Mechanical Systems and Signal Processing 153 (2021) 107534

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing =8

journal homepage: www.elsevier.com/locate/ymssp B ‘

Check for
updates

Wiener path integral most probable path determination: A
computational algebraic geometry solution treatment

loannis Petromichelakis ¢, Ribia M. Bosse °, loannis A. Kougioumtzoglou **, André T. Beck "

2 Department of Civil Engineering and Engineering Mechanics, Columbia University, 500W 120th St, New York, NY 10027, United States
b Department of Structural Engineering, Séo Carlos School of Engineering, University of Sdo Paulo, 13566-590 Sdo Carlos, SP, Brazil

ARTICLE INFO ABSTRACT
Afficfe history: The recently developed Wiener path integral (WPI) technique for determining the stochas-
Received 17 July 2020 tic response of diverse nonlinear systems relies on solving a functional minimization prob-

Received in revised form 23 September
2020
Accepted 6 December 2020

lem for the most probable path, which is then utilized for evaluating a specific point of the
system joint response probability density function (PDF). However, although various
numerical optimization algorithms can be employed for determining the WPI most prob-
able path, there is generally no guarantee that the selected algorithm converges to a global

extremum.
Keywords: . ) e . . ..
Path integral In this paper, first, a Newton'’s optimization scheme is proposed for determining the most
Stochastic dynamics probable path, and various convergence behavior aspects are elucidated. Second, the exis-
Nonlinear systems tence of a unique global minimum and the convexity of the objective function of the con-
Grobner basis sidered nonlinear system are demonstrated by resorting to computational algebraic
Numerical optimization geometry concepts and tools, such as Grobner bases. Several numerical examples pertain-

ing to diverse nonlinear oscillators are considered, where it is proved that the associated
objective functions are convex, and that the proposed Newton’s scheme converges to the
globally optimum most probable path. Comparisons with pertinent Monte Carlo simula-
tion data are included as well for demonstrating the reliability of the WPI technique.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Monte Carlo simulation (MCS) has been, undoubtedly, one of the most versatile techniques for addressing stochastic
dynamics problems and for determining response statistics of complex dynamical systems (e.g., [1-3]). Nevertheless, the
associated computational cost can become prohibitive eventually, and thus, there is merit in developing alternative efficient
semi-analytical solution techniques. In this regard, indicative techniques developed over the past few decades include sta-
tistical linearization, stochastic averaging, perturbation approaches, discrete Chapman-Kolmogorov equation schemes, Fok-
ker-Planck equation solution techniques, probability density evolution methods, and polynomial chaos expansions. The
interested reader is directed to various standard books in the field for a detailed presentation (e.g., [4-9]).

Recently, relying on pioneering work by Wiener [10] and on fundamental contributions in the field of theoretical physics
(e.g., [11-23]; see also the books in [24,25] for a broader perspective), a semi-analytical technique based on the concept of
Wiener path integral (WPI) has been developed in the field of stochastic engineering dynamics for determining the stochastic
response of diverse nonlinear structural and mechanical systems (e.g., [26,27]). In fact, the technique, which relies on func-
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tional integration concepts and on calculus of variations tools, exhibits both computational efficiency and satisfactory accu-
racy in evaluating the system joint response probability density function (PDF) (e.g., [28-31]). Further, the WPI technique
exhibits versatility in addressing diverse system behaviors, including hysteresis and fractional derivative modeling (e.g.,
[33,32]), and in accounting for various rather sophisticated descriptions of stochastic excitations [34].

An integral part of the standard implementation of the WPI technique relates to a variational treatment for deriving a
functional minimization problem. Solving this optimization problem yields the most probable path, which is used for eval-
uating a specific point of the joint response PDF (e.g., [31,35]). Clearly, a wide range of numerical optimization schemes can
be employed for determining the WPI most probable path (e.g., [33,36]). However, there is generally no guarantee that the
selected optimization algorithm converges to the global minimum (instead of a local minimum). Of course, it can be argued
that the relatively high accuracy degree exhibited by the WPI technique, based on comparisons with pertinent MCS data in a
plethora of numerical examples (e.g., [28,34]), can be construed as an indication of determining successfully the optimal
most probable path. Nevertheless, it becomes clear that there is a need for pursuing the challenging task of proving the exis-
tence of a unique global minimum and/or the convexity of the objective function corresponding to an arbitrary nonlinear
system under consideration.

In this paper, first, a Newton’s numerical optimization scheme is developed for determining the most probable path. The
rationale relates to the fact that, for the special case of linear systems, the objective function is not only convex, but also
quadratic; and thus, a Newton’s scheme appears to be an ideal choice as it converges in only one iteration to the unique glo-
bal extremum (e.g., [36]). This convergence behavior indicates that a Newton’s scheme can be a suitable choice also for non-
linear systems, since their response behavior can be construed as a perturbation (not necessarily small) from the linear
regime. Further, certain convergence properties of the scheme are derived and discussed. Second, demonstrating the poten-
tial convexity (and thus, the existence of a global extremum) of the functional to be minimized is addressed by resorting to
computational algebraic geometry concepts and tools such as Grobner bases (e.g., [37-41]). Various numerical examples per-
taining to diverse nonlinear oscillators are considered, where it is proved that the associated objective functions are convex,
and that the proposed Newton’s scheme converges to the globally optimum most probable path. Comparisons with MCS-
based estimates are included as well for demonstrating the reliability of the WPI technique.

2. Wiener path integral technique overview
2.1. Wiener path integral representation and most probable path approximation

In this section, the basic elements of a recently developed stochastic response determination technique based on the con-
cept of Wiener path integral are presented for completeness; see also [33,34] for a more detailed discussion. In this regard,
consider a stochastically excited nonlinear multi-degree-of-freedom (MDOF) system, whose governing equation is given by

MX + g(x,%,t) = w(t) (M

In Eq. (1), x = [x;(t)] .., represents the n-dimensional response displacement vector, M denotes the n x n mass matrix con-
sidered to be diagonal according to standard modeling in structural dynamics (e.g., [6]), and g = [g;(x, %, )] eq 1S @n arbitrary
nonlinear n-dimensional vector-valued function, which can account also for hysteretic response behaviors (e.g., [33]). Fur-
ther, w is a white noise stochastic excitation vector process with Ew(t)] =0 and E[w(t)W'(t —T)] = Ds(t), where
D € R™" is a deterministic coefficient matrix.

As shown in [33,34], the joint response transition PDF corresponding to the system of Eq. (1) can be expressed as a func-
tional integral (or WPI) over the space of possible paths with fixed boundary conditions that the response process can follow;
that is,

P&, ty %0, %0, £o) = /C exp (- /t tfﬁ(x,&k)dt)D[x(t)] 2)

{xo.v0t027.21.47 }

where

L(x,%,%) = % (M + g(x,%)]'D "' [M& + g(, )] 3)
denotes the Lagrangian of the system and D[x(t)] represents a functional measure.

However, evaluating analytically the WPI of Eq. (2) is a significantly challenging task. Therefore, various approximations
have been developed in the literature with the most probable path approach being among the most popular ones (e.g., [24]).
Specifically, it is seen that the path maximizing the exponential term in Eq. (2) contributes the most to the determination of
the WPIL. According to calculus of variations (e.g., [42]), this trajectory x.(t) with fixed endpoints, also known as most prob-
able path, satisfies the extremality condition

ot
é/fﬁ(x,k,k)dtzo 4)
to
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which leads to the Euler-Lagrange (E-L) equations

oL 9oL & oc .
8_&_&6_&4-?8—%70,]717...,11 ()

in conjunction with the set of boundary conditions
Xi(to) = Xj0 Xi(to) = Xj0
Xi(tr) = X5 Xi(tr) = Xiy

Next, solving Egs. (5) and (6) yields the n-dimensional most probable path x.(t), and thus, a specific point of the system
response transition PDF is determined as [27]

(6)

b
p(vakfv tf‘x07x07 tO) ~ Cexp <_/ L(xoxukc)dt) (7)
to

where C is a normalization constant. Although it is clear by comparing Eqs. (2) and 7 that only one trajectory (i.e., the most
probable path x.(t)) is accounted for in the evaluation of the WPI, it has been shown in various diverse applications (e.g.,
[28,29,32-35]) that the accuracy degree exhibited by this kind of approximation is relatively high. In passing, note that
the accuracy degree of the WPI technique has been further enhanced recently by considering a quadratic approximation
to account also for fluctuations around the most probable path; see [31] for details.

