
✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Modeling and Analyzing Waiting Policies for
Cloud-Enabled Schedulers

Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy

University of Massachusetts Amherst

Abstract—Cloud platforms have popularized the Infrastructure-as-a-Service (IaaS) purchasing model, which enables users to rent

computing resources on demand to execute their jobs. However, buying fixed resources is still much cheaper than renting if their

resource utilization is high. Thus, to optimize cost, users must decide how many fixed resources to provision versus rent “on demand”

based on their workload. In this paper, we introduce the concept of a waiting policy for cloud-enabled schedulers and show that the

optimal cost depends on it. The waiting policy explicitly controls how long jobs wait for resources, as jobs never need to wait, since

cloud platforms provide the illusion of infinite scalability. A waiting policy is the dual of a scheduling policy: while a scheduling policy

determines which jobs should run when fixed resources are available, a waiting policy determines which jobs should wait when fixed

resources are not available. We define multiple waiting policies and develop simple and general analytical models to reveal their

tradeoff between fixed resource provisioning, cost, and job waiting time. We evaluate the impact of different waiting policies on a real

year-long batch workload consisting of 14M jobs run on a 14.3k-core cluster. We show that a compound waiting policy, which forces

jobs with long running times or short waiting times to wait for fixed resources, offers the best tradeoff. The policy decreases both the

cost (by 5%) and mean job waiting time (by 7×) compared to the current cluster, and also decreases the cost (by 43%) compared to

renting on-demand resources for a modest increase in mean job waiting time (at 1.74 hours).

✦

1 INTRODUCTION

Cloud platforms have popularized the Infrastructure-as-a-Service

(IaaS) purchasing model by enabling users to programmatically

rent computing resources on demand, in the form of virtual

machines (VMs), to execute their jobs.1 Many large enterprises

are now partially or completely migrating their private computing

infrastructure to cloud platforms. For example, Netflix shut down

its last private data center in 2016 after entirely migrating its video

streaming service to Amazon Web Services (AWS) [13]. Cloud-

enabled infrastructure uses similar software systems as private

clusters to manage resources at large scales, typically consisting of

a centralized job scheduler, such as Slurm [4] or Kubernetes [2].

Users submit jobs, with specified resource requirements, to these

schedulers, which either allocate idle resources to execute them or

force them to wait for idle resources to become available. Since

private clusters manage a fixed number of computing resources

typically sized for peak demands, they often have low average

utilization (<30%), but may periodically experience large bursts

in job arrivals, e.g., due to deadlines, product releases, or seasonal

variations, that result in long job waiting times.

As job schedulers migrate to the cloud, they have many options

for optimizing cost and reducing job waiting times. For example,

schedulers may provision cloud VMs on demand to service jobs,

requiring them to only pay for resources when jobs need them. In

this case, the cloud’s operating costs are often much lower than the

capital cost of an under-utilized fixed-size cluster, since the latter

must effectively “pay” when resources are idle. In addition, since

the cloud provides the illusion of infinite scalability, jobs never

need to wait for resources, as schedulers can always acquire cloud

resources to service them immediately. Most schedulers are now

1. This is an expanded and revised version of a preliminary paper that
appeared at Supercomputing 2020 [12].

cloud-enabled and support such “auto-scaling,” which acquires

cloud VMs to service jobs, and releases them when done [1], [3].

Importantly, however, buying fixed resources (or reserving

them for long periods) is significantly cheaper than renting re-

sources on demand if the fixed resources are highly utilized. Cloud

pricing models make this clear, as reserving a VM for 1-3 years

costs 40-60% less per-hour than renting an equivalent on-demand

VM over the same period. For example, reserving a m5.large

VM from AWS, which includes 2 cores and 8GB RAM, for 3 years

currently costs $988, while renting it on demand costs $0.096/hour

or $2,522.88 over the same period. Of course, fixed resources are

only cost-effective if they are highly utilized: if jobs only execute

on the m5.large for less than a third of the time, the on-demand

option is cheaper (at a cost of $840.96). The cost advantage of

buying versus renting is even greater for specialized hardware

with a recent analysis estimating that purchasing a GPU-based

deep learning cluster costs 90% less than renting one on demand

from AWS [14]. Thus, a mixed infrastructure that satisfies some

baseload with highly-utilized fixed resources, and satisfies load

bursts using on-demand resources can decrease cost. Notably,

hybrid clouds, which combine fixed private resources with cloud

bursting, use this approach [5], [21], [28], as do many companies,

which both buy reserved VMs and dynamically rent on-demand

VMs [22]. As we discuss in §7, physical infrastructure is also

becoming networked and programmatically driven, which has the

potential to spread the cloud model to other sectors, such as

transportation and energy, where schedulers may choose between

buying fixed resources or renting them to service various “jobs.”

To address the problem, in this paper, we introduce the concept

of a waiting policy for cloud-enabled schedulers, and show that

provisioning fixed resources to optimize cost is dependent on it.

The waiting policy explicitly controls whether and how long jobs

wait for fixed resources before deciding to run them on on-demand

resources. A waiting policy is the dual of a scheduling policy:

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

while a scheduling policy determines which jobs run when fixed

resources are available, a waiting policy determines which jobs

wait for fixed resources when they are not available (rather than

run immediately on on-demand resources). While there has been

decades of work on job scheduling policies, we know of no prior

work that defines or analyzes waiting policies, which are distinct

from scheduling policies in that cloud-enabled schedulers define

both independently of each other. For cloud-enabled schedulers,

the waiting policy is just as important as the scheduling policy,

since it dictates the tradeoff between job performance and cost.

Waiting policies also differ from auto-scaling policies currently

used by cloud-enabled schedulers, which immediately acquire

resources to satisfy queued jobs without any waiting [6].

Clearly, the longer jobs are willing to wait for fixed resources,

the higher their utilization, and the lower their overall cost.

However, as we show, the relationship and tradeoff between the

number of fixed resources, the waiting policy, and the optimal

cost is non-intuitive. To better understand these tradeoffs, we

define multiple fundamental non-selective and selective waiting

policies and develop simple analytical queueing models for them.

Non-selective waiting policies apply the same policy to all jobs,

while selective waiting policies apply the policy to only selected

jobs based on system or job characteristics. While we focus

on waiting policies for cloud-enabled job schedulers, such as

Slurm [4] and Kubernetes [2], our analytical models are general

and thus may also be applicable to schedulers for other resources,

as we discuss in §7. As we show, while these analytical models

are not predictive, since their scheduling policy and workload

assumptions do not always hold in practice, they enable users to

better understand and reason about the impact of waiting policies

by understanding how a system’s characteristics differ from the

models’ assumptions. Our hypothesis is that, by optimizing their

waiting policy, cloud-enabled schedulers can reduce job waiting

times, while mitigating the impact on cost, or vice versa. In

evaluating our hypothesis, we make the following contributions.

Introduce a Waiting Policy. We introduce the concept of a

waiting policy for cloud-enabled schedulers, and present multiple

fundamental non-selective and selective waiting policies. Our non-

selective waiting policies include All Jobs Wait (AJW), No Jobs

Wait (NJW), and All Jobs Wait Threshold (AJW-T), while our

selective policies include Short Waits Wait (SWW) and Long Jobs

Wait (LJW). Since waiting policies are not mutually exclusive, we

also present a compound policy that concurrently applies AJW-T,

SWW, and LJW to gain the benefits of all three.

Waiting Policy Models and Analysis. We show how to analyze

waiting policies for cloud-enabled schedulers in general using a

simple queuing model to understand their tradeoff between fixed

resource provisioning, cost, and job waiting time. Our approach

extends classic marginal analysis by combining it with a number

of different queuing results and analyses to model cost under

job waiting. We then apply this approach to model, analyze, and

empirically validate each waiting policy above to demonstrate the

importance of explicitly defining a waiting policy to optimize

cost for cloud-enabled schedulers. Our modeling and analysis

also provides the necessary formal foundation for conducting any

future work on waiting policies for cloud-enabled schedulers.

Modeling and Analysis Under Uncertainty. As with many

scheduling policies, our waiting policies require a priori knowl-

edge of job running times and waiting times, which is not always

available. Since predictions of job running times and waiting times

may be inaccurate, we extend our models and analyses above

Purchasing Option Raw Effective 3-year Normalized
(utilization%) Price Price Cost Price

On-demand (100%) 9.6¢/hr 9.6¢/hr $2523 ∼ 1.0
On-demand (60%) 9.6¢/hr 9.6¢/hr $1514 ∼ 1.0
On-demand (40%) 9.6¢/hr 9.6¢/hr $1009 ∼1.0

Fixed Reserved (100%) 3.8¢/hr 3.8¢/hr $988 ∼ 0.4
Fixed Reserved (60%) 3.8¢/hr 6.3¢/hr $988 ∼ 0.7
Fixed Reserved (40%) 3.8¢/hr 9.5¢/hr $988 ∼1.0

TABLE 1
Raw price, effective price per unit time of utilized resources, 3-year

cost, and normalized price for different utilizations of a fixed reserved
and on-demand VM from AWS.

to quantify the effect of inaccurate predictions on our waiting

policies. Our analysis reveals an interesting asymmetry in that our

waiting policies are highly sensitive to over-predictions of waiting

time, but not to under-predictions.

Implementation and Evaluation. We implement our waiting

policies in a trace-driven job simulator, and evaluate their impact

on a real year-long batch computing workload consisting of 14

million (M) jobs run on a 14k-core cluster. The results show

that our compound policy offers the best tradeoff: it decreases

the cost (by 5%) and mean job waiting time (by 7×) compared

to the current cluster using AJW, and decreases the cost (by

43%) compared to only renting on-demand resources for a modest

increase in mean job waiting time (at 1.74 hours).

2 BACKGROUND AND INTUITION

We provide background on cloud pricing of fixed and on-demand

VMs, and applying marginal analysis to optimize cost.

Pricing Dynamics. We focus on applying waiting policies using

the pricing dynamics of existing cloud platforms. As we discuss in

§7, these pricing dynamics are both fundamental and general, and

thus may apply to other resources where a similar buy versus rent

option is available. We assume a cloud platform that offers two

types of resources: on-demand and fixed. Users may acquire and

release on-demand resources any time, and pay only for the time

they use them without any commitment. In contrast, users must

commit to paying for fixed resources over a long period, e.g., one

or more years. Importantly, however, fixed resources are cheaper

than on-demand resources if they are highly utilized.

Table 1 shows the pricing dynamics of an on-demand and fixed

(3-year reserved) m5.large cloud VM on AWS in the U.S. East

region. The table includes the raw price per unit time, the effective

price of utilized resources, 3-year cost, and normalized price, i.e.,

the effective price relative to the raw on-demand price, for each

scenario. As mentioned in §1, the on-demand VM’s 3-year cost

is much higher than the fixed VM’s cost at 100% utilization.

However, the fixed VM’s cost is constant and independent of

its utilization due to the long-term commitment, while the on-

demand VM’s cost changes with utilization, since users release

it when not in use. Here, utilization simply denotes the fraction

of non-idle periods over time. Since the fixed VM’s resources are

wasted during idle periods, its effective price for utilized resources

increases with decreasing utilization. In this case, if the fixed VM

is utilized >40% of the time, its effective price and 3-year cost

are less than the on-demand VM, thereby making it the cheaper

option. We call this the break even point.

