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Abstract—While cloud platforms enable users to rent com-
puting resources on demand to execute their jobs, buying fixed
resources is still much cheaper than renting if their utilization
is high. Thus, optimizing cloud costs requires users to determine
how many fixed resources to buy versus rent based on their work-
load. In this paper, we introduce the concept of a waiting policy
for cloud-enabled schedulers, which is the dual of a scheduling
policy, and show that the optimal cost depends on it. We define
multiple waiting policies and develop simple analytical models to
reveal their tradeoff between fixed resource provisioning, cost,
and job waiting time. We evaluate the impact of these waiting
policies on a year-long production batch workload consisting of
14M jobs run on a 14.3k-core cluster, and show that a compound
waiting policy decreases the cost (by 5%) and mean job waiting
time (by 7x) compared to a fixed cluster of the current size.

I. INTRODUCTION

Cloud platforms enable users to rent computing resources
on demand, in the form of virtual machines (VMs), to execute
their jobs. Cloud-enabled infrastructure uses similar software
systems as private clusters to manage resources at large scales,
typically consisting of a centralized job scheduler, such as
Slurm [4] or Kubernetes [2]. Users submit jobs, with speci-
fied resource requirements, to these schedulers, which either
allocate idle resources to execute them or force them to wait
for idle resources to become available. Since private clusters
manage a fixed number of computing resources typically sized
for peak demands, they often have low average utilization
(<30%), but may periodically experience large bursts in job
arrivals, e.g., due to deadlines, product releases, or seasonal
variations, that result in long job waiting times.

As job schedulers migrate to the cloud, they have many
options for optimizing cost and reducing job waiting times.
For example, schedulers may provision cloud VMs on demand
to service each job, requiring them to only pay for resources
when jobs need them. In this case, the cloud’s operating costs
are often much lower than the capital cost of an under-utilized
fixed-size cluster, since the latter must effectively “pay” when
resources are idle. In addition, since the cloud provides the
illusion of infinite scalability, jobs never need to wait for
resources, as schedulers can always acquire cloud resources
to service them immediately. Most schedulers are now cloud-
enabled and support such “auto-scaling,” which acquires cloud
VMs to service jobs, and releases them when done [1], [3].

Importantly, however, buying fixed resources (or reserving
them for long periods) is significantly cheaper than renting
resources on demand if the fixed resources are highly utilized.
Cloud pricing models make this clear, as reserving a VM for 1-
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3 years costs 40-60% less per-hour than renting an equivalent
on-demand VM over the same period. For example, reserv-
ing a m5.large VM from Amazon Web Services (AWS),
which includes 2 cores and 8GB RAM, for 3 years currently
costs $988, while renting it on demand costs $0.096/hour or
$2,522.88 over the same period. Of course, fixed resources
are only cost-effective if they are highly utilized: if jobs only
execute on the m5. large for less than a third of the time,
the on-demand option is cheaper (at a cost of $840.96). The
cost advantage of buying versus renting is even greater for
specialized hardware with a recent analysis estimating that
purchasing a GPU-based deep learning cluster costs 90% less
than renting one on demand from AWS [14]. Thus, a mixed
infrastructure that satisfies some baseload with highly-utilized
fixed resources, and satisfies load bursts using on-demand
resources can decrease cost. Notably, hybrid clouds, which
combine fixed private resources with cloud bursting, use this
approach [17], [24], as do many companies, which both buy
reserved VMs and dynamically rent on-demand VMs [18].
In this paper, we introduce the concept of a waiting policy
for cloud-enabled schedulers, and show that provisioning fixed
resources to optimize cost is dependent on it. A waiting policy
is the dual of a scheduling policy: while a scheduling policy
determines which jobs run when fixed resources are available,
a waiting policy determines which jobs wait for fixed resources
when they are not available (rather than run immediately
on on-demand resources). While there has been decades of
work on job scheduling policies, we know of no prior work
that defines or analyzes waiting policies, which are distinct
from scheduling policies in that cloud-enabled schedulers
define both independently of each other. For cloud-enabled
schedulers, the waiting policy is important, since it dictates the
tradeoff between job performance and cost. Waiting policies
also differ from auto-scaling policies used by cloud-enabled
schedulers, which implicitly assume jobs should never wait
and immediately acquire resources to satisfy queued jobs [6].
Clearly, the longer jobs are willing to wait for fixed re-
sources, the higher their utilization, and the lower their overall
cost. However, as we show, the relationship and tradeoff
between the number of fixed resources, the waiting policy, and
the optimal cost is non-intuitive. To better understand these
tradeoffs, we define multiple fundamental non-selective and
selective waiting policies and develop simple analytical models
for them. Non-selective waiting policies apply the same policy
to all jobs, while selective waiting policies apply the policy to
only selected jobs based on system or job characteristics. Our



Purchasing Option Raw Effective | 3-year | Normalized
(utilization %) Price Price Cost Price
On-demand (100%) 9.6¢/hr 9.6¢/hr $2523 ~ 1.0
On-demand (60%) 9.6¢/hr 9.6¢/hr $1514 ~ 1.0
On-demand (40%) 9.6¢/hr 9.6¢/hr $1009 ~1.0
Fixed Reserved (100%) | 3.8¢/hr 3.8¢/hr $988 ~ 0.4
Fixed Reserved (60%) 3.8¢/hr 6.3¢/hr $988 ~ 0.7
Fixed Reserved (40%) 3.8¢/hr 9.5¢/hr $988 ~1.0
TABLE 1

RAW PRICE, EFFECTIVE PRICE PER UNIT TIME OF UTILIZED RESOURCES,
3-YEAR COST, AND NORMALIZED PRICE FOR DIFFERENT UTILIZATIONS OF
A FIXED RESERVED AND ON-DEMAND VM FROM AWS.

hypothesis is that, by optimizing their waiting policy, cloud-
enabled schedulers can significantly reduce job waiting times,
while mitigating the impact on cost, or vice versa. In evaluat-
ing our hypothesis, we make the following contributions.
Introduce a Waiting Policy. We introduce the concept of
a waiting policy for cloud-enabled schedulers, and present
multiple fundamental non-selective and selective waiting poli-
cies. Our non-selective waiting policies include All Jobs Wait
(AJW), No Jobs Wait (NJW), and All Jobs Wait Threshold
(AJW-T), while our selective policies include Short Waits Wait
(SWW) and Long Jobs Wait (LJW). Since waiting policies are
not mutually exclusive, we also present a compound policy
that concurrently applies AJW-T, SWW, and LIW.

Waiting Policy Models and Analysis. We show how to ana-
lyze waiting policies for cloud-enabled schedulers in general
using a simple queuing model to understand their tradeoff
between fixed resource provisioning, cost, and job waiting
time. Our approach extends classic marginal analysis by
combining it with a number of different queuing results and
analyses to model cloud cost under job waiting. We then
apply this approach to model, analyze, and empirically validate
each waiting policy above to demonstrate the importance of
explicitly defining a waiting policy to optimize cloud cost.
Our modeling and analysis also provides the necessary formal
foundation for conducting any future work on waiting policies.
Implementation and Evaluation. We implement our waiting
policies in a trace-driven job simulator, and evaluate their
impact on a real year-long batch workload consisting of 14
million (M) jobs run on a 14k-core cluster. The results show
that our compound policy offers the best tradeoff: it decreases
the cost (by 5%) and mean job waiting time (by 7x) compared
to the current cluster using AJW, and decreases the cost (by
43%) compared to only renting on-demand resources for a
modest increase in mean job waiting time (at 1.74 hours).

