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A Wiener path integral variational formulation with

free boundaries is developed for determining the

stochastic response of high-dimensional nonlinear

dynamical systems in a computationally efficient

manner. Specifically, a Wiener path integral

representation of a marginal or lower-dimensional

joint response probability density function is derived.

Due to this a priori marginalization, the associated

computational cost of the technique becomes

independent of the degrees of freedom (d.f.) or

stochastic dimensions of the system, and thus, the

‘curse of dimensionality’ in stochastic dynamics is

circumvented. Two indicative numerical examples

are considered for highlighting the capabilities of

the technique. The first relates to marine engineering

and pertains to a structure exposed to nonlinear

flow-induced forces and subjected to non-white

stochastic excitation. The second relates to nano-

engineering and pertains to a 100-d.f. stochastically

excited nonlinear dynamical system modelling the

behaviour of large arrays of coupled nano-mechanical

oscillators. Comparisons with pertinent Monte Carlo

simulation data demonstrate the computational

efficiency and accuracy of the developed technique.

1. Introduction
Ever-increasing computational capabilities, novel signal

processing techniques, advanced experimental set-ups,
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as well as progress in emerging and transformative technologies (e.g. nano-mechanics) have

contributed to a highly sophisticated mathematical modelling of the governing equations

of diverse dynamical systems. In general, the governing dynamics is modelled as a high-

dimensional system of coupled nonlinear (stochastic) differential equations. In many cases,

solving even the deterministic version of such equations is an open issue and an active research

topic. Clearly, addressing the stochastic counterparts of these equations becomes significantly

more challenging, since the stochastic dimensions of the problem need to be considered in

addition to the system deterministic/physical coordinates; thus, the overall dimensionality and

computational complexity of the problem increase (e.g. [1]).

To address the above-described ‘curse of dimensionality’, as it is typically referred to in the

relevant literature, researchers have developed diverse techniques for solving high-dimensional

stochastic equations in a computationally efficient manner. Indicatively, these range from ‘smart’

Monte Carlo simulation (MCS) schemes (e.g. [2,3]) to various approximate dimension/order

reduction approaches (e.g. [1]). Nevertheless, in most cases, these methodologies become

eventually computationally prohibitive with an increasing number of problem dimensions.

Further, it can be argued that a complete stochastic characterization of the dynamical system

response (i.e. determination of the joint response probability density function (PDF)) is not

required for the vast majority of practical problems. Instead, determining a relatively small

number of marginal PDFs, or low-dimensional joint PDFs, is often adequate in practice. In this

regard, an interesting class of solution techniques focus on developing transformed governing

stochastic equations involving only a subset of marginalized joint PDFs. The rationale relates

to decreasing the dimensionality of the original problem and to determining directly the

stochastic response of specific degrees of freedom (d.f.) or intrinsic coordinates of interest.

Indicatively, appropriate multi-dimensional integration was applied in [4] for deriving PDF

evolution equations corresponding to specific quantities of interest. Moreover, high-dimensional

Fokker–Planck (F-P) equations were solved in [5] based on a block decomposition of the high-

dimensional unobserved subset of variables and of the remaining low-dimensional observed

variables. In a relatively similar context, a stochastic collocation scheme was developed in [6]

capable of treating high-dimensional stochastic differential equations (SDEs) by constructing a

sparse grid of collocation points, which is only weakly dependent on the dimensionality of the

state space (see also [7]). Also, it is worth mentioning current research efforts based on deep

learning tools for facilitating the solution of complex SDEs (e.g. [8]).

Herein, attention is directed to an alternative recently developed solution technique for

stochastic engineering dynamics problems (e.g. [9–15]), which is based on the concept of the

Wiener path integral (WPI) [16,17]. The technique, which relies on functional integration elements

and resorts to a variational formulation, is capable of addressing a wide range of dynamical

systems exhibiting diverse nonlinear/hysteretic behaviours [9,10], and subjected to non-white

and non-Gaussian excitation stochastic processes [11]. Further, the technique can account also

for fractional derivative terms in the governing equations [12], while it has been employed

recently for stochastic analysis and optimization of a class of nonlinear electromechanical

energy harvesters [13]. Furthermore, it is worth mentioning research efforts addressing not only

stochastic dynamics problems with deterministic system parameters and stochastic excitations,

but also a specific class of engineering mechanics problems with material parameters modelled

as stochastic fields (e.g. [18]). Nevertheless, extending the WPI technique to account for general

stochastic mechanics problems with media properties modelled as stochastic fields remains an

open challenge.

Although the technique exhibits a relatively high degree of accuracy, its standard numerical

implementation leads eventually to prohibitive computational cost with an increasing number of

stochastic dimensions. This is due to the fact that the complete joint response PDF is determined

by resorting to a point-wise computation on a multi-dimensional lattice. Clearly, this hinders the

scalability of the technique in addressing multi-d.f. systems described by more than a few d.f.s.

Although this limitation has been partly addressed in [14,15] by employing multi-dimensional

function approximation techniques in conjunction with compressive sampling concepts and tools
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for reducing the total number of grid-point calculations, the requirement for determining the

complete joint response PDF has not been circumvented to date. Thus, the overall computational

cost still grows rapidly with an increasing number of d.f.s.

