
Waiting Game: Optimally Provisioning Fixed
Resources for Cloud-Enabled Schedulers

Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy

University of Massachusetts Amherst

Abstract—While cloud platforms enable users to rent com-
puting resources on demand to execute their jobs, buying fixed
resources is still much cheaper than renting if their utilization
is high. Thus, optimizing cloud costs requires users to determine
how many fixed resources to buy versus rent based on their work-
load. In this paper, we introduce the concept of a waiting policy
for cloud-enabled schedulers, which is the dual of a scheduling
policy, and show that the optimal cost depends on it. We define
multiple waiting policies and develop simple analytical models to
reveal their tradeoff between fixed resource provisioning, cost,
and job waiting time. We evaluate the impact of these waiting
policies on a year-long production batch workload consisting of
14M jobs run on a 14.3k-core cluster, and show that a compound
waiting policy decreases the cost (by 5%) and mean job waiting
time (by 7×) compared to a fixed cluster of the current size.

I. INTRODUCTION

Cloud platforms enable users to rent computing resources

on demand, in the form of virtual machines (VMs), to execute

their jobs. Cloud-enabled infrastructure uses similar software

systems as private clusters to manage resources at large scales,

typically consisting of a centralized job scheduler, such as

Slurm [4] or Kubernetes [2]. Users submit jobs, with speci-

fied resource requirements, to these schedulers, which either

allocate idle resources to execute them or force them to wait

for idle resources to become available. Since private clusters

manage a fixed number of computing resources typically sized

for peak demands, they often have low average utilization

(<30%), but may periodically experience large bursts in job

arrivals, e.g., due to deadlines, product releases, or seasonal

variations, that result in long job waiting times.

As job schedulers migrate to the cloud, they have many

options for optimizing cost and reducing job waiting times.

For example, schedulers may provision cloud VMs on demand

to service each job, requiring them to only pay for resources

when jobs need them. In this case, the cloud’s operating costs

are often much lower than the capital cost of an under-utilized

fixed-size cluster, since the latter must effectively “pay” when

resources are idle. In addition, since the cloud provides the

illusion of infinite scalability, jobs never need to wait for

resources, as schedulers can always acquire cloud resources

to service them immediately. Most schedulers are now cloud-

enabled and support such “auto-scaling,” which acquires cloud

VMs to service jobs, and releases them when done [1], [3].

Importantly, however, buying fixed resources (or reserving

them for long periods) is significantly cheaper than renting

resources on demand if the fixed resources are highly utilized.

Cloud pricing models make this clear, as reserving a VM for 1-

3 years costs 40-60% less per-hour than renting an equivalent

on-demand VM over the same period. For example, reserv-

ing a m5.large VM from Amazon Web Services (AWS),

which includes 2 cores and 8GB RAM, for 3 years currently

costs $988, while renting it on demand costs $0.096/hour or

$2,522.88 over the same period. Of course, fixed resources

are only cost-effective if they are highly utilized: if jobs only

execute on the m5.large for less than a third of the time,

the on-demand option is cheaper (at a cost of $840.96). The

cost advantage of buying versus renting is even greater for

specialized hardware with a recent analysis estimating that

purchasing a GPU-based deep learning cluster costs 90% less

than renting one on demand from AWS [14]. Thus, a mixed

infrastructure that satisfies some baseload with highly-utilized

fixed resources, and satisfies load bursts using on-demand

resources can decrease cost. Notably, hybrid clouds, which

combine fixed private resources with cloud bursting, use this

approach [17], [24], as do many companies, which both buy

reserved VMs and dynamically rent on-demand VMs [18].

In this paper, we introduce the concept of a waiting policy

for cloud-enabled schedulers, and show that provisioning fixed

resources to optimize cost is dependent on it. A waiting policy

is the dual of a scheduling policy: while a scheduling policy

determines which jobs run when fixed resources are available,

a waiting policy determines which jobs wait for fixed resources

when they are not available (rather than run immediately

on on-demand resources). While there has been decades of

work on job scheduling policies, we know of no prior work

that defines or analyzes waiting policies, which are distinct

from scheduling policies in that cloud-enabled schedulers

define both independently of each other. For cloud-enabled

schedulers, the waiting policy is important, since it dictates the

tradeoff between job performance and cost. Waiting policies

also differ from auto-scaling policies used by cloud-enabled

schedulers, which implicitly assume jobs should never wait

and immediately acquire resources to satisfy queued jobs [6].

Clearly, the longer jobs are willing to wait for fixed re-

sources, the higher their utilization, and the lower their overall

cost. However, as we show, the relationship and tradeoff

between the number of fixed resources, the waiting policy, and

the optimal cost is non-intuitive. To better understand these

tradeoffs, we define multiple fundamental non-selective and

selective waiting policies and develop simple analytical models

for them. Non-selective waiting policies apply the same policy

to all jobs, while selective waiting policies apply the policy to

only selected jobs based on system or job characteristics. Our

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

Figure 1 illustrates marginal analysis pictorially for an

example workload where time is on the x-axis and resource

demand is on the y-axis. We assume the fixed and on-demand

resources have the same prices as in Table I. To determine the

optimal mix of fixed and on-demand resources using marginal

analysis, we simply add fixed resources, one at a time, to

satisfy each unit of stacked resource demand in order (starting

from 0 on the y-axis) up to the point where the utilization of

the fixed resource equals our break even point on the y-axis,

which is 40% (in dark grey). When the instantaneous demand

exceeds the fixed resource capacity at the horizontal line (in

light grey), dynamically acquiring and releasing on-demand

resources to satisfy the remaining workload is cheaper.

More formally, let pf and po denote the price per unit

time for a fixed resource (at 100% utilization) and on-demand

resource, respectively, let d denote the discount factor for a

fixed resource, such that pf=d × po and 0≤d≤1, and let

T denote the workload’s duration. The cost of adding one

more fixed resource s over the workload’s duration T is

pf×T . Now suppose this sth resource operates at utilization ρs
when servicing the remaining workload. Since the scheduler

can acquire and release on-demand resources at any time,

the cost of servicing the remaining workload using an on-

demand resource is ρs × T × po, as the scheduler can acquire

the on-demand resource in ρs × T time slots and release it

when idle. Thus, using a fixed resource is only cheaper if

pf ×T < ρs×T ×po. By substituting pf=d×po, we observe

that only when d<ρs, or the discount factor is less than the

utilization of the last fixed resource we added, is acquiring

an additional fixed resource cheaper than using on-demand

resources. Similarly, the cost of provisioning an additional

fixed or on-demand resource is equal when ρs=d, or the

discount factor equals the utilization of the last fixed resource.

Beyond this break even point, there is no marginal cost savings

from acquiring more fixed resources.

The marginal analysis problem above is straightforward to

solve in the context of a traditional queuing model using

classic results by Erlang, assuming arriving jobs never wait

for resources [16], [27], [30]. Variants of this classic problem

have been addressed in prior work both generally, and in the

context of cloud computing, which we discuss in §VII.

Marginal Analysis under Waiting. The classic marginal anal-

ysis above implicitly assumes jobs never wait for resources,

and always immediately execute on either a fixed or on-

demand resource. A key insight of our work is that cloud-

enabled schedulers can explicitly control whether (and how

long) jobs wait for fixed resources if they are busy, and

that this waiting policy affects the optimal provisioning of

fixed resources that minimizes cost. In general, the longer

the permissible waiting time, the higher the fixed resource

utilization, and the lower the overall cost. As we show, cloud-

enabled schedulers can implement a wide variety of waiting

policies that offer different tradeoffs between fixed resource

provisioning, cost, and job waiting time. We know of no work

that explicitly defines and analyzes such waiting policies for

cloud-enabled schedulers by applying marginal analysis.

✥�✁

✂✄☎✆

✝✞✟✠

✡☛☞✌

✍✎✏✑

✒✓✔

✕✖✗ ✘✙✚ ✛✜✢ ✣✤✦ ✧★✩
✪

✫✬✭

✮✯✰

✱✲✳

✴✵✶

✷✸✹

✺✻✼

◆
✽
✾✿
❀
❁❂❃
❄
❅
❆
❇❈
❉
❊
❋●
❍

▼
■
❏
❑
▲
❖
P◗
❘
❙❚
❯
❱❲
❳
❨
❩

❬❭❪❫❴❵ ❛❜ ❝❞❡❢❣❤✐❥❦ ❧♠♥

♦♣qrst✉✈✇① ②③④⑤⑥ ⑦⑧⑨⑩❶❷❸
❹❺❻❼ ❽❾❿➀ ➁➂➃➄ ➅➆➇➈➉➊➋

➌➍➎➏➐➑➒➓➔→ ➣↔↕➙➛ ➜➝➞➟➠➡➢➤➥➦➧
➨➩➫➭ ➯➲➳➵ ➸➺➻➼ ➽➾➚➪➶➹➘➴➷➬➮

Fig. 2. Normalized price P (left y-axis) and mean wait time w (right y-axis)
as a function of fixed resources s under AJW. Mean wait time w→∞ as fixed
resources s→100, and mean wait time w→0 as fixed resources s→∞.