II. BACKGROUND AND INTUITION

We provide background on cloud pricing of fixed and on-
demand VMs, and applying marginal analysis to optimize cost.
Pricing Dynamics. We assume a cloud platform that offers
two types of VMs: on-demand and fixed. Users may acquire
and release on-demand VMs any time, and pay only for the
time they use them without any commitment. In contrast, users
must commit to paying for fixed VMs over a long period,
e.g., one or more years. Importantly, however, fixed VMs are
cheaper than on-demand VMs if they are highly utilized. While
cloud platforms also offer spot [5], [7] or preemptible VMs [8],
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Fig. 1. Illustration of utilization for each unit of stacked resource demand
and the break even point at 40% utilization.

which are often cheaper than highly utilized fixed VMs, not
all jobs can use them. We discuss spot VMs further in §IV-D.

Table I shows the pricing dynamics of an on-demand and
fixed (3-year reserved) m5. large cloud VM on AWS in the
U.S. East region. The table includes the raw price per unit
time, the effective price of utilized resources, 3-year cost, and
normalized price, i.e., the effective price relative to the raw
on-demand price, for each scenario. As mentioned in §I, the
on-demand VM’s 3-year cost is much higher than the fixed
VM’s cost at 100% utilization. However, the fixed VM’s cost
is constant and independent of its utilization due to the long-
term commitment, while the on-demand VM’s cost changes
with utilization, since users release it when not in use. Here,
utilization simply denotes the fraction of non-idle periods over
time. Since the fixed VM’s resources are wasted during idle
periods, its effective price for utilized resources increases with
decreasing utilization. In this case, if the fixed VM is utilized
>40% of the time, its effective price and 3-year cost are less
than the on-demand VM, thereby making it the cheaper option.
We call this the break even point.

The cost dynamics above are fundamental to the economics
of any cloud platform, since the platform must always recoup
its own costs for buying fixed resources, in addition to any
operating costs and profit, by renting them to users. By serving
a large pool of users with different resource requirements,
cloud platforms are able to operate their fixed resources at
a much higher resource utilization than any single user, which
results in a much lower effective price. Volume discounts and
higher operational efficiency at large scales, i.e., “economies
of scale,” also contribute to lowering cloud platforms’ effective
price for fixed resources. Even so, as our example illustrates,
highly utilized fixed resources are still much cheaper, since
they eliminate the cloud platform’s primary cost advantage.
Marginal Analysis. In economics, marginal analysis examines
the additional benefits of some activity compared to the addi-
tional costs incurred by that activity. Determining the optimal
mix of fixed and on-demand VMs to execute a workload on a
cloud platform to minimize cost is a classic marginal analysis
problem [21]. Given a workload and some fixed resources
capable of servicing a fraction of it, the marginal analysis
problem is to determine whether the additional benefit of
acquiring one more fixed resource to serve (a portion of) the
remaining workload outweighs its cost, i.e., the savings from
renting an on-demand resource to service the same portion.



Figure 1 illustrates marginal analysis pictorially for an
example workload where time is on the x-axis and resource
demand is on the y-axis. We assume the fixed and on-demand
resources have the same prices as in Table I. To determine the
optimal mix of fixed and on-demand resources using marginal
analysis, we simply add fixed resources, one at a time, to
satisfy each unit of stacked resource demand in order (starting
from O on the y-axis) up to the point where the utilization of
the fixed resource equals our break even point on the y-axis,
which is 40% (in dark grey). When the instantaneous demand
exceeds the fixed resource capacity at the horizontal line (in
light grey), dynamically acquiring and releasing on-demand
resources to satisfy the remaining workload is cheaper.

More formally, let p; and p, denote the price per unit
time for a fixed resource (at 100% utilization) and on-demand
resource, respectively, let d denote the discount factor for a
fixed resource, such that py=d x p, and 0<d<1, and let
T denote the workload’s duration. The cost of adding one
more fixed resource s over the workload’s duration 7' is
pyXT'. Now suppose this st" resource operates at utilization p,
when servicing the remaining workload. Since the scheduler
can acquire and release on-demand resources at any time,
the cost of servicing the remaining workload using an on-
demand resource is ps X T' X p,, as the scheduler can acquire
the on-demand resource in ps x 7' time slots and release it
when idle. Thus, using a fixed resource is only cheaper if
Py xT < psxT X p,. By substituting ps=d x p,, we observe
that only when d<p, or the discount factor is less than the
utilization of the last fixed resource we added, is acquiring
an additional fixed resource cheaper than using on-demand
resources. Similarly, the cost of provisioning an additional
fixed or on-demand resource is equal when ps=d, or the
discount factor equals the utilization of the last fixed resource.
Beyond this break even point, there is no marginal cost savings
from acquiring more fixed resources.

The marginal analysis problem above is straightforward to
solve in the context of a traditional queuing model using
classic results by Erlang, assuming arriving jobs never wait
for resources [16], [27], [30]. Variants of this classic problem
have been addressed in prior work both generally, and in the
context of cloud computing, which we discuss in §VII.
Marginal Analysis under Waiting. The classic marginal anal-
ysis above implicitly assumes jobs never wait for resources,
and always immediately execute on either a fixed or on-
demand resource. A key insight of our work is that cloud-
enabled schedulers can explicitly control whether (and how
long) jobs wait for fixed resources if they are busy, and
that this waiting policy affects the optimal provisioning of
fixed resources that minimizes cost. In general, the longer
the permissible waiting time, the higher the fixed resource
utilization, and the lower the overall cost. As we show, cloud-
enabled schedulers can implement a wide variety of waiting
policies that offer different tradeoffs between fixed resource
provisioning, cost, and job waiting time. We know of no work
that explicitly defines and analyzes such waiting policies for
cloud-enabled schedulers by applying marginal analysis.
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Fig. 2. Normalized price P (left y-axis) and mean wait time w (right y-axis)
as a function of fixed resources s under AJW. Mean wait time w— oo as fixed
resources s— 100, and mean wait time w—0 as fixed resources s—o00.

III. NON-SELECTIVE WAITING POLICIES

We develop a simple queuing model for cloud-enabled
schedulers to understand the relationship between the waiting
policy, fixed resource provisioning, job waiting time, and
cost. We first analyze basic non-selective waiting policies—
All Jobs Wait (AJW), No Jobs Wait (NJW), and All Jobs Wait
Threshold (AJW-T)—which apply the same policy to all jobs.
In §IV, we analyze selective waiting policies that only force
selected jobs to wait based on their characteristics.

Our analysis extends a M /M /s/oo queuing model using s
fixed resources with first-come-first-serve (FCFS) scheduling,
mean job arrival rate \, and mean job service time 1/u, where
job arrivals follow a Poisson process, job service times are
i.i.d. and exponentially distributed, and each resource executes
one job at a time. The offered load is a=\/pu, and the offered
load (and utilization) per fixed resource is p=a/s=\/(sx ).