In this paper, the curse of dimensionality in stochastic dynamics is addressed by marginalizing

the joint response PDF based on a WPI variational formulation with free boundaries. In this

regard, the associated computational cost becomes independent of the number of d.f.s; and

thus, high-dimensional systems can be readily treated by the WPI technique. Two indicative

numerical examples are considered for highlighting the capabilities of the technique. The first

example relates to marine engineering and pertains to a structure exposed to nonlinear flow-

induced forces and subjected to non-white stochastic excitation. The second example relates to

nano-engineering and pertains to a 100-d.f. stochastically excited nonlinear dynamical system

modelling the behaviour of large arrays of coupled nano-mechanical oscillators. Comparisons

with pertinent MCS data demonstrate the computational efficiency and accuracy of the developed

technique.

2. Preliminaries

(a) Governing stochastic equations

Consider a multi-dimensional first-order SDE of the general form

da = A (a, t) dt + B (a, t) dW, (2.1)

where W represents a Wiener stochastic vector process with independent and normally

distributed increments, and with continuous, but nowhere differentiable, sample paths (e.g.

[19]). Under certain existence and uniqueness conditions related to (2.1) and assuming that

A and B are continuous functions of t, a is a diffusion Markov stochastic vector process

and B̃(a, t) := B(a, t)BT(a, t) denotes the diffusion matrix, which is symmetric and positive

semidefinite. Notwithstanding some loss of mathematical rigour (e.g. [19]), (2.1) is ordinarily

written, alternatively, as

ȧ = A (a, t) + B (a, t) η(t), (2.2)

where η(t) is a zero-mean and delta-correlated process of intensity one, i.e. E[η(t)] = 0 and

E[η(t)ηT(t + τ )] = δ(τ )I, where δ(t) is the Dirac delta function and E[.] denotes the expectation

operator. Further, the solution of (2.2) can be expressed in the form of the joint transition PDF

p(ai+1, ti+1|ai, ti) satisfying the F-P equation (e.g. [20]).

In the ensuing analysis, a novel technique based on a WPI variational formulation with free

boundaries is developed, which enables the marginalization of the joint PDF in an a priori manner.

This significant advantage reduces, appropriately, the dimensionality of the original problem; and

thus, renders the solution of (2.2) computationally tractable, even for high-dimensional systems.

(b) WPI and Lagrangian function

In this section, the salient aspects of the WPI formalism are presented for completeness. The

interested reader is also directed to [16,17] for more details. Specifically, denoting �t = ti+1 −
ti, considering �t → 0, and assuming a non-singular diffusion matrix B̃, the transition PDF

associated with the diffusion process a(t) of (2.2) has been shown to admit a Gaussian distribution

(e.g. [20]) of the form

p(ai+1, ti+1|ai, ti) =
[

√

(2π�t)ndet
[

B̃ (ai, ti)

]

]−1

× . . . exp

⎛

⎜

⎝
−

1

2

[

ai+1 − ai − �tA (ai, ti)
]T

[

B̃ (ai, ti)

]−1
[

ai+1 − ai − �tA (ai, ti)
]

�t

⎞

⎟

⎠
. (2.3)
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Next, the probability that a(t) follows a specific path ā(t) can be expressed as the limiting case

of the probability of the compound event

P[ā(t)] = lim
�t→0
N→∞

P

[

N
⋂

i=1

{

ai ∈
[

āi, āi + [daji]n×1
]

}

]

= lim
�t→0
N→∞

⎧

⎨

⎩

N
∏

i=1

p(āi+1, ti+1|āi, ti)
n
∏

j=1

daji

⎫

⎬

⎭

. (2.4)

In (2.4), the time is discretized into N time points (slices) �t apart, and daji denotes the

infinitesimal element along dimension j at time ti. In this manner, (2.4) represents the probability

of the process to propagate through the infinitesimally thin tube surrounding ā(t). Since �t → 0,

(2.3) can be substituted into (2.4), and taking into account the Markovian property of a(t), the

probability P[ā(t)] becomes

P[ā(t)] = lim
�t→0
N→∞

⎧

⎨

⎩

⎡

⎣

N
∏

i=1

⎛

⎝

[

√

(2π�t)ndet
[

B̃(āi, ti)
]

]−1 n
∏

j=1

daji

⎞

⎠

⎤

⎦

× . . . exp

⎛

⎜

⎝
−

1

2

N
∑

i=1

[

āi+1 − āi − �tA(āi, ti)
]T

[

B̃(āi, ti)
]−1 [

āi+1 − āi − �tA(āi, ti)
]

�t

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, (2.5)

which leads to

P[ā(t)] = exp

⎛

⎜

⎝
−

tf∫

t0

L(ā, ˙̄a)dt

⎞

⎟

⎠

tf
∏

t=t0

da(t), (2.6)

where

L (a, ȧ) =
1

2
[ȧ − A (a, t)]T

[

B̃ (a, t)
]−1

[ȧ − A (a, t)] (2.7)

denotes the Lagrangian function and
∏tf

t=t0
da(t) is a functional measure given by

tf
∏

t=t0

da(t) =
n
∏

j=1

tf
∏

t=t0

daj(t)
√

2π
(

det
[

B̃(ā, t)
])

1
n

dt

. (2.8)

The interested reader is also directed to [10,11] for more details. Further, the total probability that

the process a starts from a0 at time t0 and ends up at af at tf takes the form of a functional integral,

which ‘sums up’ the probabilities associated with each and every path that a can possibly follow

(e.g. [16]). In this regard, denoting by C{a0, t0; af , tf } the set of all paths with initial state a0 at time

t0 and final state af at time tf , the transition PDF is expressed as a functional integral (or WPI) in

the form

p(af , tf |a0, t0) =
∫
C{a0,t0;af ,tf }

exp

⎛

⎜

⎝
−

tf∫

t0

L (a, ȧ) dt

⎞

⎟

⎠

tf
∏

t=t0

da(t). (2.9)

(c) Most probable path approximation

Considering the significant challenges related to evaluating (2.9) analytically or numerically,

researchers have ordinarily resorted to the following approximate technique, also referred to in

the path integral literature as semiclassical approximation (e.g. [16]). Specifically, note that the

largest contribution to the functional integral of (2.9) comes from the trajectory ā(t) for which the
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integral in the exponential (also known as stochastic action) becomes as small as possible (e.g.

