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a b s t r a c t

The recently developed Wiener path integral (WPI) technique for determining the stochas-

tic response of diverse nonlinear systems relies on solving a functional minimization prob-

lem for the most probable path, which is then utilized for evaluating a specific point of the

system joint response probability density function (PDF). However, although various

numerical optimization algorithms can be employed for determining the WPI most prob-

able path, there is generally no guarantee that the selected algorithm converges to a global

extremum.

In this paper, first, a Newton’s optimization scheme is proposed for determining the most

probable path, and various convergence behavior aspects are elucidated. Second, the exis-

tence of a unique global minimum and the convexity of the objective function of the con-

sidered nonlinear system are demonstrated by resorting to computational algebraic

geometry concepts and tools, such as Gröbner bases. Several numerical examples pertain-

ing to diverse nonlinear oscillators are considered, where it is proved that the associated

objective functions are convex, and that the proposed Newton’s scheme converges to the

globally optimum most probable path. Comparisons with pertinent Monte Carlo simula-

tion data are included as well for demonstrating the reliability of the WPI technique.

� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Monte Carlo simulation (MCS) has been, undoubtedly, one of the most versatile techniques for addressing stochastic

dynamics problems and for determining response statistics of complex dynamical systems (e.g., [1–3]). Nevertheless, the

associated computational cost can become prohibitive eventually, and thus, there is merit in developing alternative efficient

semi-analytical solution techniques. In this regard, indicative techniques developed over the past few decades include sta-

tistical linearization, stochastic averaging, perturbation approaches, discrete Chapman-Kolmogorov equation schemes, Fok-

ker–Planck equation solution techniques, probability density evolution methods, and polynomial chaos expansions. The

interested reader is directed to various standard books in the field for a detailed presentation (e.g., [4–9]).

Recently, relying on pioneering work by Wiener [10] and on fundamental contributions in the field of theoretical physics

(e.g., [11–23]; see also the books in [24,25] for a broader perspective), a semi-analytical technique based on the concept of

Wiener path integral (WPI) has been developed in the field of stochastic engineering dynamics for determining the stochastic

response of diverse nonlinear structural and mechanical systems (e.g., [26,27]). In fact, the technique, which relies on func-
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tional integration concepts and on calculus of variations tools, exhibits both computational efficiency and satisfactory accu-

racy in evaluating the system joint response probability density function (PDF) (e.g., [28–31]). Further, the WPI technique

exhibits versatility in addressing diverse system behaviors, including hysteresis and fractional derivative modeling (e.g.,

[33,32]), and in accounting for various rather sophisticated descriptions of stochastic excitations [34].

An integral part of the standard implementation of the WPI technique relates to a variational treatment for deriving a

functional minimization problem. Solving this optimization problem yields the most probable path, which is used for eval-

uating a specific point of the joint response PDF (e.g., [31,35]). Clearly, a wide range of numerical optimization schemes can

be employed for determining the WPI most probable path (e.g., [33,36]). However, there is generally no guarantee that the

selected optimization algorithm converges to the global minimum (instead of a local minimum). Of course, it can be argued

that the relatively high accuracy degree exhibited by the WPI technique, based on comparisons with pertinent MCS data in a

plethora of numerical examples (e.g., [28,34]), can be construed as an indication of determining successfully the optimal

most probable path. Nevertheless, it becomes clear that there is a need for pursuing the challenging task of proving the exis-

tence of a unique global minimum and/or the convexity of the objective function corresponding to an arbitrary nonlinear

system under consideration.

In this paper, first, a Newton’s numerical optimization scheme is developed for determining the most probable path. The

rationale relates to the fact that, for the special case of linear systems, the objective function is not only convex, but also

quadratic; and thus, a Newton’s scheme appears to be an ideal choice as it converges in only one iteration to the unique glo-

bal extremum (e.g., [36]). This convergence behavior indicates that a Newton’s scheme can be a suitable choice also for non-

linear systems, since their response behavior can be construed as a perturbation (not necessarily small) from the linear

regime. Further, certain convergence properties of the scheme are derived and discussed. Second, demonstrating the poten-

tial convexity (and thus, the existence of a global extremum) of the functional to be minimized is addressed by resorting to

computational algebraic geometry concepts and tools such as Gröbner bases (e.g., [37–41]). Various numerical examples per-

taining to diverse nonlinear oscillators are considered, where it is proved that the associated objective functions are convex,

and that the proposed Newton’s scheme converges to the globally optimum most probable path. Comparisons with MCS-

based estimates are included as well for demonstrating the reliability of the WPI technique.

2. Wiener path integral technique overview

2.1. Wiener path integral representation and most probable path approximation

In this section, the basic elements of a recently developed stochastic response determination technique based on the con-

cept of Wiener path integral are presented for completeness; see also [33,34] for a more detailed discussion. In this regard,

consider a stochastically excited nonlinear multi-degree-of-freedom (MDOF) system, whose governing equation is given by

M€xþ g x; _x; tð Þ ¼ w tð Þ ð1Þ

In Eq. (1), x ¼ xj tð Þ
� �

n�1
represents the n-dimensional response displacement vector, M denotes the n� n mass matrix con-

sidered to be diagonal according to standard modeling in structural dynamics (e.g., [6]), and g ¼ gj x; _x; tð Þ
� �

n�1
is an arbitrary

nonlinear n-dimensional vector-valued function, which can account also for hysteretic response behaviors (e.g., [33]). Fur-

ther, w is a white noise stochastic excitation vector process with E w tð Þ½ � ¼ 0 and E w tð ÞwT t � sð Þ
� �

¼ Dd sð Þ, where

D 2 R
n�n is a deterministic coefficient matrix.

As shown in [33,34], the joint response transition PDF corresponding to the system of Eq. (1) can be expressed as a func-

tional integral (or WPI) over the space of possible paths with fixed boundary conditions that the response process can follow;

that is,

p xf ; _xf ; tf jx0; _x0; t0
� �

¼
Z

C x0 ;v0 ;t0 ;xf ;v f ;tff g
exp �

Z tf

t0

L x; _x; €xð Þdt
� �

D x tð Þ½ � ð2Þ

where

L x; _x; €xð Þ ¼ 1

2
M€xþ g x; _xð Þ½ �TD�1 M€xþ g x; _xð Þ½ � ð3Þ

denotes the Lagrangian of the system and D x tð Þ½ � represents a functional measure.

However, evaluating analytically the WPI of Eq. (2) is a significantly challenging task. Therefore, various approximations

have been developed in the literature with the most probable path approach being among the most popular ones (e.g., [24]).

Specifically, it is seen that the path maximizing the exponential term in Eq. (2) contributes the most to the determination of

the WPI. According to calculus of variations (e.g., [42]), this trajectory xc tð Þ with fixed endpoints, also known as most prob-

able path, satisfies the extremality condition

d

Z tf

t0

L x; _x; €xð Þdt ¼ 0 ð4Þ
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which leads to the Euler–Lagrange (E-L) equations

@L

@xj
� @

@t

@L

@ _xj
þ @2

@t2
@L

@€xj
¼ 0; j ¼ 1; . . . ;n ð5Þ

in conjunction with the set of boundary conditions

xj t0ð Þ ¼ xj;0 _xj t0ð Þ ¼ _xj;0

xj tf
� �

¼ xj;f _xj tf
� �

¼ _xj;f
ð6Þ

Next, solving Eqs. (5) and (6) yields the n-dimensional most probable path xc tð Þ, and thus, a specific point of the system

response transition PDF is determined as [27]

p xf ; _xf ; tf jx0; _x0; t0
� �

� C exp �
Z tf

t0

L xc; _xc; €xcð Þdt
� �

ð7Þ

where C is a normalization constant. Although it is clear by comparing Eqs. (2) and 7 that only one trajectory (i.e., the most

probable path xc tð Þ) is accounted for in the evaluation of the WPI, it has been shown in various diverse applications (e.g.,

[28,29,32–35]) that the accuracy degree exhibited by this kind of approximation is relatively high. In passing, note that

the accuracy degree of the WPI technique has been further enhanced recently by considering a quadratic approximation

to account also for fluctuations around the most probable path; see [31] for details.

2.2. Rayleigh–Ritz solution technique for the most probable path

In general, the boundary value problem (BVP) of Eqs. (5) and (6) is not amenable to an analytical solution treatment. In

this regard, the following Rayleigh–Ritz numerical solution scheme can be employed in conjunction with the variational

problem

minimize J x; _x; €xð Þ ¼
Z tf

t0

L x; _x; €xð Þdt ð8Þ

for determining the most probable path xc tð Þ (see also [33,43]). In other words, the extremality condition of Eq. (4) can be

alternatively expressed as a direct functional minimization problem in the form of Eq. (8). Next, x tð Þ is approximated by

x tð Þ � x̂ tð Þ ¼ w tð Þ þ Zh tð Þ ð9Þ

where w tð Þ is appropriately selected to satisfy the boundary conditions, and the trial functions h tð Þ ¼ hl tð Þ½ �L�1 vanish at the

boundaries, i.e, h t0ð Þ ¼ h tf
� �

¼ 0;Z 2 R
n�L is a coefficient matrix and L is the number of trial functions considered. Utilizing a

vectorized form of Z, Eq. (9) becomes

x̂ tð Þ ¼ w tð Þ þH tð Þz ð10Þ

with

z ¼

ZT
1

ZT
2

..

.

ZT
L

2

6

6

6

6

6

4

3

7

7

7

7

7

5

2 R
nL and H tð Þ ¼

h
T
tð Þ 0 . . . 0

0 h
T
tð Þ . . . 0

..

. ..
. . .

. ..
.

0 0 . . . h
T
tð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð11Þ

where Zl denotes the l
th
row of matrix Z and H tð Þ represents an n� nL time-dependent matrix. Clearly, there is a wide range

of choices for functions w and h. In the ensuing analysis, the Hermite interpolation polynomials

wj tð Þ ¼
X

3

k¼0

aj;kt
k ð12Þ

are adopted, i.e., w tð Þ ¼ wj tð Þ
� �

n�1
, where the n� 4 coefficients aj;k are determined by the n� 4 boundary conditions in Eq. (6).