A. All Jobs Wait

Model Analysis. All Jobs Wait (AJW) is a baseline policy
that requires all jobs to wait for fixed resources, and never
rents on-demand resources. We present it as a foundation for
our subsequent analysis. AJW’s analysis is equivalent to that
of an M /M /s/oo queue. The effective price P for each fixed
resource is simply a function of the mean resource utilization p
and fixed resource price py at full utilization, as shown below.

)

Thus, as mean utilization p increases, the effective price
decreases up to 100% utilization. Of course, as utilization
increases, the mean waiting time w in the queue also increases.
The mean waiting time w for fixed resources under AJW is
a well-known function, shown below, of s, A, and u, where
Cls,a)=I(s xa*) /(s x (s—a))]/[S52 ai il + (s x %)/ (s!
(s — a))] is Erlang’s delay (or C) formula.

C(s,a)

=—1 2
v SX p—A @

P=ps/p

Empirical Validation. We empirically validate the effective
price P and mean waiting time w for all models we present
in §III and §IV for the same baseline example. In our baseline



example, we set A=0.2 (or 1 job every 5 seconds on average),
©#=0.002 (or an average job service time of 500 seconds),
DPo=9.6¢/hour, and p;=3.84¢/hour. Thus, in this case, the
discount factor d for fixed resources at 100% utilization is
Pf/Po=0.4. As in our example in §II, we set p, and py
based on the on-demand and 3-year reserved VM prices in
AWS, and set A and p such that the mean utilization p of the
fixed resources is 100% when s=100 resources. We plot both
the continuous function from our model, as well as average
empirical values from 20 trials of our job simulator from §V.
Each trial simulates the model on a synthetically generated job
trace with 2M jobs using exponentially distributed inter-arrival
and service times using the baseline parameters, as well as any
model-specific parameters. To capture steady states, we do not
include the first and last 10% of jobs when computing P and
w. All graphs include error bars representing the maximum
and minimum across all trials, although, with 2M jobs, there
is almost no deviation from the average on each trial.

For AJW, Figure 2 plots the effective price P (left y-axis),
obtained from our model and from simulations, as a function
of the fixed resources s. Here, as in all subsequent graphs,
we normalize the effective price P by the price of on-demand
resources p,. Thus, the left y-axis represents how much using
fixed resources lowers or raises the price relative to using on-
demand resources; smaller numbers (lower prices) are better.
The minimum value on the left y-axis is P=p;=0.4, since
this represents the lowest possible price (when using only
fixed resources at 100% utilization). The right y-axis shows
the mean waiting time w for fixed resources.

Figure 2 shows that our model’s predictions closely match
the empirical results, both for the normalized price and the
mean waiting time. Also, as expected, the graph shows that as
s increases the effective price P increases linearly due to the
decrease in mean utilization p. In contrast, the mean waiting
time decreases super-linearly with increasing s. Thus, AJW
offers a risky tradeoff between w and P, since provisioning
fixed resources for high utilization, i.e., a low s, to reduce
the price may cause high waiting times. As a result, AJW
encourages over-provisioning to ensure waiting times near 0
that are outside the region where they increase super-linearly.

The effective price P equals the on-demand price p, when
the mean utilization of fixed resources p equals the discount
factor d=0.4, which occurs at s=250 (not shown). Thus,
provisioning any fixed resources s<250 is cheaper than solely
using on-demand resources. Reducing s to 120 still yields a
waiting time w ~ 0 for an effective price P that is 52% lower
than s=250 and only 20% higher than s=100 where w—oo.
Key Point. Since waiting time increases super-linearly as
utilization p—100%, AJW encourages over-provisioning to
ensure a utilization below 100% with waiting times near 0.

B. No Jobs Wait

Model Analysis. The No Jobs Wait (NJW) waiting policy
is similar to existing auto-scaling policies for cloud-enabled
schedulers that execute jobs on fixed resources when available,
and dynamically acquire on-demand resources to execute jobs

Normalized Price (model)

Normalized Price (empirical)
sth Resource Load (model) = = = =

A
sth Resource Load (empirical) w

1 ) : -1
§ 0.9 08 §
2 08 >
° 0.7 =]
I 0.4 3
0.6 o
g 0.5 02 =
= . (7]

04 0

0 20 40 60 80 100 120
Number of Resources (s)

140

Fig. 3. Normalized price P (left y-axis) and mean utilization of the st/
resource ps (right y-axis) as a function of fixed resources s under NJW. The
minimum price occurs when the fixed resources’ discount factor d=ps.

when all fixed resources are busy. Recall from §II that, given
a workload, there is an optimal number of fixed resources
s for NJW that minimizes cost, and this value occurs when
the s*" resource has a utilization equal to the fixed resource’s
discount factor d. Thus, to optimize s under NJW, we need an
expression for the s** resource’s utilization, denoted as p;.
We find p, using marginal analysis by applying Erlang’s
loss (or B) formula, which assumes a M /M /s/0 queue. Since
the queue size is zero, any job that arrives and observes all
resources as busy must exit the system. Erlang’s loss formula
gives the blocking probability that an arriving job exits the
system, or equivalently that there are s jobs in the system and
all resources are busy. To compute the utilization of the s*
resource, we first compute the difference between the blocking
probability when using s — 1 and when using s resources.
This difference represents the percentage of jobs an additional
resource serves. Multiplying this percentage by the offered
load a=\/pu gives the mean utilization of the s** resource
ps. as shown below, where B(s,a)=(a*/s!)/(>i_,(a’/4!)) is
Erlang’s loss (or B) formula.
ps =ax [B(s—1,a) — B(s,a)] 3)

Under a No Jobs Wait (NJW) waiting policy, rather than
actually exit the system, the scheduler acquires on-demand
resources to immediately service blocking jobs without wait-
ing. To determine the optimal number of fixed resources s
that minimizes cost, we set the discount factor d equal to p;
in Equation 3 and solve for s. Since Erlang’s loss formula
includes a factorial and summation, there is no closed-form
expression for s, requiring us to solve for it numerically. Since
ps 1s monotonically decreasing as s increases, we can use a
binary search to determine the optimal s. After solving for s,
we compute the minimum effective price P per resource per
unit time for the s fixed resources and additional on-demand
resources necessary to satisfy the offered load.

P:(l—r)xﬁ+r><po 4)
Pf
Here, we use r to represent the fraction of the workload

that executes on on-demand resources. The first additive term
normalizes the price of the s fixed resources p; at 100%
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Fig. 4. Normalized price P as a function of fixed resources s under AJW-T
for different threshold waiting times b.
utilization by their mean utilization ps, which is (1 —7) x p,
since the mean arrival rate to the s fixed resources is only
(1 —r) x A\. We then multiply this normalized price by
the fraction of load (1 — r) serviced at this price. The
second additive term simply multiplies the price of on-demand
resources p, by the remaining fraction of the workload r.
For NJW, r=B(s,a), as this represents the probability that
a job blocks and then runs on on-demand resources. Since
jobs block uniformly at random, the mean service time of
blocking and non-blocking jobs both equal the mean service
time 1/p. As a result, we need not weight each additive term
in Equation 4 by its fraction of the mean service time.

