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Cell-to-Cell Information at a Feedback-Induced Bifurcation Point
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A ubiquitous way that cells share information is by exchanging molecules. Yet, the fundamental ways
that this information exchange is influenced by intracellular dynamics remain unclear. Here we use
information theory to investigate a simple model of two interacting cells with internal feedback. We show
that cell-to-cell molecule exchange induces a collective two-cell critical point and that the mutual
information between the cells peaks at this critical point. Information can remain large far from the critical
point on a manifold of cellular states but scales logarithmically with the correlation time of the system,
resulting in an information-correlation time trade-off. This trade-off is strictly imposed, suggesting the
correlation time as a proxy for the mutual information.
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Cells sense and respond to their environment, trans-
forming chemical cues into the modification of signaling
molecules, the expression of genes, and the production of
proteins. Such signaling networks are often complex,
involving, among other features, multiple feedback loops.
Yet, the underlying purpose of these networks is to sense
and transmit information robustly. For example, in the
context of immune response, the complex topology of
signaling cascades in T cells can be such that perturbing a
cascade before or after a feedback loop results in dichoto-
mous response [1]. However, coarse graining the signaling
cascade, one can define a basic unimodal-bimodal system,
agnostic of biological details, which singles out a particular
“readout” molecule while integrating out all others. Such
coarse graining of the network results in an effective
feedback term, which reduces the dynamics to a universal
form near a bifurcation point [2-4]. As a result, one can
apply critical scaling to these universal dynamics, modified
by their nonequilibrium nature [5].

Though powerful, such analysis of intracellular dynam-
ics alone treats cells in isolation, equivalent to a very dilute
suspension. This ignores the role of cell-to-cell interactions,
communicated by means of molecule exchange. Such
communication in its simplest form involves only two
cells, either similar or different, which produce, degrade,
and exchange a molecule. Interaction between two cells is
an important biological process, e.g., the immunological
synapse [6,7]. By modeling molecule exchange between
two cells, with each cell a generic sense-and-secrete
apparatus, one can study the fundamentals of cell-to-cell
information. Investigating the information exchange
between two cells in this simple framework is the focus of
this work.

Model.—Within each cell, biochemical reactions in a
complex signaling cascade have the net effect of producing
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and degrading a molecular species of interest. We special-
ize to dynamics that can yield either a unimodal or a
bimodal molecule number distribution in steady state. Near
such a bifurcation point, as was previously shown [3], the
precise form of the coarse-grained feedback is irrelevant.
For convenience we choose to parameterize it using
Schlégl’s second model [8-15], a well-studied set of
reactions that minimally encodes feedback. Specifically,
as illustrated in Fig. 1(a), in the first (second) cell, species
X (Y) can be produced spontaneously from bath species at
rate k; (g¢)), and can be produced nonlinearly at rate
ky (g3) via a trimolecular reaction involving two existing
X (Y) species and a bath species. Species X (Y) can be
degraded linearly with molecule number at a rate k7 (q7),
or in a reaction involving three existing X (¥) molecules at
rate k5 (q;). In addition to the internal reactions, X (Y) can
be exchanged from the neighboring cell at rate y,, (7y,)-
Physically, this can be through a gap junction or through
diffusion. Individually, in the absence of exchange
(Yxy = 7yx = 0), each of the two constituent cells’ molecule
number distribution can be either unimodal or bimodal,
depending on parameters. If exchange is switched on,
(Yxy» ¥yx > 0), the system converges to a collective two-cell
state, with the joint distribution unfactorizable in general,
P(X,Y) # Py(X)Py(Y).

Thermodynamic parameters.—Building upon previous
work [3,5], we construct a mapping from Schlogl
parameters to Ising-like parameters. Without exchange,
the deterministic dynamics corresponding to the re-
actions in the left cell in Fig. 1(a) are dx/dt=
ki — kix + ky x> — k;x3, where we have neglected the
small shifts of —1 and —2 for large x. Defining the order
parameter m = (x — n.)/n., we choose n.. to eliminate the
term quadratic in m, putting the dynamics in the Landau
form [3]
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dm m?

e h—0m 3 (1)
where we have defined n. = k3 /3k;, == (k3)%t/3k;,
0= 3kiky (k32 — 1, and h = 9k; (k5 )2/ (k3 )* — 3kks /
(k3)*+2/3.