For the trial functions, the shifted Legendre polynomials given by the recursive formula

‘qþ1 tð Þ ¼ 2qþ 1

qþ 1

2t � t0 � tf
tf � t0

� �

‘q tð Þ � q

qþ 1
‘q�1 tð Þ; q ¼ 1; . . . ; L� 1 ð13Þ

are employed, which are orthogonal in the interval t0; tf
� �

, with ‘0 tð Þ ¼ 1 and ‘1 tð Þ ¼ 2t � t0 � tf
� �

= tf � t0
� �

. In this regard, the

trial functions take the form

hl tð Þ ¼ t � t0ð Þ2 t � tf
� �2

‘l tð Þ ð14Þ
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where the factor t � t0ð Þ2 t � tf
� �2

multiplies the l
th
-order Legendre polynomial ‘l tð Þ to yield the l

th
trial function hl tð Þ. Note

that hl tð Þ is a polynomial of order lþ 4 and vanishes at the boundaries. Clearly, each component x̂j tð Þ of x̂ tð Þ in Eq. (9) is a

polynomial of order up to Lþ 4 in t.

It can be readily seen that a significant advantage of the Rayleigh–Ritz solution technique relates to the fact that the vari-

ational problem of Eq. (8) degenerates to an ordinary minimization problem of a function that depends on a finite number of

variables (e.g. [28,33,35,43]). Specifically, the functional J , dependent on the n functions x tð Þ (and their time derivatives), is

cast in the form

J zð Þ :¼ J x̂; _̂x; €̂x
� 	

ð15Þ

which depends on a finite number of nL coefficients z. The corresponding optimization problem takes the form

min
z

J zð Þ ð16Þ

whereas the extremality condition in Eq. (4) is replaced by the first-order optimality condition

rJ zð Þ ¼ 0 ð17Þ

Eq. (17) represents a set of nL nonlinear algebraic equations to be solved numerically. Once the solution z� of the opti-

mization problem in Eq. (16) is obtained, the most probable path is determined via Eq. (10).

2.3. Linear oscillator: A closed-form exact solution case

It has been shown recently in [30] that, for the special case of linear systems under Gaussian white noise, the WPI most

probable path approach summarized in Section 2.1 is amenable to analytical treatment. In fact, the E-L Eqs. (5) and (6)

become linear and can be solved analytically for the most probable path, which is substituted into Eq. (7) yielding a

closed-form expression for the joint response transition PDF. Most importantly, it has been shown in [30] that the expression

of Eq. (7) corresponding to linear systems is exact, and involves no approximations.

Nevertheless, despite the available exact analytical solution for the joint response PDF derived in [30], the Rayleigh–Ritz

numerical solution approach discussed in Section 2.2 is also considered in detail in the following for the case of linear sys-

tems. This is done intentionally as it provides the motivation and elucidates the rationale for developing a Newton’s numer-

ical optimization scheme in Section 3. Specifically, consider a linear system whose dynamics is described by Eq. (1) with

g x; _x; tð Þ ¼ glin x; _xð Þ :¼ C _xþ Kx ð18Þ

where C and K denote the system damping and stiffness matrices, respectively. In this regard, the left hand-side of Eq. (1) can

be represented by the linear differential operator G �½ � defined as

G ¼ M
@2

@t2
þ C

@

@t
þ K ð19Þ

Next, for simplicity and without loss of generality, consider D ¼ 2pS0I, where I denotes the identity matrix. Substituting

the expansion of Eq. (10) into the Lagrangian of Eq. (3), and taking into account Eq. (19), yields

L x; _x; €xð Þ � L z; tð Þ ¼ 1

2

1

2pS0
G w½ � þ G H½ �z½ �T G w½ � þ G H½ �z½ � ð20Þ

Further, expanding Eq. (20) and substituting into Eq. (15), the objective function takes the form

J zð Þ ¼ Jlin zð Þ :¼ 1

2pS0

1

2
zTQz þ b

T
z


 �

þ c ð21Þ

where the symmetric matrix Q 2 R
nL�nL is given by

Q½ �kl ¼
Z tf

t0

X

n

j¼1

G H½ �½ �kj G H½ �½ �jldt; k; l ¼ 1; ::;nL ð22Þ

the vector b 2 R
nL is determined as

b½ �l ¼
Z tf

t0

X

n

j¼1

G w½ �½ �j G H½ �½ �jldt; l ¼ 1; ::;nL ð23Þ

and the constant term c (i.e., independent of z) is equal to

c ¼ 1

2

1

2pS0

Z tf

t0

G w½ �TG w½ �dt ð24Þ
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Clearly, for the optimization problem of Eq. (16), the multiplicative factor 1
2pS0

and the constant term c in the definition of

the objective function of Eq. (21) do not affect the solution z�. Thus, Eq. (16) becomes, equivalently,

min
z

1

2
zTQz þ b

T
z ð25Þ

Note that the objective function of Eq. (21) (or, alternatively, Eq. (25)) is not only quadratic, but also convex for positive

definite symmetric matrices Q and its unique global minimizer is given by

z� ¼ �Q�1b: ð26Þ

Substituting this result into Eq. (10) yields a closed-form expression for the most probable path, i.e.,

x̂c tð Þ ¼ w tð Þ �H tð ÞQ�1b ð27Þ

Further, it is worth pointing out that the time-dependent matrix Q is a function only of the initial and final time points

t0 and tf
� �

, and is independent of the boundary values x t0ð Þ; _x t0ð Þ; x tf
� �

and _x tf
� �

; the latter are involved only in the evaluation

of vector b through the Hermite polynomials w (see Eq. (23)). The interested reader is also directed to Appendix A, where, for

tutorial effectiveness, the positive definiteness of matrix Q is demonstrated for the case of a single-degree-of-freedom

(SDOF) linear oscillator.

Finally, it has been shown in this section that a Rayleigh–Ritz numerical solution treatment for determining the most

probable path yields an objective function to be minimized, which is both quadratic and convex for linear systems. Obvi-

ously, for such cases a Newton’s optimization scheme for determining the most probable path converges to the global extre-

mum in only one iteration [36]. Thus, taking into account that nonlinear response behaviors can be construed generally as

perturbations (not necessarily small) from the linear regime, it can be argued that a Newton’s optimization scheme (such as

the one developed in the following section) serves as a natural choice for addressing general cases involving arbitrary

nonlinearities.

3. A Newton’s numerical optimization scheme for Wiener path integral most probable path determination

3.1. Numerical scheme formulation

In this section, a Newton’s iterative algorithm is developed for solving the optimization problem in Eq. (16) corresponding

to an arbitrary nonlinear oscillator. In this regard, as highlighted in Section 2.3, the rationale for developing a Newton’s

scheme relates to the form of the objective function of Eq. (21) referring to linear systems, which is both convex and quad-

ratic; and thus, a Newton’s scheme appears to be an ideal choice as it converges in only one iteration to the unique global

extremum [36]. This convergence behavior suggests that a Newton’s scheme can be a suitable choice also for nonlinear sys-

tems governed by Eq. (1) with

g x; _x; tð Þ ¼ glin x; _xð Þ þ egnl x; _xð Þ ð28Þ

where e > 0 is a parameter indicating the intensity of the nonlinearity degree and gnl x; _xð Þ is an arbitrary nonlinear function.

Obviously, in the limiting case, as e ! 0 the nonlinear function g x; _x; tð Þ becomes linear, i.e., g ! glin (see also Eq. (18)), and

the objective function in Eq. (16) approaches the quadratic form of Eq. (21), i.e., J zð Þ ! Jlin zð Þ. This asymptotic behavior of J zð Þ
suggests that a suitable optimization scheme relates to starting from an initial point z 0ð Þ and to successively minimizing a

quadratic function Jkq, which approximates J locally at z kð Þ, i.e.,

Jkq zð Þ ¼ J z kð Þ� �

þrJ z kð Þ� �

z � z kð Þ� �

þ 1

2
z � z kð Þ� �Tr2J z kð Þ� �

z � z kð Þ� �

ð29Þ

In Eq. (29), rJ and r2J denote the gradient vector and the Hessian matrix of J, respectively. The next point z kþ1ð Þ of the

iterative scheme is obtained by minimizing Jkq zð Þ and setting rJ ¼ 0. This yields

z kþ1ð Þ ¼ z kð Þ � r2J z kð Þ� �

h i�1

rJ z kð Þ� �

ð30Þ

which is the update formula of the standard Newton’s iterative optimization scheme (e.g., [36]).

It is worth noting that for the case of linear oscillators, i.e., e ¼ 0, and considering Eq. (21), the Hessian matrix becomes

r2J ¼ Q , which is constant with respect to z. Thus, the update formula in Eq. (30) becomes

z kþ1ð Þ ¼ z kð Þ � Q�1 Qz kð Þ þ b
� ��1 ¼ �Q�1b ð31Þ

which is equal to the closed-form solution derived in Eq. (26). In other words, as anticipated for linear systems, the Newton’s

optimization scheme converges to the exact solution in only one iteration for any arbitrarily selected starting point z 0ð Þ. Fur-

ther, the optimal (for linear systems) point z� ¼ �Q�1b is expected to be a reasonable choice to be used as a starting point in

the optimization scheme for the general case of nonlinear systems.
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3.2. Convergence analysis aspects

In this section, certain convergence analysis aspects are elucidated pertaining to the herein proposed Newton’s scheme in

conjunction with the general class of dynamical systems governed by Eqs. (1) and (28).

Specifically, as shown in [36], provided that the Hessian matrix r2J is Lipschitz continuous in the neighborhood of the

solution z� and that the initial point z 0ð Þ is sufficiently close to z�, the Newton’s iterative scheme given by Eq. (30) converges

to z� at a quadratic rate, i.e.,

kz kþ1ð Þ � z�k 6 Lk r2J z�ð Þ
h i�1

kkz kð Þ � z�k2 ð32Þ

where L is the Lipschitz constant of r2J zð Þ for z near z�, i.e., L is a positive real constant defined as

kr2J z2ð Þ �r2J z1ð Þk
kz2 � z1k

6 L ð33Þ

for all z1 and z2 in a neighborhood of z�.

