periodic 
boundary that the lateral interaction is not felt across the periodic boundary. For the KMC 
simulation, graph theory can be used to compute ∆𝑛,;,. 

7. Graphic theoretical kinetic Monte Carlo simulation 
The graphic theoretical kinetic Monte Carlo provides site-resolved insights into catalysis that 
are otherwise not possible using the mean-field microkinetic models and experiments. In this 
method, each binding site is explicitly defined and a reaction is simulated one at a time, thus 
provides a high-resolution picture into catalysis as shown in Fig. S5 with a Pt(111) example. 
A great review is provided in ref.35 In this section, we summarize the methodology for Pt 
surface graph generation, the graphical definition of reactions, the Kinetic Monte Carlo 
algorithm, and the model validation and adjustments. 
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Fig. S5 | An Pt(111) example of a graph theoretical kinetic Monte Carlo. The green and blue fill represents the 
adsorbate and the empty binding sites. In graphical kinetic Monte Carlo reactions are simulated one at a time with 
the site-resolved picture to provide catalytic insights. 

7.1. Pt surface graph generation, and reaction graph definition 
To generate the surface graph, we use the alpha shape procedure introduced in section 5.2. 
From the ReaxFF, we sampled the jagged Pt nanowire’s structure, and alpha shape is used to 
convert its surface the polygonal shape, where the points are the atoms/top sites, the edges of 
the polygons are the bridge site and the center of the triangle is the hollow site. The Volmer 
and Heyrovsky reactions are available to all sites, whereas Tafel and diffusion reactions are 
defined for a pair of adjacent sites as shown in Fig. S6.  

 
Fig. S6 | The change in the surface graph for each reaction type.  
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7.2. Kinetic Monte Carlo algorithm 
We used the graph-theoretical kinetic Monte Carlo algorithm as outlined in Stamatakis et al35 
and we also implemented the reaction scaling method by Núñez et al36 to speed up the 
simulation. Reaction constants are calculated using the transition state theory and 
thermodynamic equilibrium: 

 

 

𝑘) =
𝑘O𝑇
ℎ exp \

−𝐺",)
𝑘O𝑇

] 

𝑘! =
𝑘)
𝐾  

𝐾 = exp \
−∆!𝐺
𝑘O𝑇

] 

(29) 

 
The pseudo-code for the KMC algorithm is provided below: 

 
0. Start 

1. Initialize all reaction constants 
2. Run parallel KMC simulations until 1000 events 

3. Rescale the fast equilibrated reactions as described in Ref36 
4. Set the termination time for the next run to be twice the first run 

5. Run parallel KMC simulation until the termination time 
6. Rescale the fast equilibrated reactions 
7. Repeat 4 – 6 until the system reaches the steady-state (which we define as when the 
noise in the current density is within ~10%) 

 
We used the rejection-free KMC algorithm as it is the fastest algorithm for our system.  

7.3. Model validation, degree of rate control analysis, uncertainty, and adjustments 
 The followings are the supplementary figures and tables regarding the model validation. 
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Fig. S7 | Tafel reaction BEP trends obtained from ref5 for Pt(111) (green), Pt(110) (red), and Pt(100) (Yellow). In 
our model, we use the black trend line which falls well within the distribution of the data. 

Table S3 | Higher and lower bounds of reproduced measurements based on 95% confidence intervals of sensitive 
parameters. BV and M indicate Butler-Volmer and micropolarization fitting, respectively.  