[16]). This leads to the variational problem

minimize

∫ tf

t0

L (a, ȧ) dt. (2.10)

The trajectory ā(t) satisfying (2.10) is also known as the ‘most probable path’ and can be used

in conjunction with (2.9) for determining approximately a specific point of the system response

transition PDF, i.e.

p(af , tf |a0, t0) ≈ C exp

(

−
∫ tf

t0

L
(

ā, ˙̄a
)

dt

)

, (2.11)

where C is a normalization constant. Clearly, the most probable path ā(t) is the extremal that

minimizes the functional in (2.10). According to the fundamental theorem of calculus of variations

[21], ā(t) can be evaluated by employing the necessary condition that the first variation of the

functional vanishes. Considering fixed initial and final conditions at t0 and tf , respectively, this

condition leads to a multivariate boundary value problem (BVP) of the form

Lai −
d

dt
Lȧi

= 0 i = 1, . . . , n (2.12)

and

ai(t0) = ai,0, ai(tf ) = ai,f i = 1, . . . , n, (2.13)

where Lai and Lȧi
denote the derivatives of the Lagrangian with respect to ai and ȧi, respectively.

(2.12) represents the Euler–Lagrange (E-L) equations and (2.13) relates to the fixed boundary

conditions.

3. Proposed methodology

(a) Marginalized joint PDF WPI representation

It becomes clear that a brute-force determination of the n-dimensional response transition PDF

via (2.11) requires point-wise calculations on a n-dimensional lattice. This leads to an exponential

growth of the computational cost as a function of the number n of d.f.s. In other words,

discretizing each dimension of vector a into N points, Nn BVPs of the form of (2.12) and (2.13)

need to be solved numerically for evaluating the joint response PDF via (2.11).

To circumvent this limitation, a technique is developed in this paper, capable of determining

marginalized joint response PDFs, i.e. PDFs that involve only a subset of the components of

vector a. In the ensuing analysis, a marginalized transition PDF is denoted as p(u, tf |a0, t0), where

u = {ai,f |i ∈ U} and U is an arbitrary subset U ⊆ {1, . . . , n} with cardinality p = |U|. Assuming

fixed initial conditions at t0, the herein developed technique is capable of determining any

p-dimensional (marginalized) joint response transition PDF p(u) = p(u, tf |a0, t0) directly, i.e. at a

computational cost that is exponentially related to the dimension p of the target PDF only, and is

essentially independent of the dimension n of the original system.

In this regard, the corresponding path integral representation of the transition PDF takes the

form

p(u, t0|a0, t0) =
∫
C{a0,t0;u,tf }

exp

⎛

⎜

⎝
−

tf∫

t0

L (a, ȧ) dt

⎞

⎟

⎠

tf
∏

t=t0

da(t), (3.1)

where C{a0, t0; u, tf } denotes the space of all possible paths with initial state (a0, t0) and final state

(u, tf ). Note that the coordinates ai,f with i /∈ U are considered free.
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, ft0 t0

tf tf

(a) (b)

Figure 1. Indicative examples of sample paths (thin lines) and most probable path (thick line). (a) Fixed endpoint boundaries

a1,f and a2,f . (b) Fixed endpoint boundary a1,f and free endpoint boundary a2,f . (Online version in colour.)

(b) Most probable path with free boundaries

Clearly, the most probable path, denoted as ã(t) in the case of free endpoint boundaries, depends

on the choice of set U, since this set determines which coordinates of ã are fixed at the endpoint

(t = tf ). Specifically, accounting for the free endpoint boundaries in the minimization of the

functional in (2.10) leads to a BVP with the E-L equations of (2.12), but with the modified

boundary conditions

ai(t0) = ai,0
⎧

⎨

⎩

ai(tf ) = ai,f
[

Lȧi

]

t=tf
= 0

if i ∈ U

otherwise

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

i = 1, . . . , n.

(3.2a)

(3.2b)

Here (3.2a) represents the fixed initial conditions, whereas (3.2b) assigns a fixed endpoint

condition to the components ai of a with i ∈ U and a free endpoint condition to the components

ai with i /∈ U. The form of the free endpoint conditions in (3.2a) is the outcome of the first-

order extremality condition with free endpoint boundaries (see appendix A for the complete

derivation).

In this regard, a specific point of the marginalized system response transition PDF can be

determined as

p(u, tf |a0, t0) ≈ C exp

(

−
∫ tf

t0

L

(

ã, ˙̃a
)

dt

)

, (3.3)

where C is a normalization constant. Indicative examples of sample paths and most probable

paths corresponding both to (2.13) and (3.2) are shown in figure 1 for comparison.