The number of molecules in the system is controlled
by n.. In fact, n. controls all scaling properties of the
single-cell system, acting as a finite system size of the
equivalent critical Ising system [3]. Roughly, in our system,
n. is the value of X or Y at the center of the flat part of
the critical distribution (8 = 0) in Fig. 1(b). At small n,,
therefore smaller molecule numbers, small corrections to
this mapping can be derived by expanding the known
stochastic steady-state distribution around its maximum
instead of relying on the deterministic dynamics (see the
Supplemental Material [16]). We use the corrected mapping
in all simulations in this work.

In steady state, dm/dr =0. We can thus interpret
m as an order parameter for the single-cell system,
0= (T—-T.)/T,. as a reduced “temperature,” and h as a
dimensionless field. Analogous to the Ising model, when
h =0 in the single-cell system, # > 0 corresponds to a
unimodal steady-state distribution, and € < 0 to a bimodal
distribution. Similarly, tuning /4 biases the distribution to
high or low molecule count. The stochastic steady state of a
single cell at m, 8, h = 0 was previously shown to exhibit
many properties of equilibrium critical points [3]. Applying
the same mapping to two coupled cells (with k — ¢ for Y)
results in the Landau form,

dm m;

dTX = hy — Oxmy — TX + gxymy — gyxmy,  (2)
dm m;

d—rY = hy — Oymy — 71/ + gyxmx — gxymy,  (3)

where gyy = 3y,,k; / (k3 )?* and gyx = 3y,.q5 /(g3 )* para-
metrize the exchange terms between cells.

The joint distribution P(X,Y) for identical cells is
shown in Fig. 1(b): with identical dimensionless
fields (hy = hy = 0), internal reaction rates (ki', = gi’,),
molecular diffusion strengths (gxy = gyx = ¢g), re-
duced temperatures (fy = 0y =0), and system size
(n.x = n.y). In the top row there is no molecular exchange
between cells (g = 0), and each cell is governed solely by
its internal dynamics, P(X,Y) = Px(X)Py(Y). Negative 6
yields a polarized, bimodal marginal distribution for each
cell, Px(X) and Py(Y). Stochastic fluctuations induce
switching between states in each cell individually, resulting
in four modes in P(X,Y). When 8 = 0, each cell sits at its
own critical point, resulting in broad and flat marginal
distributions, with the joint distribution square shaped.
When 6 > 0, each cell is centralized, yielding a unimodal
marginal distribution about 7., with the joint distribution
also centralized. In the bottom row of Fig. 1(b), the effect of
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FIG. 1. Model and simulated distributions. (a) Two-cell Schlogl

dynamics with an exchange term y. (b) Examples of the joint
distribution P(X,Y) from Gillespie simulations with 42 = 0 for
g = 0(top) and g = 1 (bottom). Color map corresponds to log P.

molecule exchange (¢ = 1) is evident. When 8 < 0, each
cell is polarized, and can again access two distinct internal
states, but their joint distribution reveals that the cells
switch states in concert. When @ = 0, each cell can access a
broad range of molecule numbers, but exchange induces
the cells to have nearly equal molecule number at all times.
This effect is also seen when @ > 0, in a smaller, centralized
range of accessible molecule numbers.

Having established that two communicating cells
undergo a bifurcation in their collective dynamics at
60 =0, we ask: what are the properties of the two-cell
bifurcation point? One can read out the mean-field critical
exponents f = 1/2,y = 1, § = 3 directly from the two-cell
Landau form. For the exponent a, the single-cell system
shows a minimum of its heat capacity C, at @ = 0 [3], with
peak depth depending on the “system size” n,.. Similarly,
for the two-cell system, we calculate C,, directly from the
empirical P(X,Y) using C, = (1 +0)(0S/00) and the
Shannon entropy S = — )y, P(X,Y)In P(X,Y). We plot
C,(0,n.) for arange of n, values in Fig. 2(a), confirming a
minimum of C, at 6 = 0, with C,(0 = 0) ~n/* (inset).
Therefore, at steady state, the two communicating cells
near their bifurcation point are in the same static mean-field
universality class as the single-cell system.