The cost dynamics above are fundamental to the economics of

any platform that rents resources, since the platform must always

recoup its own costs for buying fixed resources, in addition to any

operating costs and profit, by renting them to users. By serving

a large pool of users with different resource requirements, these

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③
④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

Variable Description Units

s Number of Resources -

λ Mean Job Arrival Rate jobs/time

µ Mean Service Rate time/job

a Offered Load - λ/µ %

ρ Fixed Resource Utilization - a/s = λ/(s × µ) %

P Amortized Price of Utilized Resources $/time

pf Fixed Resource Price at 100% Utilization $/time

C(s, a) Erlang’s C (or delay) formula time

w Mean Wait Time time

po On-demand Resource Price $/time

d Discount Factor - pf/po %

B(s, a) Erlang’s B (or loss) formula %

ρs Utilization of sth Resource %

r Fraction of Jobs using On-demand Resources %

T Workload Duration time

C Workload Cost over T $

S Cost Savings versus On-demand Resources $

b Maximum Waiting Time Threshold time

rs r from above when using s fixed resources %

rs−1 r from above when using s − 1 fixed resources %

funder Fraction of Jobs Under-predicting Wait or Run Time %

fover Fraction of Jobs Over-predicting Wait or Run Time %

µlong Mean Service Rate of Long Jobs in LJW time/job

µshort Mean Service Rate of Short Jobs in LJW time/job

Plong Amortized price of long jobs in LJW $/time

Pshort Amortized price of short jobs in LJW $/time

wlong Waiting time of long jobs in LJW time

t Long/short Job Threshold time

λlong Mean arrival rate of long jobs jobs/time

ρlong Fixed resource utilization when running long jobs %

rshort Fraction of short jobs %

rsww Fraction of long jobs with short waits %

TABLE 2
Listing of symbol, description, and units for each variable we use in our

analysis roughly in order of introduction.

is simply a function of the mean resource utilization ρ and fixed

resource price pf at full utilization, as shown below.

P = pf/ρ (1)

Thus, as mean utilization ρ increases, the effective price de-

creases up to 100% utilization. Of course, as utilization increases,

the mean waiting time w in the queue also increases. The mean

waiting time w for fixed resources under AJW is a well-known

function, shown below, of s, λ, and µ, where C(s, a)=[(s ×

as)/(s!× (s− a))]/[
∑s−1

i=0 ai/i! + (s× as)/(s!× (s− a))] is

Erlang’s delay (or C) formula.

w =
C(s, a)

s× µ− λ
(2)

Empirical Validation. We empirically validate the effective price

P and mean waiting time w for all models we present in §3 and

§4 for the same baseline example. In our baseline example, we

set λ=0.2 (or 1 job every 5 seconds on average), µ=0.002 (or

an average job service time of 500 seconds), po=9.6¢/hour, and

pf=3.84¢/hour. Thus, in this case, the discount factor d for fixed

resources at 100% utilization is pf/po=0.4. As in our example in

§2, we set po and pf based on the on-demand and 3-year reserved

VM prices in AWS, and set λ and µ such that the mean utilization

ρ of the fixed resources is 100% when s=100 resources. We plot

both the continuous function from our model, as well as average

empirical values from 20 trials of our job simulator from §5. Each

trial simulates the model on a synthetically generated job trace

with 2 million jobs using exponentially distributed inter-arrival

and service times based on the baseline parameters, as well as

any model-specific parameters. To capture steady states, we do

not include the first and last 10% of jobs when computing P and

w. All graphs include error bars representing the maximum and

minimum across all trials, although, with 2 million jobs, there is

almost no deviation from the average on each trial.

➛➜➝

➞➟➠➡

➢➤➥➦

➧➨➩➫

➭➯➲➳

➵➸➺

➻➼➽ ➾➚➪ ➶➹➘ ➴➷➬ ➮➱✃
❐

❒❮❰

ÏÐÑ

ÒÓÔ

ÕÖ×

ØÙÚ

ÛÜÝ

Þ
ß
àá
â
ãäå
æ
ç
è
éê
ë
ì
íî
ï

ð
ñ
ò
ó
ô
õ
ö÷
ø
ùú
û
üý
þ
ÿ
▼

◆�✁✂✄☎ ✆✝ ✞✟✠✡☛☞✌✍✎ ✏✑✒

✓✔✕✖✗✘✙✚✛✜ ✢✣✤✥✦ ✧★✩✪✫✬✭
✮✯✰✱ ✲✳✴✵ ✶✷✸✹ ✺✻✼✽✾✿❀

❁❂❃❄❅❆❇❈❉❊ ❋●❍■❏ ❑▲❖P◗❘❙❚❯❱❲
❳❨❩❬ ❭❪❫❴ ❵❛❜❝ ❞❡❢❣❤✐❥❦❧♠♥

Fig. 2. Normalized price P (left y-axis) and mean wait time w (right
y-axis) as a function of fixed resources s under AJW. Mean wait time
w→∞ as fixed resources s→100, and mean wait time w→0 as fixed
resources s→∞.

For AJW, Figure 2 plots the effective price P (left y-axis),

obtained from our model and from simulations, as a function of the

fixed resources s. Here, as in all subsequent graphs, we normalize

the effective price P by the price of on-demand resources po.

Thus, the left y-axis represents how much using fixed resources

lowers or raises the price relative to using on-demand resources;

smaller numbers (lower prices) are better. The minimum value

on the left y-axis is P=pf=0.4, since this represents the lowest

possible price (using only fixed resources at 100% utilization). The

right y-axis shows the mean waiting time w for fixed resources.

Figure 2 shows that our model’s predictions closely match

the empirical results, both for the normalized price and the

mean waiting time. Also, as expected, the graph shows that as

s increases the effective price P increases linearly due to the

decrease in mean utilization ρ. In contrast, the mean waiting time

decreases super-linearly with increasing s. Thus, AJW offers a

risky tradeoff between w and P , since provisioning fixed resources

for high utilization, i.e., a low s, to reduce the price may cause high

waiting times. As a result, AJW encourages over-provisioning to

ensure waiting times near 0 that are outside the region where they

increase super-linearly.

The effective price P equals the on-demand price po when the

mean utilization of fixed resources ρ equals the discount factor

d=0.4, which occurs at s=250 (not shown). Thus, provisioning

any fixed resources s<250 is cheaper than solely using on-demand

resources. Reducing s to 120 still yields a waiting time w ∼ 0 for

an effective price P that is 52% lower than s=250 and only 20%

higher than s=100 where w→∞.

Key Point. Since waiting time increases super-linearly as uti-

lization ρ→100%, AJW encourages over-provisioning to ensure a

utilization below 100% with waiting times near 0.

3.2 No Jobs Wait

Model Analysis. The No Jobs Wait (NJW) waiting policy is

similar to existing auto-scaling policies for cloud-enabled sched-

ulers that execute jobs on fixed resources when available, and

dynamically acquire on-demand resources to execute jobs when all

fixed resources are busy. Recall from §2 that, given a workload,

there is an optimal number of fixed resources s for NJW that

minimizes cost, and this value occurs when the sth resource has a

utilization equal to the fixed resource’s discount factor d. Thus,

to optimize s under NJW, we need an expression for the sth

resource’s utilization, denoted as ρs.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

➛➜➝

➞➟➠

➡➢➤

➥➦➧

➨➩➫

➭➯➲

➳

➵ ➸➺ ➻➼ ➽➾ ➚➪ ➶➹➘ ➴➷➬ ➮➱✃
❐

❒❮❰

ÏÐÑ

ÒÓÔ

ÕÖ×

Ø

Ù
Ú
ÛÜ
Ý
Þß
à
á
â
ã
äå
æ
ç
èé
ê

ë
ìí
î
ï
ð
ñ
ò
óô
õ
ö
÷
ø
ù

úûüýþÿ ◆� ✁✂✄☎✆✝✞✟✠ ✡☛☞

✌✍✎✏✑✒✓✔✕✖ ✗✘✙✚✛ ✜✢✣✤✥✦✧
s★✩ ✪✫✬✭✮✯✰✱ ✲✳✴✵ ✶✷✸✹✺✻✼

✽✾✿❀❁❂❃❄❅❆ ❇❈❉❊❋ ●❍■❏❑▲▼❖P◗❘
❙❚❯ ❱❲❳❨❩❬❭❪ ❫❴❵❛ ❜❝❞❡❢❣❤✐❥❦❧

Fig. 3. Normalized price P (left y-axis) and mean utilization of the sth

resource ρs (right y-axis) as a function of fixed resources s under NJW.
Minimum price occurs when the fixed resources’ discount factor d=ρs.

We find ρs using marginal analysis by applying Erlang’s loss

(or B) formula, which assumes a M/M/s/0 queue. Since the

queue size is zero, any job that arrives and observes all resources

as busy must exit the system. Erlang’s loss formula gives the

blocking probability that an arriving job exits the system, or

equivalently that there are s jobs in the system and all resources

are busy. To compute the utilization of the sth resource, we

first compute the difference between the blocking probability

when using s − 1 and when using s resources. This difference

represents the percentage of jobs an additional resource serves.

Multiplying this percentage by the offered load a=λ/µ gives the

mean utilization of the sth resource ρs, as shown below, where

B(s, a)=(as/s!)/(
∑s

i=0(a
i/i!)) is Erlang’s loss (or B) formula.

ρs = a× [B(s− 1, a)−B(s, a)] (3)

Under a No Jobs Wait (NJW) waiting policy, rather than

actually exit the system, the scheduler acquires on-demand re-

sources to immediately service blocking jobs without waiting. To

determine the optimal number of fixed resources s that minimizes

cost, we set the discount factor d equal to ρs in Equation (3) and

solve for s. Since Erlang’s loss formula includes a factorial and

summation, there is no closed-form expression for s, requiring us

to solve for it numerically. Since ρs is monotonically decreasing

as s increases, we can use a binary search to determine the optimal

s. After solving for s, we compute the minimum effective price P
per resource per unit time for the s fixed resources and additional

on-demand resources necessary to satisfy the offered load.

P = (1− r)×
pf
ρf

+ r × po (4)

Here, we use r to represent the fraction of the workload

that executes on on-demand resources. The first additive term

normalizes the price of the s fixed resources pf at 100% utilization

by their mean utilization ρf , which is (1 − r) × ρ, since the

mean arrival rate to the s fixed resources is only (1 − r) × λ.

We then multiply this normalized price by the fraction of load

(1 − r) serviced at this price. The second additive term simply

multiplies the price of on-demand resources po by the remaining

fraction of the workload r. For NJW, r=B(s, a), as this represents

the probability that a job blocks and then runs on on-demand

resources. Since jobs block uniformly at random, the mean service

time of blocking and non-blocking jobs both equal the mean

service time 1/µ. As a result, we need not weight each additive

term in Equation (4) by its fraction of the mean service time.