III. NON-SELECTIVE WAITING POLICIES

We develop a simple queuing model for cloud-enabled

schedulers to understand the relationship between the waiting

policy, fixed resource provisioning, job waiting time, and

cost. We first analyze basic non-selective waiting policies—

All Jobs Wait (AJW), No Jobs Wait (NJW), and All Jobs Wait

Threshold (AJW-T)—which apply the same policy to all jobs.

In §IV, we analyze selective waiting policies that only force

selected jobs to wait based on their characteristics.

Our analysis extends a M/M/s/∞ queuing model using s
fixed resources with first-come-first-serve (FCFS) scheduling,

mean job arrival rate λ, and mean job service time 1/µ, where

job arrivals follow a Poisson process, job service times are

i.i.d. and exponentially distributed, and each resource executes

one job at a time. The offered load is a=λ/µ, and the offered

load (and utilization) per fixed resource is ρ=a/s=λ/(s×µ).

A. All Jobs Wait

Model Analysis. All Jobs Wait (AJW) is a baseline policy

that requires all jobs to wait for fixed resources, and never

rents on-demand resources. We present it as a foundation for

our subsequent analysis. AJW’s analysis is equivalent to that

of an M/M/s/∞ queue. The effective price P for each fixed

resource is simply a function of the mean resource utilization ρ
and fixed resource price pf at full utilization, as shown below.

P = pf/ρ (1)

Thus, as mean utilization ρ increases, the effective price

decreases up to 100% utilization. Of course, as utilization

increases, the mean waiting time w in the queue also increases.

The mean waiting time w for fixed resources under AJW is

a well-known function, shown below, of s, λ, and µ, where

C(s, a)=[(s×as)/(s!×(s−a))]/[
∑s−1

i=0 ai/i!+(s×as)/(s!×
(s− a))] is Erlang’s delay (or C) formula.

w =
C(s, a)

s× µ− λ
(2)

Empirical Validation. We empirically validate the effective

price P and mean waiting time w for all models we present

in §III and §IV for the same baseline example. In our baseline

example, we set λ=0.2 (or 1 job every 5 seconds on average),

µ=0.002 (or an average job service time of 500 seconds),

po=9.6¢/hour, and pf=3.84¢/hour. Thus, in this case, the

discount factor d for fixed resources at 100% utilization is

pf/po=0.4. As in our example in §II, we set po and pf
based on the on-demand and 3-year reserved VM prices in

AWS, and set λ and µ such that the mean utilization ρ of the

fixed resources is 100% when s=100 resources. We plot both

the continuous function from our model, as well as average

empirical values from 20 trials of our job simulator from §V.

Each trial simulates the model on a synthetically generated job

trace with 2M jobs using exponentially distributed inter-arrival

and service times using the baseline parameters, as well as any

model-specific parameters. To capture steady states, we do not

include the first and last 10% of jobs when computing P and

w. All graphs include error bars representing the maximum

and minimum across all trials, although, with 2M jobs, there

is almost no deviation from the average on each trial.

For AJW, Figure 2 plots the effective price P (left y-axis),

obtained from our model and from simulations, as a function

of the fixed resources s. Here, as in all subsequent graphs,

we normalize the effective price P by the price of on-demand

resources po. Thus, the left y-axis represents how much using

fixed resources lowers or raises the price relative to using on-

demand resources; smaller numbers (lower prices) are better.

The minimum value on the left y-axis is P=pf=0.4, since

this represents the lowest possible price (when using only

fixed resources at 100% utilization). The right y-axis shows

the mean waiting time w for fixed resources.

Figure 2 shows that our model’s predictions closely match

the empirical results, both for the normalized price and the

mean waiting time. Also, as expected, the graph shows that as

s increases the effective price P increases linearly due to the

decrease in mean utilization ρ. In contrast, the mean waiting

time decreases super-linearly with increasing s. Thus, AJW

offers a risky tradeoff between w and P , since provisioning

fixed resources for high utilization, i.e., a low s, to reduce

the price may cause high waiting times. As a result, AJW

encourages over-provisioning to ensure waiting times near 0
that are outside the region where they increase super-linearly.

The effective price P equals the on-demand price po when

the mean utilization of fixed resources ρ equals the discount

factor d=0.4, which occurs at s=250 (not shown). Thus,

provisioning any fixed resources s<250 is cheaper than solely

using on-demand resources. Reducing s to 120 still yields a

waiting time w ∼ 0 for an effective price P that is 52% lower

than s=250 and only 20% higher than s=100 where w→∞.

Key Point. Since waiting time increases super-linearly as

utilization ρ→100%, AJW encourages over-provisioning to

ensure a utilization below 100% with waiting times near 0.

B. No Jobs Wait

Model Analysis. The No Jobs Wait (NJW) waiting policy

is similar to existing auto-scaling policies for cloud-enabled

schedulers that execute jobs on fixed resources when available,

and dynamically acquire on-demand resources to execute jobs

✥�✁

✂✄☎

✆✝✞

✟✠✡

☛☞✌

✍✎✏

✑

✒ ✓✔ ✕✖ ✗✘ ✙✚ ✛✜✢ ✣✤✦ ✧★✩
✪

✫✬✭

✮✯✰

✱✲✳

✴✵✶

✷

◆
✸
✹✺
✻
✼✽
✾
✿
❀
❁
❂❃
❄
❅
❆❇
❈

s
❉❊
❋
●
❍
■
❏
❑▲
▼
❖
P
◗
❘

❙❚❯❱❲❳ ❨❩ ❬❭❪❫❴❵❛❜❝ ❞❡❢

❣❤✐❥❦❧♠♥♦♣ qrt✉✈ ✇①②③④⑤⑥
⑦⑧⑨ ⑩❶❷❸❹❺❻❼ ❽❾❿➀ ➁➂➃➄➅➆➇

➈➉➊➋➌➍➎➏➐➑ ➒➓➔→➣ ↔↕➙➛➜➝➞➟➠➡➢
➤➥➦ ➧➨➩➫➭➯➲➳ ➵➸➺➻ ➼➽➾➚➪➶➹➘➴➷➬

Fig. 3. Normalized price P (left y-axis) and mean utilization of the sth

resource ρs (right y-axis) as a function of fixed resources s under NJW. The
minimum price occurs when the fixed resources’ discount factor d=ρs.

when all fixed resources are busy. Recall from §II that, given

a workload, there is an optimal number of fixed resources

s for NJW that minimizes cost, and this value occurs when

the sth resource has a utilization equal to the fixed resource’s

discount factor d. Thus, to optimize s under NJW, we need an

expression for the sth resource’s utilization, denoted as ρs.

We find ρs using marginal analysis by applying Erlang’s

loss (or B) formula, which assumes a M/M/s/0 queue. Since

the queue size is zero, any job that arrives and observes all

resources as busy must exit the system. Erlang’s loss formula

gives the blocking probability that an arriving job exits the

system, or equivalently that there are s jobs in the system and

all resources are busy. To compute the utilization of the sth

resource, we first compute the difference between the blocking

probability when using s − 1 and when using s resources.

This difference represents the percentage of jobs an additional

resource serves. Multiplying this percentage by the offered

load a=λ/µ gives the mean utilization of the sth resource

ρs, as shown below, where B(s, a)=(as/s!)/(
∑s

i=0(a
i/i!)) is

Erlang’s loss (or B) formula.

ρs = a× [B(s− 1, a)−B(s, a)] (3)

Under a No Jobs Wait (NJW) waiting policy, rather than

actually exit the system, the scheduler acquires on-demand

resources to immediately service blocking jobs without wait-

ing. To determine the optimal number of fixed resources s
that minimizes cost, we set the discount factor d equal to ρs
in Equation 3 and solve for s. Since Erlang’s loss formula

includes a factorial and summation, there is no closed-form

expression for s, requiring us to solve for it numerically. Since

ρs is monotonically decreasing as s increases, we can use a

binary search to determine the optimal s. After solving for s,

we compute the minimum effective price P per resource per

unit time for the s fixed resources and additional on-demand

resources necessary to satisfy the offered load.

P = (1− r)×
pf
ρf

+ r × po (4)

Here, we use r to represent the fraction of the workload

that executes on on-demand resources. The first additive term

normalizes the price of the s fixed resources pf at 100%

✥�✁

✂✄☎✆

✝✞✟✠

✡☛☞✌

✍✎✏✑

✒✓✔

✕✖✗ ✘✙✚ ✛✜✢ ✣✤✦ ✧★✩

◆
✪
✫✬
✭
✮✯✰
✱
✲
✳
✴✵
✶
✷
✸✹
✺

✻✼✽✾✿❀ ❁❂ ❃❄❅❆❇❈❉❊❋ ●❍■

❏❑▲▼❖P ◗❘❙❚
❯❱❲❳❨❩❬❭❪❫❴

❵❛❜❝❞❡ ❢❣❤✐❥
❦❧♠♥ ♦♣➙

qrst ✉✈✇

Fig. 4. Normalized price P as a function of fixed resources s under AJW-T
for different threshold waiting times b.

utilization by their mean utilization ρf , which is (1− r)× ρ,

since the mean arrival rate to the s fixed resources is only

(1 − r) × λ. We then multiply this normalized price by

the fraction of load (1 − r) serviced at this price. The

second additive term simply multiplies the price of on-demand

resources po by the remaining fraction of the workload r.