Next, substituting Eq. (28) into Eq. (3), and considering Eq. (21), the gradient vector of J zð Þ becomes

rJ zð Þ ¼ Qz þ bþ erg1 zð Þ þ e
2
rg2 zð Þ ð34Þ

and the Hessian matrix of J zð Þ takes the form

r2J zð Þ ¼ Q þ er2g1 zð Þ þ e2

2
r2g2 zð Þ ð35Þ

where

g1 zð Þ ¼
Z tf

t0

M€̂xþ C _̂xþ Kx̂
h iT

gnl x̂; _̂x
� 	

dt ð36Þ

and

g2 zð Þ ¼
Z tf

t0

gnl x̂; _̂x
� 	T

gnl x̂; _̂x
� 	

dt ð37Þ

Further, substituting Eq. (35) into Eq. (32) leads to

kz kþ1ð Þ � z�k 6 Lk Q þ er2g1 z�ð Þ þ e2

2
r2g2 z�ð Þ


 ��1

kkz kð Þ � z�k2 ð38Þ

Moreover, substituting Eq. (35) into Eq. (33) yields

ker2g1 z2ð Þ þ e2

2
r2g2 z2ð Þ � er2g1 z1ð Þ � e2

2
r2g2 z1ð Þk

kz2 � z1k
6 L ð39Þ

Next, applying the triangle inequality to the left hand-side of Eq. (39) leads to

ker2g1 z2ð Þþe2
2
r2g2 z2ð Þ�er2g1 z1ð Þ�e2

2
r2g2 z1ð Þk

kz2�z1k 6

e kr2g1 z2ð Þ�r2g1 z1ð Þk
kz2�z1k þ e2

2
kr2g2 z2ð Þ�r2g2 z1ð Þk

kz2�z1k 6 eL1 þ e2

2
L2

ð40Þ

where L1 and L2 represent Lipschitz constants of r2g1 zð Þ and r2g2 zð Þ, respectively, and are independent of e. Further, con-

sidering Eqs. (39) and (40), it is readily seen that the term eL1 þ e2

2
L2 represents a Lipschitz constant of r2J zð Þ for z in the

neighborhood of z�, which decreases with decreasing �. Also, as e! 0 the term k Q þ er2g1 z�ð Þ þ e2

2
r2g2 z�ð Þ

h i�1

k in Eq.

(38) approaches the constant positive term kQ�1k (see also Appendix A for the positive definiteness of Q ). Thus, as antici-

pated, the convergence rate shown in Eq. (38) is increasing for decreasing nonlinearity degree. This is demonstrated further

in the numerical examples of Section 5.

Finally, it is important to note that although it has been shown in Section 3 that a Newton’s optimization scheme for

determining the most probable path appears to be a suitable choice, the convergence rate shown in Eq. (38) can be construed

as local (see also [36]). In other words, there is no guarantee about existence and convergence to a global minimum. In fact,

proving the potential convexity of J zð Þ (and thus, the existence of a global extremum) is addressed in the following section by

resorting to computational algebraic geometry concepts and tools such as Gröbner bases.
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4. Convexity and convergence to the global minimum of the Wiener path integral most probable path optimization
problem: A computational algebraic geometry approach based on Gröbner bases

In this section, a computational algebraic technique based on Gröbner bases is developed, which is capable of determining

the entire set of solutions corresponding to an algebraic system of coupled multivariate polynomial equations. Thus, for a

wide range of dynamical systems (e.g., systems with a nonlinearity function in Eq. (28) of polynomial form), not only the

entire set of solutions corresponding to the first-order optimality conditionrJ zð Þ ¼ 0 in Eq. (17) can be determined, but also

convexity of J zð Þ is implied if the technique yields only one solution. In the latter case, clearly, the Newton’s optimization

scheme of the previous section converges to the same global minimum determined by the herein proposed computational

algebraic technique. In fact, it is noted that, in its standard implementation, the technique determines the values of J corre-

sponding to all real solutions of the system in Eq. (41), i.e., J is evaluated on the entire set of points defined by rJ zð Þ ¼ 0. Of

course, it is possible to extend the technique for determining the actual solutions z� as well (and not only the values J z�ð Þ)
(e.g., [41]). However, this implies significant additional computational cost. In this regard, coupling the Newton’s optimiza-

tion scheme of Section 3 with the herein proposed computational algebraic technique for showing that the z� provided by

Newton’s scheme corresponds, indeed, to the global minimum of J zð Þ, appears to be an efficient alternative. Indicatively, the

interested reader is also directed to papers [44–46] and to books [37–41] for a more detailed presentation of the topic.

Next, considering a polynomial nonlinearity function gnl in Eq. (28) of degree d, the term g1 zð Þ in Eq. (36) becomes a mul-

tivariate polynomial of degree dþ 1 in p :¼ nL variables, whereas the term g2 zð Þ in Eq. (37) becomes a multivariate polyno-

mial of degree 2d in p variables. Therefore, the objective function J zð Þ takes the form of a multivariate polynomial of degree

2d in p variables and the first-order optimality condition of Eq. (17) leads to an algebraic system of p equations of the form

f 1 z1; . . . ; zp
� �

¼ 0

..

.

f s z1; . . . ; zp
� �

¼ 0

ð41Þ

In Eq. (41), each f i is a polynomial of degree at most 2d� 1 with coefficients in R. In this regard, the convexity of the objective

function J zð Þ can be proved by showing that the system of Eq. (41) has a unique real solution. Also, s ¼ p is considered in the

ensuing analysis, although this is not a necessary requirement for the technique (e.g., [41]).

4.1. Computational algebraic geometry: Selected basic elements and concepts

In this section, fundamental results related to computer implementations of algebraic geometry concepts are presented

for determining the entire set of solutions of Eq. (41) in an algebraic symbolic manner. In the following, K z1; . . . ; zp
� �

denotes

the polynomial ring over the fieldK, which can be construed as the set of all polynomials in p variables with coefficients inK.

Further, an ideal I is a subset of the polynomial ring, usually generated by a finite collection of polynomials as

I ¼ f 1; . . . ; f sh i ¼ Ps
i¼1hif i j h1; . . . ;hs 2 K z1; . . . ; zp

� �� 


. In this regard, an arbitrary polynomial f 2 I vanishes on any solution

of the polynomial system defined by f 1; . . . ; f s (see Eq. (41)). The entire set of solutions of Eq. (41) is referred to as the affine

variety V f 1; . . . ; f sð Þ, and thus, for I ¼ f 1; . . . ; f sh i it holds V f 1; . . . ; f sð Þ ¼ V Ið Þ. The interested reader is also directed to standard

books in the fields of algebraic geometry and commutative algebra [37–41] for further details and definitions of the related

concepts.

First, defining a precise monomial order denoted by > is a prerequisite for the ensuing analysis. Indicative standard

monomial orders include the lexicographical order (lex), the graded lexicographical order (grlex) and the reverse graded lex-

icographical order (grevlex). Following the selection of an order >; LT fð Þ is defined as the leading term of a polynomial

f 2 K z1; . . . ; zp
� �

with respect to the order >. Similarly, LM fð Þ denotes the leading monomial of f, i.e., the monomial of

LT fð Þ. Moreover, for an ideal I#K z1; . . . ; zp
� �

; LT Ið Þ denotes the ideal generated by the leading terms of every element in I,

i.e., LT Ið Þ ¼ LT fð Þjf 2 Ih i. Also, for an ideal I ¼ f 1; . . . ; f sh i, the following property is satisfied; that is,

LT f ið Þ; . . . ; LT f sð Þh i# LT Ið Þh i ð42Þ

Moreover, the degree of a polynomial, denoted as deg fð Þ, is defined as the maximum among the sums of powers of all mono-

mials in f and is independent of the monomial order.

Next, a division algorithm is presented, which can be construed as a multivariate generalization of the Euclidean division

of univariate polynomials (e.g., [41]).

Definition 4.1 (Division Algorithm). Let > be a monomial order and F ¼ f 1; . . . ; f sf g be an ordered s-tuple of polynomials in

K z1; . . . ; zp
� �

. Then, every f 2 K z1; . . . ; zp
� �

can be written as

f ¼ q1f 1 þ . . .þ qsf s þ r

where qi; r 2 K z1; . . . ; zp
� �

, and either r ¼ 0, or r is a linear combination of monomials, none of which is divisible by any of

LT f 1ð Þ; . . . ; LT f sð Þ.
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It is noted that not only different monomial orders, but also different arrangements of the f i’s lead, in general, to different

qi’s and r. Nevertheless, in the latter case, it is possible to use the Division Algorithm for dividing polynomials f 2 K z1; . . . ; zp
� �

by s-tuples of polynomials F ¼ f 1; . . . ; f sf g, yielding unique remainders r, unaffected by the arrangement of the f i’s in F. This

leads to the concept of a Gröbner basis.

Definition 4.2 (Gröbner basis). Define a monomial order > on K z1; . . . ; zp
� �

and let I � K z1; . . . ; zp
� �

be an ideal. Next, two

equivalent definitions for a Gröbner basis are presented (see also [40]).

1. A finite subset G ¼ g1; . . . ; gtf g of I is a Gröbner basis if

LT g1ð Þ; . . . ; LT gtð Þh i ¼ LT Ið Þh i

2. A Gröbner basis for I (w.r.t. >) is a finite collection of polynomials G ¼ g1; . . . ; gtf g � I with the property that for every

f 2 I; LT fð Þ is divisible by LT gið Þ for some i.

The construction of a Gröbner basis G for the ideal I ¼ f 1; . . . ; f sh i, provided an arbitrary generating set f 1; . . . ; f sf g, can be

achieved by Buchberger’s algorithm (e.g., [41,47,48]), and in this case the property I ¼ f 1; . . . ; f sh i ¼ g1; . . . ; gth i holds. It is
noted that a Gröbner basis G ¼ g1; . . . ; gtf g of I 2 K z1; . . . ; zp

� �

is not unique for a given monomial order >. Also, division

of any f 2 K z1; . . . ; zp
� �

by G using the Division Algorithm, yields a representation in the form

f ¼ q1g1 þ . . .þ qtgt þ �f G ð43Þ

In the above representation, although the qi’s are non-unique elements of I, (i.e., they depend on the arrangement of the gi’s

in G), the remainder �f G is unique for a given >. Further, �f G is not divisible by any LT gið Þ, and thus, it is not divisible by any

element in LT Ið Þ. In this regard, �f G, represents a uniquely determined normal form for modulo I, and is given as a linear com-

bination of the monomials xa R LT Ið Þh i, where xa ¼ za11 za22 . . . zann for some n-tuple a ¼ a1; . . . ; anð Þ of non-negative integers.