The total cost C' (in dollars) to execute a workload over time
T, i.e., the fixed resources’ lifetime, is then shown below.

1 A

C:Px(/—t)><()\T):3><pf><T+r><;><po><T )

The total cost C' is the product of the effective price per
unit time P, the mean service time per job (1/u), and the total
number of jobs, which in-turn is the product of the job arrival
rate A and the total time 7. We can also represent the total
cost in a different, but equivalent, way on the right side by
expanding P using Equation 4. Here, the first additive term is
the cost for the s fixed resources over time 7', and the second
term is the cost of renting on-demand resources. The first term
is independent of the offered load, since users must pay for
the s fixed resources regardless of their utilization.
Empirical Validation. We empirically validate NJW using
the same baseline example from §III-A. Figure 3 shows the
effective price P (left y-axis) as a function of fixed resources
s under NJW, where we again normalize P by the price of
on-demand resources p,. The right y-axis shows the mean
utilization of the s** resource ps, as the waiting time w is
always zero under NJW. As expected, the graph shows the
model closely matches the empirical results. As s increases,
the effective price decreases to the optimal s=108 where
ps equals the 0.4 discount factor, after which, the effective
price increases. Plugging the optimal s value and our baseline
parameters into Equation 3 verifies that ps=0.4.

At the optimal s=108, NJW has an effective price
P=0.467x0.096=$0.044832/hour, while AJW’s price is
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Fig. 5. Mean waiting time w as a function of fixed resources s under AJW-T
for different threshold waiting times b.

~T7.5% less at P=0.432x0.096=$0.041472/hour. However,
under NJW, jobs never incur waiting time, while AJW incurs
a mean waiting time of 20s, with some jobs waiting much
longer. Thus, for 7.5% higher cost, NJW guarantees jobs never
wait. In this case, r=0.035, i.e., 3.5% of jobs run on on-demand
resources, which results in a minimum cost (in dollars) over
a 3-year period of C'=$117,818. By contrast, solely using on-
demand resources costs 100(0.096)(26280)=$252,288, which
is over twice as expensive as the optimal cost under NJW.
Key Point. While NJW’s cost is higher than AJW’s for the
same fixed resources, it guarantees no waiting time. NJW
encourages optimal provisioning, since its cost increases as
fixed resource provisioning deviates from the optimal.

C. All Jobs Wait - Threshold

Model Analysis. AJW and NJW define two extremes: AJW
yields a low price but with a potentially high waiting time,
while NJW yields a higher price but zero waiting time. The
All Jobs Wait-Threshold (AJW-T) waiting policy defines a
continuous tradeoff between these two extremes by requiring
all jobs to wait up to some threshold time b, at which point
the scheduler acquires an on-demand resource to service them.
At b=0, AJW-T is equivalent to NJW, and as b—oc0, AJW-T
approaches AJW. To model AJW-T, we must derive r from
Equation 4, or the fraction of jobs that run on on-demand
resources after waiting b time. Given r, we can compute the
effective price P from Equation 4 as before. In queuing liter-
ature, AJW-T is equivalent to a queuing model with reneging
jobs that exit the queue after waiting a threshold period. The
reneging probability 7 is given by the following lemma, which
follows from an analysis by Liu and Kulkarni [23].

Lemma 3.1: The reneging probability » in a M/M/s/oco
system is computed as follows.
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When expanded, 7 is solely a function of s, b, A, and u. As
before, we need an expression for the mean utilization of the
st? resource, as in Equation 3, to solve for the optimal s that
minimizes cost. However, in this case, we replace Erlang’s B
formula with r above when using s — 1 and s resources, as
shown below, since r represents the reneging probability under
AJW-T, which is akin to the blocking probability under AJW.
We can again solve for the optimal s that minimizes price
numerically using a binary search, as p; is still monotonically
decreasing as s increases, where a=M\/p.

pPs =a X [rs_1 —rs]

Y

After determining the optimal s and r for a given threshold
waiting time b, we compute the mean waiting time of jobs.
Liu and Kulkarni give the mean waiting time under reneging
as follows [23]. The first additive term represents the mean
waiting time for the jobs that execute on fixed resources, while
the second additive term represents the mean waiting time for
jobs that execute on on-demand resources, which is simply
rxb as they all wait the maximum time b.

1 o r) % (axﬁ(lfﬁbe_éx}jfe_é)(b)) +rx b p ?é 1
p=1

w = ( (1—r)xé2
(1—-7)x
(12)

(Exlx—é)xxi) +7rxb
Empirical Validation. We again validate our model using our
baseline parameters. Figure 4 shows the effective price P as
a function of fixed resources s under AJW-T for different
threshold maximum waiting times b, as well as the price under
AJW and NJW. Once again, the model’s predictions closely
match the empirical results. As expected, as b increases, the
price approaches AJW, and as it decrease the price approaches
NJW. The graph also shows that as b increases, the optimal
fixed resources s that minimizes price decreases. Similarly,
Figure 5 shows the mean waiting time w on the y-axis as
a function of the fixed resources s. Here, as b increases, the
mean waiting time increases more sharply as s—100. Thus,
unlike AJW and NJW, AJW-T is configurable, enabling users
to set their own tradeoff between price and waiting time.
Key Point. AJTW-T offers a configurable tradeoff between price
and waiting time by enabling users to set the maximum waiting
time threshold b, unlike NJW, which offers no tradeoff, and
AJW, which offers a risky tradeoff.

IV. SELECTIVE WAITING POLICIES

Unlike non-selective waiting policies, selective waiting poli-
cies do not apply to all jobs, but only to selected jobs based
on system or job characteristics. We define and analyze two
selective policies: Short Waits Wait (SWW) and Long Jobs
Wait (LJW). Since waiting policies are not mutually exclusive,
we also analyze a compound waiting policy that combines
SWW, LIW, and the threshold waiting time from AJW-T.

SWW, b=900 —— AJW-T, b=900 - - -
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Fig. 6. Mean waiting time as a function of fixed resources under SWW and
AJW-T where b=900s=15m.

A. Short Waits Wait

Model Analysis. Unlike AJW-T where jobs wait up to a
threshold value before they are scheduled on on-demand
resources, in the Short Waits Wait (SWW) waiting policy,
incoming jobs estimate their waiting time upon arrival (based
on the jobs running and ahead of it in the queue) and
only wait if the estimated wait time is short, i.e., less than
a threshold value. If the estimated wait time is long, i.e,
exceeds the threshold, then they immediately run on on-
demand resources without waiting. In queuing literature, this
behavior is equivalent to a queuing system with balking jobs,
which immediately exit the system if the waiting time will
exceed a maximum threshold value denoted by b. Importantly,
as prior work shows, the same set of jobs that renege under
AJW-T, and in our case run on on-demand resources, will also
balk under SWW [23]. Thus, the fraction of jobs r that run on
on-demand resources under SWW is the same as under AJW-
T (from Lemma 3.1), and thus the effective price for resources
is the same under AJW-T and SWW for the same b.

The only change with SWW relative to AJW-T is the
mean waiting time w, since under SWW jobs exit the system
immediately and run on on-demand resources if their waiting
time would exceed the threshold waiting time b. In this case,
the mean waiting time w shown below is the same as in
Equation 12 except that we remove the rxb term, since the
r fraction of jobs that run on on-demand resources incur no
waiting time rather than incurring b waiting time, as in AJW-T.