2.2. Rayleigh-Ritz solution technique for the most probable path

In general, the boundary value problem (BVP) of Egs. (5) and (6) is not amenable to an analytical solution treatment. In
this regard, the following Rayleigh—Ritz numerical solution scheme can be employed in conjunction with the variational
problem

t
minimize J(x, & &) — / L(x, &, ®)dt (8)
to
for determining the most probable path x.(t) (see also [33,43]). In other words, the extremality condition of Eq. (4) can be
alternatively expressed as a direct functional minimization problem in the form of Eq. (8). Next, x(t) is approximated by
X(t) ~ X(t) = y(t) + Zh(t) 9)

where y(t) is appropriately selected to satisfy the boundary conditions, and the trial functions h(t) = [h(t)],,; vanish at the
boundaries, i.e, h(ty) = h(ty) = 0;Z € R™" is a coefficient matrix and L is the number of trial functions considered. Utilizing a
vectorized form of Z, Eq. (9) becomes

x(t) = y(t) + H(t)z (10)
with
A Kty 0o ... 0
ZT T
z=|*| er™and H(t) = ? h‘(t) h ? 1)
2{ 6 6 hT.(t)

where Z; denotes the I row of matrix Z and H(t) represents an n x nL time-dependent matrix. Clearly, there is a wide range
of choices for functions y and h. In the ensuing analysis, the Hermite interpolation polynomials

3
Yit) =D ajtt (12)
k=0

are adopted, i.e., y(t) = [¢;(1)] 2 Where the n x 4 coefficients ;. are determined by the n x 4 boundary conditions in Eq. (6).
For the trial functions, the shifted Legendre polynomials given by the recursive formula

_2q+1 zt*to*tf _q . B
tan () =2 (P2 ) 0 e a =1 L (13)

are employed, which are orthogonal in the interval [to, t;], with ¢o(t) = 1 and ¢4 (t) = (2t — to — t;)/(t; — to). In this regard, the
trial functions take the form

hi(t) = (t — to)* (t — t) () (14)
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where the factor (t — to)z(t — tf)2 multiplies the I"-order Legendre polynomial 4(t) to yield the I" trial function h(t). Note
that hy(t) is a polynomial of order I+ 4 and vanishes at the boundaries. Clearly, each component %;(t) of ¥(t) in Eq. (9) is a
polynomial of order up to L + 4 in t.

It can be readily seen that a significant advantage of the Rayleigh-Ritz solution technique relates to the fact that the vari-
ational problem of Eq. (8) degenerates to an ordinary minimization problem of a function that depends on a finite number of
variables (e.g. [28,33,35,43]). Specifically, the functional 7, dependent on the n functions x(t) (and their time derivatives), is
cast in the form

J@) = T (% &%) (15)
which depends on a finite number of nL coefficients z. The corresponding optimization problem takes the form
minj(z) (16)

whereas the extremality condition in Eq. (4) is replaced by the first-order optimality condition
V]z) =0 (17)

Eq. (17) represents a set of nL nonlinear algebraic equations to be solved numerically. Once the solution z* of the opti-
mization problem in Eq. (16) is obtained, the most probable path is determined via Eq. (10).

2.3. Linear oscillator: A closed-form exact solution case

It has been shown recently in [30] that, for the special case of linear systems under Gaussian white noise, the WPI most
probable path approach summarized in Section 2.1 is amenable to analytical treatment. In fact, the E-L Egs. (5) and (6)
become linear and can be solved analytically for the most probable path, which is substituted into Eq. (7) yielding a
closed-form expression for the joint response transition PDF. Most importantly, it has been shown in [30] that the expression
of Eq. (7) corresponding to linear systems is exact, and involves no approximations.

Nevertheless, despite the available exact analytical solution for the joint response PDF derived in [30], the Rayleigh-Ritz
numerical solution approach discussed in Section 2.2 is also considered in detail in the following for the case of linear sys-
tems. This is done intentionally as it provides the motivation and elucidates the rationale for developing a Newton’s numer-
ical optimization scheme in Section 3. Specifically, consider a linear system whose dynamics is described by Eq. (1) with

g(X,X,t) = gy (X, X) := CX + Kx (18)

where C and K denote the system damping and stiffness matrices, respectively. In this regard, the left hand-side of Eq. (1) can
be represented by the linear differential operator G[-] defined as
* L0
=M—+C_+K 1
G=M_5+Co + (19)

Next, for simplicity and without loss of generality, consider D = 27S,l, where I denotes the identity matrix. Substituting
the expansion of Eq. (10) into the Lagrangian of Eq. (3), and taking into account Eq. (19), yields

L&) % 1(2.0) = 5 5 [GY] + GHZIGY] + GHlz (20)

Further, expanding Eq. (20) and substituting into Eq. (15), the objective function takes the form
B 1 1, T
(&) =@ = 5 [, 7QE 407 4 ¢ 1)

where the symmetric matrix Q € R"™™ is given by

Qly :/fZ[G[H”kj[G[HHﬂdtv kl=1,.,nL (22)

o j=1

the vector b € R™ is determined as

b), = / 'S (G (GHdt, 1= 1,..,nL (23)

=1

and the constant term c (i.e., independent of z) is equal to

11 b T
€= 9ns, | ST G 24)
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Clearly, for the optimization problem of Eq. (16), the multiplicative factor 27}—50 and the constant term c in the definition of

the objective function of Eq. (21) do not affect the solution z*. Thus, Eq. (16) becomes, equivalently,
min %ZTQZ +b'z (25)

Note that the objective function of Eq. (21) (or, alternatively, Eq. (25)) is not only quadratic, but also convex for positive
definite symmetric matrices Q and its unique global minimizer is given by

z=-Q'b. (26)
Substituting this result into Eq. (10) yields a closed-form expression for the most probable path, i.e.,
X(t)=y(H) ~HH)Q'b (27)

Further, it is worth pointing out that the time-dependent matrix Q is a function only of the initial and final time points
(toand t), and is independent of the boundary values x(to), X(to), ¥(t;) and X(t;); the latter are involved only in the evaluation
of vector b through the Hermite polynomials y (see Eq. (23)). The interested reader is also directed to Appendix A, where, for
tutorial effectiveness, the positive definiteness of matrix Q is demonstrated for the case of a single-degree-of-freedom
(SDOF) linear oscillator.

Finally, it has been shown in this section that a Rayleigh-Ritz numerical solution treatment for determining the most
probable path yields an objective function to be minimized, which is both quadratic and convex for linear systems. Obvi-
ously, for such cases a Newton’s optimization scheme for determining the most probable path converges to the global extre-
mum in only one iteration [36]. Thus, taking into account that nonlinear response behaviors can be construed generally as
perturbations (not necessarily small) from the linear regime, it can be argued that a Newton’s optimization scheme (such as
the one developed in the following section) serves as a natural choice for addressing general cases involving arbitrary
nonlinearities.

3. A Newton’s numerical optimization scheme for Wiener path integral most probable path determination
3.1. Numerical scheme formulation

In this section, a Newton'’s iterative algorithm is developed for solving the optimization problem in Eq. (16) corresponding
to an arbitrary nonlinear oscillator. In this regard, as highlighted in Section 2.3, the rationale for developing a Newton'’s
scheme relates to the form of the objective function of Eq. (21) referring to linear systems, which is both convex and quad-
ratic; and thus, a Newton’s scheme appears to be an ideal choice as it converges in only one iteration to the unique global
extremum [36]. This convergence behavior suggests that a Newton’s scheme can be a suitable choice also for nonlinear sys-
tems governed by Eq. (1) with

g("‘:*v t) = 8lin (X7 X) + 8gnl(xv X) (28)

where ¢ > 0 is a parameter indicating the intensity of the nonlinearity degree and g,,(x, X) is an arbitrary nonlinear function.
Obviously, in the limiting case, as ¢ — 0 the nonlinear function g(x, %, t) becomes linear, i.e., g — g, (see also Eq. (18)), and
the objective function in Eq. (16) approaches the quadratic form of Eq. (21), i.e., J(z) — J;,(2). This asymptotic behavior of J(z)
suggests that a suitable optimization scheme relates to starting from an initial point z(® and to successively minimizing a

quadratic function ]';, which approximates J locally at z¥, i.e.,

Ji@) =J(z%) + V] (zV) (z - 2¥) +% (z-2%)' V%) (29) (z - 2¥) (29)

In Eq. (29), VJ and V7] denote the gradient vector and the Hessian matrix of J, respectively. The next point z*+!) of the
iterative scheme is obtained by minimizingjg(z) and setting V] = 0. This yields

Zk+1) — k) _ [VZJ(Z(]())] -1 vj(z(k)) (30)

which is the update formula of the standard Newton’s iterative optimization scheme (e.g., [36]).
It is worth noting that for the case of linear oscillators, i.e., € = 0, and considering Eq. (21), the Hessian matrix becomes

V%] = Q, which is constant with respect to z. Thus, the update formula in Eq. (30) becomes
260 =20 _Q'[Qz% +b] ' =-Q b (31

which is equal to the closed-form solution derived in Eq. (26). In other words, as anticipated for linear systems, the Newton'’s
optimization scheme converges to the exact solution in only one iteration for any arbitrarily selected starting point z(®. Fur-
ther, the optimal (for linear systems) point z* = —Q ~'b is expected to be a reasonable choice to be used as a starting point in
the optimization scheme for the general case of nonlinear systems.