For NJW, r=B(s, a), as this represents the probability that

a job blocks and then runs on on-demand resources. Since

jobs block uniformly at random, the mean service time of

blocking and non-blocking jobs both equal the mean service

time 1/µ. As a result, we need not weight each additive term

in Equation 4 by its fraction of the mean service time.

The total cost C (in dollars) to execute a workload over time

T , i.e., the fixed resources’ lifetime, is then shown below.

C = P × (
1

µ
)× (λT) = s× pf × T + r ×

λ

µ
× po × T (5)

The total cost C is the product of the effective price per

unit time P , the mean service time per job (1/µ), and the total

number of jobs, which in-turn is the product of the job arrival

rate λ and the total time T . We can also represent the total

cost in a different, but equivalent, way on the right side by

expanding P using Equation 4. Here, the first additive term is

the cost for the s fixed resources over time T , and the second

term is the cost of renting on-demand resources. The first term

is independent of the offered load, since users must pay for

the s fixed resources regardless of their utilization.

Empirical Validation. We empirically validate NJW using

the same baseline example from §III-A. Figure 3 shows the

effective price P (left y-axis) as a function of fixed resources

s under NJW, where we again normalize P by the price of

on-demand resources po. The right y-axis shows the mean

utilization of the sth resource ρs, as the waiting time w is

always zero under NJW. As expected, the graph shows the

model closely matches the empirical results. As s increases,

the effective price decreases to the optimal s=108 where

ρs equals the 0.4 discount factor, after which, the effective

price increases. Plugging the optimal s value and our baseline

parameters into Equation 3 verifies that ρs=0.4.

At the optimal s=108, NJW has an effective price

P=0.467×0.096=$0.044832/hour, while AJW’s price is

①

②③④

⑤⑥⑦

⑧⑨⑩

❶❷❸

❹❺❻

❼❽❾ ❿➀➁ ➂➃➄ ➅➆➇

➈
➉
➊
➋
➌
➍
➎➏
➐
➑➒
➓
➔→
➣
↔
↕

➛➜➝➞➟➠ ➡➢ ➤➥➦➧➨➩➫➭➯ ➲➳➵

➸➺➻➼➽➾ ➚➪➶➹
➘➴➷➬➮➱✃❐❒❮❰

ÏÐÑÒÓÔ ÕÖ×ØÙ
ÚÛÜÝ Þßà

áâãä åæç

Fig. 5. Mean waiting time w as a function of fixed resources s under AJW-T
for different threshold waiting times b.

∼7.5% less at P=0.432×0.096=$0.041472/hour. However,

under NJW, jobs never incur waiting time, while AJW incurs

a mean waiting time of 20s, with some jobs waiting much

longer. Thus, for 7.5% higher cost, NJW guarantees jobs never

wait. In this case, r=0.035, i.e., 3.5% of jobs run on on-demand

resources, which results in a minimum cost (in dollars) over

a 3-year period of C=$117,818. By contrast, solely using on-

demand resources costs 100(0.096)(26280)=$252,288, which

is over twice as expensive as the optimal cost under NJW.

Key Point. While NJW’s cost is higher than AJW’s for the

same fixed resources, it guarantees no waiting time. NJW

encourages optimal provisioning, since its cost increases as

fixed resource provisioning deviates from the optimal.

C. All Jobs Wait - Threshold

Model Analysis. AJW and NJW define two extremes: AJW

yields a low price but with a potentially high waiting time,

while NJW yields a higher price but zero waiting time. The

All Jobs Wait-Threshold (AJW-T) waiting policy defines a

continuous tradeoff between these two extremes by requiring

all jobs to wait up to some threshold time b, at which point

the scheduler acquires an on-demand resource to service them.

At b=0, AJW-T is equivalent to NJW, and as b→∞, AJW-T

approaches AJW. To model AJW-T, we must derive r from

Equation 4, or the fraction of jobs that run on on-demand

resources after waiting b time. Given r, we can compute the

effective price P from Equation 4 as before. In queuing liter-

ature, AJW-T is equivalent to a queuing model with reneging

jobs that exit the queue after waiting a threshold period. The

reneging probability r is given by the following lemma, which

follows from an analysis by Liu and Kulkarni [23].

Lemma 3.1: The reneging probability r in a M/M/s/∞
system is computed as follows.

r =
α · β · e−δ·b

s · µ
(6)

where
δ = (sµ− λ) (7)

β =
sµp

1− p
(8)

p =
(λ/µ)s

s!
∑s

i=0
(λ/µ)i

i!

(9)

α =

{

[β(1δ − eδ·b · λ
δ·sµ) + 1]−1 ρ 6= 1

λ
λ+β·(λ·b+1) ρ = 1

(10)

When expanded, r is solely a function of s, b, λ, and µ. As

before, we need an expression for the mean utilization of the

sth resource, as in Equation 3, to solve for the optimal s that

minimizes cost. However, in this case, we replace Erlang’s B

formula with r above when using s − 1 and s resources, as

shown below, since r represents the reneging probability under

AJW-T, which is akin to the blocking probability under AJW.

We can again solve for the optimal s that minimizes price

numerically using a binary search, as ρs is still monotonically

decreasing as s increases, where a=λ/µ.

ρs = a× [rs−1 − rs] (11)

After determining the optimal s and r for a given threshold

waiting time b, we compute the mean waiting time of jobs.

Liu and Kulkarni give the mean waiting time under reneging

as follows [23]. The first additive term represents the mean

waiting time for the jobs that execute on fixed resources, while

the second additive term represents the mean waiting time for

jobs that execute on on-demand resources, which is simply

r×b as they all wait the maximum time b.

w =

{

(1− r)× (α×β(1−δbe−δ×b
−e−δ×b)

(1−r)×δ2) + r × b ρ 6= 1

(1− r)× (α×β×b2

(1−r)×2) + r × b ρ = 1
(12)

Empirical Validation. We again validate our model using our

baseline parameters. Figure 4 shows the effective price P as

a function of fixed resources s under AJW-T for different

threshold maximum waiting times b, as well as the price under

AJW and NJW. Once again, the model’s predictions closely

match the empirical results. As expected, as b increases, the

price approaches AJW, and as it decrease the price approaches

NJW. The graph also shows that as b increases, the optimal

fixed resources s that minimizes price decreases. Similarly,

Figure 5 shows the mean waiting time w on the y-axis as

a function of the fixed resources s. Here, as b increases, the

mean waiting time increases more sharply as s→100. Thus,

unlike AJW and NJW, AJW-T is configurable, enabling users

to set their own tradeoff between price and waiting time.

Key Point. AJW-T offers a configurable tradeoff between price

and waiting time by enabling users to set the maximum waiting

time threshold b, unlike NJW, which offers no tradeoff, and

AJW, which offers a risky tradeoff.

IV. SELECTIVE WAITING POLICIES

Unlike non-selective waiting policies, selective waiting poli-

cies do not apply to all jobs, but only to selected jobs based

on system or job characteristics. We define and analyze two

selective policies: Short Waits Wait (SWW) and Long Jobs

Wait (LJW). Since waiting policies are not mutually exclusive,

we also analyze a compound waiting policy that combines

SWW, LJW, and the threshold waiting time from AJW-T.

✥

�✁✂

✄☎✆

✝✞✟

✠✡☛

☞✌✍

✎✏✑

✒✓✔

✕✖✗

✘✙ ✚✛ ✜✢ ✣✤ ✦✧ ★✩✪ ✫✬✭ ✮✯✰

▼
✱
✲
✳
✴
✵
✶✷
✸
✹✺
✻
✼✽
✾
✿
❀

◆❁❂❃❄❅ ❆❇ ❈❉❊❋●❍■❏❑ ▲❖P

❙◗❘❚ ❯❱❲❳❨ ❩❬❭❪❫❴ ❵❛❜❝❞

Fig. 6. Mean waiting time as a function of fixed resources under SWW and
AJW-T where b=900s=15m.