  Lateral Interaction (J) Tafel BEP relation Volmer BEP relation 

Tafel Slope (mV/dec) 72.9 (72.5, 77.5) 72.9 (71.1, 85.7) 72.9 (72.1, 75.5) 

BV i0 (mA cm-2) 0.81 (0.60, 1.12) 0.81 (0.62, 0.83) 0.81 (0.36, 1.72) 

BV β 0.46 (0.45, 0.48) 0.46 (0.45, 0.52) 0.46 (0.46, 0.47) 

M i0 (mA cm-2) 0.83 (0.60, 1.12) 0.83 (0.63, 0.85) 0.83 (0.40, 1.72) 

Bifunctional Gain 4.61 (3.10, 4.81) 4.61 (2.78, 6.12) 4.61 (3.02, 4.67) 

 

 
Fig. S8 | Change in ΔrGads vs. CN within the 95 confidence interval of (a) J (HH cluster interaction energy) (b) 
Tafel barriers and (c) Volmer barriers. The blue, red, and green colors indicate the norm, upper, and lower interval. 
Overall the conclusion that Pt atom with lower CN is the active centers remains the same. 

7.4. Effect of jagged Pt nanowire length 
We made 46.1 nm nanowire using the force field approach, and we cut the wire at various 
lengths to produce the Figures in this study. To check the validity using a shorter wire, we plot 
the zero coverage Gibbs free energy of adsorption, Δ!𝐺"#$,>, at various lengths, as shown in 
Fig. S9. The larger wire length results in a smoother normal distribution. We test the normality 
of the distribution using a 2-sided chi-squared probability for skewness and kurtosis, which is 
all below 0.296% of 2.3 nm signifying their normality (Table S4). We find that the current 
density is within 10% of each other for all tested lengths (2.3, 4.6, 9.2, and 23.0 nm) of the wire 
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(Table S4). At the minimum, we used a 2.3 nm wire length to produce results that are sufficient 
to reproduce the macroscopic behavior. 

 
Fig. S9 | The distribution of zero coverage Gibbs free energy of adsorption, Δ!𝐺"#$,8, for various length of the 
jagged Pt nanowire (with an offset of 0.5 for each increase in length) 
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Table S4 | A 2-sided chi-squared probability for normality (skewness and kurtosis test) for zero coverage Gibbs 
free energy of adsorption, Δ!𝐺"#$,8 of jagged Pt nanowire at various length, L at pH 14, 298K and -0.05 V vs. 
RHE and 1 bar H2 

L (nm) 

Δ!𝐺"#$,> 

normality X2 

Steady State 

i (mA cm-2) 

Output Figures and Tables  

2.3 2.96×10-3 1.76 ± 0.08 Fig. 2, Table S3, Fig. S8  
4.6 2.28×10-4 1.71 ± 0.02 Fig. 4 
6.9 3.18×10-4   