♠♥♦

♣qrt

✉✈✇①

②③④⑤

⑥⑦⑧⑨

⑩❶❷

❸❹❺ ❻❼❽ ❾❿➀ ➁➂➃ ➄➅➆

➇
➈
➉➊
➋
➌➍
➎
➏
➐
➑
➒➓
➔
→
➣↔
↕

➙➛➜➝➞➟ ➠➡ ➢➤➥➦➧➨➩➫➭ ➯➲➳

➵➸➺➻➼➽ ➾➚➪➶
➹➘➴➷➬➮➱✃❐❒❮

❰ÏÐÑÒÓ ÔÕÖ×Ø
ÙÚÛÜ ÝÞß

àáâã äåæ

Fig. 4. Normalized price P as a function of fixed resources s under AJW-
T for different threshold waiting times b.

The total cost C (in dollars) to execute a workload over time

T , i.e., the fixed resources’ lifetime, is then shown below.

C = P × (
1

µ
)× (λT) = s× pf × T + r ×

λ

µ
× po × T (5)

The total cost C is the product of the effective price per unit

time P , the mean service time per job (1/µ), and the total number

of jobs, which in-turn is the product of the job arrival rate λ
and the total time T . We can also represent the total cost in a

different, but equivalent, way on the right side by expanding P
using Equation (4). Here, the first additive term is the cost for the

s fixed resources over time T , and the second term is the cost

of renting on-demand resources. The first term is independent of

the offered load, since users must pay for the s fixed resources

regardless of their utilization. Of course, Equation (5) for C only

applies to the system in steady state over the interval T . As noted

earlier, our simulations capture steady state by not considering the

first and last 10% of jobs when computing C , P , or w.

Empirical Validation. We empirically validate NJW using the

same baseline example from §3.1. Figure 3 shows the effective

price P (left y-axis) as a function of fixed resources s under NJW,

where we again normalize P by the price of on-demand resources

po. The right y-axis shows the mean utilization of the sth resource

ρs, as the waiting time w is always zero under NJW. As expected,

the graph shows the model closely matches the empirical results.

As s increases, the effective price decreases to the optimal s=108
where ρs equals the 0.4 discount factor, after which, the effective

price increases. Plugging the optimal s value and our baseline

parameters into Equation (3) verifies that ρs=0.4.

At the optimal s=108, NJW has an effective price

P=0.467×0.096=$0.044832/hour, while AJW’s price is ∼7.5%
less at P=0.432×0.096=$0.041472/hour. However, under NJW,

jobs never incur waiting time, while AJW incurs a mean waiting

time of 20s, with some jobs waiting much longer. Thus, for

7.5% higher cost, NJW guarantees jobs never wait. In this case,

r=0.035, i.e., 3.5% of jobs run on on-demand resources, which

results in a minimum cost (in dollars) over a 3-year period of

C=$117,818. By contrast, solely using on-demand resources costs

100(0.096)(26280)=$252,288, which is over twice as expensive

as the optimal cost under NJW.

Key Point. While NJW’s cost is higher than AJW’s for the same

fixed resources, it guarantees no waiting time. NJW encourages

optimal provisioning, since its cost increases as fixed resource

provisioning deviates from the optimal.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③
④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

➛

➜➝➞

➟➠➡

➢➤➥

➦➧➨

➩➫➭

➯➲➳ ➵➸➺ ➻➼➽ ➾➚➪

➶
➹
➘
➴
➷
➬
➮➱
✃
❐❒
❮
❰Ï
Ð
Ñ
Ò

ÓÔÕÖ×Ø ÙÚ ÛÜÝÞßàáâã äåæ

çèéêëì íîïð
ñòóôõö÷øùúû

üýþÿ❆� ✁✂✄☎✆
✝✞✟✠ ✡☛➙

◆☞✌✍ ✎✏✑

Fig. 5. Mean waiting time w as a function of fixed resources s under
AJW-T for different threshold waiting times b.

3.3 All Jobs Wait - Threshold

Model Analysis. AJW and NJW define two extremes: AJW yields

a low price but with a potentially high waiting time, while NJW

yields a higher price but zero waiting time. The All Jobs Wait-

Threshold (AJW-T) waiting policy defines a continuous tradeoff

between these two extremes by requiring all jobs to wait up to

some threshold time b, at which point the scheduler acquires an

on-demand resource to service them. At b=0, AJW-T is equivalent

to NJW, and as b→∞, AJW-T approaches AJW. To model AJW-

T, we must derive r from Equation (4), or the fraction of jobs

that run on on-demand resources after waiting b time. Given r, we

can compute the effective price P from Equation (4) as before. In

queuing literature, AJW-T is equivalent to a queuing model with

reneging jobs that exit the queue after waiting a threshold period.

The reneging probability r is given by the following lemma, which

follows from an analysis by Liu and Kulkarni [27].

Lemma 3.1. The reneging probability r in a M/M/s/∞ system

is computed as follows.

r =
α · β · e−δ·b

s · µ
(6)

where
δ = (sµ− λ) (7)

β =
sµp

1− p
(8)

p =
(λ/µ)s

s!
∑s

i=0
(λ/µ)i

i!

(9)

α =

{

[β(1δ − eδ·b · λ
δ·sµ) + 1]−1 ρ 6= 1

λ
λ+β·(λ·b+1) ρ = 1

(10)

When expanded, r is solely a function of s, b, λ, and µ.

As before, we need an expression for the mean utilization of

the sth resource, as in Equation (3), to solve for the optimal s
that minimizes cost. However, in this case, we replace Erlang’s

B formula with r above when using s − 1 and s resources, as

shown below, since r represents the reneging probability under

AJW-T, which is akin to the blocking probability under AJW. We

can again solve for the optimal s that minimizes price numerically

using a binary search, as ρs is still monotonically decreasing as s
increases, where a=λ/µ.

ρs = a× [rs−1 − rs] (11)

After determining the optimal s and r for a given threshold

waiting time b, we compute the mean waiting time of jobs.

✥

✒✓✔

✕✖✗

✘✙✚

✛✜✢

✣✤✦

✧★✩

✪✫✬

✭✮✯

✰✱ ✲✳ ✴✵ ✶✷ ✸✹ ✺✻✼ ✽✾✿ ❀❁❂

▼
❃
❄
❅
❇
❈
❉❊
❋
●❍
■
❏❑
▲
❖
P

◗❘❙❚❯❱ ❲❳ ❨❩❬❭❪❫❴❵❛ ❜❝❞

❡❢❣❤ ✐❥❦❧♠ ♥♦♣qrs t✉✈✇①

Fig. 6. Mean waiting time as a function of fixed resources under SWW
and AJW-T where b=900s=15m.

Liu and Kulkarni give the mean waiting time under reneging as

follows [27]. The first additive term represents the mean waiting

time for the jobs that execute on fixed resources, while the second

additive term represents the mean waiting time for jobs that

execute on on-demand resources, which is simply r×b as they

all wait the maximum time b.

w =

{

(1− r)× (α×β(1−δbe−δ×b
−e−δ×b)

(1−r)×δ2) + r × b ρ 6= 1

(1− r)× (α×β×b2

(1−r)×2) + r × b ρ = 1
(12)

Empirical Validation. We again validate our model using our

baseline parameters. Figure 4 shows the effective price P as a

function of fixed resources s under AJW-T for different threshold

maximum waiting times b, as well as the price under AJW and

NJW. Once again, the model’s predictions closely match the

empirical results. As expected, as b increases, the price approaches

AJW, and as it decrease the price approaches NJW. The graph

also shows that as b increases, the optimal fixed resources s that

minimizes price decreases. Similarly, Figure 5 shows the mean

waiting time w on the y-axis as a function of the fixed resources s.

Here, as b increases, the mean waiting time increases more sharply

as s→100. Thus, unlike AJW and NJW, AJW-T is configurable,

enabling users to set their tradeoff between price and waiting time.

Key Point. AJW-T offers a configurable tradeoff between price

and waiting time by enabling users to set the maximum waiting

time threshold b, unlike NJW, which offers no tradeoff, and AJW,

which offers a risky tradeoff.

4 SELECTIVE WAITING POLICIES

Unlike non-selective waiting policies, selective waiting policies

do not apply to all jobs, but only to selected jobs based on

system or job characteristics. We define and analyze two selective

policies: Short Waits Wait (SWW) and Long Jobs Wait (LJW).

Since waiting policies are not mutually exclusive, we also analyze

a compound waiting policy that combines SWW, LJW, and the

threshold waiting time from AJW-T.

4.1 Short Waits Wait

Model Analysis. Unlike AJW-T where jobs wait up to a threshold

value before they are scheduled on on-demand resources, in the

Short Waits Wait (SWW) waiting policy, incoming jobs estimate

their waiting time upon arrival (based on the jobs running and

ahead of it in the queue) and only wait if the estimated wait time

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

➛➜➝

➞➟➠➡

➢➤➥➦

➧➨➩➫

➭➯➲➳

➵➸➺

➻➼➽➾

➚➪➶➹

➘➴ ➷➬ ➮➱✃ ❐❒❮ ❰ÏÐ ÑÒÓ ÔÕÖ

×
Ø
ÙÚ
Û
ÜÝ
Þ
ß
à
á
âã
ä
å
æç
è

éêëìíî ïð ñòóôõö÷øù úûü

ýþÿ❙ �♦✁✂✄❂☎✆
✝✞✟✠ ✡☛☞✌✍✎✏✑

✒✓✔✕ ✖✗✘✙✚✛✜✢
◆✣✤

Fig. 7. Price P as a function of fixed resources s under SWW for different
over-prediction errors fover and NJW.

is short, i.e., less than a threshold value. If the estimated wait

time is long, i.e, exceeds the threshold, then they immediately run

on on-demand resources without waiting. In queuing literature,

this behavior is equivalent to a queuing system with balking

jobs, which immediately exit the system if the waiting time will

exceed a maximum threshold value denoted by b. Importantly, as

prior work shows, the same set of jobs that renege under AJW-

T, and in our case run on on-demand resources, will also balk

under SWW [27]. Thus, the fraction of jobs r that run on on-

demand resources under SWW is the same as under AJW-T (from

Lemma 3.1), and thus the effective price for resources is the same

under AJW-T and SWW for the same b.

The only change with SWW relative to AJW-T is the mean

waiting time w, since under SWW jobs exit the system immedi-

ately and run on on-demand resources if their waiting time would

exceed the threshold waiting time b. In this case, the mean waiting

time w shown below is the same as in Equation (12) except that

we remove the r×b term, since the r fraction of jobs that run on

on-demand resources incur no waiting time rather than incurring

b waiting time, as in AJW-T.

w =

{

(1− r)× (α×β(1−δbe−δ×b
−e−δ×b)

(1−r)×δ2) ρ 6= 1

(1− r)× (α×β×b2

(1−r)×2) ρ = 1
(13)

Empirical Validation. Figure 6 plots the mean waiting time w
for SWW and AJW-T as a function of the fixed resources s, and

a threshold waiting time b=900s=15m. The mean waiting time

for SWW approaches zero as s decreases (and load increases)

rather than b for AJW-T, as increasingly more jobs exit the

system without waiting and run on on-demand resources. Note

that SWW’s mean waiting time reaches its maximum at s=93, and

is always less than that of AJW-T.