5



I. Petromichelakis, Riibia M. Bosse, L.A. Kougioumtzoglou et al. Mechanical Systems and Signal Processing 153 (2021) 107534
3.2. Convergence analysis aspects

In this section, certain convergence analysis aspects are elucidated pertaining to the herein proposed Newton’s scheme in
conjunction with the general class of dynamical systems governed by Eqgs. (1) and (28).

Specifically, as shown in [36], provided that the Hessian matrix V?J is Lipschitz continuous in the neighborhood of the

solution z* and that the initial point z® is sufficiently close to z*, the Newton’s iterative scheme given by Eq. (30) converges
to z* at a quadratic rate, i.e.,

-1
2~z <LI[ V@) e - 2 ) 52

where L is the Lipschitz constant of V?](z) for z near z, i.e., L is a positive real constant defined as

IV?](z2) = V(21|
llz2 — zi]]

<L (33)

for all z; and z; in a neighborhood of z*.
Next, substituting Eq. (28) into Eq. (3), and considering Eq. (21), the gradient vector of J(z) becomes

V)(2) = Qz+ b+ eVE, (2) + 5 VEu(2) (34)

and the Hessian matrix of J(z) takes the form

g2

V(2)=Q +eVig(2) + 5 Vg, (2) (35)
where
& x 2 T Y
g.(2) = /t [Mi + Cx 1 K| g, (3 %) de (36)
0
and
gl T
£:(2) = [ gu(%%) gu( &)dr (37)
0
Further, substituting Eq. (35) into Eq. (32) leads to
* 82 ok 7] %
240 — 27| < L|| {Q +eVig(z) + jvzgz(l )| Iz -z (38)

Moreover, substituting Eq. (35) into Eq. (33) yields

||3V2g1 (22) +%V2g2(22) - szgl (z1) - %Vzgz(zl)”
lz2 =zl

<L (39)

Next, applying the triangle inequality to the left hand-side of Eq. (39) leads to

2 2
6281 (22)+5 V285 (22)-6V81 (21)-5 Vg (21) |

llz2—z1]| (40)
V21 (22)-V2g1 (20l | &2 V&2 (22)-Vgr (2l &
&z T3 Tz Seli+5Lh

N

where L; and L, represent Lipschitz constants of Vg, (z) and Vg, (z), respectively, and are independent of ¢. Further, con-
sidering Egs. (39) and (40), it is readily seen that the term &L, +%L2 represents a Lipschitz constant of V2](2) for z in the

-1
neighborhood of z*, which decreases with decreasing €. Also, as ¢ — 0 the term || [Q+ eVig,(z)) +%V2g2(z*)] | in Eq.

(38) approaches the constant positive term ||Q '|| (see also Appendix A for the positive definiteness of Q). Thus, as antici-
pated, the convergence rate shown in Eq. (38) is increasing for decreasing nonlinearity degree. This is demonstrated further
in the numerical examples of Section 5.

Finally, it is important to note that although it has been shown in Section 3 that a Newton’s optimization scheme for
determining the most probable path appears to be a suitable choice, the convergence rate shown in Eq. (38) can be construed
as local (see also [36]). In other words, there is no guarantee about existence and convergence to a global minimum. In fact,
proving the potential convexity of J(z) (and thus, the existence of a global extremum) is addressed in the following section by
resorting to computational algebraic geometry concepts and tools such as Grobner bases.

6
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4. Convexity and convergence to the global minimum of the Wiener path integral most probable path optimization
problem: A computational algebraic geometry approach based on Grobner bases

In this section, a computational algebraic technique based on Grobner bases is developed, which is capable of determining
the entire set of solutions corresponding to an algebraic system of coupled multivariate polynomial equations. Thus, for a
wide range of dynamical systems (e.g., systems with a nonlinearity function in Eq. (28) of polynomial form), not only the
entire set of solutions corresponding to the first-order optimality condition VJj(z) = 0 in Eq. (17) can be determined, but also
convexity of J(z) is implied if the technique yields only one solution. In the latter case, clearly, the Newton’s optimization
scheme of the previous section converges to the same global minimum determined by the herein proposed computational
algebraic technique. In fact, it is noted that, in its standard implementation, the technique determines the values of J corre-
sponding to all real solutions of the system in Eq. (41), i.e., ] is evaluated on the entire set of points defined by VJ(z) = 0. Of
course, it is possible to extend the technique for determining the actual solutions z* as well (and not only the values J(z*))
(e.g., [41]). However, this implies significant additional computational cost. In this regard, coupling the Newton'’s optimiza-
tion scheme of Section 3 with the herein proposed computational algebraic technique for showing that the z* provided by
Newton’s scheme corresponds, indeed, to the global minimum of J(z), appears to be an efficient alternative. Indicatively, the
interested reader is also directed to papers [44-46] and to books [37-41] for a more detailed presentation of the topic.

Next, considering a polynomial nonlinearity function g,; in Eq. (28) of degree d, the term g, (z) in Eq. (36) becomes a mul-
tivariate polynomial of degree d + 1 in p := nL variables, whereas the term g,(z) in Eq. (37) becomes a multivariate polyno-
mial of degree 2d in p variables. Therefore, the objective function J(z) takes the form of a multivariate polynomial of degree
2d in p variables and the first-order optimality condition of Eq. (17) leads to an algebraic system of p equations of the form

fi(z1,....25) =0
: (41)
fs(z1,...,2,) =0

In Eq. (41), each f; is a polynomial of degree at most 2d — 1 with coefficients in R. In this regard, the convexity of the objective
function J(z) can be proved by showing that the system of Eq. (41) has a unique real solution. Also, s = p is considered in the
ensuing analysis, although this is not a necessary requirement for the technique (e.g., [41]).

4.1. Computational algebraic geometry: Selected basic elements and concepts

In this section, fundamental results related to computer implementations of algebraic geometry concepts are presented
for determining the entire set of solutions of Eq. (41) in an algebraic symbolic manner. In the following, K[z, ...,z,] denotes
the polynomial ring over the field I, which can be construed as the set of all polynomials in p variables with coefficients in K.
Further, an ideal I is a subset of the polynomial ring, usually generated by a finite collection of polynomials as
I={f,....fo={>i1hfi | hi,....hs € K[z1,...,2,] }. In this regard, an arbitrary polynomial f € I vanishes on any solution
of the polynomial system defined by f4,...,f, (see Eq. (41)). The entire set of solutions of Eq. (41) is referred to as the affine
variety V(f,,....f,), and thus, for I = (f,,...,f,) it holds V(f,....f,) = V(I). The interested reader is also directed to standard
books in the ﬁelds of algebraic geometry and commutative algebra [37-41] for further details and definitions of the related
concepts.

First, defining a precise monomial order denoted by > is a prerequisite for the ensuing analysis. Indicative standard
monomial orders include the lexicographical order (lex), the graded lexicographical order (grlex) and the reverse graded lex-
icographical order (grevlex). Following the selection of an order >,LT(f) is defined as the leading term of a polynomial

f €K[z,...,z] with respect to the order >. Similarly, LM(f) denotes the leading monomial of f, i.e., the monomial of
LT(f). Moreover, for an ideal I C K[z, ..., z,],LT(I) denotes the ideal generated by the leading terms of every element in I,
i.e, LT(I) = (LT(f)If € I). Also, for an 1dea1 I=(f,...,fs), the following property is satisfied; that is,

(LT(f3), ..., LT(fy)) € {LT(D) (42)

Moreover, the degree of a polynomial, denoted as deg(f), is defined as the maximum among the sums of powers of all mono-
mials in f and is independent of the monomial order.