When considering the stochastic dynamical system at its
bifurcation point in steady state, or its representation as the
critical point of two coupled Ising models, an important
timescale emerges: the correlation time, z. The correlation
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FIG. 2. Scaling of heat capacity and correlation time. (a) The
heat capacity C, reaches a minimum at & = 0; Inset—the depth of
C,(0 =0) scales as /n.. (b) Correlation time 7 at 6 =0,
dependence on n., blue: ¢ =0 (no exchange); red: g=1.
(c) Estimate of the local slope x = dInz/dInn, from the data
in (b), shaded area: 95% confidence interval.

time controls the response of the system to both sudden and
gradual changes, a common and important biological
scenario, e.g., in the dynamics of response to small-
molecule drugs [5]. Figure 2(b) shows the dependence
of correlation time, 7 on the system size n., computed from
Gillespie simulations with 8 = i = 0 using the method of
batch means [17]. The two curves represent a simulation
with exchange (red, g = 1) and without it (blue, g = 0).
To find x in 7 ~ nf, in Fig. 2(c) we plot the local slope,
x=dlInr/dInn. from Fig. 2(b). Without exchange, van
Kampen’s “system size” expansion shows that x = 1/2
[3,18], and this value is confirmed by the blue curve in
Fig. 2(c). With exchange, x is greater than 1/2 with x
tending towards 1/2 as n, increases.

In the language of our Ising-like parameters (A, 6), what
values result in the highest cell-to-cell information? We
quantify information by means of the Shannon mutual
information, 7, shown in Fig. 3(a) for identical cells, with
h = 0. Each curve represents a different system size, n.. As
n, increases, I peaks closer to the critical point, 8 = 0.
When 0 < 0, as shown in Fig. 1(b), the polarized bimodal
regime inhibits stochastic switching, reducing information
exchange. Conversely, when 8 > 0, noise dominates com-
munication, suppressin; 1. Moreover, Fig. 3(b) shows that
I(n.,g,0 =0) ~1nni/ , to be contrasted with TNni/z,
indicating a fundamental trade-off between information and
response time in the system: higher precision and faster
response time favor larger and smaller n,, respectively.
Fig. 3(c) shows a heat map of the mutual information as a
function of both @ and /. In addition to again seeing that [ is
maximal at @ =0, we also see that moving away from
h =0 causes I(6, h) to sharply decrease. The case h # 0
biases the baseline production rate, which dampens corre-
lated fluctuations between the two cells and leads to loss of
information.

What happens to the information when we relax the
requirement for the two cells to be identical? Are there
regimes with dissimilar cells that can communicate effec-
tively? Letting Oy # 0y, with hy = hy = 0, we show in
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FIG. 3. Shannon mutual information for identical cells.

(a) Shannon mutual information I, for 6, h = 0; colors corre-
spond to increasing n, values from 10%> (blue) to 1037, Dashed
horizontal marks 6 = 0. (b) I(n.;0 = 0) for different values of
g€ {1071,107%3,10° 10°}. Dashed black—showing that
I(n.) = const + In ne/* () Heat map showing I (0, h) depend-
ence on both @ and 2 with g = 1 and n,. = 3000.

Fig. 4(a) that I is maximized in a narrow band which
crosses Oy =60y =0, with [ decaying abruptly when
Oxy <0, but can remain appreciable when 6y y > 0.
This is interesting, because Ising intuition normally pro-
ceeds that 7 > T, (read @ > 0) is disordered and T < T is
ordered, but here the disordered pair holds higher mutual
information farther away from the critical point. The abrupt
decay at 6 < 0 is due to the polarized, bimodal distribution
which makes it hard to communicate between the modes.
When one cell is polarized (@ < 0) and the other is
centralized (6 > 0), evidently the centralized cell mitigates
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FIG. 4. Shannon mutual information for dissimilar cells.
(a) Dissimilar @ values with hy = hy = 0; blue dashes corre-
spond to 7 =0 from Eq. (4). (b) Dissimilar & values with
0x = 0y = 0. (c) The mutual information / vs H, T (4), generated
from randomly uniformly drawn h,,h,, 0,0, € [-0.1,0.1].
(d) Mutual information as a function of the correlation time
7 for the data shown in c. In all plots, g =1 and kT = g7 = 1
with n, = 3000.
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the polarization when they are correctly matched, resulting
in a high information manifold.

When we let hy # hy with 8y = 8y = 0, the mutual
information can remain high when hy + hy = 0, shown in
Fig. 4(b), in contrast to the symmetric iy = hy # 0 case
in Fig. 3(c). The case hy + hy = 0 models a producer-
consumer pair because the field h controls baseline
production [3]. The pair, if rates are matched, shares
information effectively. This is a second special limit of
a high information manifold, which we detail in general
below. Due to the universal nature of the dynamics near the
bifurcation point, both the polarized-centralized pair and
the producer-consumer pair show high information in other
realizations of the dynamics, such as with Hill-function
feedback (Fig. S1 of the Supplemental Material [16]).
Thus, our simple model captures ubiquitous biological
scenarios, showing they support high mutual information.
Analytic results at the Gaussian limit [19] support this
observation [16].