(c) Generalization to higher-order SDEs

In this section, a generalization of the herein developed technique is presented, which accounts

for higher-order systems of the form

x(m) = P
(

x, . . . , x(m−1), t
)

+ Q
(

x, . . . , x(m−1), t
)

η(t), (3.4)

where x is a n-dimensional stochastic vector process, i.e. x(t) = [xj(t)]n×1 and x(m) denotes the

mth-order derivative with respect to time t. Casting (3.4) into the form of (2.2), by setting

a = [x, . . . , x(m−1)]T, leads to a first-order system of nm SDEs characterized by a singular diffusion

matrix B̃. Thus, the Lagrangian in (2.7) cannot be used in a straightforward manner. However,

it was shown in [11] that this type of diffusion matrix singularity can be treated effectively by
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introducing delta functionals (i.e. the functional counterpart of the Dirac delta) into the path

integral expression for enforcing the constraints ȧ = [ẋ, . . . , x(m)]T. In this manner, functional

integration of these delta functionals eliminates the variables corresponding to the singular part

of B̃. Ultimately, the path integral expression takes the form of (2.9) in conjunction, however, with

a properly defined Lagrangian shown in (3.5) (see also [11]), i.e.

L

(

x, . . . , x(m)
)

=
1

2

[

x(m) − P
(

x, . . . , x(m−1), t
)]T [

Q̃

(

x, . . . , x(m−1), t
)]−1

×
[

x(m) − P
(

x, . . . , x(m−1), t
)]

, (3.5)

where

Q̃

(

x, . . . , x(m−1), t
)

= Q

(

x, . . . , x(m−1), t
)

QT
(

x, . . . , x(m−1), t
)

. (3.6)

(d) Most probable path with free boundaries for higher-order SDEs

In a similar manner as in the first-order system of (2.2), the most probable path is determined

as the trajectory that minimizes the functional
∫tf

t0
L(x, . . . , x(m))dt (see (2.10)). Assuming fixed

initial and endpoint boundaries, the most probable path x̄(t) can be evaluated by solving the

E-L equations
m
∑

k=0

(−1)k ik

dtk
L

x
(k)
i

= 0 for all i = 1, . . . , n (3.7)

together with the fixed boundary conditions. A specific point of the complete joint response

transition PDF p(xf , . . . , x
(m−1)
f , tf |x0, . . . , x

(m−1)
0 , t0) can be obtained by using an expression similar

to (2.11). On the other hand, a marginalized response transition PDF p(u, tf |x0, . . . , x
(m−1)
0 , t0) can

be determined by utilizing an expression of the form of (3.3). In this case, u denotes the p-

dimensional vector that contains a prespecified number of endpoint coordinates, i.e. 1 ≤ p ≤ nm

and u = {x(k)
i,f |i ∈ Uk}, where Uk is the set that contains the indices of the coordinates of the kth

derivative x(k) that participate in the marginalized PDF. For example, the marginal response PDF

of the jth component of the rth derivative x
(r)
j of x can be computed by setting Ur = {j} and

Uk = ∅ for all k �= r. Next, accounting for the free endpoint boundaries in the minimization of the

functional
∫tf

t0
L(x, . . . , x(m))dt leads to a BVP with the E-L equations of (3.7), but with the modified

boundary conditions

x
(k)
i (t0) = x

(k)
i,0

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x
(k)
i (tf ) = x

(k)
i,f

⎡

⎣

m−k−1
∑

j=0

(−1)j ij

dtj
L

x
(j+k+1)
i

⎤

⎦

t=tf

= 0

if i ∈ Uk

otherwise.

(3.8a)

(3.8b)

These need to be considered for all i = 1, . . . , n and k = 0, . . . , m − 1, yielding a total number of

2mn boundary conditions. The solution of this problem provides the most probable path x̃(t), and

a specific point of the marginalized response transition PDF is determined in the form

p(u, tf |x0, . . . , x
(m−1)
0 , t0) ≈ C exp

(

−
∫ tf

t0

L

(

x̃, . . . , x̃(m)
)

dt

)

. (3.9)

(e) Computational efficiency aspects

In the standard WPI solution technique (e.g. [11]), the complete nm-dimensional joint response

PDF corresponding to the system of (3.4) is determined and marginalized by integration in an

a posteriori manner. This procedure requires the discretization of the PDF effective domain into

Nnm points, where N is the number of points along each dimension, and the response PDF at
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a given time instant tf is computed pointwise on the corresponding lattice. This leads to an

exponential growth of the computational cost as a function of the dimensionality n and the order

m of the system, since Nnm BVPs with fixed boundaries of the form of (2.12) and (2.13) need to be

solved numerically. This limitation of the standard WPI technique has been partly addressed in

[14,15] by employing multi-dimensional function approximation techniques in conjunction with

compressive sampling concepts and tools for reducing the total number of required BVPs to be

solved. However, notwithstanding the significant reduction of the associated computational cost

achieved in [14,15], the requirement of the technique for determining the complete joint response

PDF has not been circumvented to date. Clearly, this limits the scalability of the methodology

since the number of BVPs to be solved becomes, eventually, prohibitive with an increasing

number n of d.f.s.