Next, a division algorithm is presented, which can be construed as a multivariate generalization of the Euclidean division
of univariate polynomials (e.g., [41]).

Definition 4.1 (Division Algorithm). Let > be a monomial order and F = {f,...,f,} be an ordered s-tuple of polynomials in
K[z1,...,2p]. Then, every f € K[zy,...,z,] can be written as

f=afi+.. . +qf+r

where q;,r € K[z,...,2,], and either r = 0, or r is a linear combination of monomials, none of which is divisible by any of

LT(f])v ce 7LT(fs)
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It is noted that not only different monomial orders, but also different arrangements of the f;’s lead, in general, to different
g;'s and r. Nevertheless, in the latter case, it is possible to use the Division Algorithm for dividing polynomials f € K[z, ...,z,]
by s-tuples of polynomials F = {f,...,f,}, yielding unique remainders r, unaffected by the arrangement of the f;’s in F. This
leads to the concept of a Grobner basis.

Definition 4.2 (Grobner basis). Define a monomial order > on K|zi,...,z,] and let I C K[z1,...,2,] be an ideal. Next, two
equivalent definitions for a Grobner basis are presented (see also [40]).

1. A finite subset G = {g;,...,g,} of I is a Grobner basis if
(LT(g1); - LT(ge) = (LT(I))

2. A Grobner basis for I (w.r.t. >) is a finite collection of polynomials G = {g,,...,g;} C I with the property that for every
f € LLT(f) is divisible by LT(g;) for some i.

The construction of a Grébner basis G for the ideal I = (f,,...,f;), provided an arbitrary generating set {f,...,f}, can be
achieved by Buchberger’s algorithm (e.g., [41,47,48]), and in this case the property I = (f,,....f,) = (g,...,&,) holds. It is
noted that a Grébner basis G = {g;,...,g;} of I € K[z,...,z,] is not unique for a given monomial order >. Also, division
of any f € K[zy,...,z,] by G using the Division Algorithm, yields a representation in the form

f=ag+.. . +aqg+f° (43)

In the above representation, although the g;’s are non-unique elements of ], (i.e., they depend on the arrangement of the g;'s
in G), the remainder f¢ is unique for a given >. Further, f¢ is not divisible by any LT(g;), and thus, it is not divisible by any
element in LT(I). In this regard, f¢, represents a uniquely determined normal form for modulo I, and is given as a linear com-

bination of the monomials x* ¢ (LT(I)), where x% = z{'z5? ... z% for some n-tuple a = (as,...,a,) of non-negative integers.
Furthermore, the remainders f¢ and g° generated by the divisions of polynomials f,g € I C K[z,...,z,] by a Grobner basis,
respectively, exhibit the following properties (e.g., [41]), i.e.,
fele=f¢=0 (44)
f=g=f-gel (43)
fo+gt=f+g (46)
WG —fFg° (47)

Next, the uniqueness of the remainder f¢ determined by division of a polynomial f € K[z,...,z,] by a Grébner basis G of
Ic K[z,...,z,] enables the definition of the coset [f].

Definition 4.3 (Coset). Given f € K[z1,...,2,], the coset [f] is defined as the set

fl=F+I={f+h|heD
In essence, the coset [f] groups together all polynomials in K[z, ..., z,] that yield the same remainder when divided by G.
Hence, this implies a one-to-one correspondence between remainders and cosets (f¢ < [f]), and thus, f¢ can be construed as
a representative of its coset [f]. Next, the quotient ring K[z, ...,z,]/I is defined formally, which represents the set of all
cosets of polynomials in K[zy,...,z,] with respect to an ideal I € K[zi,...,z,].

Definition 4.4 (Quotient Ring). The quotient ring K[z1,...,z,]/I is defined as the set

Klzi,....25]/I={[f] | f e K[z1,..., 2]}
According to [41], Egs. (46) and (47) for the remainder apply also on K[zi,...,2,]/I, i.e., f¢+g°« [f]+[g] and

ensuing analysis.
It is important to note that the remainders f¢ are linear combinations of the monomials
B={x"|x" ¢ LT(I)} (48)
which form a basis of A (also known as the basis of standard monomials in the literature). The role of algebra A in obtaining
the entire set of solutions of Eq. (41) is catalytic. However, an important requirement relates to A being finite-dimensional,
which is ensured by the following theorem; see also [41] for a detailed proof.

Theorem 1 (Finiteness Theorem). Let IC K[z1,...,2,]| be an ideal. Then, the algebra

8
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A=Klz,...,z]/I

is finite-dimensional, if and only if, the variety V(I) C K" is a finite set.
Next, considering K = C,f € C[z;,...,z,] andI C C[zy,...,Z,], the multiplication defined in Eq. (47) can be used to define
a linear map my from the algebra A = C[z,,...,z,]/I to itself. Specifically, for [g] € A,m; : A — A is defined as

me((g) =[f]- gl =1f-gleA (49)

Relying on the vector space structure of the algebra A, it can be shown that my is, indeed, a linear map [41]. Further, assuming
that the system of polynomial equations in Eq. (41) has a finite number of solutions, Theorem 1 implies that A is a finite-
dimensional algebra. This, enables the representation of the linear map m; by a matrix My associated with a basis of A. This
is precisely the basis B of standard monomials defined in Eq. (48). More importantly, Theorem 2 shows that the multiplica-
tion matrix My can be utilized to evaluate f on V(I); see [41] for a detailed proof.

Theorem 2. Let I C Clzi,...,z,] be a zero-dimensional ideal and A = C|z1, ... ,zp] /1. Further, let f € C[zy,...,2,] with My being
the multiplication matrix corresponding to the linear map my : A — A defined in Eq. (49). Then, the eigenvalues of My are equal to
the values of f on V(I).

In other words, according to Theorem 2, if the system in Eq. (41) has a finite number of y solutions (i.e., V(I) is a finite set
of size p1), substituting these solutions into any polynomial f € C[zy,...,z,] yields u values that are equal to the eigenvalues
of My. In passing, it is worth noting that the (Strong) Nullstellensatz, which is a consequence of Hilbert’s original result and is
used in the proof of Theorem 2, is of paramount importance to efforts attempting to associate ideals I with the corresponding
varieties V(I). In this regard, it can be argued that it provides the tools for establishing a “dictionary” between geometry and
algebra [41].

It is important to note that matrix My can only be defined if the standard basis B of Eq. (48) is finite. This is true if the
variety V(f,,...,f,) is a finite set, i.e., the system of polynomial equations in Eq. (41) has a finite number of u solutions in
C. Thus, it becomes clear that the total number u of (complex) solutions of the system in Eq. (41) is equal to the number
of monomials in the standard basis B, i.e., it = length(B). If f is a dense polynomial of even degree 2d, then it follows from
Bézout’s Theorem that u = (2d — 1)" [46].

4.2. Algorithmic aspects and mechanization of the technique

The steps for determining the multiplication matrix M; of an arbitrary f € K[z,...,z,] corresponding to the system of
polynomials in Eq. (41) are presented in Algorithm 1, which is based on the following three main subroutines:

e Groebner (f;,...,f,): This subroutine computes a Grébner basis G = {g,, ..., g} of the ideal generated by f,,...,f, based
on Buchberger’s algorithm (e.g., [47,48]). The implementation can be found in most symbolic mathematical computation
languages (see for instance gbasis(.) built-in function in Matlab).

e StandardBasis(G): This subroutine computes the basis of standard monomials B defined in Eq. (48) corresponding to
the Grébner basis G = {g;,...,&,}. Indicatively, B is constructed by selecting all monomials that are not divisible by LT(g;)
foranyi=1,...,t.

e NormalForm(h,G): This subroutine computes the unique remainder of the division of an arbitrary polynomial h by the
Grobner basis G via the Division Algorithm in Definition 4.1. The column vector of coefficients of this remainder with
respect to basis B, is denoted as [NormalForm(h,G) |p. The interested reader is directed to [45] for an indicative imple-
mentation in a symbolic language system.