Key Point. SWW with accurate predictions of job waiting time is

strictly better than AJW-T for the same threshold b, yielding the

same price at a lower mean waiting time.

4.1.1 Prediction Accuracy

The SWW analysis above assumes that arriving jobs are able to

perfectly predict their waiting time w. Doing so requires perfectly

predicting the running time of every job currently running and

ahead of them in the queue. There is significant prior work

on predicting queue waiting times using statistical analyses and

machine learning classifiers, which we discuss in §8. This prior

work demonstrates that accurately predicting queue waiting times

can be challenging. As a result, we also model and analyze SWW

✥

✦✧★

✩✪✫

✬✭✮

✯✰✱

✲✳✴

✵✶✷

✸✹✺

✻✼ ✽✾ ✿❀❁ ❃❄❅ ❆❇❈

▼
❉
❊
❋
●
❍
■❏
❑
▲❖
P
◗❘
❚
❯
❱

❲❳❨❩❬❭ ❪❫ ❴❵❛❜❝❞❡❢❣ ❤✐❥

❦❧♠♥ ♣qrst✉✈✇
①②③④ ⑤⑥⑦⑧⑨⑩❶❷

❸❹❺❻ ❼❽❾❿➀➁➂➃
➄➅➆

Fig. 8. Mean waiting time as a function of s under SWW for different
over-prediction errors fover and NJW.

under inaccurate predictions of job waiting time. Our analysis

provides a basis for understanding how accurate machine learning

(ML) classifiers and other methods that predict job waiting time

developed in prior work must be to achieve specific job waiting

time or cost targets. Importantly, the goal of our work is not to

develop a better waiting time predictor, but to understand both

how inaccurate predictions can affect waiting policies, and how to

reason about the effectiveness of prediction methods.

Given a threshold waiting time b, there are two misprediction

cases to consider: the scheduler either i) over-predicts a job’s

waiting time and thus runs it on on-demand resources when it

should have waited for fixed resources, or ii) under-predicts a

job’s waiting time and thus forces it to wait for fixed resources

when it should have run immediately on on-demand resources.

We consider each case separately based on the fraction of jobs

fover and funder that over- and under-predict their waiting time,

respectively. Note that our analyses for over- and under-predicting

waiting time can be applied independently to the same model. Of

course, by definition, the set of jobs in fover and funder must be

disjoint and fover + funder ≤ 1.

Over-predicting Waiting Time. As the fraction of jobs that

over-predict waiting time approaches 100%, SWW approaches

the behavior of using all on-demand resources (plus the cost of

the fixed resources), as jobs always immediately exit the system

(due to their high predicted waiting time) and run on on-demand

resources. For simplicity, our analysis here is not work-conserving,

such that over-predictions redirect jobs to on-demand resources

even when fixed resources are available. We can model over-

predictions by simply reducing the arrival rate λ of jobs to the s
fixed resources by fover , since this fraction of jobs always exit the

system due to over-prediction and run on on-demand resources.

Thus, the effective arrival rate becomes (1− fover)× λ. We can

then solve for the optimal s as before using Equation (11) but

substituting this new effective arrival rate for λ. We must also

account for the increased fover fraction of jobs that run on on-

demand resources when computing the effective price P . To do

so, we adjust Equation (4) as shown below.

P = (1− r)×
pf
ρf

+ (1− fover)× r × po + fover × po (14)

The first term is the same as in Equation (4). The second term

represents the fraction of offered load that runs on on-demand

resources after correct predictions, while the third term represents

the fraction that runs on on-demand resources after incorrect over-

predictions. We similarly adjust the waiting time in Equation (13)

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③
④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

➛

➜➝➞

➟➠➡

➢➤➥

➦➧➨

➩➫➭

➯➲➳

➵➸➺

➻➼➽

➾➚ ➪➶ ➹➘ ➴➷ ➬➮ ➱✃❐ ❒❮❰

Ï
Ð
Ñ
Ò
Ó
Ô
ÕÖ
×
ØÙ
Ú
ÛÜ
Ý
Þ
ß

àáâãäå æç èéêëìíîïð ñòó

ôõö÷ øùúûüýþÿ❂�
❙✁✂✄ ☎✉✆✝✞✟✠✡☛☞

❆✌✍✎✏✑ ✒✓✔✕✖
✗✘✙✚ ✛✜✢✣✤✥✦✧★

Fig. 9. Mean waiting time as a function of fixed resources s under SWW
for different under prediction rates funder .

by substituting (1 − r) with (1 − fover)×(1 − r) as fewer jobs

wait for fixed resources.

Figure 7 shows the effective price P (normalized by the on-

demand price as before) on the y-axis as a function of s. In this

case, we use the same baseline parameters as before, while setting

b=900, and plot different lines for different values of fover , as

well as NJW. As the graph shows, as fover increases to one, the

optimal value of s changes, and approaches that under NJW. Note

that the price of a work-conserving variant would be bounded

by NJW as s increases, rather than exceeding it, since it would

utilize any idle fixed resources. However, the behavior would be

the same as in the graph as s decreases, since there are fewer idle

fixed resources. Similarly, Figure 8 shows the mean waiting time

w as a function of s. As expected, as fover increases, the mean

waiting time decreases (as fewer jobs wait). As before, we include

both continuous functions from our model and empirical results

from our job simulator.

Key Point. SWW is sensitive to over-predictions, as 3-5% over-

predictions significantly alters the price and mean waiting time.

Under-predicting Waiting Time. As the fraction of jobs funder
that under-predict their waiting time approaches 100%, SWW

approaches the behavior of AJW-T, since jobs always wait for

fixed resources up to threshold b before running on on-demand

resources. We model this case by using the fact that the set of

reneging jobs under AJW-T and balking jobs under SWW are the

same [27], and thus do not affect the waiting time of other jobs.

The funder fraction of jobs that should balk and run immediately

on on-demand resources due to a long wait time, but instead wait

due to an under-prediction, will always eventually renege and

run on on-demand resources. Since these jobs never run on fixed

resources, they do not affect the waiting times of the jobs that do.

The effective price under SWW with under-predictions is the

same as that with AJW-T and SWW with perfect predictions, as

the same set of jobs run on on-demand resources in all cases. The

only difference is the job waiting times. To compute the waiting

time in this case, we simply need to substitute (1−funder)×r for

r in Equation (12) for the waiting time under AJW-T to account

for the fraction of jobs funder that incur a waiting time of b due to

the under-prediction. Figure 9 shows the mean waiting time w as

a function of s using our baseline parameters for different values

of funder , as well as for AJW-T with b=900s. As expected, as

funder increases, the mean waiting time increases until it matches

that of AJW-T. Notably, SWW is much less sensitive to under-

predictions, since they do not affect price and only affect the mean

waiting time when fixed resources are highly under-provisioned.

✩✪✫

✬✭✮✯

✰✱✲

✳✴✵✶

✷✸✹

✺✻✼✽

✾✿❀

❁ ❃❄❅ ❇❈❉ ❊❋● ❍■❏
❑

▲▼◆

❖P◗

❘❚❯

❱❲❳

❨❩❬

❭❪❫ ❴❵❛❜❝❞❡ ❢❣❤✐

❥❦❧ ♠♥♦♣q

rst ✈✇①②③④⑤ ⑥⑦⑧⑨⑩

❶
❷
❸❹
❺
❻❼❽
❾
❿
➀
➁➂
➃
➄
➅➆
➇

➈
➉
➊
➋
➌
➍
➎➏
➐
➑➒
➓
➔→
➣
↔
↕

➙➛➜➝➞ ➟➠➡ ➢➤➥➦➧➨➩➫➭ ➯➲➳

➵➸➺➻➼➽➾➚➪➶ ➹➘➴➷➬ ➮➱✃❐❒❮❰
ÏÐÑÒ ÓÔÕÖ ×ØÙÚ ÛÜÝÞßàá

âãäåæçèéêë ìíîïð ñòóôõö÷øùúû
üýþÿ ▼�✁✂ ✄☎✆✝ ✞✟✠✡☛☞✌✍✎✏✑

Fig. 10. Normalized price P and mean wait time w as a function of the
short job threshold t (in seconds) for s=101 under an LJW waiting policy.

Further, even when under-provisioned, the under-prediction rate

must be high, at >50% in the graph, to cause a significant increase

in mean wait time.

Key Point. SWW is not highly sensitive to under-predictions, as

they do not affect the effective price and only affect the mean

waiting time when fixed resources are under-provisioned.

Our results are important in assessing and contextualizing the

accuracy of new and existing methods for predicting queue waiting

times. Specifically, for cloud-enabled schedulers, these prediction

techniques should focus on minimizing over-predictions, and they

should be evaluated separately for over- and under-predictions.

4.2 Long Jobs Wait

Model Analysis. Long Jobs Wait’s (LJW) intuition is that longer

running jobs should be willing to wait longer for fixed resources,

since longer waiting times are a smaller percentage of their overall

running time compared to shorter jobs. For LJW, we introduce

a running time threshold t such that jobs shorter than t run

immediately on on-demand resources, while others wait for fixed

resources. For simplicity, our LJW policy is not work-conserving

in that it runs short jobs on on-demand resources even if fixed

resources are available. This non-work-conserving variant will

behave similarly to a work-conserving one in the optimal case

when fixed resources are not over-provisioned (and thus rarely

idle). For LJW, we separate the analysis for short jobs and long

jobs. As shown below, the effective price P is the weighted

average of the price to run short and long jobs. As before, r
represents the fraction of jobs that run on on-demand resources,

while Pshort and Plong represent the price to run short and long

jobs, and µshort and µlong represent the mean service rate of short

and long jobs.

P = (1− r)×
µ

µlong
× Plong + r ×

µ

µshort
× Pshort (15)

Thus, first and second additive terms represent the relative cost

to execute long and short jobs, respectively, based on their fraction

of the total jobs, their proportion of the service time, and their

price. Note that, µlong > µ > µshort for any t > 0. Similarly,

the mean waiting time w is the weighted average of the waiting

time to run short and long jobs. Since, by definition, short jobs

do not wait, w is only dependent on the fraction of long jobs and

their mean waiting time.

w = (1− r)× wlong (16)

Short Jobs. All short jobs (with running times <t) run on on-

demand resources at price po without any waiting time. Thus,

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

Pshort=po, while r is the fraction of jobs with running times

less than t, which is equivalent to the CDF of the exponential

distribution for service times at x=t, as shown below.

r = 1− e−µt (17)

Long Jobs. Since long jobs always wait for fixed resources, the

policy is similar to AJW in §3.1 but applied to long jobs. The

mean arrival rate for long jobs λlong is the product of the overall

job arrival rate λ and the fraction of long jobs (1− r).

λlong = λ× (1− r) = λ× e−µt (18)

Similarly, we compute the mean service rate µlong for long

jobs using its service time PDF f(x, µ), as below. The PDF for

long jobs is an exponential distribution shifted by t units.

f(x, µ) = µe−µ(x−t), x ≥ t (19)

We find the expected value of the long jobs service time PDF to

derive its mean service time 1
µlong

by integrating from x=t→∞.