A. Short Waits Wait

Model Analysis. Unlike AJW-T where jobs wait up to a

threshold value before they are scheduled on on-demand

resources, in the Short Waits Wait (SWW) waiting policy,

incoming jobs estimate their waiting time upon arrival (based

on the jobs running and ahead of it in the queue) and

only wait if the estimated wait time is short, i.e., less than

a threshold value. If the estimated wait time is long, i.e,

exceeds the threshold, then they immediately run on on-

demand resources without waiting. In queuing literature, this

behavior is equivalent to a queuing system with balking jobs,

which immediately exit the system if the waiting time will

exceed a maximum threshold value denoted by b. Importantly,

as prior work shows, the same set of jobs that renege under

AJW-T, and in our case run on on-demand resources, will also

balk under SWW [23]. Thus, the fraction of jobs r that run on

on-demand resources under SWW is the same as under AJW-

T (from Lemma 3.1), and thus the effective price for resources

is the same under AJW-T and SWW for the same b.
The only change with SWW relative to AJW-T is the

mean waiting time w, since under SWW jobs exit the system

immediately and run on on-demand resources if their waiting

time would exceed the threshold waiting time b. In this case,

the mean waiting time w shown below is the same as in

Equation 12 except that we remove the r×b term, since the

r fraction of jobs that run on on-demand resources incur no

waiting time rather than incurring b waiting time, as in AJW-T.

w =

{

(1− r)× (α×β(1−δbe−δ×b
−e−δ×b)

(1−r)×δ2) ρ 6= 1

(1− r)× (α×β×b2

(1−r)×2) ρ = 1
(13)

Empirical Validation. Figure 6 plots the mean waiting time

w for SWW and AJW-T as a function of the fixed resources s,

and a threshold waiting time b=900s=15m. The mean waiting

time for SWW approaches zero as s decreases (and load

increases) rather than b for AJW-T, as increasingly more

jobs exit the system without waiting and run on on-demand

resources. Note that SWW’s mean waiting time reaches its

maximum at s=93, and is always less than that of AJW-T.

Key Point. SWW is strictly better than AJW-T for the same

threshold b, yielding same price at a lower mean waiting time.

✥�✁

✂✄☎✆

✝✞✟

✠✡☛☞

✌✍✎

✏✑✒✓

✔✕✖

✗ ✘✙✚ ✛✜✢ ✣✤✦ ✧★✩
✪

✫✬✭

✮✯✰

✱✲✳

✴✵✶

✷✸✹

❆✺✻ ✼✽✾✿❀❁❂ ❃❄❅❇

❈❉❊ ❋●❍■❏

◆❑▲ ▼❖P◗❘❙❚ ❯❱❲❳❨

❩
❬
❭❪
❫
❴❵❛
❜
❝
❞
❡❢
❣
❤
✐❥
❦

❧
♠
♥
♦
♣
q
rs
t
✉✈
✇
①②
③
④
⑤

⑥⑦⑧⑨⑩ ❶❷❸ ❹❺❻❼❽❾❿➀➁ ➂➃➄

➅➆➇➈➉➊➋➌➍➎ ➏➐➑➒➓ ➔→➣↔↕➙➛
➜➝➞➟ ➠➡➢➤ ➥➦➧➨ ➩➫➭➯➲➳➵

➸➺➻➼➽➾➚➪➶➹ ➘➴➷➬➮ ➱✃❐❒❮❰ÏÐÑÒÓ
ÔÕÖ× ØÙÚÛ ÜÝÞß àáâãäåæçèéê

Fig. 7. Normalized price P and mean wait time w as a function of the short
job threshold t (in seconds) for s=101 under an LJW waiting policy.

B. Long Jobs Wait

Model Analysis. Long Jobs Wait’s (LJW) intuition is that

longer running jobs should be willing to wait longer for fixed

resources, since longer waiting times are a smaller percentage

of their overall running time compared to shorter jobs. For

LJW, we introduce a running time threshold t such that jobs

shorter than t run immediately on on-demand resources, while

others wait for fixed resources. For simplicity, our LJW policy

is not work-conserving in that it runs short jobs on on-demand

resources even if fixed resources are available. This non-work-

conserving variant will behave similarly to a work-conserving

one in the optimal case when fixed resources are not over-

provisioned (and thus rarely idle). For LJW, we separate the

analysis for short jobs and long jobs. As shown below, the

effective price P is the weighted average of the price to run

short and long jobs. As before, r represents the fraction of

jobs that run on on-demand resources, while Pshort and Plong

represent the price to run short and long jobs, and µshort and

µlong represent the mean service rate of short and long jobs.

P = (1− r)×
µ

µlong
× Plong + r ×

µ

µshort
× Pshort (14)

Thus, first and second additive terms represent the relative

cost to execute long and short jobs, respectively, based on

their fraction of the total jobs, their proportion of the service

time, and their price. Note that, µlong > µ > µshort for any

t > 0. Similarly, the mean waiting time w is the weighted

average of the waiting time to run short and long jobs. Since,

by definition, short jobs do not wait, w is only dependent on

the fraction of long jobs and their mean waiting time.

w = (1− r)× wlong (15)

Short Jobs. All short jobs (with running times <t) run on on-

demand resources at price po without any waiting time. Thus,

Pshort=po, while r is the fraction of jobs with running times

less than t, which is equivalent to the CDF of the exponential

distribution for service times at x=t, as shown below.

r = 1− e−µt (16)

Long Jobs. Since long jobs always wait for fixed resources,

the policy is similar to AJW in §III-A but applied to long jobs.

The mean arrival rate for long jobs λlong is the product of the

overall job arrival rate λ and the fraction of long jobs (1− r).

λlong = λ× (1− r) = λ× e−µt (17)

Similarly, we compute the mean service rate µlong for long

jobs using its service time PDF f(x, µ), as below. The PDF

for long jobs is an exponential distribution shifted by t units.

f(x, µ) = µe−µ(x−t), x ≥ t (18)

We find the expected value of the long jobs service time

PDF to derive its mean service time 1
µlong

by integrating from

x=t→∞.
1

µlong
=

∫

∞

t

xµe−µ(x−t)dx = t+
1

µ
(19)

Note that we can derive µshort from µlong , r, and µ, since

the mean service time of the original distribution 1/µ is the

weighted average of the mean service time of short jobs

1/µshort and long jobs 1/µlong . Thus, we compute µshort

by simply solving the expression below.
1

µ
= r ×

1

µshort
+ (1− r)×

1

µlong
(20)

The effective price Plong of running long jobs on fixed

resources is simply the price of fixed resources pf at full

utilization divided by the actual utilization ρlong , where

ρlong = λlong/(s×µlong).

Plong =
pf
ρf

=
pf × s× µlong

λlong
(21)

Importantly, however, the distribution of jobs with service

times greater than t is not exponentially distributed. As a

result, we cannot apply the same model as for AJW to

compute the waiting time. Instead, we use the well-known

approximation below for the waiting time of an M/G/s queue,

where CV is the distribution’s coefficient of variation, i.e.,

the standard deviation divided by the mean. In this case, the

standard deviation of the long jobs’ service time distribution

is 1/µ, and the mean is 1/µlong , so CV =µlong/µ.

w ∼
CV 2 + 1

2
×

C(s, a)

s× µlong − λlong
(22)

Empirical Validation. Figure 7 shows the normalized price

(left y-axis) and waiting time (right y-axis) under LJW as a

function of t for s=101, as well as AJW and NJW, using

our baseline parameters. As before, the graph shows that

the empirical values closely match the model’s waiting time

approximation above. The graph shows that as t increases the

normalized price increases, as fewer jobs wait for resources.

However, LJW also significantly decreases the mean waiting

time relative to AJW as t increases, since the exponential

service time distribution is weighted towards short jobs, which

experience no waiting time under LJW. In addition, since long

jobs still comprise a high fraction of the overall service time

(and thus cost), the effective price under LJW, especially for

small values of t, increases at a much lower rate than the

waiting time decreases. For example, at a threshold t=180,

the mean wait time is near 0 under LJW compared to a mean

✥�✁

✂✄☎✆

✝✞✟✠

✡☛☞✌

✍✎ ✏✑ ✒✓ ✔✕✖ ✗✘✙ ✚✛✜
✢

✣✤✦

✧★✩

✪✫✬

✭✮✯

◆
✰
✱✲
✳
✴✵✶
✷
✸
✹
✺✻
✼
✽
✾✿
❀

▼
❁
❂
❃
❄
❅
❆❇
❈
❉❊
❋
●❍
■
❏
❑

▲❖P◗❘❙ ❚❯ ❱❲❳❨❩❬❭❪❫ ❴❵❛

❜❝❞❡❢❣❤✐❥❦ ❧♠♥♦♣ qrst✉✈✇①②③
④⑤⑥⑦ ⑧⑨⑩❶ ❷❸❹❺ ❻❼❽❾❿➀➁➂➃

➄➅➆➇➈➉➊➋➌➍ ➎➏➐➑➒ ➓➔→➣↔
↕➙➛➜ ➝➞➟➠ ➡➢➤➥ ➦➧➨➩➫

Fig. 8. Normalized price P and mean wait time w as a function of fixed
resources s for our compound policy (b=900 and t=180) and LJW (t=180).

waiting time of 450s under AJW, for a normalized price that

is only ∼10% higher, but slightly lower than NJW.