Furthermore, the remainders �f G and �gG generated by the divisions of polynomials f ; g 2 I � K z1; . . . ; zp
� �

by a Gröbner basis,

respectively, exhibit the following properties (e.g., [41]), i.e.,

f 2 I () �f G ¼ 0 ð44Þ
�f G ¼ �gG () f � g 2 I ð45Þ
�f G þ �gG ¼ f þ gG ð46Þ
�f G � �gGG ¼ f � gG ð47Þ

Next, the uniqueness of the remainder �f G determined by division of a polynomial f 2 K z1; . . . ; zp
� �

by a Gröbner basis G of

I � K z1; . . . ; zp
� �

enables the definition of the coset f½ �.

Definition 4.3 (Coset). Given f 2 K z1; . . . ; zp
� �

, the coset f½ � is defined as the set

f½ � ¼ f þ I ¼ f þ h j h 2 If g
In essence, the coset f½ � groups together all polynomials inK z1; . . . ; zp

� �

that yield the same remainder when divided by G.

Hence, this implies a one-to-one correspondence between remainders and cosets (�f G $ f½ �), and thus, �f G can be construed as

a representative of its coset f½ �. Next, the quotient ring K z1; . . . ; zp
� �

=I is defined formally, which represents the set of all

cosets of polynomials in K z1; . . . ; zp
� �

with respect to an ideal I 2 K z1; . . . ; zp
� �

.

Definition 4.4 (Quotient Ring). The quotient ring K z1; . . . ; zp
� �

=I is defined as the set

K z1; . . . ; zp
� �

=I ¼ f½ � j f 2 K z1; . . . ; zp
� �� 


According to [41], Eqs. (46) and (47) for the remainder apply also on K z1; . . . ; zp
� �

=I, i.e., �f G þ �gG $ f½ � þ g½ � and

�f G � �gGG $ f½ � � g½ �. In this regard, the quotient ring K z1; . . . ; zp
� �

=I constitutes also an algebra, which is denoted by A in the

ensuing analysis.

It is important to note that the remainders �f G are linear combinations of the monomials

B ¼ xa j xa R LT Ið Þf g ð48Þ

which form a basis of A (also known as the basis of standard monomials in the literature). The role of algebra A in obtaining

the entire set of solutions of Eq. (41) is catalytic. However, an important requirement relates to A being finite-dimensional,

which is ensured by the following theorem; see also [41] for a detailed proof.

Theorem 1 (Finiteness Theorem). Let I#K z1; . . . ; zp
� �

be an ideal. Then, the algebra

I. Petromichelakis, Rúbia M. Bosse, I.A. Kougioumtzoglou et al. Mechanical Systems and Signal Processing 153 (2021) 107534

8



A ¼ K z1; . . . ; zp
� �

=I

is finite-dimensional, if and only if, the variety V Ið Þ � K
n is a finite set.

Next, considering K ¼ C; f 2 C z1; . . . ; zp
� �

and I � C z1; . . . ; zp
� �

, the multiplication defined in Eq. (47) can be used to define

a linear map mf from the algebra A ¼ C z1; . . . ; zp
� �

=I to itself. Specifically, for g½ � 2 A;mf : A ! A is defined as

mf g½ �ð Þ ¼ f½ � � g½ � ¼ f � g½ � 2 A ð49Þ

Relying on the vector space structure of the algebra A, it can be shown thatmf is, indeed, a linear map [41]. Further, assuming

that the system of polynomial equations in Eq. (41) has a finite number of solutions, Theorem 1 implies that A is a finite-

dimensional algebra. This, enables the representation of the linear map mf by a matrix Mf associated with a basis of A. This

is precisely the basis B of standard monomials defined in Eq. (48). More importantly, Theorem 2 shows that the multiplica-

tion matrix Mf can be utilized to evaluate f on V Ið Þ; see [41] for a detailed proof.

Theorem 2. Let I � C z1; . . . ; zp
� �

be a zero-dimensional ideal and A ¼ C z1; . . . ; zp
� �

=I. Further, let f 2 C z1; . . . ; zp
� �

with Mf being

the multiplication matrix corresponding to the linear map mf : A ! A defined in Eq. (49). Then, the eigenvalues of Mf are equal to

the values of f on V Ið Þ.
In other words, according to Theorem 2, if the system in Eq. (41) has a finite number of l solutions (i.e., V Ið Þ is a finite set

of size l), substituting these solutions into any polynomial f 2 C z1; . . . ; zp
� �

yields l values that are equal to the eigenvalues

ofMf . In passing, it is worth noting that the (Strong) Nullstellensatz, which is a consequence of Hilbert’s original result and is

used in the proof of Theorem 2, is of paramount importance to efforts attempting to associate ideals Iwith the corresponding

varieties V Ið Þ. In this regard, it can be argued that it provides the tools for establishing a ‘‘dictionary” between geometry and

algebra [41].

It is important to note that matrix Mf can only be defined if the standard basis B of Eq. (48) is finite. This is true if the

variety V f 1; . . . ; f sð Þ is a finite set, i.e., the system of polynomial equations in Eq. (41) has a finite number of l solutions in

C. Thus, it becomes clear that the total number l of (complex) solutions of the system in Eq. (41) is equal to the number

of monomials in the standard basis B, i.e., l ¼ length Bð Þ. If f is a dense polynomial of even degree 2d, then it follows from

Bézout’s Theorem that l ¼ 2d� 1ð Þn [46].

4.2. Algorithmic aspects and mechanization of the technique

The steps for determining the multiplication matrix Mf of an arbitrary f 2 K z1; . . . ; zp
� �

corresponding to the system of

polynomials in Eq. (41) are presented in Algorithm 1, which is based on the following three main subroutines:

	 Groebner(f 1; . . . ; f s): This subroutine computes a Gröbner basis G ¼ g1; . . . ; gtf g of the ideal generated by f 1; . . . ; f s based

on Buchberger’s algorithm (e.g., [47,48]). The implementation can be found in most symbolic mathematical computation

languages (see for instance gbasis(.) built-in function in Matlab).

	 StandardBasis(G): This subroutine computes the basis of standard monomials B defined in Eq. (48) corresponding to

the Gröbner basis G ¼ g1; . . . ; gtf g. Indicatively, B is constructed by selecting all monomials that are not divisible by LT gið Þ
for any i ¼ 1; . . . ; t.

	 NormalForm(h;G): This subroutine computes the unique remainder of the division of an arbitrary polynomial h by the

Gröbner basis G via the Division Algorithm in Definition 4.1. The column vector of coefficients of this remainder with

respect to basis B, is denoted as [NormalForm(h;G)]B. The interested reader is directed to [45] for an indicative imple-

mentation in a symbolic language system.

Algorithm 1. MultMatrix(f ; f 1; . . . ; f s) - Computation of multiplication matrix Mf

Input: f ; f 1; . . . ; f s 2 R z1; . . . ; zp
� �

Output: Mf

1: G ¼ Groebner(f 1; . . . ; f s)

2: B ¼ StandardBasis(G)

3: l ¼ length(B)

4: Initialize Mf as an empty l� l matrix

5: for i ¼ 1 to l do

6: Mf :; ið Þ ¼ [NormalForm(B ið Þ � f ;G)]B .Computation of the i-th column of Mf

7: end for
8: return Mf
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Finally, consider the optimization problem of Eq. (16) and set

J� ¼ min
z2Rn

J zð Þ ð50Þ

Then, J� is equal to the smallest real eigenvalue of matrix MJ representing the linear map mJ� : A ! A (defined in Eq. (49))

with respect to the monomial basis B (defined in Eq. (48)), where A ¼ C z1; . . . ; zp
� �

=I with I ¼ @J
@z1

; . . . ; @J
@zn

D E

. In other words,

the globally minimum value of J zð Þ, as well as all its values on its critical points (i.e., points where rJ ¼ 0), can be found

by determining matrix MJ . In passing, it is noted that the graded lexicographical order

xd1 > . . . > xdn > xd�1
1 x2 > . . . > x1 > . . . > xn > 1 ð51Þ

is considered in the following numerical examples.

5. Numerical examples

In this section, various numerical examples pertaining to oscillators with diverse nonlinear behaviors are considered for

demonstrating the reliability of the WPI technique to evaluate the joint response PDF, in conjunction with the proposed

Newton’s scheme for determining the most probable path. Further, the herein developed Gröbner basis approach is also

employed for demonstrating the existence of a unique solution (and thus, the convexity of the objective function) of the most

probable path optimization problem.

Furthermore, according to the standard numerical implementation of the WPI technique, the evaluation of the joint

response PDF of Eq. (7) at a given time instant involves the discretization of the PDF effective domain into N2n points (where

N is the number of points along each dimension), and thus, requires the solution of N2n BVPs of the form of Eqs. (5) and (6)

(or, equivalently, Eq. (17)). Clearly, this leads to an exponential growth of the computational cost as a function of the dimen-

sionality n of the system. This limitation of the brute-force implementation of the WPI technique has been addressed in

[49,50] by employing multi-dimensional function approximation techniques in conjunction with compressive sampling con-

cepts and tools for reducing drastically the total number of required BVPs to be solved numerically. To provide an indicative

comparison in terms of computational cost between MCS and a brute-force implementation of the WPI technique, and con-

sidering n ¼ 1 and N ¼ 31 in the following examples, the joint PDF obtained based on the solution of 312 ¼ 961 BVPs

requires approximately 10 s, whereas a MCS-based PDF estimate using 10;000 realizations is obtained in approximately

1 h on the same computer.