By contrast, the technique developed in this paper is capable of determining any marginal

p-dimensional response PDF by solving only Np BVPs with free boundaries of the form of

(3.8). This constitutes a reduction of the computational cost by orders of magnitude compared

with the standard WPI technique. Notably, even in cases where the objective is to determine

all marginal response PDFs of an n-dimensional system of mth order, the free boundaries

WPI solution formalism requires a dramatically smaller number of BVPs to be solved than

the fixed boundaries WPI formulation, i.e. nmN 	 Nmn. Clearly, in many practical problems

where decision-making is based only on a readily identified most critical d.f., the computational

efficiency enhancement becomes even more impressive, and the above relationship becomes

N 	 Nmn. Obviously, selecting an optimal value of N for attaining a satisfactory compromise

between accuracy and efficiency depends highly on the specific form of the nonlinear system

under consideration. Nevertheless, based on various diverse numerical examples considered

in [9–15] pertaining to engineering dynamics, it can be argued a value of N within the range

30 < N < 50 constitutes a reasonable choice. Further, it is noted that the technique can be used

in conjunction with the sparse representations approaches developed in [14,15], or following the

determination of a reduced order system of governing equations based on various alternative

dimensionality reduction methods. This is an additional significant advantage of the technique

since the effect on reducing the overall computational cost is accumulative. Finally, indicative

comparisons with a standard MCS-based solution approach can be found in the numerical

examples of the following section.

4. Applications
In this section, the herein developed technique is used for determining marginalized joint

response PDFs of various multi-d.f. nonlinear dynamical systems typically encountered in

engineering applications. In general, a wide range of systems in stochastic engineering dynamics

can be modelled as an n-d.f. system of the form

Mẍ + Cẋ + Kx + g (x, ẋ, t) = Dη(t), (4.1)

where x(t) = [xj(t)]n×1 is the displacement vector process; M is a n × n diagonal mass matrix; C

and K are the n × n damping and stiffness matrices, respectively; g(x, ẋ, t) = [gj(x, ẋ, t)]n×1 denotes

an arbitrary nonlinear vector-valued function and D is a deterministic non-singular n × n matrix.

In the following, two distinct numerical examples are considered for demonstrating the

reliability and computational efficiency of the developed WPI solution technique. Comparisons

with pertinent MCS data, generated by utilizing a standard fourth-order Runge–Kutta scheme to

numerically integrate the equations of motion, are included as well for assessing the accuracy of

the technique.

The first example relates to marine engineering and pertains to a structure exposed to

nonlinear flow-induced forces described by the Morison equation [22] and subjected to non-white
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Figure 2. Evolution in time of the marginal response displacement PDF p(x) pertaining to the Morison nonlinear system. (a)

WPI. (b) MCS estimates (10 000 realizations). (Online version in colour.)

stochastic excitation. The second example relates to nano-engineering and pertains to a 100-

d.f. stochastically excited nonlinear system modelling the behaviour of large arrays of coupled

nanomechanical oscillators (e.g. [23–25]).

(a) Structural system subject to flow-induced forces

In this example, a single-d.f. oscillator under flow-induced forces is considered, typically

modelled via the Morison nonlinear equation [22]. Further, the excitation is modelled as a non-

white process compatible with the JONSWAP sea wave power spectrum, which is approximated

herein by a second-order linear filter; see also [11] and references therein for more details. In this

regard, the equations of motion become

µÿ + γ ẏ + κy = w(t) (4.2a)

and

ẍ + 2ωξ ẋ + ω2x +
1

2

CDρD

M0
|V + ẋ|(V + ẋ) = y(t), (4.2b)

where the parameter values µ = 1.8268, γ = 0.4418, κ = 3.0213, ω = 1.2566, ξ = 0.02, CD = 1,

ρD/M0 = 1.136 and V = 0 are used in the ensuing analysis. Next, following [11], (4.2b) is

substituted into (4.2a) yielding a fourth-order nonlinear SDE of the form of (3.4) to be solved

by the proposed WPI solution methodology. Clearly, from a practical perspective, the higher-

order derivatives x(3) and ẍ, appearing in the fourth-order SDE due to the filter (4.2a), do not

offer any additional information or insight for analysing and eventually designing the structural

system. Thus, the herein developed marginalized WPI formulation appears ideal for eliminating

variables x(3) and ẍ from the response process vector. Specifically, applying the free boundaries

WPI technique, the evolution in time of the marginal response displacement PDF is shown

in figure 2. Comparing with pertinent MCS data demonstrates the accuracy of the developed

methodology. It is noted that the evaluation of a marginal PDF at a specific time instant requires

the solution of N = 31 BVPs, whereas using the standard fixed boundaries WPI requires the

solution of N4 = 923 521 BVPs (since marginalization follows after the joint PDF has been obtained

first). Also, for this particular example, MCS based on 10 000 realizations requires approximately

1 h of computation time, whereas a marginal PDF is determined via the proposed free boundaries

WPI technique in approximately 10 s on the same computer.

(b) High-dimensional arrays of coupled nonlinear nano-mechanical oscillators

Due to their minuscule size and high sensitivity, micro- and nano-electromechanical systems

(MEMS and NEMS) have been proposed recently for applications in signal processing, laser
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Figure 3. Evolution in time of the marginal response displacement PDF of x33. (a) WPI. (b) MCS estimates (10 000 realizations).

(Online version in colour.)

scanning, protein printing and label-free detection of molecules even in low concentrations [25].

In general, MEMS and NEMS can exhibit nonlinear response behaviour due to geometrical

configurations and various damping mechanisms, are subject to various intrinsic sources of

stochastic noise (e.g. adsorption–desorption and thermally induced noises), whereas, to enhance

their detection sensitivity, current technology enables the fabrication of large arrays of nano-

oscillators, coupled by electric, magnetic, or elastic forces [24,25]. In this regard, MEMS and

NEMS are typically modelled as stochastically excited high-dimensional nonlinear multi-d.f.

systems in the form of (4.1) [23,24]. Note, however, that due to the prohibitively large in many

cases number of stochastic dimensions, the analysis of relatively large arrays of MEMS and

NEMS has been performed to date based, primarily, on techniques that are subject to significant

simplifications and approximations; see, for instance, [26] where a standard moments equations

solution approach was employed, which is capable of providing relatively accurate estimates only

for the system response first- and second-order statistics (e.g. mean and standard deviation); see

also [27].