By immediately running short jobs, LJW acts as the dual of

shortest job first scheduling that minimizes waiting time, and

is thus beneficial when fixed resources are under-provisioned.

Key Point. LJW offers a nice tradeoff: as t increases, price

increases modestly, while waiting time decreases significantly.

C. Compound Waiting Policies

Model Analysis. Waiting policies, unlike scheduling policies,

are not mutually exclusive. That is, we can concurrently apply

multiple waiting policies that select jobs to wait based on

different characteristics. Thus, we analyze a compound waiting

policy that combines the advantages of AJW-T, SWW, and

LJW. In analyzing this policy, we first apply LJW’s analysis

from §IV-B, since its waiting decisions are based on job

running time, and are thus load insensitive and not affected

by other waiting policies. Our LJW analysis yields a fraction

r of short jobs that always run on on-demand resources, which

we label rshort. The remaining (1−rshort) long jobs run on

fixed or on-demand resources depending on their waiting time.

We next apply SWW’s analysis from §IV-A solely to the

remaining long jobs. In particular, we compute the fraction

rsww of the remaining long jobs that run on on-demand

resources (due to long wait times) by applying Lemma 3.1

using λlong and µlong from §IV-B for a given value of s
and b. This is an approximation, since Lemma 3.1 assumes

exponentially distributed service times, and the long jobs’ ser-

vice time distribution is an exponential distribution truncated

at t. This approximation becomes more accurate as t→0 and

the distribution approaches an exponential. Given rsww, the

effective price for our compound waiting policy is as follows.

P = (1− rshort)× (1− rsww)×
µ

µlong
×

pf
ρf

+(1− rshort)× rsww ×
µ

µlong
× po+ rshort×

µ

µshort
× po

(23)

The last additive term is the product of the fraction of short

jobs that run on on-demand resources, their fraction of the

mean service time, and the on-demand price. The second term

➭

➯➲

➳➵➸

➺➻➼

➽➾➚

➪➶➹

➘➴ ➷➬ ➮➱ ✃❐❒ ❮❰Ï ÐÑÒ

Ó
Ô
Õ
Ö
×Ø
Ù
Ú
ÛÜ
Ý
Þ
ß
à
á
âã
ä

åæçèéê ëì íîïðñòóôõ ö÷ø

ùúûü ýþÿ
❆�✁✂✄☎✆✝✞✟✠

❙✡☛☞ ✌✍✎✏✑

▲✒✓✔ ✕✖✗✘✙ ❜✚➙

✛✜✢✣ ✤✥✦✧★ ✩✪✫✬✭

Fig. 9. Opportunity cost as a function of fixed resources s under AJW, AJW-T,
SWW, LJW, and compound policy.

is the same, but applies only to the fraction of long jobs with

high wait times that run on on-demand resources. The first

additive term is the remaining long jobs with short waiting

times that run on fixed resources. Here, ρf , shown below, is

the mean utilization of the fixed resources, which is simply

the adjusted arrival rate of jobs to the fixed resources divided

by their mean service rate, and then normalized by s.

ρf =
(1− rshort)× (1− rsww)× λ

s× µlong
(24)

We use the same approach as in LJW to approximate the

compound policy’s mean waiting time, but replace the waiting

time under AJW with the waiting time under SWW from

Equation 13 as below, again using λlong and µlong as the

input. The coefficient of variation CV is the same as in LJW.

w ∼

{

CV 2+1
2 × (1− rsww)× (α×β(1−δbe−δ×b

−e−δ×b)
(1−rsww)×δ2) ρ < 1

CV 2+1
2 × (1− rsww)× (α×β×b2

(1−rsww)×2) ρ = 1
(25)

Empirical Validation. Figure 8 compares our compound wait-

ing policy with LJW using our baseline parameters with b=900
and t=180. The primary advantage of the compound policy

over LJW is that it strictly lowers the overall waiting time,

since long jobs do not wait indefinitely, which is especially

important when resources are under-provisioned, for nearly

the same effective price. As shown, the compound policy’s

mean waiting is less than or equal to that of the LJW policy.

Key Point. Our compound policy combines the advantages of

AJW-T, SWW, and LJW, and thus offers the best tradeoff.

D. Model Results Summary

Our analyses show that waiting policies offer a complex

tradeoff between fixed resource provisioning, cost, and waiting

time. To summarize these tradeoffs, we define a new metric,

called the opportunity cost of waiting, which values a job’s

waiting time equal to its running time. The mean opportunity

cost P×w and is in dollars, where lower values of P and

w are better. Figure 9 shows the mean opportunity cost of

waiting for AJW, AJW-T (for b=900), SWW (for b=900), LJW

(for t=180), and our compound policy (for b=900 and t=180)

using our baseline parameters. Since the effective price P is

bounded (by pf) and waiting time is not, the opportunity cost

for all policies approaches zero as s increases. Just as with

a scheduling policy, a waiting policy’s importance increases

with resource constraint. We exclude NJW, as its opportunity

cost is always zero, since its waiting time is zero. As shown,

for the remaining policies where a price-waiting time tradeoff

exists, our compound policy yields the lowest opportunity cost.

We can trivially extend our average-case analysis to spot (or

preemptible) VMs. Spot VM prices ps are typically 10-20% of

the on-demand price po, and 25%-50% of the fixed reserved

price pf at full utilization, even after considering the increase

in running time and cost due to revocations [22], [25]. Thus,

on average, spot VMs are always cheaper than on-demand

and fixed VMs, and preferable for jobs without deadlines. As

a result, any job that can run on spot VMs should run on

them. However, not all jobs can handle revocations, which are

akin to failures. For example, many jobs are not idempotent

and cannot restart after a revocation. Given this, we can extend

our average-case analysis to spot VMs by simply adjusting the

workload to remove spot-compatible jobs that can run on spot

VMs. We then apply the same analysis above on the remaining

workload, and adjust the effective price and waiting time to

account for the fraction of workload that runs on spot VMs.

Finally, while the inter-arrival and service time distributions

affect the absolute differences in price and waiting time

between waiting policies, many aspects of our analysis are

generalizable, and hold regardless of the job inter-arrival and

service time distributions. Specifically, SWW always results in

a shorter mean waiting time than AJW-T; higher values of the

waiting time threshold b always increase fixed resource uti-

lization, decrease price, and increase waiting time; increasing

the short job threshold t always increases price and decreases

waiting time; and the compound policy always combines the

advantages of AJW-T, SWW, and LJW. Our evaluation in §VI

echoes this point by showing that the relative price, waiting

time, and opportunity cost between the waiting policies of a

real production workload precisely follows our analysis.

V. IMPLEMENTATION

We implemented a waiting policy model analyzer based on

our analysis, as well as a trace-driven job simulator, in python.

Model Analyzer. Our model analyzer implements the analyti-

cal queuing model for all the waiting policies we analyze. The

analyzer enables what-if analyses to compare and understand a

workload’s expected cost and job waiting times under different

policies and parameter values. The analyzer takes as input a

policy’s name and λ, µ, s, pf , and po, as well as b for AJW-

T, SWW, and the compound policy, and t for LJW and the

compound policy. Users may also enter a workload duration T .

The analyzer’s output is the policy’s mean waiting time w, the

effective price P , the fraction of jobs that run on on-demand

resources r, and, if T is specified, the total cost C. If s is

unspecified, the analyzer finds the optimal s that minimizes

price P and outputs the values above at the optimal. We plan

to publicly release our model analyzer, which can be used to

re-produce our model graphs in §III and §IV.

Job Simulator. We implemented a trace-driven job simulator

in python that mimics a cloud-enabled job scheduler, which

can acquire VMs on-demand to service jobs. The simulator

uses a FCFS scheduling policy, and also implements each

of our waiting policies. The simulator takes as input a trace

of jobs, s, pf , the name of a waiting policy, and the same

waiting policy-specific parameters as above. Users must also

specify the number of cores and memory allotment for each

fixed resource s. Since cloud platforms offer VMs in different

sizes, the simulator includes a table of available on-demand

VM options that specify their cores, memory, and price. In

our evaluation, we consider only the 8 VM types in the m5

family of general-purpose VMs on AWS. While VMs in the

m5 family have different resources, they all offer the same

price per unit of resource. The simulator’s output is the mean

waiting time w, the effective price P , the fraction of jobs that

run on on-demand resources r, and the total cost C.

Each job in the input trace has a service time based on

its resource, e.g., core and memory, requirements. Our job

simulator packs jobs onto fixed resources using a simple best-

fit heuristic, and, when scheduling a job on an on-demand VM,

always selects the smallest one that satisfies the job’s resource

requirements. We have publicly released our job simulator at

the UMass Trace Repository [9], [11].