1

µlong
=

∫

∞

t

xµe−µ(x−t)dx = t+
1

µ
(20)

Note that we can derive µshort from µlong , r, and µ, since the

mean service time of the original distribution 1/µ is the weighted

average of the mean service time of short jobs 1/µshort and long

jobs 1/µlong . Thus, we compute µshort by simply solving the

expression below.
1

µ
= r ×

1

µshort
+ (1− r)×

1

µlong
(21)

The effective price Plong of running long jobs on fixed

resources is simply the price of fixed resources pf at full uti-

lization divided by the actual utilization ρlong , where ρlong =
λlong/(s×µlong).

Plong =
pf
ρf

=
pf × s× µlong

λlong
(22)

Importantly, however, the distribution of jobs with service

times greater than t is not exponentially distributed. As a result, we

cannot apply the same model as for AJW to compute the waiting

time. Instead, we use the well-known approximation below for the

waiting time of an M/G/s queue, where CV is the distribution’s

coefficient of variation, i.e., the standard deviation divided by

the mean. In this case, the standard deviation of the long jobs’

service time distribution is 1/µ, and the mean is 1/µlong , so

CV =µlong/µ.

w ∼
CV 2 + 1

2
×

C(s, a)

s× µlong − λlong
(23)

Empirical Validation. Figure 10 shows the normalized price (left

y-axis) and waiting time (right y-axis) under LJW as a function

of t for s=101, as well as AJW and NJW, using our baseline

parameters. As before, the graph shows that the empirical values

closely match the model’s waiting time approximation above. The

graph shows that as t increases the normalized price increases,

as fewer jobs wait for resources. However, LJW also significantly

decreases the mean waiting time relative to AJW as t increases,

since the exponential service time distribution is weighted towards

short jobs, which experience no waiting time under LJW. In

addition, since long jobs still comprise a high fraction of the

overall service time (and thus cost), the effective price under LJW,

especially for small values of t, increases at a much lower rate than

the waiting time decreases. For example, at a threshold t=180, the

mean wait time is near 0 under LJW compared to a mean waiting

time of 450s under AJW, for a normalized price that is only ∼10%

higher, but slightly lower than NJW.

By immediately running short jobs, LJW acts as the dual of

shortest job first scheduling that minimizes waiting time, and is

thus beneficial when fixed resources are under-provisioned.

Key Point. LJW offers a nice tradeoff: as t increases, price

increases modestly, while waiting time decreases significantly.

4.2.1 Prediction Accuracy

Our LJW analysis above assumes that arriving jobs perfectly

predict their running time, which may not always be possible.

As with predictions of queue waiting time, there is significant

prior work on predicting job running time, which we discuss in

§8, since it is an important input for many common scheduling

policies, such as SJF. As in 4.1.1, our analysis provides a basis for

contextualizing this prior work, and understanding how inaccuracy

can affect waiting policies. Since an imperfect prediction analysis

for LJW is more challenging than for SWW, we empirically

quantify the effect of inaccurate predictions of job running time

in our model. At a high level, similar to SWW’s analysis, as

fover—the fraction of short jobs that are predicted to be long

(with running times >t)—approaches one, LJW approaches the

behavior of AJW, since all jobs wait. In contrast, as funder—the

fraction of long jobs that are predicted to be short—approaches

one, LJW approaches using all on-demand resources (plus the

cost of fixed resources).

To understand how sensitive LJW is to over- and under-

predictions of job running time, we plot the normalized price and

mean waiting time as a function of funder and fover for s=101
and t=180. We only plot empirical results from our job simulator,

since we have no analytical model. Figure 11(a) shows that as

the over-prediction rate increases, the effective price decreases,

but, since LJW’s price in this case is already near the optimal

price pf , the decrease is minimal. In contrast, as the under-

prediction rate increases, the effective price increases significantly.

Figure 11(b) shows the opposite effect: as the over-prediction rate

increases, the mean waiting time increases significantly, while

as the under-prediction rate increases the mean waiting time

decreases, although since LJW’s mean wait time is already near

zero, the decrease is not significant.

To clarify the tradeoff between over- and under-prediction, we

define a new metric, called the opportunity cost of waiting, which

values a job’s waiting time equal to its running time. The mean

opportunity cost P×w is in dollars. Since lower values of P and

w are better, a lower opportunity cost is better. Figure 11(c) shows

the opportunity cost of LJW as a function of the rate of over- and

under-prediction. The graph shows that LJW is more robust to

under-prediction, since a high under-prediction error rate causes

more jobs to run on on-demand resources. While this increases

the price, it drops the waiting time (and thus opportunity cost) to

zero once the error rate exceeds 10%. In contrast, over-predictions

decrease the price only linearly, as shown in (a), but increases

the waiting time super-linearly, as shown in (b). Over-predictions

cause more jobs to wait on fixed resources, which significantly

increases the queue length and waiting time, for only a modest

cost savings. The result is a super-linear increase in opportunity

cost, as the super-linear increase in waiting time dominates the

linear decrease in price.

Key Point. LJW’s effective price is robust to over-predictions

and sensitive to under-predictions, while its mean waiting time is

robust to under-predictions and sensitive to over-predictions. LJW

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

➛➜➝

➞➟➠

➡➢➤

➥

➦➧➨

➩ ➫➭ ➯➲ ➳➵

➸➺➻ ➼➽➾➚➪➶
➹
➘➴
➷
➬➮➱
✃
❐
❒
❮❰
Ï
Ð
ÑÒ
Ó

ÔÕÖ×Ø ÙÚÛ

ÜÝÞßàáâãäå æçèéê ëìíîïð ñòóôõö÷øùú ûüýþÿ ◆�✁✂✄☎✆

✥

✝✞✟

✠✡☛

☞✌✍

✎✏✑

✒ ✓✔ ✕✖ ✗✘ ✙✚ ✛✜✢

▲✣✤ ✦✧★✩✪✫✬ ✭✮✯✰▼
✱✲
✳
✴
✵✶
✷✸
✹✺
✻
✼✽
✾✿
❀

❊❁❂❃❄ ❅❆❇

❈❉❋● ❍■❏❑ ❖P◗❘ ❙❚❯❱❲❳ ❨❩❬❭ ❪❫❴❵ ❛❜❝❞ ❡❢❣❤✐❥❦

❧

♠♥

♦♣

qr

st

✉✈

✇①

②③

④ ⑤⑥ ⑦⑧ ⑨⑩

❶
❷❸
❹❺
❻❼
❽❾
❿➀
➁
➂➃
➄➅
➆➇

➈➉➊➋➌ ➍➎➏

➐➑➒➓➔→➣↔↕➙➛ ➜➝➞➟ ➠➡➢➤➥➦ ➧➨➩➫➭➯➲➳➵➸➺ ➻➼➽➾ ➚➪➶➹➘➴➷

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 11. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the fraction of jobs with incorrect over- and
under-predictions (%) of job running time for s=101 and t=180 under an LJW waiting policy.

➬➮➱

✃❐❒❮

❰ÏÐÑ

ÒÓÔÕ

Ö× ØÙ ÚÛ ÜÝÞ ßàá âãä

å

æçè

éêë

ìíî

ïðñ

ò
ó
ôõ
ö
÷ø
ù
ú
û
ü
ýþ
ÿ
◆
�✁
✂

▼
✄
☎
✆
✝
✞
✟✠
✡
☛☞
✌
✍✎
✏
✑
✒

✓✔✕✖✗✘ ✙✚ ✛✜✢✣✤✥✦✧★ ✩✪✫

✬✭✮✯✰✱✲✳✴✵ ✶✷✸✹✺ ✻✼✽✾✿❀❁❂❃❄
❅❆❇❈ ❉❊❋● ❍■❏❑ ▲❖P◗❘❙❚❯❱

❲❳❨❩❬❭❪❫❴❵ ❛❜❝❞❡ ❢❣❤✐❥
❦❧♠♥ ♦♣qr st✉✈ ✇①②③④

Fig. 12. Normalized price P and wait time w as a function of fixed re-
sources s for our compound policy (b=900 and t=180) and LJW (t=180).

is more sensitive to over-predictions, since they cause a super-

linear increase in waiting time for only a linear decrease in price.

Similar to SWW’s uncertainty analysis in §4.1.1, our results

above are important in assessing and contextualizing the accuracy

of new and existing methods for predicting job running times.

Specifically, for cloud-enabled schedulers, these prediction tech-

niques should focus on minimizing over-predictions, and they

should be evaluated separately for over- and under-predictions.

4.3 Compound Waiting Policies

Model Analysis. Waiting policies, unlike scheduling policies,

are not mutually exclusive. That is, we can concurrently apply

multiple waiting policies that select jobs to wait based on different

characteristics. Thus, we analyze a compound waiting policy that

combines the advantages of AJW-T, SWW, and LJW. In analyzing

this policy, we first apply LJW’s analysis from §4.2, since its

waiting decisions are based on job running time, and are thus

load insensitive and not affected by other waiting policies. Our

LJW analysis yields a fraction r of short jobs that always run

on on-demand resources, which we label rshort. The remaining

(1−rshort) long jobs run on fixed or on-demand resources de-

pending on their waiting time.

We next apply SWW’s analysis from §4.1 solely to the

remaining long jobs. In particular, we compute the fraction rsww

of the remaining long jobs that run on on-demand resources (due

to long wait times) by applying Lemma 3.1 using λlong and µlong

from §4.2 for a given value of s and b. This is an approximation,

since Lemma 3.1 assumes exponentially distributed service times,

and the long jobs’ service time distribution is an exponential

distribution truncated at t. This approximation becomes more

accurate as t→0 and the distribution approaches an exponential.

Given rsww, the effective price for our compound waiting policy

is as follows.

P = (1− rshort)× (1− rsww)×
µ

µlong
×

pf
ρf

+(1− rshort)× rsww ×
µ

µlong
× po + rshort ×

µ

µshort
× po

(24)

The last additive term is the product of the fraction of short

jobs that run on on-demand resources, their fraction of the mean

service time, and the on-demand price. The second term is the

same, but applies only to the fraction of long jobs with high wait

times that run on on-demand resources. The first additive term is

the remaining long jobs with short waiting times that run on fixed

resources. Here, ρf , shown below, is the mean utilization of the

fixed resources, which is simply the adjusted arrival rate of jobs

to the fixed resources divided by their mean service rate, and then

normalized by s.

ρf =
(1− rshort)× (1− rsww)× λ

s× µlong
(25)

We use the same approach as in LJW to approximate the com-

pound policy’s mean waiting time, but replace the waiting time

under AJW with the waiting time under SWW from Equation (13)

as below, again using λlong and µlong as the input. The coefficient

of variation CV is the same as in LJW.

w ∼

{

CV 2+1
2 × (1− rsww)× (α×β(1−δbe−δ×b

−e−δ×b)
(1−rsww)×δ2) ρ < 1

CV 2+1
2 × (1− rsww)× (α×β×b2

(1−rsww)×2) ρ = 1
(26)

Empirical Validation. Figure 12 compares our compound waiting

policy with LJW using our baseline parameters with b=900 and

t=180. The primary advantage of the compound policy over LJW

is that it strictly lowers the overall waiting time, since long jobs do

not wait indefinitely, which is especially important when resources

are under-provisioned, for nearly the same effective price. As

shown, the compound policy’s mean waiting is less than or equal

to that of the LJW policy.