Algorithm 1. MultMatrix(f,f;,....fs) - Computation of multiplication matrix My

Input: f.f,....fi e R[z1,...,7)]
Output: My

1: G= Groebner(fy,....f)

2: B= StandardBasis (G)

3: u = length(B)

4: Initialize My as an empty p x f matrix

5:fori=1to udo

6: My(:,i) = [NormalForm(B(i) - f,G)]zg >Computation of the i-th column of My
7: end for

8: return My
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Finally, consider the optimization problem of Eq. (16) and set

J = minj(2) (50)

zeR"
Then, J* is equal to the smallest real eigenvalue of matrix M; representing the linear map mj, : A — A (defined in Eq. (49))
with respect to the monomial basis B (defined in Eq. (48)), where A = C|z,...,2,]/I with I = <%%> In other words,

the globally minimum value of J(z), as well as all its values on its critical points (i.e., points where V] = 0), can be found
by determining matrix M;. In passing, it is noted that the graded lexicographical order

>o>xsx > x> > x> 1 (51)

is considered in the following numerical examples.

5. Numerical examples

In this section, various numerical examples pertaining to oscillators with diverse nonlinear behaviors are considered for
demonstrating the reliability of the WPI technique to evaluate the joint response PDF, in conjunction with the proposed
Newton’s scheme for determining the most probable path. Further, the herein developed Grobner basis approach is also
employed for demonstrating the existence of a unique solution (and thus, the convexity of the objective function) of the most
probable path optimization problem.

Furthermore, according to the standard numerical implementation of the WPI technique, the evaluation of the joint
response PDF of Eq. (7) at a given time instant involves the discretization of the PDF effective domain into N*" points (where
N is the number of points along each dimension), and thus, requires the solution of N*" BVPs of the form of Eqgs. (5) and (6)
(or, equivalently, Eq. (17)). Clearly, this leads to an exponential growth of the computational cost as a function of the dimen-
sionality n of the system. This limitation of the brute-force implementation of the WPI technique has been addressed in
[49,50] by employing multi-dimensional function approximation techniques in conjunction with compressive sampling con-
cepts and tools for reducing drastically the total number of required BVPs to be solved numerically. To provide an indicative
comparison in terms of computational cost between MCS and a brute-force implementation of the WPI technique, and con-
sidering n =1 and N =31 in the following examples, the joint PDF obtained based on the solution of 312 = 961 BVPs
requires approximately 10 s, whereas a MCS-based PDF estimate using 10,000 realizations is obtained in approximately
1 h on the same computer.

5.1. Linear oscillator

Consider a SDOF linear oscillator whose governing equation is a scalar version of Eq. (1), i.e.,
mxX + cx + kx = w(t), (52)

where m =5,c=0.2,k =1, and E(w(t)w(t + 7)) = 21Spd(T) with S = 0.5.

As pointed out in Section 3.1, for linear systems the Newton’s optimization scheme converges to the exact solution
z- = —Q 'b in only one iteration for any arbitrarily selected starting point z©. In this regard, for an indicative final time
instant t; = 1s and for boundary conditions (x(0),%(0),x(tr),x(t;)) = (0,0,-0.5,-1.0), the objective function of Eq. (21) is
shown in Fig. 1 by utilizing L = 2 trial functions. Further, as also stated in Section 3.1 and proved in Appendix A, it is readily
seen that the objective function J(z) of Eq. (21) is convex, and thus, the Newton’s scheme converges to the exact optimal solu-
tion z- = —Q 'b = (0.0173,0.00014) in a single iteration starting from the arbitrarily chosen point z© = (50, 50). Further,
employing the Grobner basis approach developed in Section 4 (see also Appendix B) yields a single solution and the corre-
sponding objective function value becomes J(z*) = 4.4204, which coincides practically with the estimate based on Newton’s
scheme.

Finally, utilizing a brute-force discretization of the PDF effective domain (e.g. [33]), the joint response PDF at a specific

time instant is determined via the solution of N> = 961 boundary value problems. In Fig. 2, the corresponding marginal
response displacement and velocity PDFs at various time instants are plotted. It is shown that the WPI-based estimates uti-
lizing Newton’s scheme coincide with the estimates based on the Grébner basis approach. Comparisons with MCS data
(10,000 realizations) are included as well demonstrating the high accuracy degree exhibited by the WPI technique.

5.2. Duffing nonlinear oscillator

In this example, consider a SDOF Duffing nonlinear oscillator whose governing equation is a scalar version of Eq. (1), i.e.,
mx + cx + kx + £g,(x,x) = w(t) (53)

where

10
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Fig. 1. Most probable path optimization problem objective function using L = 2 trial functions and corresponding to a linear oscillator under white noise
(tr = 1s,x(t;) = —0.5,%(t;) = —1.0). The Newton’s optimization scheme iterations are also included.
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Fig. 2. Response displacement and velocity PDFs at various time instants corresponding to a linear oscillator under white noise. Comparisons between WPI-

based estimates utilizing the Newton’s scheme and the Grébner basis approaches for the most probable path determination. MCS-based estimates are also
included (10,000 realizations).

gu(x,%) = kx’ (54)

In Egs. (53) and (28), the same parameters values are used for m,c,k and Sy as in Example 5.1.

Next, for an indicative final time instant t; = 1s and for boundary conditions (x(0),%(0),x(tf),x(t;)) = (0,0,-0.5,-1.0),
the objective functions J(z) of the most probable path optimization problem for ¢ = 1,10, and 20 are shown in Figs. 3-5,
respectively. The iteration points of the Newton'’s scheme are also included in the figures corresponding both to an arbitrarily
selected starting point (i.e., z® = (50, —50)), and to a starting point equal to the exact optimum z© = z;, = —Q'b corre-
sponding to the associated linear system (i.e., ¢ = 0). Clearly, as pointed out in Section 3.1, z? = z;;, is shown to be a reason-
able choice as a starting point in the optimization scheme, since for all cases the number of iterations is significantly smaller
than the respective one based on an arbitrarily selected starting point. Also, as dictated by Eq. (38), it can be readily seen that
the convergence rate increases for smaller values of the nonlinearity parameter &. Numerical results related to the iterations
of the Newton’s scheme are summarized in Table 1, which includes also results based on the Grébner basis approach. It is
seen that, for all nonlinearity parameter values, the Grébner approach yields a single solution and the corresponding objec-
tive function value coincides practically with the estimate based on the Newton’s scheme (see also Appendix B). This proves
the convexity of the objective function and that the Newton’s scheme converges, indeed, to the global minimum.

In Fig. 6, the WPI-based marginal response displacement and velocity PDFs are plotted for various nonlinearity magnitude
values at two indicative time instants. It is shown that the WPI-based estimates utilizing the Newton’s scheme coincide with

11
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Fig. 3. Most probable path optimization problem objective function using L = 2 trial functions and corresponding to a Duffing oscillator with ¢ = 1.0 under
white noise (t; = 1s,x(t;) = —0.5,%(t;) = —1.0). The Newton’s optimization scheme iterations are also included.
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Fig. 4. Most probable path optimization problem objective function using L = 2 trial functions and corresponding to a Duffing oscillator with & = 10 under
white noise (t; = 1s,x(t;) = —0.5,%(ty) = —1.0). The Newton’s optimization scheme iterations are also included.

the estimates based on the Grébner basis approach. Comparisons with MCS data (10, 000 realizations) are included as well
demonstrating the high accuracy degree exhibited by the WPI technique.

12



L. Petromichelakis, Riibia M. Bosse, .A. Kougioumtzoglou et al. Mechanical Systems and Signal Processing 153 (2021) 107534

0.02 0.06 0.1 |
- @ Opt. iterations: 2V = (50, —50) x10
Opt. iterations: 2z = z;, 2
1.5
1
0.5

Opt. iterations: z(% = (50, —50)
Opt. iterations: 2 = z;,

-50 -25 0 25 50
2 2 50 -50 -

Fig. 5. Most probable path optimization problem objective function using L = 2 trial functions and corresponding to a Duffing oscillator with ¢ = 20 under
white noise (t; = 1s,x(t;) = —0.5,%(t;) = —1.0). The Newton’s optimization scheme iterations are also included.