Next, the herein developed WPI technique is employed for determining marginalized joint

response PDFs of a 100-d.f. MEMS modelled according to [24] and following (4.1) with

M =

⎡

⎢

⎢

⎣

m0 · · · 0
...

. . .
...

0 · · · m0

⎤

⎥

⎥

⎦

C =

⎡

⎢

⎢

⎣

c0 · · · 0
...

. . .
...

0 · · · c0

⎤

⎥

⎥

⎦

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

k0 + 2ω0 −ω0 · · · 0

−ω0
. . .

. . .
...

...
. . .

. . . −ω0

0 · · · −ω0 k0 + 2ω0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

g (x, ẋ, t) =

⎡

⎣ε

(

xj

x2
j + d2

0

)3/2

− A cos(ωt)

⎤

⎦

100×1

D =

⎡

⎢

⎢

⎣

√
10π · · · 0
...

. . .
...

0 · · ·
√

10π

⎤

⎥

⎥

⎦

.

(4.3)

The parameter values are m0 = 1, c0 = 1.5, k0 = 120, ω0 = 70.2π , ε = 0.1, d0 = 0.1, A = 20 and

ω = 3π .

In figure 3, the evolution in time of the marginal response displacement PDF of x33 is

shown, whereas in figure 4 the evolution in time of the joint response PDF p(x97, ẋ97) is plotted.

Comparisons with MCS data demonstrate the high degree of accuracy exhibited by the technique.

It is worth noting that in this example N = 31 BVPs are solved for evaluating a marginal PDF

at a specific time instant. Even in the case that knowledge of the marginal response displacement

PDFs for all d.f.s is required, this translates into solving only 100 · 31 = 3100 BVPs. By contrast,

the standard WPI technique, which unavoidably determines the complete joint response PDF,

requires the solution of 31200 BVPs, which is clearly a computationally intractable number.
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In figure 5, the accuracy and the efficiency of the proposed technique are compared with

pertinent MCS results for a 10-d.f. version of the above nanomechanical oscillator at time t = 0.5 s.

Specifically, the horizontal axis shows computational cost represented by actual computation

time required based on a MATLAB_R2019a numerical implementation. The vertical axis shows

the mean square error (MSE) between the estimated PDF and the target PDF based on MCS

with 100 000 realizations (assumed to be exact for comparison purposes). The reported MSE

corresponds to the average value accounting for all 20 marginal PDFs. In a similar manner, the

computation time of the WPI shown on the horizontal axis corresponds to the average over the

20 marginal PDFs (i.e. 10 displacement and 10 velocity PDFs). MCS-based PDF estimates with a

varying number of realizations are included as well. As anticipated, these estimates converge to
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Figure 5. Comparisons between MCS and WPI technique in terms of accuracy and efficiency: mean square error and

corresponding computation time for estimating a marginal PDF of a 10-d.f. nano-mechanical oscillator.

the target PDF with an increasing number of realizations, at the expense of course of increasing

computational cost. Regarding the WPI-based PDF estimates, it is seen that the accuracy exhibited

by the technique increases as the discretization of the PDF domain becomes finer. In other words,

as the number N of BVPs to be solved becomes larger, the associated error becomes smaller. More

importantly, in all cases, the performance of the WPI technique appears superior to that of the

standard MCS. In fact, for approximately the same degree of accuracy, it is seen that the WPI-

associated computation time is several orders of magnitude smaller than that corresponding to

MCS.

5. Concluding remarks
A novel WPI variational formulation with free boundaries has been developed for determining

the stochastic response of high-dimensional nonlinear dynamical systems in a computationally

efficient manner. In this regard, the determination of the complete joint response PDF, required

by the standard WPI implementation, has been circumvented herein by using a novel variational

formulation involving free boundaries. The developed technique is capable of determining any

lower-dimensional joint response PDF directly by properly selecting a combination of fixed and

free boundaries at the end time point. Therefore, if knowledge of few only marginal or lower-

dimensional joint response PDFs corresponding to a high-dimensional system is of interest, the

technique constitutes a powerful tool that appears to be orders of magnitude more efficient than

a standard MCS scheme.
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A. Derivation of E-L equations and free-boundary conditions
Some basic variational calculus concepts are reviewed for completeness.
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(a) First-order system of SDEs

The most probable path ā(t) corresponding to (2.2) is the function that minimizes the functional

S =
∫ tf

t0

L (a, ȧ) dt, (A 1)

where the Lagrangian L is given in (2.7). Such a function is typically referred to as an extremal of

functional S. According to the fundamental theorem of calculus of variations [21], an extremal can

be evaluated by using the necessary condition that the first variation of the functional vanishes,

i.e.