_ e—éxb_e—éxb
(1—7) x (2224 ((slbfr)xﬁ ) p#1
w= axBxb? (13)
(I_T)X(ufr)xz) p=1

Empirical Validation. Figure 6 plots the mean waiting time
w for SWW and AJW-T as a function of the fixed resources s,
and a threshold waiting time b=900s=15m. The mean waiting
time for SWW approaches zero as s decreases (and load
increases) rather than b for AJW-T, as increasingly more
jobs exit the system without waiting and run on on-demand
resources. Note that SWW’s mean waiting time reaches its
maximum at s=93, and is always less than that of AJW-T.

Key Point. SWW is strictly better than AJW-T for the same
threshold b, yielding same price at a lower mean waiting time.
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B. Long Jobs Wait

Model Analysis. Long Jobs Wait’s (LJW) intuition is that
longer running jobs should be willing to wait longer for fixed
resources, since longer waiting times are a smaller percentage
of their overall running time compared to shorter jobs. For
LJW, we introduce a running time threshold ¢ such that jobs
shorter than ¢ run immediately on on-demand resources, while
others wait for fixed resources. For simplicity, our LIW policy
is not work-conserving in that it runs short jobs on on-demand
resources even if fixed resources are available. This non-work-
conserving variant will behave similarly to a work-conserving
one in the optimal case when fixed resources are not over-
provisioned (and thus rarely idle). For LIW, we separate the
analysis for short jobs and long jobs. As shown below, the
effective price P is the weighted average of the price to run
short and long jobs. As before, r represents the fraction of
jobs that run on on-demand resources, while Psj,ort and Popng
represent the price to run short and long jobs, and pisp0r+ and
Miong TEpresent the mean service rate of short and long jobs.

P = (1 — T’) X X Ijl(m,g +7r X X Pshort (14)

Hiong Mshort

Thus, first and second additive terms represent the relative
cost to execute long and short jobs, respectively, based on
their fraction of the total jobs, their proportion of the service
time, and their price. Note that, jong > it > fishort fOr any
t > 0. Similarly, the mean waiting time w is the weighted
average of the waiting time to run short and long jobs. Since,
by definition, short jobs do not wait, w is only dependent on
the fraction of long jobs and their mean waiting time.

w=(1—-7) X Wong (15)

Short Jobs. All short jobs (with running times <t) run on on-
demand resources at price p, without any waiting time. Thus,
Psport=po, while r is the fraction of jobs with running times
less than ¢, which is equivalent to the CDF of the exponential
distribution for service times at x=t, as shown below.
r=1—eH

(16)

Long Jobs. Since long jobs always wait for fixed resources,
the policy is similar to AJW in §III-A but applied to long jobs.

The mean arrival rate for long jobs Ajong is the product of the
overall job arrival rate A and the fraction of long jobs (1 —r).

Nong = A X (L—71) = A x e # (17)

Similarly, we compute the mean service rate (o4 for long
jobs using its service time PDF f(z, i), as below. The PDF
for long jobs is an exponential distribution shifted by ¢ units.

fla,p) = pe 0 g >t (18)

We find the expected value of the long jobs service time
PDF to derive its mean service time Ml by integrating from
ong
T=t—00.

e 1
= / zpe ME 0y =t 4+ =
t H

1

,ulong

19)

Note that we can derive fishor¢ from pizong, 7, and p, since
the mean service time of the original distribution 1/ is the
weighted average of the mean service time of short jobs
1/tshort and long jobs 1/piong. Thus, we compute fisport
by simply solving the expression below.

—=rx ! +(1-7r)x
1% Mshort

The effective price Pjong of running long jobs on fixed
resources is simply the price of fixed resources py at full
utilization divided by the actual utilization p;oy,g, Where
Plong = /\long/(sx,ulong)-
pi_pfxsxulong
Pf )\long

(20)

long

Plong = (2])

Importantly, however, the distribution of jobs with service
times greater than t is not exponentially distributed. As a
result, we cannot apply the same model as for AJW to
compute the waiting time. Instead, we use the well-known
approximation below for the waiting time of an M/G/s queue,
where C'V is the distribution’s coefficient of variation, i.e.,
the standard deviation divided by the mean. In this case, the
standard deviation of the long jobs’ service time distribution
is 1/p, and the mean is 1/fiong, 50 CV=L11ong/ L.

CVZ+1 y C(s,a)

2 s X Hlong — )\long

w ~ (22)
Empirical Validation. Figure 7 shows the normalized price
(left y-axis) and waiting time (right y-axis) under LJW as a
function of ¢ for s=101, as well as AJW and NJW, using
our baseline parameters. As before, the graph shows that
the empirical values closely match the model’s waiting time
approximation above. The graph shows that as ¢ increases the
normalized price increases, as fewer jobs wait for resources.
However, LJW also significantly decreases the mean waiting
time relative to AJW as ¢ increases, since the exponential
service time distribution is weighted towards short jobs, which
experience no waiting time under LJW. In addition, since long
jobs still comprise a high fraction of the overall service time
(and thus cost), the effective price under LIW, especially for
small values of ¢, increases at a much lower rate than the
waiting time decreases. For example, at a threshold ¢=180,
the mean wait time is near 0 under LJW compared to a mean
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Fig. 8. Normalized price P and mean wait time w as a function of fixed
resources s for our compound policy (b=900 and ¢=180) and LIW (¢t=180).

waiting time of 450s under AJW, for a normalized price that
is only ~10% higher, but slightly lower than NJW.

By immediately running short jobs, LJW acts as the dual of
shortest job first scheduling that minimizes waiting time, and
is thus beneficial when fixed resources are under-provisioned.
Key Point. LIW offers a nice tradeoff: as t increases, price
increases modestly, while waiting time decreases significantly.

C. Compound Waiting Policies

Model Analysis. Waiting policies, unlike scheduling policies,
are not mutually exclusive. That is, we can concurrently apply
multiple waiting policies that select jobs to wait based on
different characteristics. Thus, we analyze a compound waiting
policy that combines the advantages of AJW-T, SWW, and
LJW. In analyzing this policy, we first apply LIW’s analysis
from §IV-B, since its waiting decisions are based on job
running time, and are thus load insensitive and not affected
by other waiting policies. Our LJW analysis yields a fraction
r of short jobs that always run on on-demand resources, which
we label 7gp0p¢. The remaining (1—7sp0-¢) long jobs run on
fixed or on-demand resources depending on their waiting time.

We next apply SWW’s analysis from §IV-A solely to the
remaining long jobs. In particular, we compute the fraction
Tsww Of the remaining long jobs that run on on-demand
resources (due to long wait times) by applying Lemma 3.1
using Ajong and fiong from §IV-B for a given value of s
and b. This is an approximation, since Lemma 3.1 assumes
exponentially distributed service times, and the long jobs’ ser-
vice time distribution is an exponential distribution truncated
at ¢. This approximation becomes more accurate as t—0 and
the distribution approaches an exponential. Given 7y, the
effective price for our compound waiting policy is as follows.