Real-world Data. In §VI, we use our job simulator to quantify

the impact of different waiting policies on a real year-long

job trace that includes 14M jobs from a production high-

performance computing cluster consisting of 14.3k cores. The

cluster is the University of Massachusetts (UMass) System

Shared Cluster, and is available for general use to researchers

from all five campuses in the UMass system, including its

medical school [10]. Thus, the workload is a representative

sample of job types across the entire scientific, engineering,

and medical research communities. The cluster is located at

the Massachusetts Green High Performance Computing Center

(MGHPCC), a 15MW data center in Holyoke, Massachusetts

that also hosts computing infrastructure Boston University,

Harvard, MIT, and Northeastern. The cluster runs the LSF job

scheduler, and we use its log from the year 2016 to drive our

simulations. Each job entry in the log includes its submission

time, user ID, maximum running time limit, requested number

of cores and memory, and running time. We modify the raw

trace to conform to our job simulator’s input format. We have

publicly released this job trace at the UMass Trace Repository

as a basis for further research [9], [12].

VI. EVALUATION

We do not intend our models to be predictive, but instead

evaluate their usefulness in analyzing a real year-long batch

workload. Specifically, we show that our models both 1)

accurately predict the relative price and waiting time between

different waiting policies in our real workload, and 2) enable

reasoning about price and waiting time by understanding the

differences between our model’s and the real workload.

Workload. Figure 10 characterizes our real workload and our

model’s ideal. Figure 10(a) is a histogram of job inter-arrival

✥

�✁✂

✄☎✆

✝✞✟

✠✡☛

☞✌✍

✎✏✑
✒✓✔

✕✖✗

✘✙✚

✵✛✜ ✶✢✣✤ ✦✧★✩✪ ✸✫✬✭✮✯ ✰✱✲✳✴✷✹✺✻✼

P
✽✾
✿
❀
❁
❂❃
❄❅
❆

❏❇❈ ❉❊❋●❍■❑▲▼◆❖◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴

❵❛❜❝❞❡❢❣❤✐ ❥❦❧ ♠♥♦♣q
rst✉✈✇①②③④⑤ ⑥⑦ ⑧ ⑨⑩❶❷❸❹❺

❻

❼❽❾

❿➀➁

➂➃➄

➅➆➇

➈➉➊

➋➌➍

➎➏➐

➑➒➓➔→➣ ↔↕➙➛➜➝ ➞➟➠ ➡➢➤ ➥➦➧➨➩

➫
➭➯
➲
➳
➵
➸➺
➻➼
➽

➾➚➪ ➶➹➘➴➷➬➮ ➱✃❐❒ ❮❰ÏÐÑÒÓ

ÔÕÖ×ØÙÚÛÜÝ Þßà áâãäå
æçèéêëìíîïð ñò ó ôõö÷øùúûüý

þ

ÿ✥

�✁

✂✄

☎✆

✝✞✟

✠ ✡ ☛ ☞ ✌
✍

✎✏

✑✒

✓✔

✕✖

✗✘✙

❏
✚
✛
✜
✢✣
✤
✦✧
★
✩
✪✫
✬

▼
✭
✮
✯
✰✱
✲✳
✴
✵
✶✷
✸
✹
✺✻
✼✽
✾

❙✿❀❁❂ ❃❄❅ ❆❇❈❉❊❋●❍■ ❑ ▲◆❖P◗❘❚

❯❱❲❳❨ ❩❬❭❪ ❫❴❵❛❜❝❞❡❢❣
❤✐❥❦❧ ♠♥♦♣ qrst✉✈✇①

②③④⑤ ⑥⑦⑧⑨ ⑩❶❷❸❹❺❻❼❽❾
❿➀➁➂ ➃➄➅➆ ➇➈➉➊➋➌➍➎

(a) Job Interarrival Times (b) Job Service Times (c) Job Resource Requirements (d) Long and Short Job Mix

Fig. 10. Histograms of job inter-arrival times (a) and service times (b) for our real production batch workload along with an exponential distribution using
the same mean, as well as the mix of long and short jobs (c) and a scatterplot of job resource requirements (d).

times for our trace and an exponential distribution with the

same mean, which is 0.4527 jobs/sec. Note that the bin size

is non-uniform, since our trace much more bursty than our

model assumes. In particular, nearly 90% of job inter-arrival

times are between 0 and 1 second compared with less than

40% for an exponential distribution with the same mean. An

exponential distribution instead has more inter-arrival times

between 1 and 15 seconds. Both distributions have a heavy

tail with our job trace experiencing a few more extremely

long inter-arrival times, between 3 minutes and 50 hours.

Figure 10(b) is a similar histogram of job service times

with a mean service time 1/µ of 6225 seconds (or 1.73 hours)

per job. Again, the bin size is non-uniform due to our trace’s

large skew. In this case, over 60% of jobs are between 0 and 3
minutes, while an exponential distribution with the same mean

has only 3% of its jobs in this range. Instead, the exponential

distribution has more jobs of mid-range length between 3
minutes and 6 hours. However, our trace has a slightly higher

fraction of extremely long jobs, which account for a large

fraction of the overall job execution time and cost. Thus,

overall, the job service times in our trace have both a heavier

head and tail compared to the exponential distribution. To

further illustrate, Figure 10(c) shows the fraction of long and

short jobs, and their resource usage (in memory×core hours),

as a function of the short job threshold t. The graph shows

that short jobs are a high fraction of jobs, even for large short

job thresholds, but account for only a small fraction of the

resource usage. As we show, since this skew is more extreme

in our trace than in our model, LJW’s ability to decrease mean

waiting time is much greater than our model, since there is a

larger fraction of short jobs that never wait.

Finally, Figure 10(d) shows a scatterplot of the core and

memory requirements for each job. Our model assumes job

resource requirements are uniform and map directly to each

VM’s resources. However, our simulator only schedules a job

on a VM if it has enough available cores and memory to

satisfy a job’s requirements. Our simulations assume a large

m5.16xlarge VM with 64 cores and 256GB memory to

mitigate imperfect job packing on VMs. We contextualize our

results by comparing against the current fixed-size cluster,

which consists of 14,376 cores and is equivalent to 225

m5.16xlarge VMs. Simulating this cluster on our trace

yields a mean waiting time of 13.3 hours and a cost of

$2,421,965, or $276.48/hour. As before, we use a discount

factor d∼0.4 based on the m5.16xlarge’s on-demand price

of $3.072/hour and its 3-year reserved price of $16,046.

A. Real-world Workload Results

Figure 11 shows the normalized price (a), mean waiting time

(b), and opportunity cost (c) for each of our waiting policies.

We select the maximum waiting time threshold b=24 hours

for SWW and AJW-T, or slightly less than double the current

cluster’s mean waiting time using AJW. We select the long job

cutoff t=3m where 60% of jobs are short and 40% are long.

Price. As expected, Figure 11(a) shows that AJW yields

the lowest price, since it requires all jobs to wait for fixed

resources. Interestingly, LJW yields nearly the same price even

though it executes 60% of the total jobs on on-demand VMs.

Since these 60% of short jobs comprise only a small fraction

of the overall job execution time, executing them on on-

demand VMs does not substantially increase the normalized

price. SWW, AJW-T, and our compound policy yield nearly

the same price for the same reason. This price is greater

than LJW because SWW and the compound policy cut the

tail off the job waiting time distribution by preventing jobs

that would have to wait longer than 24 hours from ever

waiting. Running these jobs, which may include long jobs,

on on-demand VMs increases the price. As fixed resources

decrease, the price reaches a minimum before increasing, as

an increasingly larger share of the jobs experience (or would

experience) long waiting times and thus instead run on on-

demand resources. NJW has a ∼26% higher price than SWW,

since it directs any job that must wait to on-demand resources.

When using AJW, our current cluster yields a normalized

price of 0.6 at x=225 fixed resources, while the minimum cost

under the compound policy is 0.571 at x=150, or 5% less. For

our trace, P=0.6 translates to an annual cost of $2,421,965,

while 0.571 translates to $2,304,903, or over $100k lower.

This cost advantage for our compound policy is less than our

model predicts, since our burstier workload causes more jobs

to run on on-demand resources, which increases the price.