δS = 0 (A 2)

in conjunction with appropriate boundary conditions. Assuming that the initial and final times t0

and tf are fixed, the first variation δS can be written as

δS =
∫ tf

t0

[L (a + δa, ȧ + δȧ) − L (a, ȧ)] dt, (A 3)

where δa and δȧ are the variations of functions a and ȧ, respectively. By employing Taylor’s

formula, the first term of the integrand in (A 3) can be written as

L (a + δa, ȧ + δȧ) =L (a, ȧ) +
n
∑

i=1

∂

∂ai
L (a, ȧ) δai +

n
∑

i=1

∂

∂ ȧi
L (a, ȧ) δȧi + R, (A 4)

where R is an infinitesimal of higher order than δa and δȧ. Next, combining equations (A 2)–(A

4), ignoring R and defining Lai = (∂/∂ai)L(a, ȧ) and Lȧi
= (∂/∂ ȧi)L(a, ȧ), the first variation of (A 3)

takes the form

δS =
∫ tf

t0

n
∑

i=1

[

Laiδai + Lȧi
δȧi

]

dt

=
n
∑

i=1

∫ tf

t0

Laiδaidt +
∫ tf

t0

Lȧi
δȧidt. (A 5)

Applying integration by parts on the second integral within the sum of (A 5) yields

∫ tf

t0

Lȧi
δȧidt =

[

Lȧi
δai

]tf

t0
−

∫ tf

t0

d

dt
Lȧi

δaidt. (A 6)

Substituting (A 6) into (A 5), the necessary condition (i.e. (A 2)) for the minimization of functional

S becomes

δS =
n
∑

i=1

[

Lȧi
δai

]tf

t0
+

n
∑

i=1

∫ tf

t0

(

Lai −
d

dt
Lȧi

)

δaidt = 0. (A 7)

(i) Fixed boundaries

Next, considering fixed initial and final conditions of the form

ai(t0) = ai,0 and ai(tf ) = ai,f for all i = 1, . . . , n, (A 8)

all variations δai vanish at the boundaries, i.e.

[δai]t=t0
= [δai]t=tf

= 0 for all i = 1, . . . , n (A 9)

and thus, (A 7) becomes
n
∑

i=1

∫ tf

t0

(

Lai −
d

dt
Lȧi

)

δaidt = 0. (A 10)

Using the fundamental lemma of calculus of variations [28], leads to the well-known

E-L equations of (2.12), which is a system of n coupled second-order ordinary differential
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equations (ODEs) that can be solved together with the 2n boundary conditions of (2.13) for the

determination of the most probable path ā(t).

(ii) Free boundaries

The problem of determining the most probable path ã(t) is considered next, in which some of the

endpoint boundaries are considered free. Thus, it is assumed that the initial conditions are fixed

and that only a subset of the endpoint boundaries are fixed at t = tf , i.e.

ai(t0) = ai,0

ai(tf ) = ai,f if i ∈ U

}

i = 1, . . . , n,
(A 11a)

(A 11b)

whereas the rest ai(tf ) for which i /∈ U are considered free. It is noted that the set U, which

determines what endpoint boundaries are fixed, is an arbitrary subset U ⊆ {1, . . . , n}.
In this case, the variations at the boundaries take the form

[δai]t=t0
= 0

{

[δai]t=tf
= 0

[δai]t=tf
= δai,f

if i ∈ U

otherwise

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

i = 1, . . . , n.

(A 12a)

(A 12b)

Note that ã(t) is also an extremal with respect to the more restricted class of functions a(t) that

have their boundaries fixed. Consequently, ã(t) satisfies the E-L equation (2.12). In this regard, the

second sum in (A 7) vanishes and taking (A 12) into account, (A 7) reduces to

∑

i/∈U

[

Lȧi
δai

]

t=tf
=
∑

i/∈U

[

Lȧi

]

t=tf
δai,f = 0. (A 13)

Since the variations δai,f are arbitrary, (A 13) leads to the additional boundary conditions [Lȧi
]t=tf

for all i /∈ U. Overall, the most probable path ã(t) can be determined by solving the system of the n

E-L equations in (2.12) together with the 2n modified boundary conditions of (3.2); see also [21,28]

for a broader perspective.

(b) Higher-order system of SDEs

In this section, a generalization of the herein developed methodology is presented, which

accounts for higher-order systems of the form of (3.4). The most probable path x̄(t) corresponding

to (3.4) is the function that minimizes the functional

S =
∫ tf

t0

L

(

x, . . . , x(m)
)

dt, (A 14)

where L(x, . . . , x(m)) is shown in (3.5).

Similarly as in the first-order case, x̄(t) can be determined by considering the first-order

extremality condition of (A 2). In the case of higher-order SDEs considered in this subsection,

assuming that the initial and final times t0 and tf are fixed, the first variation δS takes the form

δS =
∫ tf

t0

[

L

(

x + δx, . . . , x(m) + δx(m)
)

− L

(

x, . . . , x(m)
)]

dt, (A 15)



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

476:20200385
...........................................................

where δx, . . . , δx(m−1) and δx(m) are the variations of functions x, . . . , x(m−1) and x(m), respectively.

By employing Taylor’s formula, the first term of the integrand in (A 15) can be written as

L

(

x + δx, . . . , x(m) + δx(m)
)

=L

(

x, . . . , x(m)
)

+
n
∑

i=1

∂

∂xi
L

(

x, . . . , x(m)
)

δxi +
n
∑

i=1

∂

∂ ẋi
L

(

x, . . . , x(m)
)

δẋi

+ · · ·
n
∑

i=1

∂

∂x
(m)
i

L

(

x, . . . , x(m)
)

δx
(m)
i + R

=L

(

x, . . . , x(m)
)

+
m
∑

k=0

n
∑

i=1

∂

∂x
(k)
i

L

(

x, . . . , x(m)
)