Key Point. Our compound policy combines the advantages of

AJW-T, SWW, and LJW, and thus offers the best tradeoff.

4.4 Model Results Summary

Our analyses show that waiting policies offer a complex tradeoff

between fixed resource provisioning, cost, and waiting time. To

summarize these tradeoffs, we again use the opportunity cost

of waiting. Recall from §4.1.1 that the mean opportunity cost

equals P×w and is in dollars, where lower values of P and

w are better. Figure 13 shows the mean opportunity cost of

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

➛

➜➝

➞➟➠

➡➢➤

➥➦➧

➨➩➫

➭➯ ➲➳ ➵➸ ➺➻➼ ➽➾➚ ➪➶➹

➘
➴
➷
➬
➮➱
✃
❐
❒❮
❰
Ï
Ð
Ñ
Ò
ÓÔ
Õ

Ö×ØÙÚÛ ÜÝ Þßàáâãäåæ çèé

êëìí îïð
ñòóôõö÷øùúû
üýþÿ ❙�✁✂✄

▲☎✆✝ ✞✟✠✡☛ ❜☞➙
❈✌✍✎✏✑✒✓ ✔✕✖✗✘✙ ✚✛✜✢✣

Fig. 13. Opportunity cost as a function of fixed resources s under AJW,
AJW-T, SWW, LJW, and compound policy when using FCFS scheduling.

✥

✤✦

✧★

✩✪

✫✬

✭✮ ✯✰ ✱✲ ✳✴✵ ✶✷✸ ✹✺✻

❖
✼
✽
✾
✿❀
❁
❂
❃❄
❅
❆
❇
❉
❊
❋●
❍

◆■❏❑▼P ◗❘ ❚❯❱❲❳❨❩❬❭❪❫ ❴❵❛

❝❞❡❢ ❣❤✐
❥❦❧♠♥♦ ♣qrst
✉✈✇① ②③④⑤⑥

⑦⑧⑨⑩ ❶❷❸❹❺ ❻❼❽
❾❿➀➁➂➃➄➅ ➆➇➈➉➊➋ ➌➍➎➏➐

Fig. 14. Opportunity cost as a function of fixed resources s under AJW,
AJW-T, SWW, LJW, and compound policy when using SJF scheduling.

waiting for AJW, AJW-T (for b=900), SWW (for b=900), LJW

(for t=180), and our compound policy (for b=900 and t=180)

using our baseline parameters. Since the effective price P is

bounded (by pf) and waiting time is not, the opportunity cost

for all policies approaches zero as s increases. Just as with a

scheduling policy, a waiting policy’s importance increases with

resource constraint. We exclude NJW, as its opportunity cost is

always zero, since its waiting time is zero. For the remaining

policies where a price-waiting time tradeoff exists, our compound

policy yields the lowest opportunity cost.

While the inter-arrival and service time distributions affect the

absolute differences in price and waiting time between waiting

policies, many aspects of our analysis are generalizable, and hold

regardless of the job inter-arrival and service time distributions.

As a result, our models and analysis are most useful in enabling

users to better understand and reason about the effect of different

waiting policies by understanding how their system and workload

characteristics differ from the models’ assumptions. Specifically,

SWW always results in a shorter mean waiting time than AJW-T;

higher values of the waiting time threshold b always increase fixed

resource utilization, decrease price, and increase waiting time;

increasing the short job threshold t always increases price and

decreases waiting time; and the compound policy always combines

the advantages of AJW-T, SWW, and LJW. Our evaluation in §6

echoes this point by empirically showing the relative price, waiting

time, and opportunity cost between the waiting policies of a real

workload precisely follows our analysis.

In addition, the general insights above also hold for different

scheduling policies. While the waiting policy is distinct from the

scheduling policy, and both can be defined independently, there

is some interaction between them. Figure 14 shows the same

experiment as Figure 13, but with shortest job first (SJF) as the

scheduling policy instead of FCFS. Note that Figure 14 only

plots data from simulations of the same synthetic workloads as in

Figure 13, since there is no similar closed-form analytical queuing

models for SJF scheduling. In addition, predictions of queue

waiting time under SWW are much more difficult under SJF,

since the ordering of jobs in the queue changes based on newly

arriving jobs. Thus, waiting time predictions under SJF require

future knowledge. The graph shows that the relative ordering of

waiting policies is the same when using SJF and FCFS, and also

that the trends are the same. Of course, the absolute opportunity

cost when using SJF is significantly less because SJF substantially

decreases the waiting time for jobs that wait for fixed resources.

As we show in §6.2, the price when using SJF is similar to

using FCFS. Using SJF has no effect on LJW, since it determines

whether a job waits based on its own characteristics. SJF does

affect SWW: since short jobs wait less than long jobs under SJF,

SWW in this case prioritizes short jobs to wait for fixed resources.

However, in isolation, prioritizing short jobs does not substantially

increase the price, since most jobs are short anyway (both in the

synthetic workloads here and our real workload in §6), a similar

set of jobs run on on-demand VMs. When SWW is used in

conjunction with LJW under SJF scheduling, LJW cancels out this

implicit short job prioritization of SWW under SJF, because LJW

automatically sends short jobs to run on on-demand resources. We

discuss the inter-play between the waiting policy and scheduling

policy in the context of SJF more in §6.2.

5 IMPLEMENTATION

We implemented a waiting policy model analyzer based on our

analysis, as well as a trace-driven job simulator, in python.

Model Analyzer. Our model analyzer implements the analytical

queuing model for all the waiting policies we analyze. The

analyzer enables what-if analyses to compare and understand a

workload’s expected cost and job waiting times under different

policies and parameter values. The analyzer takes as input a

policy’s name and λ, µ, s, pf , and po, as well as b for AJW-

T, SWW, and the compound policy, and t for LJW and the

compound policy. Users may also enter a workload duration T .

The analyzer’s output is the policy’s mean waiting time w, the

effective price P , the fraction of jobs that run on on-demand

resources r, and, if T is specified, the total cost C . If s is

unspecified, the analyzer finds the optimal s that minimizes price

P and outputs the values above at the optimal. We plan to publicly

release our model analyzer, which can be used to re-produce our

model graphs in §3 and §4.

Job Simulator. We implemented a trace-driven job simulator in

python that mimics a cloud-enabled job scheduler, which can

acquire VMs on-demand to service jobs. The simulator uses a

FCFS scheduling policy, and also implements each of our waiting

policies. The simulator takes as input a trace of jobs, s, pf , the

name of a waiting policy, and the same waiting policy-specific

parameters as above. Users must also specify the number of cores

and memory allotment for each fixed resource s. Since cloud

platforms offer VMs in different sizes, the simulator includes a

table of available on-demand VM options that specify their cores,

memory, and price. In our evaluation, we consider only the 8 VM

types in the m5 family of general-purpose VMs on AWS. While

VMs in the m5 family have different resources, they all offer the

same price per unit of resource. The simulator’s output is the mean

waiting time w, the effective price P , the fraction of jobs that run

on on-demand resources r, and the total cost C .

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

➛➜➝

➞➟➠

➡➢➤

➥➦➧

➨➩➫

➭➯➲

➳➵➸ ➺➻➼ ➽➾➚ ➪➶➹ ➘➴➷ ➬➮➱ ✃❐❒

❮
❰
ÏÐ
Ñ
ÒÓ
Ô
Õ
Ö
×
ØÙ
Ú
Û
ÜÝ
Þ

ßàáâãä åæ çèéêëìíîïðñ òóô

õö÷
øùúû üýþÿ❙� ✁✂✄☎✆✝✞

▲✟✠✡ ☛☞✌✍✎✏

❈✑✒✓✔✕✖✗ ✘✙✚✛✜✢✣✤ ✥✦✧★✩✪
◆✫✬

✭

✮

✯✰

✱✲

✳✴

✵✶✷ ✸✹✺ ✻✼✽ ✾✿❀ ❁❂❃ ❄❅❆ ❇❉❊
▼
❋
●
❍
■
❏
❑❖
P
◗❘
❚
❯❱
❲
❳
❨❩
❬

❭❪❫❴❵❛ ❜❝ ❞❡❢❣❤✐❥❦❧♠♥ ♦♣q

rst
✉✈✇① ②③④⑤⑥⑦⑧

⑨⑩❶❷ ❸❹❺❻❼❽

❾❿➀➁➂➃➄➅ ➆➇➈➉➊➋➌➍ ➎➏➐➑➒➓
➔→➣↔↕➙ ➛➜➝➞➟➠➡

➢

➤

➥

➦➧

➨➩➫ ➭➯➲ ➳➵➸ ➺➻➼ ➽➾➚ ➪➶➹ ➘➴➷

➬
➮
➱
✃
❐❒
❮
❰
ÏÐ
Ñ
Ò
Ó
Ô
Õ
Ö×
Ø

ÙÚÛÜÝÞ ßà áâãäåæçèéêë ìíî

ïðñ
òóôõ ö÷øùúûü

ýþÿ▲ �✁✂✄☎✆

❈✝✞✟✠✡☛☞ ✌✍✎✏✑✒✓✔ ✕✖✗✘✙✚
❆✛✜✢✣✤ ✥✦✧★✩✪✫

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 16. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of m5.16xlarge VMs when executing our real
production batch workload under AJW, AJW-T, SWW, LJW, and our compound policy with FCFS scheduling policy.

✬✭✮

✯✰✱

✲✳✴

✵✶✷

✸✹✺

✻✼✽

✾✿❀ ❁❂❃ ❄❅❇ ❉❊❋ ●❍■ ❏❑▼

◆
❖
P◗
❘
❙❚❯
❱
❲
❳
❨❩
❬
❭
❪❫
❴

❵❛❜❝❞❡ ❢❣ ❤✐❥❦❧♠♥♦♣qr st✉

✈✇①
②③④⑤ ⑥⑦⑧⑨⑩❶ ❷❸❹❺❻❼❽

❾❿➀➁ ➂➃➄➅➆➇

➈➉➊➋➌➍➎➏ ➐➑➒➓➔→➣↔ ↕➙➛➜➝➞
➟➠➡

➢

➤➥➦

➧

➨➩➫

➭

➯➲➳ ➵➸➺ ➻➼➽ ➾➚➪ ➶➹➘ ➴➷➬
➮
➱
✃
❐
❒
❮
❰Ï
Ð
ÑÒ
Ó
ÔÕ
Ö
×
ØÙ
Ú

ÛÜÝÞßà áâ ãäåæçèéêëìí îïð

ñòó
ôõö÷ øùúûüýþ

ÿ▲�✁ ✂✄☎✆✝✞

❈✟✠✡☛☞✌✍ ✎✏✑✒✓✔✕✖ ✗✘✙✚✛✜
❆✢✣✤✥✦ ✧★✩✪✫✬✭

✮

✯✰✱

✲✳✴

✵✶✷

✸✹✺

✻✼✽ ✾✿❀ ❁❂❃ ❄❅❇ ❉❊❋ ●❍■

❖
❏
❑
▼
◆P
◗
❘
❙❚
❯
❱
❲
❳
❨
❩❬
❭

❪❫❴❵❛❜ ❝❞ ❡❢❣❤✐❥❦❧♠♥♦ ♣qr

st✉
✈✇①② ③④⑤⑥⑦⑧⑨

⑩❶❷❸ ❹❺❻❼❽❾

❿➀➁➂➃➄➅➆ ➇➈➉➊➋➌➍➎ ➏➐➑➒➓➔
→➣↔↕➙➛ ➜➝➞➟➠➡➢

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 17. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of m5.16xlarge VMs when executing our real
production batch workload under AJW, AJW-T, SWW, LJW, and our compound policy with SJF scheduling policy.

and a cost of $2,421,965, or $276.48/hour. As before, we use a

discount factor d∼0.4 based on the m5.16xlarge’s on-demand

price of $3.072/hour and its 3-year reserved price of $16,046.