5.1. Linear oscillator

Consider a SDOF linear oscillator whose governing equation is a scalar version of Eq. (1), i.e.,

m€xþ c _xþ kx ¼ w tð Þ; ð52Þ

where m ¼ 5; c ¼ 0:2; k ¼ 1, and E w tð Þw t þ sð Þð Þ ¼ 2pS0d sð Þ with S0 ¼ 0:5.

As pointed out in Section 3.1, for linear systems the Newton’s optimization scheme converges to the exact solution

z� ¼ �Q�1b in only one iteration for any arbitrarily selected starting point z 0ð Þ. In this regard, for an indicative final time

instant tf ¼ 1s and for boundary conditions x 0ð Þ; _x 0ð Þ; x tf
� �

; _x tf
� �� �

¼ 0;0;�0:5;�1:0ð Þ, the objective function of Eq. (21) is

shown in Fig. 1 by utilizing L ¼ 2 trial functions. Further, as also stated in Section 3.1 and proved in Appendix A, it is readily

seen that the objective function J zð Þ of Eq. (21) is convex, and thus, the Newton’s scheme converges to the exact optimal solu-

tion z� ¼ �Q�1b ¼ 0:0173;0:00014ð Þ in a single iteration starting from the arbitrarily chosen point z 0ð Þ ¼ 50;50ð Þ. Further,
employing the Gröbner basis approach developed in Section 4 (see also Appendix B) yields a single solution and the corre-

sponding objective function value becomes J z�ð Þ ¼ 4:4204, which coincides practically with the estimate based on Newton’s

scheme.

Finally, utilizing a brute-force discretization of the PDF effective domain (e.g. [33]), the joint response PDF at a specific

time instant is determined via the solution of N2 ¼ 961 boundary value problems. In Fig. 2, the corresponding marginal

response displacement and velocity PDFs at various time instants are plotted. It is shown that the WPI-based estimates uti-

lizing Newton’s scheme coincide with the estimates based on the Gröbner basis approach. Comparisons with MCS data

(10,000 realizations) are included as well demonstrating the high accuracy degree exhibited by the WPI technique.

5.2. Duffing nonlinear oscillator

In this example, consider a SDOF Duffing nonlinear oscillator whose governing equation is a scalar version of Eq. (1), i.e.,

m€xþ c _xþ kxþ egnl x; _xð Þ ¼ w tð Þ ð53Þ

where
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gnl x; _xð Þ ¼ kx
3 ð54Þ

In Eqs. (53) and (28), the same parameters values are used for m; c; k and S0 as in Example 5.1.

Next, for an indicative final time instant tf ¼ 1s and for boundary conditions x 0ð Þ; _x 0ð Þ; x tf
� �

; _x tf
� �� �

¼ 0;0;�0:5;�1:0ð Þ,
the objective functions J zð Þ of the most probable path optimization problem for e ¼ 1;10, and 20 are shown in Figs. 3–5,

respectively. The iteration points of the Newton’s scheme are also included in the figures corresponding both to an arbitrarily

selected starting point (i.e., z 0ð Þ ¼ 50;�50ð Þ), and to a starting point equal to the exact optimum z 0ð Þ ¼ zlin ¼ �Q�1b corre-

sponding to the associated linear system (i.e., e ¼ 0). Clearly, as pointed out in Section 3.1, z 0ð Þ ¼ zlin is shown to be a reason-

able choice as a starting point in the optimization scheme, since for all cases the number of iterations is significantly smaller

than the respective one based on an arbitrarily selected starting point. Also, as dictated by Eq. (38), it can be readily seen that

the convergence rate increases for smaller values of the nonlinearity parameter e. Numerical results related to the iterations

of the Newton’s scheme are summarized in Table 1, which includes also results based on the Gröbner basis approach. It is

seen that, for all nonlinearity parameter values, the Gröbner approach yields a single solution and the corresponding objec-

tive function value coincides practically with the estimate based on the Newton’s scheme (see also Appendix B). This proves

the convexity of the objective function and that the Newton’s scheme converges, indeed, to the global minimum.

In Fig. 6, the WPI-based marginal response displacement and velocity PDFs are plotted for various nonlinearity magnitude

values at two indicative time instants. It is shown that the WPI-based estimates utilizing the Newton’s scheme coincide with

Fig. 1. Most probable path optimization problem objective function using L ¼ 2 trial functions and corresponding to a linear oscillator under white noise

(tf ¼ 1s; x tf
� �

¼ �0:5; _x tf
� �

¼ �1:0). The Newton’s optimization scheme iterations are also included.

Fig. 2. Response displacement and velocity PDFs at various time instants corresponding to a linear oscillator under white noise. Comparisons betweenWPI-

based estimates utilizing the Newton’s scheme and the Gröbner basis approaches for the most probable path determination. MCS-based estimates are also

included (10,000 realizations).
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the estimates based on the Gröbner basis approach. Comparisons with MCS data (10;000 realizations) are included as well

demonstrating the high accuracy degree exhibited by the WPI technique.

Fig. 3. Most probable path optimization problem objective function using L ¼ 2 trial functions and corresponding to a Duffing oscillator with e ¼ 1:0 under

white noise (tf ¼ 1s; x tf
� �

¼ �0:5; _x tf
� �

¼ �1:0). The Newton’s optimization scheme iterations are also included.

Fig. 4. Most probable path optimization problem objective function using L ¼ 2 trial functions and corresponding to a Duffing oscillator with e ¼ 10 under

white noise (tf ¼ 1s; x tf
� �

¼ �0:5; _x tf
� �

¼ �1:0). The Newton’s optimization scheme iterations are also included.
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5.3. Nonlinear oscillator with an asymmetric response PDF

In this example, consider a SDOF nonlinear oscillator with an asymmetric response PDF, whose governing equation is

given by Eqs. (55) and (56), i.e.,

m€xþ c _xþ kxþ egnl x; _xð Þ ¼ w tð Þ ð55Þ

Fig. 5. Most probable path optimization problem objective function using L ¼ 2 trial functions and corresponding to a Duffing oscillator with e ¼ 20 under

white noise (tf ¼ 1s; x tf
� �

¼ �0:5; _x tf
� �

¼ �1:0). The Newton’s optimization scheme iterations are also included.

Table 1

Convergence rate and objective function values for a Duffing oscillator.

e ¼ 1:0 e ¼ 10 e ¼ 20 e ¼ 100

kz kð Þ � z�k J z kð Þ� �

kz kð Þ � z�k J z kð Þ� �

kz kð Þ � z�k J z kð Þ� �

kz kð Þ � z�k J z kð Þ� �

Newton’s numerical optimization scheme - Arbitrarily selected starting point z 0ð Þ

70.697 1.26E4 70.685 8.23E3 70.671 1.30E4 70.138 8.81E4

37.666 4.14E3 44.568 3.97E3 50.835 5.26E3 58.718 2.34E4

7.735 1.92E2 18.447 9.96E2 38.458 2.81E3 49.450 6.92E3

4.63E-2 4.458 12.425 4.59E2 29.451 1.83E3 40.993 2.52E3

5.37E-7 4.452 3.571 45.024 9.694 2.76E2 31.862 1.10E3

1.08E-16 4.452 2.93E-2 4.745 3.467 43.157 23.047 6.10E2

1.56E-6 4.743 5.588E-2 5.096 17.922 4.28E2

7.03E-15 4.743 1.08E-5 5.086 14.318 1.04E2

6.44E-13 5.086 5.787 28.117

2.459 8.534

0.118 8.491

1.32E-4 8.491

2.97E-10 8.491

1.41E-15 8.491

Newton’s numerical optimization scheme - Starting point z 0ð Þ ¼ �Q�1b corresponding to a linear oscillator with e ¼ 0

5.24E-3 4.452 5.29E-2 4.751 1.07E-1 5.120 5.74E-1 9.446

8.49E-9 4.452 8.49E-6 4.743 6.77E-5 5.086 7.68E-3 8.491

2.15E-13 4.743 2.617E-11 5.086 1.11E-6 8.491

2.28E-14 8.491

Computational algebraic geometry approach based on Gröbner bases

4.452 4.743 5.086 8.490
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where

gnl x; _xð Þ ¼ ax2 þ x3 ð56Þ

In Eq. (55) and (56), the parameters values used are, m ¼ 1; c ¼ 0:2; k ¼ 1; E w tð Þw t þ sð Þð Þ ¼ 2pS0d sð Þ with S0 ¼ 0:05, and a is

constant.

Further, for an indicative final time instant tf ¼ 1s and for boundary conditions x 0ð Þ; _x 0ð Þ; x tf
� �

; _x tf
� �� �

¼ 0;0;�0:3;�0:8ð Þ,
the objective functions J zð Þ of the most probable path optimization problem for e ¼ 1 and a ¼ 1:5; e ¼ 10 and a ¼ 3

ffiffiffiffi

10
p

20
, and

e ¼ 50 and a ¼ 3
ffiffi

2
p

20
are shown in Figs. 7–9, respectively. The iteration points of the Newton’s scheme are also included in the

Fig. 6. Response displacement and velocity PDFs at various time instants corresponding to a Duffing oscillator under white noise. Comparisons between

WPI-based estimates utilizing the Newton’s scheme and the Gröbner basis approaches for the most probable path determination. MCS-based estimates are

also included (10,000 realizations).
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Fig. 7. Most probable path optimization problem objective function using L ¼ 2 trial functions and corresponding to a nonlinear oscillator with an

asymmetric response PDF with e ¼ 1 and a ¼ 1:5 under white noise (tf ¼ 1s; x tf
� �

¼ �0:3; _x tf
� �

¼ �0:8). The Newton’s optimization scheme iterations are

also included.