Table 1
Convergence rate and objective function values for a Duffing oscillator.
c=10 &¢=10 =20 &=100
I —z| J(zY) e —z| J(zY) 2 - 27| 1Y) 2% -z J(&")
Newton’s numerical optimization scheme - Arbitrarily selected starting point z(®)

70.697 1.26E4 70.685 8.23E3 70.671 1.30E4 70.138 8.81E4
37.666 4.14E3 44.568 3.97E3 50.835 5.26E3 58.718 2.34E4
7.735 1.92E2 18.447 9.96E2 38.458 2.81E3 49.450 6.92E3
4.63E-2 4.458 12.425 4.59E2 29451 1.83E3 40.993 2.52E3
5.37E-7 4.452 3.571 45.024 9.694 2.76E2 31.862 1.10E3
1.08E-16 4.452 2.93E-2 4,745 3.467 43.157 23.047 6.10E2
1.56E-6 4.743 5.588E-2 5.096 17.922 4.28E2
7.03E-15 4.743 1.08E-5 5.086 14.318 1.04E2
6.44E-13 5.086 5.787 28.117

2.459 8.534

0.118 8.491

1.32E-4 8.491

2.97E-10 8.491

1.41E-15 8.491

Newton’s numerical optimization scheme - Starting point z® = —Q 'b corresponding to a linear oscillator with ¢ = 0

5.24E-3 4.452 5.29E-2 4.751 1.07E-1 5.120 5.74E-1 9.446

8.49E-9 4.452 8.49E-6 4.743 6.77E-5 5.086 7.68E-3 8.491

2.15E-13 4,743 2.617E-11 5.086 1.11E-6 8.491

2.28E-14 8.491

Computational algebraic geometry approach based on Grobner bases
4452 4.743 5.086 8.490

5.3. Nonlinear oscillator with an asymmetric response PDF

In this example, consider a SDOF nonlinear oscillator with an asymmetric response PDF, whose governing equation is
given by Egs. (55) and (56), i.e.,

MR + CX + kX + £8,(X, %) = w(t) (35)
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Fig. 6. Response displacement and velocity PDFs at various time instants corresponding to a Duffing oscillator under white noise. Comparisons between

WPI-based estimates utilizing the Newton’s scheme and the Grébner basis approaches for the most probable path determination. MCS-based estimates are
also included (10,000 realizations).

where
Zu(x,%) = ax? + x° (56)
In Eq. (55) and (56), the parameters values used are, m = 1,¢ = 0.2,k = 1, Ew(t)w(t + 1)) = 27Sed(T) with So = 0.05, and a is
constant.
Further, for an indicative final time instant t; = 1s and for boundary conditions (x(0),x(0),x(t),x(t;)) = (0,0,-0.3,-0.8),
the objective functions J(z) of the most probable path optimization problem for ¢ =1anda=1.5,¢=10and a = %}_", and
e¢=50and a = % are shown in Figs. 7-9, respectively. The iteration points of the Newton’s scheme are also included in the
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Fig. 7. Most probable path optimization problem objective function using L = 2 trial functions and corresponding to a nonlinear oscillator with an
asymmetric response PDF with £ = 1 and a = 1.5 under white noise (t; = 1s,x(t;) = —0.3,%(t;) = —0.8). The Newton’s optimization scheme iterations are
also included.
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Fig. 8. Most probable path optimization problem objective function using L =2 trial functions and corresponding to a nonlinear oscillator with an
asymmetric response PDF with e = 10and a = % under white noise (t; = 1s,x(tf) = —0.3,X(t;) = —0.8). The Newton’s optimization scheme iterations are
also included.
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Fig. 9. Most probable path optimization problem objective function using L =2 trial functions and corresponding to a nonlinear oscillator with an
asymmetric response PDF with ¢ = 50 and a = % under white noise (t; = 1s,x(t;) = —0.3,%(t;) = —0.8). The Newton’s optimization scheme iterations are
also included.

Table 2
Convergence rate and objective function values for a nonlinear oscillator with an asymmetric response PDF.
e=1,a=150 8:]0’0:%&‘0 8:50411:%7 ¢=100,a =0.150
2% — 27| J(z%) 25 — 27| J(z%) 2% — 27| J(z%) 2% -z J(z%)
Newton’s numerical optimization scheme - Arbitrarily selected starting point z(®

70.678 3.49E+03 70.730 3.30E4 70.732 1.28E6 70.374 5.40E6
25.173 6.21E2 58.642 9.16E3 57.614 3.33E5 57.053 1.41E6
17.770 3.88E2 47.166 2.96E3 47.261 8.62E4 46.490 3.65E5
1.786 5.536 35.498 1.19E3 39.109 2.23E4 38.153 9.45E4
2.31E-2 1.683 26.321 5.92E2 32.603 5.90E3 31.606 2.43E4
3.21E-6 1.683 20316 3.64E2 27.040 1.68E3 26.449 6.27E3
6.18E-14 1.683 7.104 63.160 21.494 5.72E2 22213 1.67E3
1.943 6.109 15.672 2.39E2 18.191 4.96E2
1.15E-1 1.615 11.019 1.16E2 13.697 1.78E2
2.08E-4 1.598 7.990 63.940 9.385 71.774
7.29E-10 1.598 0.782 2.554 6.971 35.490
6.73E-3 1.794 5.514 23.641

2.35E-7 1.794 1.570 5.110

1.07E-15 1.794 0.520 2.616

6.55E-3 2.271

1.93E-6 2.271

1.99E-13 2.271

Newton’s numerical optimization scheme - Starting point z© = —Q 'b corresponding to a linear oscillator with ¢ = 0

0.0278 1.684 0.046 1.601 0.077 1.800 0.278 2.357
3.955E-6 1.683 3.205E-5 1.598 2.305E-5 1.794 0.0010 2.2715

9.116E-14 1.683 1.711E-11 1.598 8.485E-12 1.794 1.831E-8 2.271

Computational algebraic geometry approach based on Grobner bases
1.683 1.598 1.793 2271

figures corresponding both to an arbitrarily selected starting point (i.e., z® = (50, —50) or z® = (-50,50)), and to a starting
point equal to the exact optimum z(® = z;, = —Q 'b corresponding to the associated linear system (i.e., £ = 0). In a similar
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manner as in Example 5.2, z(® = z;;, proves to be an excellent choice as a starting point in the optimization scheme, whereas
it is seen that the convergence rate increases for smaller values of the nonlinearity parameter ¢. Numerical results related to
the iterations of the Newton’s scheme are summarized in Table 2, which includes also results based on the Grébner basis
approach. The convexity of the objective function and the convergence of Newton’s scheme to the global minimum is
demonstrated by noticing that for all nonlinearity parameter values, the Grébner approach yields a single solution and
the corresponding objective function value coincides practically with the estimate based on Newton’s scheme.

In Fig. 10, the WPI-based marginal response displacement and velocity PDFs are plotted for various nonlinearity magni-
tude values at two indicative time instants. It is shown that the WPI-based estimates utilizing Newton’s scheme coincide

MES (ty = 1) 1.95 [—mcs G, =19 1.25 [F--McS ¢ =35
B WHL-L=2 2 wel.bo2 ° WPI—(EI{:Z{ )
1.5 Grobner basis - L =2 Grébner basis - Grébner basis -
b |- — - MCS (t, = 35) ; Ny
o WPI-L=2 1 1
; Grobner basis - L = 2
5 4 o 0.75 o 0.75
= =) a %
o , o A P
0.5 0.5 P
, | [
0.25 0.25 ' b
(]
; I3 D)
2 0 0
-3-2-10123 -3-2-1012 3
T T

(a) e = 1: Response displacement PDF  (b) € = 1: Response velocity PDF

NOS 4, =19 125 |y =2 1.95 [~ a = de
o WPI-L=2 Grobner basis - robner basis -
1.5 Grobner basis - L =2 L=2 2
1 1 PI-L =15
= 0.75 = 0.75
E 1 A A S
& A~ A ¢
0.5 0.5 i
0.5 t e
0.25 0.25 ° &
& 6
0 0wl . T 0
15 3210123 3210123
& &

(c) e = 10: Response displacement PDF  (d) € = 10: Response velocity PDF

2 . . r — = 15 ——MCS (t; = 15) 1.5 S MCS (= 3s)
el o o WPI-L=2 o WPI-L=2
s M 1.95 Grisbner basis - 1.95 G
Sl v : L=2 3 =
15 2/ N\ Wil = WPI-1=15
0% %% Grobner b, - L =2 1 1
o "o\ x WPI-L-15
&3 2":‘ [ =
a1 o \ E 0.75 E 0.75 &
a9 T f are
o 0.5 0.5 g%
0.5 | X 1 v
; \ 0.25 025 p 4
/ \ Q
] . L4
0 . . A . 0 e’ 0 e . Qo
-1 -0.5 0 0.5 1 3-2- 0 23 -3-2-10123
T T

(e) e = 50: Response displacement PDF  (f) ¢ = 50: Response velocity PDF

Fig. 10. Response displacement and velocity PDFs at various time instants corresponding to a nonlinear oscillator with an asymmetric response PDF.
Comparisons between WPI-based estimates utilizing the Newton’s scheme and the Grébner basis approaches for the most probable path determination.
MCS-based estimates are also included (20,000 realizations).
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with the estimates based on the Grobner basis approach. Comparisons with MCS data (20,000 realizations) are included as
well demonstrating the high accuracy degree exhibited by the WPI technique.