δx
(k)
i + R, (A 16)

where R is an infinitesimal of higher order than δx, . . . , δx(m−1) and δx(m). Next, combining

equations (A 2), (A 15) and (A 16), ignoring R and defining L
x

(k)
i

= (∂/∂x
(k)
i )L(x, . . . , x(m)), the first

variation of (A 15) takes the form

δS =
m
∑

k=0

n
∑

i=1

∫ tf

t0

L
x

(k)
i

δx
(k)
i dt. (A 17)

Applying integration by parts once on the terms of (A 17) corresponding to k = 1, twice on the

terms corresponding to k = 2, etc., yields

∫ tf

t0

Lẋi
δẋi dt =

[

Lẋi
δxi

]tf

t0
−

∫ tf

t0

d

dt
Lẋi

δxidt

∫ tf

t0

Lẍi
δẍi dt =

[

Lẍi
δẋi

]tf

t0
−
[

d

dt
Lẍi

δxi

]tf

t0

+
∫ tf

t0

i2

dt2
Lẍi

δxidt

...

∫ tf

t0

L
x

(m)
i

δx
(m)
i dt =

m−1
∑

k=0

(−1)k

[

im−k−1

dtm−k−1
L

x
(m)
i

δx
(k)
i

]tf

t0

+ (−1)m
∫ tf

t0

im

dtm
L

x
(m)
i

δxi dt.

(A 18)

Substituting (A 18) into (A 17) and gathering terms of the same order k in variations δx
(k)
i , the

necessary condition ((A 2)) for the minimization of functional S becomes

δS =
n
∑

i=1

{

⎡

⎣

⎛

⎝

m−1
∑

k=0

(−1)k ik

dtk
L

x
(k+1)
i

⎞

⎠ δxi

⎤

⎦

tf

t0

+

⎡

⎣

⎛

⎝

m−2
∑

k=0

(−1)k ik

dtk
L

x
(k+2)
i

⎞

⎠ δẋi

⎤

⎦

tf

t0

+ · · · +
[

L
x

(m)
i

δx
(m−1)
i

]tf

t0

+
∫ tf

t0

⎛

⎝

m
∑

k=0

(−1)k ik

dtk
L

x
(k)
i

⎞

⎠ δxidt

}

=
n
∑

i=1

{

m−1
∑

l=0

⎡

⎣

⎛

⎝

m−l−1
∑

k=0

(−1)k ik

dtk
L

x
(k+l+1)
i

⎞

⎠ δx
(l)
i

⎤

⎦

tf

t0

}

+
n
∑

i=1

∫ tf

t0

⎛

⎝

m
∑

k=0

(−1)k ik

dtk
L

x
(k)
i

⎞

⎠ δxidt = 0. (A 19)
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(i) Fixed boundaries

Next, considering fixed initial and final conditions of the form

x
(k)
i (t0) = x

(k)
i,0 and x

(k)
i (tf ) = x

(k)
i,f for all i = 1, . . . , n and k = 0, . . . , m − 1, (A 20)

all variations δx
(k)
i vanish at the boundaries, i.e.,

[

δx
(k)
i

]

t=t0

=
[

δx
(k)
i

]

t=tf

= 0 for all i = 1, . . . , n and k = 0, . . . , m − 1 (A 21)

and thus, (A 19) becomes
n
∑

i=1

∫ tf

t0

⎛

⎝

m
∑

k=0

(−1)k ik

dtk
L

x
(k)
i

⎞

⎠ δxidt = 0. (A 22)

Utilizing the fundamental lemma of calculus of variations [28], leads to the E-L equations shown

in (3.7), which is a system of n coupled 2mth-order ODEs that can be solved together with the 2nm

boundary conditions of (A 20) for the determination of the most probable path x̄(t).

(ii) Free boundaries

The problem of determining the most probable path x̃(t) is considered next, in which some of the

endpoint boundaries are considered free. Thus, it is assumed that the initial conditions are fixed

and that only a subset of the endpoint boundaries are fixed at t = tf , i.e.

x
(k)
i (t0) = x

(k)
i,0

x
(k)
i (tf ) = x

(k)
i,f if i ∈ Uk

⎫

⎪

⎬

⎪

⎭

i = 1, . . . , n and k = 0, . . . , m − 1,
(A 23a)

(A 23b)

whereas the rest x
(k)
i (tf ) for which i /∈ Uk are considered free. It is noted that the sets Uk, which

determine what endpoint boundaries of kth-order are fixed, are arbitrary subset Uk ⊆ {1, . . . , n}
for all k = 0, . . . , m − 1.

In this case, the variations at the boundaries take the form
[

δx
(k)
i

]

t=t0

= 0

⎧

⎪

⎨

⎪

⎩

[

δx
(k)
i

]

t=tf

= 0

[

δx
(k)
i

]

t=tf

= δx
(k)
i,f

if i ∈ Uk

otherwise

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

i = 1, . . . , n and k = 0, . . . , m − 1.

(A 24a)

(A 24b)

Note that x̃(t) is also an extremal with respect to the more restricted class of functions x(t) that

have their boundaries fixed. Consequently, x̃(t) satisfies the E-L equation (3.7). In this regard, the

corresponding sum in (A 19) vanishes and taking (A 24) into account, the remaining terms of (A

19) yield a set of boundary conditions corresponding to the free boundaries, i.e. the components

x
(k)
i for which i /∈ Uk. The complete set of boundary conditions, considering a combination of fixed

and free conditions, is shown in (3.8). Concisely, the most probable path x̃(t) can be determined

by solving the system of the n E-L equations in (3.7) together with the 2 nm modified boundary

conditions of (3.8).
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