Fig. 8. Most probable path optimization problem objective function using L ¼ 2 trial functions and corresponding to a nonlinear oscillator with an

asymmetric response PDF with e ¼ 10 and a ¼ 3
ffiffiffiffi

10
p

20
under white noise (tf ¼ 1s; x tf

� �

¼ �0:3; _x tf
� �

¼ �0:8). The Newton’s optimization scheme iterations are

also included.
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figures corresponding both to an arbitrarily selected starting point (i.e., z 0ð Þ ¼ 50;�50ð Þ or z 0ð Þ ¼ �50;50ð Þ), and to a starting

point equal to the exact optimum z 0ð Þ ¼ zlin ¼ �Q�1b corresponding to the associated linear system (i.e., e ¼ 0). In a similar

Table 2

Convergence rate and objective function values for a nonlinear oscillator with an asymmetric response PDF.

e ¼ 1; a ¼ 1:50 e ¼ 10; a ¼ 3
ffiffiffiffi

10
p

20 e ¼ 50; a ¼ 3
ffiffi

2
p

20
e ¼ 100; a ¼ 0:150

kz kð Þ � z�k J z kð Þ� �

kz kð Þ � z�k J z kð Þ� �

kz kð Þ � z�k J z kð Þ� �

kz kð Þ � z�k J z kð Þ� �

Newton’s numerical optimization scheme - Arbitrarily selected starting point z 0ð Þ

70.678 3.49E+03 70.730 3.30E4 70.732 1.28E6 70.374 5.40E6

25.173 6.21E2 58.642 9.16E3 57.614 3.33E5 57.053 1.41E6

17.770 3.88E2 47.166 2.96E3 47.261 8.62E4 46.490 3.65E5

1.786 5.536 35.498 1.19E3 39.109 2.23E4 38.153 9.45E4

2.31E-2 1.683 26.321 5.92E2 32.603 5.90E3 31.606 2.43E4

3.21E-6 1.683 20.316 3.64E2 27.040 1.68E3 26.449 6.27E3

6.18E-14 1.683 7.104 63.160 21.494 5.72E2 22.213 1.67E3

1.943 6.109 15.672 2.39E2 18.191 4.96E2

1.15E-1 1.615 11.019 1.16E2 13.697 1.78E2

2.08E-4 1.598 7.990 63.940 9.385 71.774

7.29E-10 1.598 0.782 2.554 6.971 35.490

6.73E-3 1.794 5.514 23.641

2.35E-7 1.794 1.570 5.110

1.07E-15 1.794 0.520 2.616

6.55E-3 2.271

1.93E-6 2.271

1.99E-13 2.271

Newton’s numerical optimization scheme - Starting point z 0ð Þ ¼ �Q�1b corresponding to a linear oscillator with e ¼ 0

0.0278 1.684 0.046 1.601 0.077 1.800 0.278 2.357

3.955E-6 1.683 3.205E-5 1.598 2.305E-5 1.794 0.0010 2.2715

9.116E-14 1.683 1.711E-11 1.598 8.485E-12 1.794 1.831E-8 2.271

Computational algebraic geometry approach based on Gröbner bases

1.683 1.598 1.793 2.271

Fig. 9. Most probable path optimization problem objective function using L ¼ 2 trial functions and corresponding to a nonlinear oscillator with an

asymmetric response PDF with e ¼ 50 and a ¼ 3
ffiffi

2
p

20
under white noise (tf ¼ 1s; x tf

� �

¼ �0:3; _x tf
� �

¼ �0:8). The Newton’s optimization scheme iterations are

also included.
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manner as in Example 5.2, z 0ð Þ ¼ zlin proves to be an excellent choice as a starting point in the optimization scheme, whereas

it is seen that the convergence rate increases for smaller values of the nonlinearity parameter e. Numerical results related to

the iterations of the Newton’s scheme are summarized in Table 2, which includes also results based on the Gröbner basis

approach. The convexity of the objective function and the convergence of Newton’s scheme to the global minimum is

demonstrated by noticing that for all nonlinearity parameter values, the Gröbner approach yields a single solution and

the corresponding objective function value coincides practically with the estimate based on Newton’s scheme.

In Fig. 10, the WPI-based marginal response displacement and velocity PDFs are plotted for various nonlinearity magni-

tude values at two indicative time instants. It is shown that the WPI-based estimates utilizing Newton’s scheme coincide

Fig. 10. Response displacement and velocity PDFs at various time instants corresponding to a nonlinear oscillator with an asymmetric response PDF.

Comparisons between WPI-based estimates utilizing the Newton’s scheme and the Gröbner basis approaches for the most probable path determination.

MCS-based estimates are also included (20,000 realizations).
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with the estimates based on the Gröbner basis approach. Comparisons with MCS data (20;000 realizations) are included as

well demonstrating the high accuracy degree exhibited by the WPI technique.

Fig. 11. Most probable path optimization problem objective function using L ¼ 2 trial functions and corresponding to a nonlinear oscillator with a bimodal

response PDF with a ¼ 1:3 and e ¼ 1 under white noise (tf ¼ 1s; x tf
� �

¼ 0:8; _x tf
� �

¼ 0:9). The Newton’s optimization scheme iterations are also included.

Fig. 12. Most probable path optimization problem objective function using L ¼ 2 trial functions and corresponding to a nonlinear oscillator with a bimodal

response PDF with a ¼ 1:5 and e ¼ 1 under white noise (tf ¼ 1s; x tf
� �

¼ 0:8; _x tf
� �

¼ 0:9). The Newton’s optimization scheme iterations are also included.
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5.4. Nonlinear oscillator with a bimodal response PDF

Consider a SDOF nonlinear oscillator exhibiting a bimodal response PDF, whose governing equation is given by

m€xþ c _xþ kxþ egnl x; _xð Þ ¼ w tð Þ ð57Þ

where

gnl x; _xð Þ ¼ �axþ x3 ð58Þ

Fig. 13. Most probable path optimization problem objective function using L ¼ 2 trial functions and corresponding to a nonlinear oscillator with a bimodal

response PDF with a ¼ 1:8 and e ¼ 1 under white noise (tf ¼ 1s; x tf
� �

¼ 0:8; _x tf
� �

¼ 0:9). The Newton’s optimization scheme iterations are also included.

Table 3

Convergence rate and objective function values for a nonlinear oscillator with a bimodal response PDF.

a ¼ 1:3 a ¼ 1:5 a ¼ 1:8

kz kð Þ � z�k J z kð Þ� �

kz kð Þ � z�k J z kð Þ� �

kz kð Þ � z�k J z kð Þ� �

Newton’s numerical optimization scheme - Arbitrarily selected starting point z 0ð Þ

141.401 2.35E4 141.386 2.33E4 141.366 2.30E4

104.044 8.73E3 103.987 8.66E3 103.905 8.57E3

73.449 3.79E3 73.522 3.78E3 73.635 3.77E3

54.720 2.02E3 54.932 2.04E3 55.255 2.06E3

26.456 6.13E2 26.538 6.21E2 26.665 6.32E2

23.386 5.47E2 24.484 6.01E2 26.232 6.92E2

8.777 81.474 10.692 1.18E2 14.577 2.13E2

0.742 5.232 1.302 6.274 3.305 15.852

1.75E-3 4.667 4.88E-3 4.514 1.91E-2 4.316

1.15E-8 4.667 9.02E-8 4.514 1.30E-6 4.316

2.95E-17 4.514 6.38E-15 4.316

Newton’s numerical optimization scheme - Starting point z 0ð Þ ¼ �Q�1b corresponding to a linear oscillator with e ¼ 0.

0.072 4.671 0.084 4.520 0.1028 4.325

3.374E-6 4.667 6.193E-6 4.514 1.205E-5 4.316

2.990E-14 4.667 1.058E-13 4.514 4.436E-13 4.316

Computational algebraic geometry approach based on Gröbner bases.

4.667 4.514 4.316
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In Eq. (57) and (58), the parameters values utilized are, m ¼ 1; c ¼ 1:0; k ¼ 1:0; E w tð Þw t þ sð Þð Þ ¼ 2pS0d sð Þ with S0 ¼ 0:0637

and a is constant.

Next, for an indicative final time instant tf ¼ 1s and for boundary conditions x 0ð Þ; _x 0ð Þ; x tf
� �

; _x tf
� �� �

¼ 0;0;0:8;0:9ð Þ, the
objective functions J zð Þ of the most probable path optimization problem for a ¼ 1:3;1:5 and 1:8, considering e ¼ 1 are shown

in Figs. 11–13, respectively. The Newton’s scheme iteration points are also included in the figures corresponding both to an

arbitrarily selected starting point z 0ð Þ ¼ �100;100ð Þ, and to a starting point equal to the exact optimum z 0ð Þ ¼ zlin ¼ �Q�1b
corresponding to the associated linear system (i.e., e ¼ 0). Obviously, the convergence behavior is highly improved when

z 0ð Þ ¼ zlin is used. Numerical results related to the iterations of the Newton’s scheme are summarized in Table 3, which

Fig. 14. Response displacement and velocity PDFs at various time instants corresponding to a nonlinear oscillator with a bimodal response PDF under white

noise. Comparisons between WPI-based estimates utilizing both the Newton’s scheme and the Gröbner basis approaches for the most probable path

determination. MCS-based estimates are also included (50,000 realizations).
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includes also results based on the Gröbner basis approach. In a similar manner as in the previous examples, the single solu-

tion obtained by the Gröbner basis approach demonstrates the convexity of the objective function and the existence of a sin-

gle global minimum.

In Fig. 14, it is shown that the WPI-based estimates utilizing Newton’s scheme coincide with the estimates based on the

Gröbner basis approach. Comparisons with MCS data (50;000 realizations) are included as well demonstrating the high accu-

racy degree exhibited by the WPI technique.