100
- @ Opt. iterations: z() = (100, —100) x10*
75 Opt. iterations: 2(© = z;, 2.5
. »
i 2
25 x10
& 0 ) 1.5
-25 S
&) 1 1
-50
0 . 80
~75 | . iterations: z( = (100, —100) - 0.5
teratl 80
. iterations: 20 = Zlin
-100 —
-100 -75 -50 -25 O 25 50 75 100
-80 -80
Z1 29 21

Fig. 11. Most probable path optimization problem objective function using L = 2 trial functions and corresponding to a nonlinear oscillator with a bimodal
response PDF with a = 1.3 and & = 1 under white noise (ty = 1s,x(t;) = 0.8,x(t) = 0.9). The Newton’s optimization scheme iterations are also included.

-0.03
-0.04
-0.05
-0.06
0 0.04 0.08
100 -@ Opt. iterations: 2% = (100, —100) x10*
75 Opt. iterations: 2 = z;, 2.5
50
2
25 X 104
& 0 2 1.5
2 )
=1 1
-50
0 80
-75  |-@- Opt. iterations: () = (100, —100) 80 40 0.5
Opt. iterations: 2 = z;, 40 0
-100 - : -40
-100 -75 -50 -25 0 25 50 75 100 -40 30
2 ., 80 -

Fig. 12. Most probable path optimization problem objective function using L = 2 trial functions and corresponding to a nonlinear oscillator with a bimodal
response PDF with a = 1.5 and & = 1 under white noise (ty = 1s,x(t;) = 0.8,x(t) = 0.9). The Newton’s optimization scheme iterations are also included.
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100 { - @ Opt. iterations: 2 = (100, —100) x10%
75 Opt. iterations: 2 = z;, 2:5
50 9
25 X 104

& 0 2 1.5

-25 a3

<1 1
-50
0 80
-75  |-@- Opt. iterations: 2% = (100, —100) \ 80 40 0.5
I Opt. iterations: 2 = 2, 40 0
-100 : -40
-100 -75 -50 -25 0 25 50 75 100 -40 30
2 ., 80 .

Fig. 13. Most probable path optimization problem objective function using L = 2 trial functions and corresponding to a nonlinear oscillator with a bimodal
response PDF with a = 1.8 and ¢ = 1 under white noise (t; = 1s,x(t;) = 0.8,%(t;) = 0.9). The Newton’s optimization scheme iterations are also included.

Table 3
Convergence rate and objective function values for a nonlinear oscillator with a bimodal response PDF.
a=13 a=1.5 a=1.38
2 =z J@") Iz - 27| Jz") |29 2| J@z%)
Newton’s numerical optimization scheme - Arbitrarily selected starting point z(®)

141.401 2.35E4 141.386 2.33E4 141.366 2.30E4

104.044 8.73E3 103.987 8.66E3 103.905 8.57E3

73.449 3.79E3 73.522 3.78E3 73.635 3.77E3

54.720 2.02E3 54.932 2.04E3 55.255 2.06E3

26.456 6.13E2 26.538 6.21E2 26.665 6.32E2

23.386 5.47E2 24484 6.01E2 26.232 6.92E2

8.777 81.474 10.692 1.18E2 14.577 2.13E2

0.742 5.232 1.302 6.274 3.305 15.852

1.75E-3 4.667 4.88E-3 4514 1.91E-2 4316

1.15E-8 4.667 9.02E-8 4514 1.30E-6 4316
2.95E-17 4.514 6.38E-15 4.316

Newton’s numerical optimization scheme - Starting point z© = —Q 'b corresponding to a linear oscillator with ¢ = 0.

0.072 4.671 0.084 4.520 0.1028 4.325

3.374E-6 4.667 6.193E-6 4.514 1.205E-5 4.316

2.990E-14 4.667 1.058E-13 4.514 4.436E-13 4316

Computational algebraic geometry approach based on Grobner bases.
4.667 4.514 4.316

5.4. Nonlinear oscillator with a bimodal response PDF
Consider a SDOF nonlinear oscillator exhibiting a bimodal response PDF, whose governing equation is given by
MX + cX + kx + £g,(x,X) = w(t) (57)
where

gu(x,%) = —ax + x* (58)
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In Eq. (57) and (58), the parameters values utilized are, m=1,c = 1.0,k = 1.0, Ew(t)w(t + 7)) = 21Sed(t) with S = 0.0637
and a is constant.

Next, for an indicative final time instant t; = 1s and for boundary conditions (x(0),x(0),x(t;),x(t;)) = (0,0,0.8,0.9), the
objective functions J(z) of the most probable path optimization problem for a = 1.3,1.5 and 1.8, considering ¢ = 1 are shown
in Figs. 11-13, respectively. The Newton’s scheme iteration points are also included in the figures corresponding both to an
arbitrarily selected starting point z® = (—100,100), and to a starting point equal to the exact optimum z©® = z;, = —-Q 'b
corresponding to the associated linear system (i.e., ¢ = 0). Obviously, the convergence behavior is highly improved when
20 =z, is used. Numerical results related to the iterations of the Newton’s scheme are summarized in Table 3, which

——MCS (t; =15) MCS (t; = 15) - - --MCS (t; = 12 5)
O WPI-L=2 O WPI-L=2 o WPI-L=2
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o WPI-L=2 x WPI-L=15
Grébner basis - L =2 1 1
x WPI-L=15
= 1t 1 3 €3 &
E a 0.75 A 0.75 ? b
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0.5¢ o ® * ¢
i b 0.25 0.25| ¢ o
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0L cooctlmstf . TmuBloses 0 0l s
-2 -1 0 1 2 -2 0 2 -2 0 2

(a) a = 1.3: Response displacement PDF (b) @ = 1.3: Response velocity PDF
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- — - MCS (t; = 125) L=2 7
o WPI-L=2 x WPI-L=15
Grobner basis - L =2 1 1
x WPI-L=15
= 1 g o £ Q
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20009 % 53
& 0.25 0.25 %
o,
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@

(c) a = 1.5: Response displacement PDF (d) a = 1.5: Response velocity PDF
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Fig. 14. Response displacement and velocity PDFs at various time instants corresponding to a nonlinear oscillator with a bimodal response PDF under white
noise. Comparisons between WPI-based estimates utilizing both the Newton’s scheme and the Grébner basis approaches for the most probable path
determination. MCS-based estimates are also included (50,000 realizations).
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includes also results based on the Grébner basis approach. In a similar manner as in the previous examples, the single solu-
tion obtained by the Grébner basis approach demonstrates the convexity of the objective function and the existence of a sin-
gle global minimum.

In Fig. 14, it is shown that the WPI-based estimates utilizing Newton’s scheme coincide with the estimates based on the
Grobner basis approach. Comparisons with MCS data (50, 000 realizations) are included as well demonstrating the high accu-
racy degree exhibited by the WPI technique.