H p
P = (1 - Tshort) X (1 - rsww) X X 2r
Hiong Pf
+ (1 - Tshort) X Tsww X X Po + Tshort X X Do
Hlong short
(23)

The last additive term is the product of the fraction of short
jobs that run on on-demand resources, their fraction of the
mean service time, and the on-demand price. The second term
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Fig. 9. Opportunity cost as a function of fixed resources s under AJW, AJW-T,
SWW, LIW, and compound policy.

is the same, but applies only to the fraction of long jobs with
high wait times that run on on-demand resources. The first
additive term is the remaining long jobs with short waiting
times that run on fixed resources. Here, py, shown below, is
the mean utilization of the fixed resources, which is simply
the adjusted arrival rate of jobs to the fixed resources divided
by their mean service rate, and then normalized by s.
(1 - Tshort) X (1 - Tsww) XA

= (24
il s X Hiong

We use the same approach as in LJW to approximate the
compound policy’s mean waiting time, but replace the waiting
time under AJW with the waiting time under SWW from
Equation 13 as below, again using Ajong and figong as the
input. The coefficient of variation C'V is the same as in LIW.

, _Sbe—0Xb_—8xb
% X (1 - Tquw) X (axg(l(l—iiww)X5g )) P < 1
w CV341 oxfxb? =
CVIEL o (1= ) X (22228 p=1
(25)

Empirical Validation. Figure 8 compares our compound wait-
ing policy with LIW using our baseline parameters with 5=900
and t=180. The primary advantage of the compound policy
over LIW is that it strictly lowers the overall waiting time,
since long jobs do not wait indefinitely, which is especially
important when resources are under-provisioned, for nearly
the same effective price. As shown, the compound policy’s
mean waiting is less than or equal to that of the LJW policy.
Key Point. Our compound policy combines the advantages of
AIJW-T, SWW, and LIJW, and thus offers the best tradeoff.

D. Model Results Summary

Our analyses show that waiting policies offer a complex
tradeoff between fixed resource provisioning, cost, and waiting
time. To summarize these tradeoffs, we define a new metric,
called the opportunity cost of waiting, which values a job’s
waiting time equal to its running time. The mean opportunity
cost Pxw and is in dollars, where lower values of P and
w are better. Figure 9 shows the mean opportunity cost of
waiting for AJW, AJW-T (for b6=900), SWW (for b=900), LIW
(for t=180), and our compound policy (for b=900 and t=180)
using our baseline parameters. Since the effective price P is



bounded (by ps) and waiting time is not, the opportunity cost
for all policies approaches zero as s increases. Just as with
a scheduling policy, a waiting policy’s importance increases
with resource constraint. We exclude NJW, as its opportunity
cost is always zero, since its waiting time is zero. As shown,
for the remaining policies where a price-waiting time tradeoff
exists, our compound policy yields the lowest opportunity cost.

We can trivially extend our average-case analysis to spot (or
preemptible) VMs. Spot VM prices p; are typically 10-20% of
the on-demand price p,, and 25%-50% of the fixed reserved
price py at full utilization, even after considering the increase
in running time and cost due to revocations [22], [25]. Thus,
on average, spot VMs are always cheaper than on-demand
and fixed VMs, and preferable for jobs without deadlines. As
a result, any job that can run on spot VMs should run on
them. However, not all jobs can handle revocations, which are
akin to failures. For example, many jobs are not idempotent
and cannot restart after a revocation. Given this, we can extend
our average-case analysis to spot VMs by simply adjusting the
workload to remove spot-compatible jobs that can run on spot
VMs. We then apply the same analysis above on the remaining
workload, and adjust the effective price and waiting time to
account for the fraction of workload that runs on spot VMs.

Finally, while the inter-arrival and service time distributions
affect the absolute differences in price and waiting time
between waiting policies, many aspects of our analysis are
generalizable, and hold regardless of the job inter-arrival and
service time distributions. Specifically, SWW always results in
a shorter mean waiting time than AJW-T; higher values of the
waiting time threshold b always increase fixed resource uti-
lization, decrease price, and increase waiting time; increasing
the short job threshold ¢ always increases price and decreases
waiting time; and the compound policy always combines the
advantages of AJW-T, SWW, and LJW. Our evaluation in §VI
echoes this point by showing that the relative price, waiting
time, and opportunity cost between the waiting policies of a
real production workload precisely follows our analysis.

V. IMPLEMENTATION

We implemented a waiting policy model analyzer based on
our analysis, as well as a trace-driven job simulator, in python.
Model Analyzer. Our model analyzer implements the analyti-
cal queuing model for all the waiting policies we analyze. The
analyzer enables what-if analyses to compare and understand a
workload’s expected cost and job waiting times under different
policies and parameter values. The analyzer takes as input a
policy’s name and A, p, s, py, and p,, as well as b for ATW-
T, SWW, and the compound policy, and ¢ for LJIW and the
compound policy. Users may also enter a workload duration 7'.
The analyzer’s output is the policy’s mean waiting time w, the
effective price P, the fraction of jobs that run on on-demand
resources r, and, if 7' is specified, the total cost C. If s is
unspecified, the analyzer finds the optimal s that minimizes
price P and outputs the values above at the optimal. We plan
to publicly release our model analyzer, which can be used to
re-produce our model graphs in §III and §IV.

Job Simulator. We implemented a trace-driven job simulator
in python that mimics a cloud-enabled job scheduler, which
can acquire VMs on-demand to service jobs. The simulator
uses a FCFS scheduling policy, and also implements each
of our waiting policies. The simulator takes as input a trace
of jobs, s, py, the name of a waiting policy, and the same
waiting policy-specific parameters as above. Users must also
specify the number of cores and memory allotment for each
fixed resource s. Since cloud platforms offer VMs in different
sizes, the simulator includes a table of available on-demand
VM options that specify their cores, memory, and price. In
our evaluation, we consider only the 8 VM types in the m5
family of general-purpose VMs on AWS. While VMs in the
m5 family have different resources, they all offer the same
price per unit of resource. The simulator’s output is the mean
waiting time w, the effective price P, the fraction of jobs that
run on on-demand resources r, and the total cost C.

Each job in the input trace has a service time based on

its resource, e.g., core and memory, requirements. Our job
simulator packs jobs onto fixed resources using a simple best-
fit heuristic, and, when scheduling a job on an on-demand VM,
always selects the smallest one that satisfies the job’s resource
requirements. We have publicly released our job simulator at
the UMass Trace Repository [9], [11].
Real-world Data. In § VI, we use our job simulator to quantify
the impact of different waiting policies on a real year-long
job trace that includes 14M jobs from a production high-
performance computing cluster consisting of 14.3k cores. The
cluster is the University of Massachusetts (UMass) System
Shared Cluster, and is available for general use to researchers
from all five campuses in the UMass system, including its
medical school [10]. Thus, the workload is a representative
sample of job types across the entire scientific, engineering,
and medical research communities. The cluster is located at
the Massachusetts Green High Performance Computing Center
(MGHPCC), a 15MW data center in Holyoke, Massachusetts
that also hosts computing infrastructure Boston University,
Harvard, MIT, and Northeastern. The cluster runs the LSF job
scheduler, and we use its log from the year 2016 to drive our
simulations. Each job entry in the log includes its submission
time, user ID, maximum running time limit, requested number
of cores and memory, and running time. We modify the raw
trace to conform to our job simulator’s input format. We have
publicly released this job trace at the UMass Trace Repository
as a basis for further research [9], [12].