6. Concluding remarks

In this paper, first, a Newton’s numerical optimization scheme has been developed for solving the Wiener path integral

technique functional minimization problem and for determining the most probable path. Certain numerical aspects have

been elucidated and it has been shown that the convergence behavior can be highly improved when the exact solution cor-

responding to a linear system is used as a starting point in the algorithm. Second, demonstrating the potential convexity (and

thus, the existence of a global extremum) of the functional to be minimized has been addressed by resorting to computa-

tional algebraic geometry concepts and tools such as Gröbner bases. Various numerical examples pertaining to diverse non-

linear oscillators have been considered, where it has been shown that the associated objective functions are convex, and that

the Newton’s scheme converges to the globally optimum most probable path. Comparisons with MCS-based estimates have

been included as well, demonstrating the reliability of the WPI technique for determining the nonlinear system joint

response PDF.
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Appendix A. Positive definiteness of matrix Q

In this Appendix, the positive definiteness of matrix Q is proved, and thus, convexity of Eq. (25) is also implied. For tuto-

rial effectiveness, the proof is shown hereinafter for a SDOF linear oscillator. In this regard, consider a normalized version of

Eq. (52) in the form

€xþ 2f0x0 _xþx2
0x ¼ w tð Þ

m
ðA:1Þ

where f0 is the damping ratio and x0 is the natural frequency of the system. Next, employing two trial functions (i.e., L ¼ 2)

and considering arbitrary initial and final time instants (t0 and tf ) in Eq. (22), matrix Q is expressed in the form

Q ¼
Q11 0

0 Q22


 �

ðA:2Þ

where

Q11 ¼ tf � t0
� �5

630
x0

4 t4f � 4x4
0 t

3
f t0 þ 6x4

0 t
2
f t

2
0 � 4x4

0 tf t
3
0 þx4

0 t
4
0 þ 48x2

0 t
2
f f

2
0 þ�24x2

0 t
2
f � 96x2

0 tf t0 f
2
0 þ 48x2

0 tf t0
�

þ48x2
0 t

2
0 f

2
0 � 24x2

0 t
2
0 þ 504

�

ðA:3Þ

Q22 ¼ tf � t0
� �5

6930
x0

4 t4f � 4x4
0 t

3
f t0 þ 6x4

0 t
2
f t

2
0 � 4x4

0 tf t
3
0 þx4

0 t
4
0 þ 176x2

0 t
2
f f

2
0 þ�88x2

0 t
2
f � 352x2

0 tf t0 f
2
0

�

þ176x2
0 tf t0 þ 176x2

0 t
2
0 f

2
0 � 88x2

0 t
2
0 þ 3960

�

ðA:4Þ
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Next, for simplicity and without loss of generality, setting t0 ¼ 0 in Eq. (A.2) yields

Q ¼
tf

5 x0
4 t4

f
þ48x2

0
t2
f
f2
0
�24x2

0
t2
f
þ504

� 	

630
0

0
tf

5 x0
4 t4

f
þ176x2

0
t2
f
f2
0
�88x2

0
t2
f
þ3960

� 	

6930

2

6

6

6

4

3

7

7

7

5

ðA:5Þ

Since Q is diagonal, its eigenvalues k are readily determined as

k ¼

x0
4 t9

f

630
þ 8x2

0
t7
f
f2
0

105
� 4x2

0
t7
f

105
þ 4 t5

f

5

� �

x0
4 t9

f

6930
þ 8x2

0
t7
f
f2
0

315
� 4x2

0
t7
f

315
þ 4 t5

f

7

� �

2

6

6

6

4

3

7

7

7

5

ðA:6Þ

Next, setting y ¼ x2
0 and considering the most critical case (i.e., f0 ¼ 0) for showing that the eigenvalues k are positive, Eq.

(A.6) becomes

k ¼

y2 t9
f

630
� 4 y t7

f

105
þ 4 t5

f

5

� �

y2 t9
f

6930
� 4 y t7

f

315
þ 4 t5

f

7

� �

2

6

6

6

4

3

7

7

7

5

ðA:7Þ

Differentiating Eq. (A.6) with respect to y yields

dk

dy
¼

2y t9
f

630
� 4 t7

f

105

� �

2y t9
f

6930
� 4 t7

f

315

� �

2

6

6

6

4

3

7

7

7

5

ðA:8Þ

Setting Eq. (A.8) equal to zero and solving for y leads to

y� ¼
12 t�2

f

44 t�2
f

" #

; ðA:9Þ

whereas the eigenvalues evaluated at y� yield

k y�ð Þ ¼
4t5f =7

92t5f =315

" #

ðA:10Þ

Further, the second derivative of k becomes

d
2
k

dy2
¼

t9f =315

t9f =3465

" #

ðA:11Þ

Clearly, since d
2
k=dy2 > 0, the expression for the eigenvalues k as a function of y is convex, and thus, the points in Eq. (A.9)

correspond to minima for k. Further, since k is positive at y�; k is positive for any arbitrary values x0 > 0 and 0 < f0 < 1. In

conclusion, all eigenvalues of matrix Q are positive, and thus, Q is positive definite.

Appendix B. Computational algebraic geometry approach indicative results

In this section, indicative results pertaining to the computational algebraic geometry approach of Section 4 are presented.

These refer to Examples 5.1 and 5.2. Specifically, considering the linear oscillator of Example 5.1 and the BVP corresponding

to Fig. 1, the basis B of standard monomials defined in Eq. (48), degenerates to

B ¼ 1½ � ðB:1Þ

This implies that there is only one solution to the corresponding system of polynomial equations. Further, the Gröbner basis

corresponding to this example has only two elements and takes the form

G ¼ 0:031659z1 � 0:00053813; z2 � 0:000083703½ �T ðB:2Þ

whereas matrix Mf (see also Theorem 2) is simply a scalar, i.e.,

Mf ¼ 4:4204132568ð Þ ðB:3Þ

The second example relates to the Duffing oscillator considered in Example 5.2, and corresponding to Fig. 3 (e ¼ 1). In this

regard, the basis B of standard monomials defined in Eq. (48) includes 25 elements and takes the form
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B ¼ z82; z1z
6
2; z

7
2; z

5
2; z

4
1; z

3
1z2; z

2
1z

4
2; z1z

5
2; z

6
2; z

3
1z

2
2; z

2
1z

3
2; z1z

4
2;

�

z21z
2
2; z1z

3
2; z

4
2; z

3
1; z

2
1z2; z1z

2
2; z

3
2; z

2
1; z1z2; z

2
2; z1; z2;1

�T ðB:4Þ

This implies that the corresponding system of polynomial equations has 25 solutions, i.e., 24 complex solutions and one real

solution, which is the solution of interest. Further, the associated Gröbner basis has six elements, which take the form

G 1ð Þ ¼ 1:4091E14z41 � 7:2961E8z31 z
2
2 þ 7:9242E13z31 z2 � 1:1746E15z31 � 4:8529E6z21 z

4
2þ

6:9587E12z21 z
3
2 � 2:0668E13z21 z

2
2 þ 1:1819E18z21 z2 � 1:9333E18z21�

1173:5z1 z62 � 3:8778E7z1 z52 þ 1:2085E9z1 z42 � 1:9927E13z1 z32 þ 6:9281E13z1 z22�
4:5784E18z1 z2 þ 5:9337E18z1 þ z92 � 55:207z82 � 1:2502E6z72 þ 4:4144E7z62
þ5:3703E11z52 � 9:0655E12z42 þ 2:6617E16z32 � 1:3989E18z22 � 2:3572E22z2

þ6:2157E19

ðB:5Þ

G 2ð Þ ¼ �2:6453z41 � 0:5488z31 z
2
2 � 8799:2z31 z2 � 113988:0z31 � 0:000021788z21 z

4
2�

0:26732z21 z
3
2 þ 8:2368z21 z

2
2 � 9599:7z21 z2 þ 124255:0z21 þ 5:064E� 8z1 z72�

1:8467E� 6z1 z62 � 0:0046385z1 z52 � 0:021661z1 z42 � 13139:0z1 z32þ
112933:0z1 z

2
2 � 1:4175E9z1 z2 � 1:5962E9z1 � 2:7115E� 7z72þ

0:000011028z62 þ 0:076255z52 � 0:84131z42 þ 24378:0z32 � 467722:0z22�
3:0075E9z2 þ 4:2444E7

ðB:6Þ

G 3ð Þ ¼ �4:1648E� 6z41 � 9:0668E� 11z31 z
2
2 � 3:3071E� 6z31 z2 þ 0:000059423z31þ

7:0522E� 13z21 z
5
2 � 1:582E� 11z21 z

4
2 þ 7:0068E� 8z21 z

3
2 � 1:7297E� 6z21 z

2
2þ

0:004472z21 z2 þ 0:22987z21 � 6:1856E� 12z1 z52 þ 1:5016E� 10z1 z42�
6:8703E� 7z1 z32 þ 0:000021407z1 z22 þ 0:21508z1 z2 � 0:70789z1 þ 2:137E� 14z72�
8:7989E� 13z62 � 2:263E� 8z52 þ 4:685E� 7z42 þ 0:0075597z32 � 0:02578z22
þ1523:9z2 � 4:0113

ðB:7Þ

G 4ð Þ ¼ �3:9843E� 15z41 þ 1:5684E� 16z31 z
3
2 � 1:9188E� 15z31 z

2
2 þ 2:1578E� 11z31 z2�

8:2704E� 12z31 � 1:6752E� 15z21 z
3
2 þ 2:1891E� 14z21 z

2
2 � 1:4947E� 10z21 z2þ

9:15E� 12z21 þ 1:5178E� 17z1 z52 � 4:2105E� 16z1 z42 � 5:4072E� 12z1 z32þ
4:6095E� 11z1 z22 � 1:2318E� 6z1 z2 � 2:1857E� 6z1 � 6:4897E� 17z52þ
2:0362E� 15z42 þ 2:5295E� 11z32 � 2:4669E� 10z22 � 1:5954E� 7z2 þ 4:7618E� 8

ðB:8Þ

G 5ð Þ ¼ 1:4067E� 19z51 � 1:5986E� 18z41 þ 5:2101E� 20z31 z
2
2 � 5:3285E� 19z31 z2�

4:1555E� 15z31 � 4:476E� 19z21 z
2
2 þ 4:9023E� 18z21 z2 þ 1:6962E� 14z21þ

2:6949E� 21z1 z
4
2 � 6:3943E� 20z1 z

3
2 � 1:3549E� 15z1 z

2
2 þ 8:3192E� 15z1 z2þ

6:2799E� 11z1 � 9:473E� 21z42 þ 2:4867E� 19z32 þ 3:6591E� 15z22�
1:6689E� 14z2 � 1:354E� 12

ðB:9Þ

G 6ð Þ ¼ 3:2303E� 18z41 z2 � 1:6519E� 17z41 � 3:7001E� 17z31 z2 þ 2:0263E� 16z31þ
6:6833E� 19z21 z

3
2 � 1:1893E� 17z21 z

2
2 � 1:6801E� 13z21 z2þ

5:1579E� 13z21 � 4:6986E� 18z1 z32 þ 9:2504E� 17z1 z22 þ 9:0746E� 13z1 z2�
2:0694E� 12z1 þ 1:078E� 20z52 � 3:6708E� 19z42 � 1:2899E� 14z32þ
1:9492E� 13z22 þ 5:5885E� 9z2 � 1:4722E� 11

ðB:10Þ

References

[1] M. Grigoriu, Applied Non-Gaussian Processes: Examples, Theory, Simulation, Linear Random Vibration, and MATLAB Solutions, PTR Prentice Hall Upper
Saddle River, NJ, 1995.