Waiting Time. As our model predicts, Figure 11(b) shows that

the mean job waiting time under AJW and LJW increases

super-linearly as fixed resources decrease. However, even

though LJW’s cost is nearly the same as AJW’s, its mean

waiting time is substantially less because the large fraction of

short jobs never wait. In contrast, the mean waiting time under

AJW-T, SWW, and the compound policy increases modestly

as fixed resources decrease. Even at x=100, the mean waiting

✥�✁

✂✄☎

✆✝✞

✟✠✡

☛☞✌

✍✎✏

✑✒✓ ✔✕✖ ✗✘✙ ✚✛✜ ✢✣✤ ✦✧★ ✩✪✫

◆
✬
✭✮
✯
✰✱✲
✳
✴
✵
✶✷
✸
✹
✺✻
✼

✽✾✿❀❁❂ ❃❄ ❅❆❇❈❉❊❋●❍■❏ ❑▲▼

❖P◗
❙❘❚❯ ❱❲❳❨❩❬ ❭❪❫❴❵❛❜

❝❞❡❢ ❣❤✐❥❦❧

♠♥♦♣qrst ✉✈✇①②③④⑤ ⑥⑦⑧⑨⑩❶
❷❸❹

❺

❻

❼❽

❾❿

➀➁

➂➃➄ ➅➆➇ ➈➉➊ ➋➌➍ ➎➏➐ ➑➒➓ ➔→➣
↔
↕
➙
➛
➜
➝
➞➟
➠
➡➢
➤
➥➦
➧
➨
➩➫
➭

➯➲➳➵➸➺ ➻➼ ➽➾➚➪➶➹➘➴➷➬➮ ➱✃❐

❒❮❰
ÏÐÑÒ ÓÔÕÖ×ØÙ
ÚÛÜÝ Þßàáâã

äåæçèéêë ìíîïðñòó ôõö÷øù
úûüýþÿ ❆�✁✂✄☎✆

✥

✝

✞

✟✠

✡☛☞ ✌✍✎ ✏✑✒ ✓✔✕ ✖✗✘ ✙✚✛ ✜✢✣

❖
✤
✦
✧
★✩
✪
✫
✬✭
✮
✯
✰
✱
✲
✳✴
✵

◆✶✷✸✹✺ ✻✼ ✽✾✿❀❁❂❃❄❅❇❈ ❉❊❋

●❍■
❙❏❑▲ ▼P◗❘❚❯❱
❲❳❨❩ ❬❭❪❫❴❵

❛❜❝❞❡❢❣❤ ✐❥❦❧♠♥♦♣ qrst✉✈
✇①②③④⑤ ⑥⑦⑧⑨⑩❶❷

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 11. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of m5.16xlarge VMs when executing our real production
batch workload under AJW, AJW-T, SWW, LJW, and our compound policy.

time of these policies is less than the 13.3 hour mean waiting

time in our current fixed size cluster (AJW at x=225). At

x=150, the compound policy has a mean waiting time of 1.74
hours, or 7× less than our current cluster (for 5% less cost).

Our compound policy’s waiting time is much less than our

model predicts due to the burstier workload, where large bursts

of jobs cause long waiting times for a large fraction of short

jobs under AJW. Running these short jobs on on-demand VMs

significantly reduces waiting time at little cost. In addition,

running jobs with long waiting times on on-demand VMs only

modestly increases cost for large decreases in waiting time.

Opportunity Cost. Figure 11(c) graphs the mean opportunity

cost of waiting P×w for each policy, and shows that, as our

model predicts, the compound policy offers the best tradeoff by

a significant margin compared to the other policies. Note that,

even though our workload’s characteristics differ significantly

from those assumed by our model, the overall trends in

opportunity cost match those from our model in Figure 9.

Key Result. At the optimal, the compound policy decreases the

cost (by 5%) and mean job waiting time (by 7×) compared to

the current cluster using AJW, and decreases the cost (by 43%)

compared to renting on-demand resources for a comparatively

modest increase in mean job waiting time (at 1.74 hours).

B. Sensitivity Analysis

We perform a sensitivity analysis that varies b, t, and errors

in estimating job waiting time and running time to understand

their effect on the results. We chose the values above for b=24h

and t=3m arbitrarily to be reasonable, as 24h is roughly twice

the mean waiting time under AJW and t=3m categorizes a

large fraction (60%) of jobs as short. We also assume accurate

estimates of job waiting and running time, e.g., using historical

data. Our sensitivity analysis assumes 150 m5.16xlarge’s

when using the compound policy, as noted above.

Parameter Sensitivity. Figure 12 plots price, waiting time,

and opportunity cost as a function of the short job threshold

t with lines for different values of the waiting time threshold

b. We vary t from 3-30m and the waiting time threshold from

6h-48h. The price (a) increases linearly with the short job

threshold t, albeit with a small slope, since this increases the

fraction of short jobs that run on on-demand VMs at a higher

price. The price also decreases roughly linearly for every

doubling of the waiting time threshold b, as longer waiting

time thresholds force more jobs to wait for lower cost fixed

VMs. In contrast, the mean waiting time (b) decreases as the

short job threshold increases, at an increasingly slower rate,

as fewer jobs wait for fixed VMs. This non-linearity derives

from Figure 10(c). Similarly, the mean waiting time decreases

as the waiting time threshold decreases, also at an increasingly

slower rate. Finally, the opportunity cost (c) is dominated by

the mean waiting time, and thus exhibits a similar trend. As t
increases, the decrease in waiting time outweighs the increase

in cost due to Figure 10(c). As b→0, the compound policy

approaches NJW (for long jobs) where there is no tradeoff,

and the waiting time and opportunity cost are zero.

Error Sensitivity. Figure 13 plots price, waiting time, and

opportunity cost as a function of the short/long job prediction

error, which is both the percentage of long jobs we mispredict

as short, and short jobs we mispredict as long. Similarly, each

line captures the waiting time threshold error, which is both the

percentage of jobs that should wait but do not, and that do not

but should. The graph shows price (a) is directly proportional

to the short/long job prediction error, such that a 1% increase

in error causes a 1% increase in price. In contrast, waiting time

threshold errors are non-linear, with progressively lower price

increases for each 10% increase in error. The graph still shows

large savings compared to using on-demand even under high

error rates. The mean waiting time (b) is much less affected

by the short/long job prediction error, since a similar number

of jobs must still wait (it is just the long jobs not waiting that

increases the price). Higher values of errorb actually decrease

mean waiting time: while a larger percentage of (long) jobs

that do not wait but should increases price, it decreases waiting

time. Finally, as above, the waiting time trend dominates the

opportunity cost (c), and thus shows a similar trend.

VII. RELATED WORK

Our work is related to prior work in many different areas.

Cloud Computing. While some prior work focuses on op-

timizing the provisioning of reserved cloud VMs, it makes

simple workload assumptions. In particular, prior work often

assumes the workload is continuous and uniform, rather than

composed of discrete jobs, which leads to solutions based on

dynamic and integer programming [15], [19], [20], [26], [28],

[29]. The canonical application is a distributed web server

with a front-end load balancer that distributes requests. Thus,

this work does not apply to cloud-enabled job schedulers. Our

work is also related to prior work on job scheduling for hybrid

✥�✁

✂✄☎

✆✝✞

✟✠✡

☛ ☞ ✌✍ ✎✏ ✑✒ ✓✔

◆
✕
✖✗
✘
✙✚✛
✜
✢
✣
✤✦
✧
★
✩✪
✫

❙✬✭✮✯ ✰✱✲ ✳✴✵✶✷✸✹✺✻ ✼ ✽✾✿❀❁

❜❂❃❄❅❆ ❇❈❉❊❋●❍ ■❏❑▲▼❖P ◗❘❚❯❱❲❳

❨

❩

❬

❭

❪

❫ ❴ ❵❛ ❝❞ ❡❢ ❣❤

✐
❥
❦
❧
♠
♥
♦♣
q
rs
t
✉✈
✇
①
②③
④

⑤⑥⑦⑧⑨ ⑩❶❷ ❸❹❺❻❼❽❾❿➀ ➁ ➂➃➄➅➆

➇➈➉➊➋➌ ➍➎➏➐➑➒➓ ➔→➣↔↕➙➛ ➜➝➞➟➠➡➢

➤

➥

➦

➧

➨ ➩ ➫➭ ➯➲ ➳➵ ➸➺

➻
➼
➽
➾
➚➪
➶
➹
➘➴
➷
➬
➮
➱
✃
❐❒
❮

❰ÏÐÑÒ ÓÔÕ Ö×ØÙÚÛÜÝÞ ß àáâãä

åæçèéê ëìíîïðñ òóôõö÷ø ùúûüýþÿ

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 12. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the long job threshold (t) when executing our real
production batch workload under a compound policy assuming 150 m5.16xlarge VMs.