6.2 Real-world Workload Results

Figure 16 shows the normalized price (a), mean waiting time (b),

and opportunity cost (c) for each of our waiting policies with FCFS

scheduling policy. We select the maximum waiting time threshold

b=24 hours for SWW and AJW-T, or slightly less than double the

current cluster’s mean waiting time using AJW. We select the long

job cutoff t=3m where 60% of jobs are short and 40% are long.
Price. As expected, Figure 16(a) shows that AJW yields the

lowest price, since it requires all jobs to wait for fixed resources.

Interestingly, LJW yields nearly the same price even though it

executes 60% of the total jobs on on-demand VMs. Since these

60% of short jobs comprise only a small fraction of the overall

job execution time, executing them on on-demand VMs does not

substantially increase the normalized price. SWW, AJW-T, and

our compound policy yield nearly the same price for the same

reason. This price is greater than LJW because SWW and the

compound policy cut the tail off the job waiting time distribution

by preventing jobs that would have to wait longer than 24 hours

from ever waiting. Running these jobs, which may include long

jobs, on on-demand VMs increases the price. As fixed resources

decrease, the price reaches a minimum before increasing, as

an increasingly larger share of the jobs experience (or would

experience) long waiting times and thus instead run on on-demand

resources. NJW has a ∼26% higher price than SWW, since it

directs any job that must wait to on-demand resources.
When using AJW, our current cluster yields a normalized price

of 0.6 at x=225 fixed resources, while the minimum cost under

the compound policy is 0.571 at x=150, or 5% less. For our trace,

P=0.6 translates to an annual cost of $2,421,965, while 0.571
translates to $2,304,903, or over $100k lower. This cost advantage

for our compound policy is less than our model predicts, since

our burstier workload causes more jobs to run on on-demand

resources, which increases the price.

Waiting Time. As our model predicts, Figure 16(b) shows that

the mean job waiting time under AJW and LJW increases super-

linearly as fixed resources decrease. However, even though LJW’s

cost is nearly the same as AJW’s, its mean waiting time is

substantially less because the large fraction of short jobs never

wait. In contrast, the mean waiting time under AJW-T, SWW,

and the compound policy increases modestly as fixed resources

decrease. Even at x=100, the mean waiting time of these policies

is less than the 13.3 hour mean waiting time in our current fixed

size cluster (AJW at x=225). At x=150, the compound policy has

a mean waiting time of 1.74 hours, or 7× less than our current

cluster (for 5% less cost).

Our compound policy’s waiting time is much less than our

model predicts due to the burstier workload, where large bursts

of jobs cause long waiting times for a large fraction of short jobs

under AJW. Running these short jobs on on-demand VMs sig-

nificantly reduces waiting time at little cost. In addition, running

jobs with long waiting times on on-demand VMs only modestly

increases cost for large decreases in waiting time.

Opportunity Cost. Figure 16(c) graphs the mean opportunity

cost of waiting P×w for each policy, and shows that, as our

model predicts, the compound policy offers the best tradeoff by a

significant margin compared to the other policies. Note that, even

though our workload’s characteristics differ significantly from

those assumed by our model, the overall trends in opportunity

cost match those from our model in Figure 13.

Key Point. Our real workload’s burstier job arrivals and heavier

head/tail service time distribution makes the compound policy’s

waiting time advantage much greater than our model predicts.

Key Result. At the optimal, the compound policy decreases the

cost (by 5%) and mean job waiting time (by 7×) compared to

the current cluster using AJW, and decreases the cost (by 43%)

compared to renting on-demand resources for a comparatively

modest increase in mean job waiting time (at 1.74 hours).

SJF Scheduling. We next repeat the experiments above using the

same parameters but using the SJF scheduling policy instead of

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

➛➜➝

➞➟➠

➡➢➤

➥➦➧

➨ ➩ ➫➭ ➯➲ ➳➵ ➸➺

➻
➼
➽➾
➚
➪➶➹
➘
➴
➷
➬➮
➱
✃
❐❒
❮

❰ÏÐÑÒ ÓÔÕ Ö×ØÙÚÛÜÝÞ ß àáâãä

åæçèéê ëìíîïðñ òóôõö÷ø ùúûüýþÿ

✥

�

✁

✂

✄

☎ ✆ ✝✞ ✟✠ ✡☛ ☞✌

▼
✍
✎
✏
✑
✒
✓✔
✕
✖✗
✘
✙✚
✛
✜
✢✣
✤

❙✦✧★✩ ✪✫✬ ✭✮✯✰✱✲✳✴✵ ✶ ✷✸✹✺✻

❜✼✽✾✿❀ ❁❂❃❄❅❆❇ ❈❉❊❋●❍■ ❏❑▲◆❖P◗

❘

❚

❯

❱

❲ ❳ ❨❩ ❬❭ ❪❫ ❴❵

❛
❝
❞
❡
❢❣
❤
✐
❥❦
❧
♠
♥
♦
♣
qr
s

t✉✈✇① ②③④ ⑤⑥⑦⑧⑨⑩❶❷❸ ❹ ❺❻❼❽❾

❿➀➁➂➃➄ ➅➆➇➈➉➊➋ ➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 18. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the long job threshold (t) when executing our real
production batch workload under a compound policy assuming 150 m5.16xlarge VMs.

➛➜➝

➞➟➠

➡➢➤

➥➦➧

➨➩➫

➭ ➯ ➲ ➳ ➵ ➸➺ ➻➼

➽
➾
➚➪
➶
➹➘➴
➷
➬
➮
➱✃
❐
❒
❮❰
Ï

ÐÑÒÓÔÕÖ×ØÙ ÚÛÜ ÝÞßàáâãäåæ çèéêë ìíî

ïðñòóôõö÷ øùúûüýþÿ❂� ❡✁✂✄☎❜✆✝✞✟ ✠✡☛☞✌✍✎✏✑✒

✥

✓

✔

✕ ✖ ✗ ✘ ✙ ✚✛ ✜✢

▼
✣
✤
✦
✧
★
✩✪
✫
✬✭
✮
✯✰
✱
✲
✳✴
✵

❙✶✷✸✹✺✻✼✽✾ ✿❀❁ ❃❄❅❆❇❈❉❊❋● ❍■❏❑▲ ◆❖P

◗❘❚❯❱❲❳❨❩ ❬❭❪❫❴❵❛❝❞❢ ❣❤✐❥❦❧♠♥♦♣ qrst✉✈✇①②③

④

⑤

⑥

⑦ ⑧ ⑨ ⑩ ❶ ❷❸ ❹❺

❻
❼
❽
❾
❿➀
➁
➂
➃➄
➅
➆
➇
➈
➉
➊➋
➌

➍➎➏➐➑➒➓➔→➣ ↔↕➙ ➛➜➝➞➟➠➡➢➤➥ ➦➧➨➩➫ ➭➯➲

➳➵➸➺➻➼➽➾➚ ➪➶➹➘➴➷➬➮➱✃ ❐❒❮❰ÏÐÑÒÓÔ ÕÖ×ØÙÚÛÜÝÞ

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 19. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the long job prediction error when executing our
real production batch workload under a compound policy assuming 150 m5.16xlarge VMs.

FCFS scheduling. Figure 17 shows the results. As mentioned in

§4.4, Figure 17(a) shows nearly the same normalized price across

all the waiting policies as in Figure 16(a). In some cases, as with

AJW and LJW, the price is the same, since these waiting policies

are not sensitive to the scheduling policy. SWW is sensitive to the

scheduling policy, and prioritizes short jobs on fixed resources,

since these jobs have a lower waiting with SJF. However, since the

vast majority of jobs in our real-world trace are already short, this

only slightly increases the normalized price. Since the compound

policy includes SWW, there is a similar impact on the normalized

price. NJW’s price is also higher under SJF for the same reason.

Figure 17(b) shows that SJF significantly decreases the waiting

time across all waiting policies compared to Figure 16(b). Note

that LJW and AJW in this experiment require a minimum of 150

VMs to run all jobs within the year, and thus we do not extend their

results below 150 VMs. SJF is well-known to optimize for waiting

time, often at the expense of starving longer jobs. However, in

our case, long jobs never starve when using AJW-T, SWW, or

the Compound policy, since in this case, if jobs have to wait

longer than the waiting time threshold, the scheduler runs them

immediately on on-demand. Importantly, the trends and relative

ordering of the waiting policies under SJF is the same as under

FCFS based on our analysis from §4.4.

Finally, Figure 17(c) shows the opportunity cost of all waiting

policies under SJF. As with our model’s workload in §4.4, the

opportunity cost decreases compared to FCFS due to the substan-

tial decrease in waiting time. As when using FCFS, the relative

ordering of opportunity cost when using SFJ remains the same

with the compound policy yielding the lowest opportunity cost.

6.3 Sensitivity Analysis

We perform a sensitivity analysis that varies b, t, and errors in

estimating job waiting time and running time to understand their

effect on the results. We chose the values above for b=24h and

t=3m arbitrarily to be reasonable, as 24h is roughly twice the

mean waiting time under AJW and t=3m categorizes a large

fraction (60%) of jobs as short. We also assume accurate estimates

of job waiting and running time, e.g., using historical data. Our

sensitivity analysis assumes 150 m5.16xlarge’s when using

the compound policy, which as discussed in §6.2 and shown in

Figure 16(a) and Figure 17(a) is the number of fixed resources that

minimizes cost under both FCFS and SJF scheduling, respectively.