VI. EVALUATION

We do not intend our models to be predictive, but instead
evaluate their usefulness in analyzing a real year-long batch
workload. Specifically, we show that our models both 1)
accurately predict the relative price and waiting time between
different waiting policies in our real workload, and 2) enable
reasoning about price and waiting time by understanding the
differences between our model’s and the real workload.
Workload. Figure 10 characterizes our real workload and our
model’s ideal. Figure 10(a) is a histogram of job inter-arrival
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Fig. 10. Histograms of job inter-arrival times (a) and service times (b) for our real production batch workload along with an exponential distribution using
the same mean, as well as the mix of long and short jobs (c) and a scatterplot of job resource requirements (d).

times for our trace and an exponential distribution with the
same mean, which is 0.4527 jobs/sec. Note that the bin size
is non-uniform, since our trace much more bursty than our
model assumes. In particular, nearly 90% of job inter-arrival
times are between 0 and 1 second compared with less than
40% for an exponential distribution with the same mean. An
exponential distribution instead has more inter-arrival times
between 1 and 15 seconds. Both distributions have a heavy
tail with our job trace experiencing a few more extremely
long inter-arrival times, between 3 minutes and 50 hours.

Figure 10(b) is a similar histogram of job service times
with a mean service time 1/ of 6225 seconds (or 1.73 hours)
per job. Again, the bin size is non-uniform due to our trace’s
large skew. In this case, over 60% of jobs are between 0 and 3
minutes, while an exponential distribution with the same mean
has only 3% of its jobs in this range. Instead, the exponential
distribution has more jobs of mid-range length between 3
minutes and 6 hours. However, our trace has a slightly higher
fraction of extremely long jobs, which account for a large
fraction of the overall job execution time and cost. Thus,
overall, the job service times in our trace have both a heavier
head and tail compared to the exponential distribution. To
further illustrate, Figure 10(c) shows the fraction of long and
short jobs, and their resource usage (in memory X core hours),
as a function of the short job threshold ¢. The graph shows
that short jobs are a high fraction of jobs, even for large short
job thresholds, but account for only a small fraction of the
resource usage. As we show, since this skew is more extreme
in our trace than in our model, LJW’s ability to decrease mean
waiting time is much greater than our model, since there is a
larger fraction of short jobs that never wait.

Finally, Figure 10(d) shows a scatterplot of the core and
memory requirements for each job. Our model assumes job
resource requirements are uniform and map directly to each
VM’s resources. However, our simulator only schedules a job
on a VM if it has enough available cores and memory to
satisfy a job’s requirements. Our simulations assume a large
m5.1l6xlarge VM with 64 cores and 256GB memory to
mitigate imperfect job packing on VMs. We contextualize our
results by comparing against the current fixed-size cluster,
which consists of 14,376 cores and is equivalent to 225
m5.16xlarge VMs. Simulating this cluster on our trace
yields a mean waiting time of 13.3 hours and a cost of
$2,421,965, or $276.48/hour. As before, we use a discount

factor d~0.4 based on the m5.16x1large’s on-demand price
of $3.072/hour and its 3-year reserved price of $16,046.

A. Real-world Workload Results

Figure 11 shows the normalized price (a), mean waiting time
(b), and opportunity cost (c) for each of our waiting policies.
We select the maximum waiting time threshold =24 hours
for SWW and AJW-T, or slightly less than double the current
cluster’s mean waiting time using AJW. We select the long job
cutoff £=3m where 60% of jobs are short and 40% are long.
Price. As expected, Figure 11(a) shows that AJW yields
the lowest price, since it requires all jobs to wait for fixed
resources. Interestingly, LTW yields nearly the same price even
though it executes 60% of the total jobs on on-demand VMs.
Since these 60% of short jobs comprise only a small fraction
of the overall job execution time, executing them on on-
demand VMs does not substantially increase the normalized
price. SWW, AJW-T, and our compound policy yield nearly
the same price for the same reason. This price is greater
than LJW because SWW and the compound policy cut the
tail off the job waiting time distribution by preventing jobs
that would have to wait longer than 24 hours from ever
waiting. Running these jobs, which may include long jobs,
on on-demand VMs increases the price. As fixed resources
decrease, the price reaches a minimum before increasing, as
an increasingly larger share of the jobs experience (or would
experience) long waiting times and thus instead run on on-
demand resources. NJW has a ~26% higher price than SWW,
since it directs any job that must wait to on-demand resources.

When using AJW, our current cluster yields a normalized
price of 0.6 at =225 fixed resources, while the minimum cost
under the compound policy is 0.571 at =150, or 5% less. For
our trace, P=0.6 translates to an annual cost of $2,421,965,
while 0.571 translates to $2,304,903, or over $100k lower.
This cost advantage for our compound policy is less than our
model predicts, since our burstier workload causes more jobs
to run on on-demand resources, which increases the price.
Waiting Time. As our model predicts, Figure 11(b) shows that
the mean job waiting time under AJW and LJW increases
super-linearly as fixed resources decrease. However, even
though LJW’s cost is nearly the same as AJW’s, its mean
waiting time is substantially less because the large fraction of
short jobs never wait. In contrast, the mean waiting time under
AJW-T, SWW, and the compound policy increases modestly
as fixed resources decrease. Even at x=100, the mean waiting



Compund, b=24hrs, t=3min —&c AJW
NJW

AW
SWW, AJW-T, b=24hrs

Compund, RjZAhrs. t=3min —A- Compund, R:ZANS, t=3min —A-

AW
SWW, b=24hrs

—— SWW, b=24hrs W-T, b=24hrs - i JW-T, b=24hrs - -
LJW, t=3min —O - LIW, t=3min —© - LJW, t=3min —© -
09 7 \ 12 \
S - 3 : & .
< o8 e 2, e
g ——e——e——e——" LA ° 8 & é sm. . \@
& 07 P - N > -~ .
E 06 A _a- /0'/, : 12 - ~\ § - - N
£ : ~A . — A - < o< £t 4 - o~
£ Z 6 s ~o g . | e —
5 05 "’ § A e, T & s - A e me. o . T®
> — A, — - S .
2 o4 il < ‘ il S ey g o b —a- . _p R

150 175 200 225 250
Number of m5.16xlarge VMs

100 125 150

(a) Normalized Price

Number of m5.16xlarge VMs

(b) Mean Job Waiting Time

175 200 225 250 100 125 150 175 200

Number of mb5.16xlarge VMs

225 250

(c) Opportunity Cost
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batch workload under AJW, AJW-T, SWW, LJW, and our compound policy.

time of these policies is less than the 13.3 hour mean waiting
time in our current fixed size cluster (AJW at z=225). At
=150, the compound policy has a mean waiting time of 1.74
hours, or 7x less than our current cluster (for 5% less cost).
Our compound policy’s waiting time is much less than our
model predicts due to the burstier workload, where large bursts
of jobs cause long waiting times for a large fraction of short
jobs under AJW. Running these short jobs on on-demand VMs
significantly reduces waiting time at little cost. In addition,
running jobs with long waiting times on on-demand VMs only
modestly increases cost for large decreases in waiting time.
Opportunity Cost. Figure 11(c) graphs the mean opportunity
cost of waiting Pxw for each policy, and shows that, as our
model predicts, the compound policy offers the best tradeoff by
a significant margin compared to the other policies. Note that,
even though our workload’s characteristics differ significantly
from those assumed by our model, the overall trends in
opportunity cost match those from our model in Figure 9.
Key Result. At the optimal, the compound policy decreases the
cost (by 5%) and mean job waiting time (by 7x) compared to
the current cluster using AJW, and decreases the cost (by 43%)
compared to renting on-demand resources for a comparatively
modest increase in mean job waiting time (at 1.74 hours).