✥�✁

✂✄☎

✆✝✞

✟✠✡

☛☞✌

✍ ✎ ✏ ✑ ✒ ✓✔ ✕✖

◆
✗
✘✙
✚
✛✜✢
✣
✤
✦
✧★
✩
✪
✫✬
✭

❙✮✯✰✱✲✳✴✵✶ ✷✸✹ ✺✻✼✽✾✿❀❁❂❃ ❄❅❆❇❈ ❉❊❋

❡●❍■❏❜❑▲▼ ❖P◗❘❚❯❱❲❳❨ ❩❬❭❪❫❴❵❛❝❞ ❢❣❤✐❥❦❧♠♥♦

♣

q

r

s t ✉ ✈ ✇ ①② ③④

⑤
⑥
⑦
⑧
⑨
⑩
❶❷
❸
❹❺
❻
❼❽
❾
❿
➀➁
➂

➃➄➅➆➇➈➉➊➋➌ ➍➎➏ ➐➑➒➓➔→➣↔↕➙ ➛➜➝➞➟ ➠➡➢

➤➥➦➧➨➩➫➭➯ ➲➳➵➸➺➻➼➽➾➚ ➪➶➹➘➴➷➬➮➱✃ ❐❒❮❰ÏÐÑÒÓÔ

Õ

Ö

×

Ø Ù Ú Û Ü ÝÞ ßà

á
â
ã
ä
åæ
ç
è
éê
ë
ì
í
î
ï
ðñ
ò

óôõö÷øùúûü ýþÿ ❙�✁✂✄☎✆✝✞✟ ✠✡☛☞✌ ✍✎✏

❡✑✒✓✔❜❂✕✖ ✗✘✙✚✛✜✢✣✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲✳✴✵✶✷✸✹

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 13. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the long job prediction error when executing our real
production batch workload under a compound policy assuming 150 m5.16xlarge VMs.

clouds that run jobs on fixed resources but can also burst

into the cloud [17], [24]. While hybrid cloud provisioning and

scheduling is well-studied, we know of no work that focuses

on explicit waiting policies. As mentioned earlier, existing

auto-scaling policies for cloud-enabled job schedulers [6]

define an implicit waiting policy that is equivalent to NJW.

Queuing Theory and Marginal Analysis. Our work applies

a number of previously developed queuing theory results to

gain insights into key tradeoffs exposed by different waiting

policies. In particular, our work builds on classic marginal

analysis and queuing results by Erlang and others [16], [21],

[27], [30], as well prior results on reneging and balking [23].

For example, AJW’s analysis is simply that of an M/M/s/∞
queue, and NJW’s analysis applies classic marginal analysis

where jobs never wait for resources [21]. Our analysis for

AJW-T and SWW then combines recent results on reneging

and balking by Liu and Kulkarni [23] with classic marginal

analysis, and shows how a waiting time threshold defines

a spectrum between AJW and NJW. In general, reneging

and balking are examples of “customer abandonment” poli-

cies from queuing theory, which model customers, i.e., jobs,

becoming impatient and leaving the queue. Many of these

models are probabilistic and assume an increasing fraction

of customers (or jobs) abandon the queue as their waiting

time increases based on diverse customer preferences. These

customer-centric models do not apply to our context, where

the waiting policy determines whether jobs abandon the queue

(and run on on-demand resources).

Ski Rental Problems. Our problem is similar to the classic

ski rental problem in online algorithms [13]. However, these

assume there is no knowledge of the future, whereas our

queueing analysis leverages a workload characterization. Ski

rental problems also typically focus on whether to buy or rent a

single resource whereas our problem focuses on provisioning,

i.e., how many resources to buy versus rent, and generally do

not consider the cost and waiting time tradeoff.

VIII. CONCLUSION

This paper introduces the concept of a waiting policy for

cloud-enabled schedulers, and defines, models, analyzes, and

empirically validates multiple fundamental waiting policies. A

key goal of this paper is to provide a formal foundation for fu-

ture work on waiting policies both analytically and empirically,

including on more general distributions of job inter-arrival

and service times, different scheduling policies, and machine

learning (ML) classifiers to accurately estimate job waiting

and running times. Specifically, our evaluation shows that real

workload characteristics differ from our model’s assumptions,

which motivates analytical models based on more general

distributions of inter-arrival and service times. We also only

analyze waiting policies in conjunction with FCFS scheduling,

which motivates future work on analyzing other scheduling

policies, such as shortest job first. Our real-world validation is

also a best case scenario, since it assumes accurate predictions

of job waiting and running times. Thus, we plan to evaluate

the accuracy of ML classifiers in making these predictions to

determine the benefits of waiting policies in practice. We plan

to implement and evaluate these ML-based waiting policies in

a cloud-enabled job scheduler, such as Slurm [4].

Acknowledgements. This work is funded by National Science

Foundation grants CNS-1802523 and CNS-1908536. We also

thank the Research Computing team at the UMass Medical

School for providing access to batch traces from the UMass

Green High Performance Computing Cluster (GHPCC) [10].

REFERENCES

[1] Kubernetes on AWS. https://kubernetes-incubator.github.io/kube-aws/,
Accessed May 2018.

[2] Google Kubernetes Engine. https://cloud.google.com/kubernetes-
engine/, Accessed October 2019.

[3] Slurm Elastic Computing (Cloud Bursting). https://slurm.schedmd.com/
elastic computing.html, Accessed October 2019.

[4] Slurm Workload Manager. https://slurm.schedmd.com/, Accessed Octo-
ber 2019.

[5] Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot/, Ac-
cessed June 2020.

[6] AWS ParallelCluster Auto Scaling. https://docs.aws.amazon.com/
parallelcluster/latest/ug/autoscaling.html, Accessed April 2020.

[7] Azure Spot Virtual Machines. https://azure.microsoft.com/en-
us/pricing/spot/, Accessed June 2020.

[8] Google Preemptible Virtual Machines.
https://cloud.google.com/preemptible-vms, Accessed June 2020.

[9] UMass Trace Repository. http://traces.cs.umass.edu/, Accessed August
2020.

[10] University of Massachusetts Green High Performance Computing Clus-
ter. http://wiki.umassrc.org/wiki/index.php/Main Page, Accessed Au-
gust 2020.

[11] Waiting Game Job Simulator. https://doi.org/10.5281/zenodo.3875634,
Accessed August 2020.

[12] Waiting Game Job Trace. https://doi.org/10.5281/zenodo.3872168, Ac-
cessed August 2020.

[13] L. Ai, X. Wu, L. Huang, L. Huang, P. Tang, and J. Li. The Multi-shop
Ski Rental Problem. In SIGMETRICS, June 2014.

[14] J. Chen. Medium, Why building your own Deep Learning Computer
is 10x cheaper than AWS. https://medium.com/the-mission/why-
building-your-own-deep-learning-computer-is-10x-cheaper-than-aws-
b1c91b55ce8c, September 24th 2018.

[15] R. V. den Bossche, K. Vanmechelen, and J. Broeckhove. IaaS Reserved
Contract Procurement Optimisation with Load Prediction. Future

Generation Computer Systems, 53, December 2015.
[16] A. K. Erlang. On the Rational Determination of the Number of Circuits

(1924). In Life and Works of A K. Erlang , E. Brockmeyer, H J.
Halstrom and A. Jensen, Danish Academy of Technical Science, 1948.

[17] T. Guo, U. Sharma, S. Sahu, T. Wood, and P. Shenoy. Seagull: Intelligent
Cloud Bursting for Enterprise Applications. In USENIX ATC, June 2012.

[18] T. Hoff. High Scalability, The Eternal Cost Savings of Netflix’s Internal
Spot Market. http://highscalability.com/blog/2017/12/4/the-eternal-cost-
savings-of-netflixs-internal-spot-market.html, December 4th 2017.

[19] Y. Hong, J. Xue, and M. Thottethodi. Dynamic Server Provisioning to
Minimize Cost in an IaaS Cloud. In SIGMETRICS, June 2011.

[20] M. Hu, J. Luo, and B. Veeravalli. Optimal Provisioning for Scheduling
Divisible Loads with Reserved Cloud Resources. In ICON, December
2012.

[21] A. Jensen. Moe’s Principle: An Econometric Investigation Intended

as an Aid in Dimensioning and Managing Telephone Plant. The
Copenhagen Telephone Company, 1950.

[22] J. Kadupitige, V. Jadhao, and P. Sharma. Modeling the Temporally
Constrained Preemptions of Transient Cloud VMs. In HPDC, June
2020.

[23] L. Liu and V. Kulkarni. Balking and Reneging in M/G/s Systems:
Exact Analysis and Approximations. Probability in the Engineering

and Informational Sciences, 22(3), July 2008.
[24] S. Niu, J. Zhai, X. Ma, X. Tang, and W. Chen. Cost-effective Cloud

HPC Resource Provisioning by Building Semi-Elastic Virtual Clusters.
In SC, November 2013.

[25] S. Shastri, A. Rizk, and D. Irwin. Transient Guarantees: Maximizing
the Value of Idle Cloud Capacity. In SC, November 2016.

[26] S. Shen, K. Deng, A. Iosup, and D. Epema. Scheduling Jobs in the
Cloud using On-demand and Reserved Instances. In Euro-Par, August
2013.

[27] L. Takacs. Introduction to the Theory of Queues. Oxford University
Press, 1962.

[28] W. Wang, B. Li, and B. Liang. To Reserve or Not to Reserve: Optimal
Online Multi-Instance Aquisition in IaaS Clouds. In ICAC, June 2013.

[29] W. Wang, D. Niu, B. Li, and B. Liang. Dynamic Cloud Resource
Reservation via Cloud Brokerage. In ICDCS, July 2013.

[30] W. Whitt. Erlang B and C Formulas: Problems and Solutions.
http://www.columbia.edu/ ww2040/ErlangBandCFormulas.pdf, 2002.