6. Concluding remarks

In this paper, first, a Newton’s numerical optimization scheme has been developed for solving the Wiener path integral
technique functional minimization problem and for determining the most probable path. Certain numerical aspects have
been elucidated and it has been shown that the convergence behavior can be highly improved when the exact solution cor-
responding to a linear system is used as a starting point in the algorithm. Second, demonstrating the potential convexity (and
thus, the existence of a global extremum) of the functional to be minimized has been addressed by resorting to computa-
tional algebraic geometry concepts and tools such as Grobner bases. Various numerical examples pertaining to diverse non-
linear oscillators have been considered, where it has been shown that the associated objective functions are convex, and that
the Newton'’s scheme converges to the globally optimum most probable path. Comparisons with MCS-based estimates have
been included as well, demonstrating the reliability of the WPI technique for determining the nonlinear system joint
response PDF.
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Appendix A. Positive definiteness of matrix Q

In this Appendix, the positive definiteness of matrix Q is proved, and thus, convexity of Eq. (25) is also implied. For tuto-
rial effectiveness, the proof is shown hereinafter for a SDOF linear oscillator. In this regard, consider a normalized version of
Eq. (52) in the form

. . w(t
X+ 20owok + w2x = # (A1)

where ( is the damping ratio and wy is the natural frequency of the system. Next, employing two trial functions (i.e., L = 2)
and considering arbitrary initial and final time instants (t, and ¢) in Eq. (22), matrix Q is expressed in the form

Qll 0
Q= { } (A.2)
0 Q2
where
(tf’to)5 4 43 412 42 4t 43 4 14 22 2 2 2 2 2 2
Q1 = ~ 530 (a)o tf —4wytito +6wytrty — 4wy tpty + Wty +48 gty (g + —24 ity — 96wy trto (g +48 g trto
+48 W3 2 (5 — 24 Wit} + 504) (A3)
(tf_to)s 4['4 4¢3 442 42 4 3 4 +4 242 ¢2 2 42 2 2
e (wo 4408t + 60 — 4wl 6+ ot + 17632 (2 + —88 w3 2 — 352}ty (2

+176 2 trto + 176 W2 22 — 88 W2 L2 + 3960) (A4)
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Next, for simplicity and without loss of generality, setting t, = 0 in Eq. (A.2) yields

t° (wo“ r;+48 ? f; 2-24 ? t;+504>

0
Q- 630 (A.5)
0 s ((004 (176 f ¢} (5 -88 0} t/?+3960)
6930

Since Q is diagonal, its eigenvalues 4 are readily determined as

((uo"t)? 8w§tf7§g 402 ] 4tf5>

630 105~ 105 5

A= (A6)

ot 8w6t}{§74w3tf7 4
6930 315 315 7

Next, setting y = w3 and considering the most critical case (i.e., {, = 0) for showing that the eigenvalues 4 are positive, Eq.
(A.6) becomes

2 9 7 5
vo_avg  4g
630 105 5

A= (A7)
v ayg ae
530 ~ 315 T 7
Differentiating Eq. (A.6) with respect to y yields
(Zyt}’ 4rf7>
630 105
di_ (A8)
dy Zyrl? 4[/?
6930 ~ 315
Setting Eq. (A.8) equal to zero and solving for y leads to
. 12152 A9
Y=l = (A.9)
whereas the eigenvalues evaluated at y* yield
482 /7
)= d (A.10)
92¢7/315
Further, the second derivative of 4 becomes
2 9
y) t7/315
di_ |4/ (A1)
dy> | t7/3465

Clearly, since d”4/dy? > 0, the expression for the eigenvalues 4 as a function of y is convex, and thus, the points in Eq. (A.9)
correspond to minima for 4. Further, since 4 is positive at y*, 4 is positive for any arbitrary values wo > 0and 0 < {; < 1. In
conclusion, all eigenvalues of matrix Q are positive, and thus, Q is positive definite.

Appendix B. Computational algebraic geometry approach indicative results

In this section, indicative results pertaining to the computational algebraic geometry approach of Section 4 are presented.
These refer to Examples 5.1 and 5.2. Specifically, considering the linear oscillator of Example 5.1 and the BVP corresponding
to Fig. 1, the basis B of standard monomials defined in Eq. (48), degenerates to

B=11] (B.1)

This implies that there is only one solution to the corresponding system of polynomial equations. Further, the Grébner basis
corresponding to this example has only two elements and takes the form

G =[0.031659z; — 0.00053813,z, — 0.000083703]" (B.2)
whereas matrix My (see also Theorem 2) is simply a scalar, i.e.,
My = (4.4204132568) (B.3)

The second example relates to the Duffing oscillator considered in Example 5.2, and corresponding to Fig. 3 (¢ = 1). In this
regard, the basis B of standard monomials defined in Eq. (48) includes 25 elements and takes the form
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B= [B,218,2),23,2}, 532,323,225, 25, 2323, 2223, 2123, (B.4)
. :
88,018,235, 23, 522, 2125, 23, 23, 2122, 25, 21, 22, 1

This implies that the corresponding system of polynomial equations has 25 solutions, i.e., 24 complex solutions and one real
solution, which is the solution of interest. Further, the associated Grobner basis has six elements, which take the form
G(1) = 1.4091E14z% — 7.2961E823 2% + 7.9242E1323z, — 1.1746E1523 — 4.8529E62% z3+
6.9587E1222 25 — 2.0668E132222 + 1.1819E1822 2, — 1.9333E1823 -
1173.52, 25 — 3.8778E7 2,25 + 1.2085E92, 23 — 1.9927E132, 23 + 6.9281E132, 23—
4.5784E1821 2, + 5.9337E182; + 25 — 55.20728 — 1.2502E62] + 4.4144E7 2§
+5.3703E1125 — 9.0655E1225 +2.6617E16 25 — 1.3989E182% — 2.3572E22 7,
+6.2157E19

G(2) = -2.64537} — 054882372 — 8799.223 7, — 113988.023 — 0.00002178822 24—
026732227 + 8.236822 22 — 9599.722 2, + 124255.0 22 + 5.064F — 82, 2] —
1.8467E — 62,25 — 000463852, 25 — 0.0216612, 24 — 13139.02, -+
112933.02, 22 — 1.4175E92, 2, — 1.5962E9z, — 2.7115E — 723+
0.00001102825 + 0.07625525 — 0.84131Z4 + 24378.023 — 467722.023—
3.0075E92, + 4.2444E7

G(3)= —4.1648E — 6z — 9.0668E — 112322 — 3.3071E — 623 2, + 0.000059423 23+
7.0522E — 132225 — 1.582E — 112224 + 7.0068E — 82323 — 1.7297E — 622 23+
0.00447222 2, + 0.22987 22 — 6.1856F — 122,25 + 1.5016F — 10z, Z4—
6.8703E — 72,23 + 0.000021407 2, 22 + 0.215082 z, — 0.70789z; + 2.137E — 142]—
8.7989F — 1328 — 2.263E — 825 + 4.685E — 774 + 0.0075597 23 — 0.0257822
+1523.9z, — 40113

(B7)

G(4) = —3.9843E — 1574 + 1.5684F — 162323 — 1.9188F — 152222 + 2.1578E — 11232,
8.2704F — 1223 — 1.6752E — 152223 + 2.1891F — 142222 — 1.4947F — 1022 25+
9.15E — 122% +1.5178E — 172,25 — 4.2105E — 16212‘21 —5.4072E - 12z Z%Jr (B.8)
4.6095E — 112,22 — 1.2318E — 622z, — 2.1857E — 62; — 6.4897E — 1723+
2.0362E — 1525 + 2.5295E — 1125 — 2.4669E — 1022 — 1.5954E — 7z, +4.7618E — 8

G(5) = 1.4067E — 1925 — 1.5986E — 182% + 5.2101E — 2023 2% — 5.3285E — 1923z, —
4.1555E — 1523 — 4.476E — 192222 + 4.9023E — 18222, + 1.6962F — 1422+
2.6949E — 212,24 — 6.3943F — 202,23 — 1.3549F — 152, 22 + 8.3192E — 152, 2, + (B.9)
6.2799E — 112, — 9.473E — 2124 + 2.4867E — 1923 + 3.6591F — 1522—
1.6689E — 14z, — 1.354E — 12

G(6) = 3.2303E— 1824z, — 1.6519E — 1724 — 3.7001F — 1723z, + 2.0263F — 1623+
6.6833E — 192223 — 1.1893E — 172222 — 1.6801E — 132225+
5.1579E — 1322 — 4.6986E — 182,23 + 9.2504E — 172,22 + 9.0746E — 132, 25— (B.10)
2.0694F — 12z, + 1.078E — 20z} — 3.6708E — 1924 — 1.2899F — 1423+
1.9492E — 1322 + 5.5885E — 9z, — 1.4722E — 11
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