[2] P.D. Spanos, B.A. Zeldin, Monte Carlo treatment of random fields: A broad perspective, Appl. Mech. Rev. (1998).
[3] E. Vanmarcke, Random Fields: Analysis and Synthesis, World Scientific, 2010.
[4] Y. Lin, Probabilistic Theory of Structural Dynamics, Krieger Publishing Company, 1976.
[5] I. Elishakoff, Probabilistic Methods in the Theory of Structures, Dover Publications, Mineola, New York, 1999.
[6] J.B. Roberts, P.D. Spanos, Random Vibration and Statistical Linearization (Dover Civil and Mechanical Engineering), Dover Publications, Mineola, NY,

2003.
[7] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach, Courier Corporation, 2003.
[8] J. Li, J. Chen, Stochastic Dynamics of Structures, John Wiley & Sons, 2009.

I. Petromichelakis, Rúbia M. Bosse, I.A. Kougioumtzoglou et al. Mechanical Systems and Signal Processing 153 (2021) 107534

23



[9] M. Grigoriu, Stochastic Systems: Uncertainty Quantification and Propagation, Springer Science & Business Media, 2012.
[10] N. Wiener, The average of an analytical functional and the Brownian movement, Proc. Natl. Acad. Sci 7 (1921) 294–298.
[11] L. Onsager, S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91 (6) (1953) 1505.
[12] S. Machlup, L. Onsager, Fluctuations and irreversible process. ii. systems with kinetic energy, Phys. Rev. 91 (6) (1953) 1512.
[13] L. Tisza, I. Manning, Fluctuations and irreversible thermodynamics, Phys. Rev. 105 (6) (1957) 1695.
[14] D. Falkoff, Statistical theory of irrversible processes: Part i. intergral over fluctuation path formulation, Ann. Phys. 4 (3) (1958) 325–346.
[15] R.L. Stratonovich, On the probability functional of diffusion processes, Selected Transl. in Math. Statist. Prob. 10 (1971) 273–286.
[16] P.C. Martin, E.D. Siggia, H.A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8 (1) (1973) 423.
[17] H.K. Janssen, On a lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties, Zeitschrift für Physik

B Condensed Matter 23 (4) (1976) 377–380.
[18] C. De Dominicis, Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques, J. Phys. Colloques 37 (1976) C1-

247–C1-253.
[19] R. Graham, Path integral formulation of general diffusion processes, Zeitschrift für Physik B Condensed Matter 26 (3) (1977) 281–290.
[20] A. Bach, D. Dürr, B. Stawicki, Functionals of paths of a diffusion process and the onsager-machlup function, Zeitschrift für Physik B Condensed Matter

26 (2) (1977) 191–193.
[21] H. Dekker, A functional stieltjes measure and generalized diffusion processes, Physica A 87 (2) (1977) 419–425.
[22] H. Haken, Generalized onsager-machlup function and classes of path integral solutions of the fokker-planck equation and the master equation,

Zeitschrift für Physik B Condensed Matter 24 (3) (1976) 321–326.
[23] F. Langouche, D. Roekaerts, E. Tirapegui, Functional Integration and Semiclassical Expansions,, vol. 10, Springer Science & Business Media, 2013.
[24] M. Chaichian, A. Demichev, Path Integrals in Physics: Stochastic Processes and Quantum Mechanics, Institute of Physics Publishing, Bristol, U.K., 2001.
[25] H.S. Wio, Path Integrals for Stochastic Processes: An Introduction, World Scientific Pub Co Inc, 2013.
[26] I.A. Kougioumtzoglou, P.D. Spanos, An analytical Wiener path integral technique for non-stationary response determination of nonlinear oscillators,

Probab. Eng. Mech. 28 (2012) 125–131.
[27] I.A. Kougioumtzoglou, P.D. Spanos, Nonstationary stochastic response determination of nonlinear systems: A Wiener path integral formalism, J. Eng.

Mech. 140 (9) (2014) 04014064.
[28] I. Petromichelakis, A.F. Psaros, I.A. Kougioumtzoglou, Stochastic response determination and optimization of a class of nonlinear electromechanical

energy harvesters: A Wiener path integral approach, Probab. Eng. Mech. 53 (2018) 116–125.
[29] A.F. Psaros, I.A. Kougioumtzoglou, I. Petromichelakis, Sparse representations and compressive sampling for enhancing the computational efficiency of

the Wiener path integral technique, Mech. Syst. Signal Process. 111 (2018) 87–101.
[30] A.F. Psaros, Y. Zhao, I.A. Kougioumtzoglou, An exact closed-form solution for linear multi-degree-of-freedom systems under Gaussian white noise via

the Wiener path integral technique, Probab. Eng. Mech. 60 (2020) 103040.
[31] A.F. Psaros, I.A. Kougioumtzoglou, Functional series expansions and quadratic approximations for enhancing the accuracy of the Wiener path integral

technique, J. Eng. Mech 146 (7) (2020) 04020065.
[32] A. Di Matteo, I.A. Kougioumtzoglou, A. Pirrotta, P.D. Spanos, M. Di Paola, Stochastic response determination of nonlinear oscillators with fractional

derivatives elements via the Wiener path integral, Probab. Eng. Mech. 38 (2014) 127–135.
[33] I. Petromichelakis, A.F. Psaros, I.A. Kougioumtzoglou, Stochastic response determination of nonlinear structural systems with singular diffusion

matrices: A Wiener path integral variational formulation with constraints, Probab. Eng. Mech. 60 (2020) 103044.
[34] A.F. Psaros, O. Brudastova, G. Malara, I.A. Kougioumtzoglou, Wiener path integral based response determination of nonlinear systems subject to non-

white, non-Gaussian, and non-stationary stochastic excitation, J. Sound Vib. 433 (2018) 314–333.
[35] I.A. Kougioumtzoglou, A Wiener path integral solution treatment and effective material properties of a class one-dimensional stochastic mechanics

problems, J. Eng. Mech. 143 (6) (2017) 04017014.
[36] J. Nocedal, S. Wright, Numerical Optimization (Springer Series in Operations Research and Financial Engineering), Springer, New York, 2006.
[37] W.W. Adams, P. Loustaunau, An introduction to Grobner bases, American Mathematical Soc. (1994).
[38] W. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Springer Science & Business Media, 2004.
[39] D. Eisenbud, Commutative Algebra: with a View Toward Algebraic Geometry, Springer Science & Business Media, 2013.
[40] D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms. undergraduate texts in mathematics, 1997.
[41] D.A. Cox, J. Little, D. O’shea, Using Algebraic Geometry, vol. 185, Springer Science & Business Media, 2006.
[42] G.M. Ewing, Calculus of Variations with Applications, Dover, New York, 1985.
[43] O.C. Zienkiewicz, K. Morgan, Finite Elements and Approximation, Dover Publications, 2006.
[44] M. Raghavan, B. Roth, Solving polynomial systems for the kinematic analysis and synthesis of mechanisms and robot manipulators, J. Mech. Des. 117

(B) (1995) 71–79.
[45] L. Gonzalez-Vega, F. Rouillier, M. Roy, Symbolic recipes for polynomial system solving, in: Some Tapas of Computer Algebra, Springer, 1999, pp. 34–65.
[46] P.A. Parrilo, B. Sturmfels, Minimizing polynomial functions. Algorithmic and quantitative real algebraic geometry, DIMACS Series Discr. Mathe.

Theoret. Comput. Sci. 60 (2003) 83–99.
[47] B. Buchberger, Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimensionalen polynomideal PhD thesis,

Universitat Insbruck, 1965.
[48] B. Buchberger, Ein algorithmisches kriterium für die lösbarkeit eines algebraischen gleichungssystems, Aequationes Math 4 (3) (1970) 374–383.
[49] A.F. Psaros, I.A. Kougioumtzoglou, I. Petromichelakis, Sparse representations and compressive sampling for enhancing the computational efficiency of

the wiener path integral technique, Mech. Syst. Signal Process. 111 (2018) 87–101.
[50] Petromichelakis I. Psaros, A.F, I.A. Kougioumtzoglou, Wiener path integrals and multi-dimensional global bases for non-stationary stochastic response

determination of structural systems, Mech. Syst. Signal Process. 128 (2019) 551–571.

I. Petromichelakis, Rúbia M. Bosse, I.A. Kougioumtzoglou et al. Mechanical Systems and Signal Processing 153 (2021) 107534

24


	Wiener path integral most probable path determination: A computational algebraic geometry solution treatment
	1 Introduction
	2 Wiener path integral technique overview
	2.1 Wiener path integral representation and most probable path approximation
	2.2 Rayleigh–Ritz solution technique for the most probable path
	2.3 Linear oscillator: A closed-form exact solution case

	3 A Newton’s numerical optimization scheme for Wiener path integral most probable path determination
	3.1 Numerical scheme formulation
	3.2 Convergence analysis aspects

	4 Convexity and convergence to the global minimum of the Wiener path integral most probable path optimization problem: A computational algebraic geometry approach based on Gröbner bases
	4.1 Computational algebraic geometry: Selected basic elements and concepts
	4.2 Algorithmic aspects and mechanization of the technique

	5 Numerical examples
	5.1 Linear oscillator
	5.2 Duffing nonlinear oscillator
	5.3 Nonlinear oscillator with an asymmetric response PDF
	5.4 Nonlinear oscillator with a bimodal response PDF

	6 Concluding remarks
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Positive definiteness of matrix [$]{\bf{Q}}[$]
	Appendix B Computational algebraic geometry approach indicative results
	References