B. Sensitivity Analysis

We perform a sensitivity analysis that varies b, ¢, and errors
in estimating job waiting time and running time to understand
their effect on the results. We chose the values above for b=24h
and ¢=3m arbitrarily to be reasonable, as 24h is roughly twice
the mean waiting time under AJW and ¢{=3m categorizes a
large fraction (60%) of jobs as short. We also assume accurate
estimates of job waiting and running time, e.g., using historical
data. Our sensitivity analysis assumes 150 m5.16xlarge’s
when using the compound policy, as noted above.
Parameter Sensitivity. Figure 12 plots price, waiting time,
and opportunity cost as a function of the short job threshold
t with lines for different values of the waiting time threshold
b. We vary t from 3-30m and the waiting time threshold from
6h-48h. The price (a) increases linearly with the short job
threshold ¢, albeit with a small slope, since this increases the
fraction of short jobs that run on on-demand VMs at a higher
price. The price also decreases roughly linearly for every
doubling of the waiting time threshold b, as longer waiting
time thresholds force more jobs to wait for lower cost fixed

VMs. In contrast, the mean waiting time (b) decreases as the
short job threshold increases, at an increasingly slower rate,
as fewer jobs wait for fixed VMs. This non-linearity derives
from Figure 10(c). Similarly, the mean waiting time decreases
as the waiting time threshold decreases, also at an increasingly
slower rate. Finally, the opportunity cost (c) is dominated by
the mean waiting time, and thus exhibits a similar trend. As ¢
increases, the decrease in waiting time outweighs the increase
in cost due to Figure 10(c). As b—0, the compound policy
approaches NJW (for long jobs) where there is no tradeoff,
and the waiting time and opportunity cost are zero.

Error Sensitivity. Figure 13 plots price, waiting time, and
opportunity cost as a function of the short/long job prediction
error, which is both the percentage of long jobs we mispredict
as short, and short jobs we mispredict as long. Similarly, each
line captures the waiting time threshold error, which is both the
percentage of jobs that should wait but do not, and that do not
but should. The graph shows price (a) is directly proportional
to the short/long job prediction error, such that a 1% increase
in error causes a 1% increase in price. In contrast, waiting time
threshold errors are non-linear, with progressively lower price
increases for each 10% increase in error. The graph still shows
large savings compared to using on-demand even under high
error rates. The mean waiting time (b) is much less affected
by the short/long job prediction error, since a similar number
of jobs must still wait (it is just the long jobs not waiting that
increases the price). Higher values of error; actually decrease
mean waiting time: while a larger percentage of (long) jobs
that do not wait but should increases price, it decreases waiting
time. Finally, as above, the waiting time trend dominates the
opportunity cost (c), and thus shows a similar trend.

VII. RELATED WORK

Our work is related to prior work in many different areas.
Cloud Computing. While some prior work focuses on op-
timizing the provisioning of reserved cloud VMs, it makes
simple workload assumptions. In particular, prior work often
assumes the workload is continuous and uniform, rather than
composed of discrete jobs, which leads to solutions based on
dynamic and integer programming [15], [19], [20], [26], [28],
[29]. The canonical application is a distributed web server
with a front-end load balancer that distributes requests. Thus,
this work does not apply to cloud-enabled job schedulers. Our
work is also related to prior work on job scheduling for hybrid
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Fig. 12. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the long job threshold (t) when executing our real

production batch workload under a compound policy assuming 150 m5.16xlarge VMs.
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Fig. 13. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the long job prediction error when executing our real
production batch workload under a compound policy assuming 150 m5.16xlarge VMs.

clouds that run jobs on fixed resources but can also burst
into the cloud [17], [24]. While hybrid cloud provisioning and
scheduling is well-studied, we know of no work that focuses
on explicit waiting policies. As mentioned earlier, existing
auto-scaling policies for cloud-enabled job schedulers [6]
define an implicit waiting policy that is equivalent to NJW.
Queuing Theory and Marginal Analysis. Our work applies
a number of previously developed queuing theory results to
gain insights into key tradeoffs exposed by different waiting
policies. In particular, our work builds on classic marginal
analysis and queuing results by Erlang and others [16], [21],
[27], [30], as well prior results on reneging and balking [23].
For example, AJW’s analysis is simply that of an M /M /s/oco
queue, and NJW’s analysis applies classic marginal analysis
where jobs never wait for resources [21]. Our analysis for
AJW-T and SWW then combines recent results on reneging
and balking by Liu and Kulkarni [23] with classic marginal
analysis, and shows how a waiting time threshold defines
a spectrum between AJW and NJW. In general, reneging
and balking are examples of “customer abandonment” poli-
cies from queuing theory, which model customers, i.e., jobs,
becoming impatient and leaving the queue. Many of these
models are probabilistic and assume an increasing fraction
of customers (or jobs) abandon the queue as their waiting
time increases based on diverse customer preferences. These
customer-centric models do not apply to our context, where
the waiting policy determines whether jobs abandon the queue
(and run on on-demand resources).

Ski Rental Problems. Our problem is similar to the classic
ski rental problem in online algorithms [13]. However, these
assume there is no knowledge of the future, whereas our
queueing analysis leverages a workload characterization. Ski

rental problems also typically focus on whether to buy or rent a
single resource whereas our problem focuses on provisioning,
i.e., how many resources to buy versus rent, and generally do
not consider the cost and waiting time tradeoff.

VIII. CONCLUSION

This paper introduces the concept of a waiting policy for
cloud-enabled schedulers, and defines, models, analyzes, and
empirically validates multiple fundamental waiting policies. A
key goal of this paper is to provide a formal foundation for fu-
ture work on waiting policies both analytically and empirically,
including on more general distributions of job inter-arrival
and service times, different scheduling policies, and machine
learning (ML) classifiers to accurately estimate job waiting
and running times. Specifically, our evaluation shows that real
workload characteristics differ from our model’s assumptions,
which motivates analytical models based on more general
distributions of inter-arrival and service times. We also only
analyze waiting policies in conjunction with FCFS scheduling,
which motivates future work on analyzing other scheduling
policies, such as shortest job first. Our real-world validation is
also a best case scenario, since it assumes accurate predictions
of job waiting and running times. Thus, we plan to evaluate
the accuracy of ML classifiers in making these predictions to
determine the benefits of waiting policies in practice. We plan
to implement and evaluate these ML-based waiting policies in
a cloud-enabled job scheduler, such as Slurm [4].
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