Having shown that a polarized-centralized pair and a
producer-consumer pair can have high mutual information,
two important questions arise: (i) can we explain the high-
information manifolds observed in Figs. 4(a) and 4(b)
theoretically? (ii)) Do these high-information pairings
depend on fine-tuning, hy = hy = 0 for the polarized-
centralized pair, and Oy =68y =0 for the producer-
consumer pair, or are there more realistic high-information
pairings that do not depend on setting one pair of cellular
parameters to zero? To answer these questions, we first
define a set of two-cell collective coordinates.

Linearizing the deterministic steady state of the Landau
form [Eq. (3)], we derive the collective coordinates
(detailed in the Supplemental Material [16]),

T = 0x0y + g(Ox + 0Oy),
HX = g(hx + hy) + hXQY’
Hy = g(hy 4 hy) + hyOx. (4)

We further define a symmetric collective field, H =
1(Hx + Hy). Note that Hy = Hy =0 is fulfilled when
Ox =0y =0 and hy + hy =0 as in Fig. 4(b). The case
hy =hy =0 with T =0 is shown in dashed blue in
Fig. 4(a), consistent with the high / contour. The depend-
ence of the mean molecule number as a function of H, T is
shown in the Supplemental Material [16], Fig. S2, revealing
the characteristic Ising state curves, but here for a two-cell
collective state.

To test that the manifold given by 7 = H = 0 in Eq. (4)
maintains high information in general, we uniformly draw
random configurations of hy, hy, 6y, 0y € [—0.1,0.1] and
plot them on the H, T axes, colored by the mutual
information, shown in Fig. 4(c). We see a peak at
T = H = 0, confirming our expectation that this manifold
implies high mutual information. Thus we extend the

simple high mutual information cases, shown in Figs. 4(a)
and 4(b) to arbitrary values of hy, hy, 0y, Oy, ruling out
fine-tuning to the critical point as a requirement.

By avoiding the critical point, the cells obtain high I near
T = H =0 but with 0xy,hyy #0. Do they also avoid
critical slowing down? We return to the randomly drawn
samples and plot 7 vs 7 in Fig. 4(d). Interestingly, we note
that all values of [ for a set of {hy, hy, Ox, Oy} collapse on
two close branches uniquely determined by the correlation
time z. The branches are distinguished by the sign of H,
with the lower branch corresponding to H < 0; this is
expected since negative H lowers the mean molecule
number, and having fewer molecules to exchange yields
less information. The collapse shows that the time
and information trade-off is strictly imposed: there is no
“free lunch” where the cells can increase I without
slowing down. The fact that the mutual information is
uniquely defined by 7z is a useful outcome since the
correlation time is more readily observed empirically, in
contrast to / which requires estimating a joint distribution
function.

Discussion.—We have shown that coupling two ideal-
ized cells can give rise to a critical system. Extending the
Schogl model, and capitalizing on a mapping between the
internal dynamics of each cell and the mean-field Ising
model, we cast each constituent of the system in terms of
Ising-like quantities. At the collective bifurcation point,
0 = h =0, mutual information is maximized, though
dynamics are faced with a time and information trade-
off due to critical slowing down. Further, a polarized-
centralized pair or a producer-consumer pair support high
mutual information away from the critical point. We
generalize this observation and define a manifold of high
mutual information states. However, being away from the
critical point does not provide a way to increase informa-
tion without increasing the correlation time of the system.
Rather, the correlation time can serve as a proxy for mutual
information in our system.

The mutual information between two cells, or their
correlation time, can be directly measured from experi-
mental data, such as fluorescence microscopy movies.
As such, it is well-suited for high-throughput studies that
quantify cellular dynamics from large-scale biological
datasets. Here, we suggest a minimal model of cell-to-cell
communication and, with it, a simple theoretical frame-
work. Drawing on the universality of the dynamics near a
critical point, the framework does not depend on a
particular set of biochemical reactions, though in this
manuscript we focused on an extension of Schlogl’s
second model. The framework we present could be applied
to translate experimental data to thermodynamic and
information-theoretic quantities which are informative and
interpretable.
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