9.2 2.08×10-5 1.75 ± 0.02 Fig. 3bc, Fig. 6  
11.5 6.01×10-8   

13.8 8.64×10-8   

16.1 5.54×10-9   

18.4 2.76×10-9   

20.7 5.14×10-11   

23.0 2.64×10-12 1.96 ± 0.02 Fig. 3a, Fig. 7, Fig. S10 
25.4 3.52×10-14   

27.7 2.84×10-15   

30.0 2.53×10-18   

32.3 1.39×10-19   

34.6 4.84×10-19   

36.9 9.56×10-23   

39.2 3.24×10-24   

41.5 4.19×10-26   

43.8 2.28×10-28   

46.1 7.84×10-26   
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8. Experimental details 
8.1. Synthesis of PtNi alloy nanowire on carbon 
All chemicals were purchased from Sigma-Aldrich unless otherwise specified. In a typical 
synthesis, 20 mg Pt(acac)2 and 40 mg Ni(acac)2 were mixed with 130 mg glucose, 1.7 mg 
W(CO)6 and 60 mg PVP (molecular weight: 40000) in a glass vial, with 3 ml of oleylamine 
and 2 mL octadecene as co-solvent. The mixture was heated to 140 °C for 6 h to form Pt–NiO 
core–shell nanowires. The resulting nanowires were collected via centrifuge at 7,000 r.p.m. for 
20 min. After loading the nanowires on pretreated Vulcan 72 carbon black, the catalysts were 
then annealed under 450 °C in argon/hydrogen (97:3) atmosphere for 12 h to obtain the PtNi 
alloy nanowires supported on carbon black.  
8.2. Electrochemical dealloying of PtNi nanowire to synthesize jagged Pt nanowire 
The ink was prepared by dispersing 1 mg catalysts and 10 uL Nafion solution in 1 mL ethanol 
using sonication. 10 uL ink was then dropcasted on the rotating disk electrode (RDE: 0.196 
cm2) as the working electrode. The Ag/AgCl electrode and the Pt wire were used as the 
reference electrode and the counter electrode, respectively. The potential of the reference 
electrode has been pre-calibrated under 1 atmosphere H2. An electrochemical dealloying 
process was performed via 200 cyclic voltammetry (CV) cycles of working electrode between 
0.05 V and 1.10 V versus RHE in 0.1 M HClO4 at a scan rate of 100 mV/s to completely remove 
the nickel species. N2 gas was continuously purged to remove the O2 from the electrolyte. After 
complete dealloying, the remained Pt surface then became a jagged surface which has been 
characterized by previous works. 

8.3. Electrochemical hydrogen evolution/oxidation reaction test 
After dealloying, the working electrode was carefully washed using deionized water and 
transferred into 1 M KOH electrolyte (N2 ) purge and scan CV from 0.05 V to 1.10 V vs. RHE 
at a scan rate of 100 mV/s until the CV is stable. The reference electrolyte and counter electrode 
used in 1 M KOH were Hg/HgO electrode and graphite rod electrode, respectively. The 
HER/HOR tests were then performed via linear scan voltammetry (LSV) from -0.05 V to 0.10 
V vs. RHE at a scan rate of 10 mV/s with continuous H2 purging. All the presented HER/HOR 
polarization curves and following data analysis are iR-corrected. 
8.4. Obtaining exchange current density, symmetric factor, and Tafel slope from the 
HER/HOR Polarization curve  
After obtaining the HER/HOR polarization curve, the HOR branch was corrected by 
Koutecky–Levich equation (eq. (30)), where j is the current density collected on the working 
electrode and jk is the kinetic current density and jd is the H2-diffusion limiting current density. 
The corrected HER/HOR polarization curve was then fitted from -0.05 V to 0.05 V using 
Butler−Volmer equation (eq. (31)), and fitted from -0.01 V to 0.01 V using micropolarization 
linear fitting (eq. (32)), to get symmetric factor β and the exchange current density j0, RDE 
(normalized by RDE geometric surface area). Here, R is the universal gas constant, T is the 
temperature in Kelvin, F is the Faraday’s constant, and η is the overpotential. The Tafel slope 
was then directly measured from the Butler−Volmer plot. 

 
H
0
= H

09
+ H

0:
  (30) 
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 𝑗P = 𝑗>,QRD × (𝑒
STU
QV − 𝑒

(S;H)TU
QV ) (31) 

 

 𝑗 = 𝑗>,QRD ×
𝜂𝐹
𝑅𝑇 

(32) 

 
After obtaining j0, RDE, the intrinsic exchange current density i0, ECSA was determined by the 
following simple calculation (33). Here the AHupd is the hydrogen underpotential deposition 
area of the jagged Pt nanowires, which was determined from its CV plot in 1 M KOH.  

 𝑖> = 𝑗>,QRD
0.196
𝐴CWXY

 (33) 
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9. Supplementary Figures and Tables 

 
Fig. S10 | Visualization of the optimized latent coordinate of sites based on the similarity between sites for each 
site type: top (a, b, c), bridge (d, e, f), and hollow sites (g, h, i). The colors represent ∆rGads (a, d, g), coordination 
number (CN) (b, e, h), and local Pt density (c, f, i). The t-SNE optimized sites’ latent coordinates based on the 
CN and the local Pt density. The examination shows that CN is correlated to the ∆rGads. 
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