Parameter Sensitivity. Figure 18 plots price, waiting time, and

opportunity cost as a function of the short job threshold t with lines

for different values of the waiting time threshold b. We vary t from

3-30m and the waiting time threshold from 6h-48h. The price (a)

increases linearly with the short job threshold t, albeit with a small

slope, since this increases the fraction of short jobs that run on on-

demand VMs at a higher price. The price also decreases roughly

linearly for every doubling of the waiting time threshold b, as

longer waiting time thresholds force more jobs to wait for lower

cost fixed VMs. In contrast, the mean waiting time (b) decreases

as the short job threshold increases, at an increasingly slower rate,

as fewer jobs wait for fixed VMs. This non-linearity derives from

Figure 15(c). Similarly, the mean waiting time decreases as the

waiting time threshold decreases, also at an increasingly slower

rate. Finally, the opportunity cost (c) is dominated by the mean

waiting time, and thus exhibits a similar trend. As t increases,

the decrease in waiting time outweighs the increase in cost due

to Figure 15(c). As b→0, the compound policy approaches NJW

(for long jobs) where there is no tradeoff, and the waiting time and

opportunity cost are zero.

Error Sensitivity. Figure 19 plots price, waiting time, and op-

portunity cost as a function of the short/long job prediction error,

which is both the percentage of long jobs we mispredict as short,

and short jobs we mispredict as long. Similarly, each line captures

the waiting time threshold error, which is both the percentage of

jobs that should wait but do not, and that do not but should. The

graph shows price (a) is directly proportional to the short/long

job prediction error, such that a 1% increase in error causes a 1%

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

➛➜➝

➞➟➠

➡➢➤

➥➦➧

➨➩➫

➭➯➲

➳➵➸ ➺➻➼ ➽➾➚ ➪➶➹ ➘➴➷ ➬➮➱ ✃❐❒

❮
❰
ÏÐ
Ñ
ÒÓ
Ô
Õ
Ö
×
ØÙ
Ú
Û
ÜÝ
Þ

ßàáâãä åæ çèéêëìíîïðñ òóô

õö÷ø ùúûüýþÿ❂
❙�✁✂ ✄♦☎✆✝✞✟✠

✡☛☞✌ ✍✎✏✑✒✓✔✕
◆✖✗

✥

✘

✙✚

✛✜✢ ✣✤✦ ✧★✩ ✪✫✬ ✭✮✯ ✰✱✲ ✳✴✵

▼
✶
✷
✸
✹
✺
✻✼
✽
✾✿
❀
❁❃
❄
❅
❆❇
❈

❉❊❋●❍■ ❏❑ ▲❖P◗❘❚❯❱❲❳❨ ❩❬❭

❪❫❴❵ ❛❜❝❞❡❢❣❤
✐❥❦❧ ♠♥♣qrst✉

✈✇①② ③④⑤⑥⑦⑧⑨⑩
❶❷❸

(a) Normalized Price (b) Mean Job Waiting Time

Fig. 20. Normalized price (a) and mean job waiting time (b) as a function of fixed resources s when executing our real production batch workload
under SWW for different over-prediction errors fover and NJW.

❹

❺

❻

❼❽

❾❿

➀➁

➂➃

➄➅ ➆➇ ➈➉ ➊➋➌ ➍➎➏ ➐➑➒ ➓➔→ ➣↔↕ ➙➛➜ ➝➞➟

➠
➡
➢
➤
➥
➦
➧➨
➩
➫➭
➯
➲➳
➵
➸
➺➻
➼

➽➾➚➪➶➹ ➘➴ ➷➬➮➱✃❐❒❮❰ÏÐ ÑÒÓ

ÔÕÖ× ØÙÚÛÜÝÞßà
áâãä åæçèéêëìíî

ïðñò óôõö÷øùúûü
ýþÿ❆�

Fig. 21. Mean waiting time as a function of fixed resources s when
executing our real production batch workload under SWW for different
over-prediction errors funder .

increase in price. In contrast, waiting time threshold errors are

non-linear, with progressively lower price increases for each 10%

increase in error. The graph still shows large savings compared to

using on-demand even under high error rates. The mean waiting

time (b) is much less affected by the short/long job prediction

error, since a similar number of jobs must still wait (it is just

the long jobs not waiting that increases the price). Higher values

of errorb actually decrease mean waiting time: while a larger

percentage of (long) jobs that do not wait but should increases

price, it decreases waiting time. As above, the waiting time trend

dominates the opportunity cost (c), and thus shows a similar trend.

6.4 Effect of Prediction Accuracy

To understand the effect of prediction accuracy for our waiting

policies, we vary the errors in estimating job waiting time and

running time in terms of their over- and under-predictions as in

our analysis from §4.1.1 and §4.2.1. We use the baseline values

of b=24h for the waiting time threshold and t=3m for the long

job threshold. As in our model analysis, we consider the case of

over predictions and under predictions separately based on the

fraction of jobs fover and funder that over- and under-predict

their job waiting time and job running time for SWW and LJW,

respectively. In particular, we simulating each waiting policy using

our job trace, we explicitly control the percentage of jobs that over-

and under-predict waiting times and running times. For example,

if we set fover for the waiting time threshold to N%, this means

that N% of the jobs that would have waited (due to having a short

waiting time) will now run on on-demand resources due to an over-

prediction of their waiting time. We emulate this over-prediction

by uniformly randomly sampling N% of jobs that should wait,

and instead run them on on-demand resources. Similarly, if we

set funder for the waiting time threshold to M%, this means that

M% of the jobs that should not have waited (due to having a long

waiting time) will now wait due to an under-prediction of their

waiting time. We again emulate this under-prediction by uniformly

randomly sampling M% of jobs that should not wait, and instead

force them to wait for fixed resources. We use the same approach

to simulate over- and under-prediction errors for job running time.

Over-predicting Waiting Time. Figure 20 plots the normalized

price P and mean job waiting time W as a function of fixed

resources s for different prediction errors fover under SWW,

where fover is fraction of the jobs over-predicting their waiting

time and thus runs it on on-demand resources when it should have

waited for fixed resources. As the graph shows, the normalized

price (a) increases with the over-prediction error. As fover in-

creases, the cost of running the workload under SWW increases

and approaches that of NJW. This graph mirrors Figure 7 from

§4.1.1 that uses our analytical model to quantify the effect of over-

predictions of waiting time on price. The only difference here is

that the scheduler is work-conserving, so NJW serves as a strict

upper-bound on price even when the fixed resources are over-

provisioned. Figure 20(b) shows that the mean job waiting time

decreases as fover increases and eventually approaches 0 (or the

behavior of NJW). Similar to above, this graph mirrors Figure 8

from §4.1.1 that uses our analytical model to quantify the effect

of over-predictions of waiting time on the mean wait time. As

in our model, the mean wait time is monotonically decreasing

and approaches 0 as the number of fixed resources increases.

Importantly, our empirical results on over-predictions reinforce the

key points from our models in §4.1.1: that SWW is highly sensitive

to over-predictions, such that 3-5% over-predictions significantly

alters both the normalized price and the mean waiting time.

Under-predicting Waiting Time. Figure 21 plots the mean job

waiting time w as a function of fixed resources s over different

prediction errors funder using SWW, where again funder is frac-

tion of the jobs that under-predict their waiting time. Thus, these

under-predicting jobs wait for fixed resources when they should

have run immediately on on-demand resources. As expected, the

mean waiting time w increases as funder increases, such that

the mean waiting time approaches 0 as funder increases. Since

the normalized price under SWW and AJW-T remains the same

regardless of the under-prediction error, we omit it here. The graph

exhibits the same trend as our model predicts from Figure 9 from

§4.1.1. In addition, our empirical results also emphasize the key

point from our model, which is that under-predicting the waiting

time does not have a significant affect on the results: it does not

alter the normalized price, and it only affects the mean waiting

time when the fixed resources are under-provisioned.

LJW Prediction Accuracy. Figure 22 plots the normalized price,

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

➛➜➝

➞➟➠

➡➢➤

➥➦➧

➨

➩ ➫➭ ➯➲ ➳➵ ➸➺ ➻➼➽

➾➚➪ ➶➹➘➴➷
➬
➮
➱✃
❐
❒❮❰
Ï
Ð
Ñ
ÒÓ
Ô
Õ
Ö×
Ø

ÙÚÛÜÝ Þßà

áâãäåæçèéê ëìíîï ðñòóôõ ö÷øùúûüýþÿ ◆�✁✂✄ ☎✆✝✞✟✠✡

✥

☛

☞

✌✍

✎✏

✑✒

✓ ✔✕ ✖✗ ✘✙ ✚✛ ✜✢✣

▲✤✦ ✧★✩✪✫✬✭ ✮✯✰✱

▼
✲
✳
✴
✵
✶
✷✸
✹
✺✻
✼
✽✾
✿❀
❁

❊❂❃❄❅ ❆❇❈

❉❋●❍ ■❏❑❖ P◗❘❙ ❚❯❱❲❳❨ ❩❬❭❪ ❫❴❵❛ ❜❝❞❡ ❢❣❤✐❥❦❧

♠

♥

♦

♣q

r st ✉✈ ✇① ②③ ④⑤⑥

⑦
⑧
⑨
⑩
❶❷
❸
❹
❺❻
❼
❽
❾
❿
➀
➁➂
➃

➄➅➆➇➈ ➉➊➋

➌➍➎➏➐➑➒➓➔→➣ ↔↕➙➛ ➜➝➞➟➠➡ ➢➤➥➦➧➨➩➫➭➯➲ ➳➵➸➺ ➻➼➽➾➚➪➶

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 22. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the fraction of jobs with over- and under-prediction
errors (%) in job running time for s=200 m5.16xlarge VMs and t=3 minutes when executing our real production batch workload under LJW.

mean waiting time, and opportunity cost under LJW policy as

a function of the fraction of jobs with inaccurate runtime predic-

tions. We plot the normalized price in (a) for both over-predictions

and under-predictions. In this case, our experiment assumes that

the number of fixed resources is 200 m5.16xlarge VMs and the

long job threshold is 3 minutes. For over-predictions, the x-axis

represents the fraction of jobs with runtime less than the long job

threshold t where we over-predict the running time to be greater

than t, while for under-predictions, the x-axis represents the

fraction of jobs with runtime greater than t where we under-predict

the running time to be less than t. The dotted line shows the price

(a) and mean waiting time (b) from LJW with perfect predictions

of job running time. As above, our empirical results match the

trends shown by our analytical models in Figures 11(a) and 11(b)

from §4.2.1. In particular, our results show that increasing under-

prediction errors has little-to-no effect on the normalized price, but

results in a linear increase in waiting time. In contrast, increasing

over-prediction errors result in a linear increase in price, but a

super-linear decrease in mean waiting time. Finally, Figure 22(c)

shows the opportunity cost for over- and under-prediction errors

as a function of the error rate. As in Figure 11(c) from §4.2.1, this

graph shows that for our real workload, LJW is more sensitive to

over-predictions of job running time than under-predictions, since

under-predictions cause waiting time to quickly drop to zero, while

over-predictions cause a significant increase in waiting time.

7 GENERALIZATION BEYOND CLOUDS

While we focus on cloud platforms in this paper, our queuing

models are general and can also apply to other resources. Just as

general queuing models have proven useful for decades in better

understanding scheduling policies in a variety of contexts, we

believe they will also prove useful in understanding waiting poli-

cies. As physical infrastructure becomes increasingly networked

and programmatically driven, the cloud IaaS model is starting

to spread to other sectors, such as transportation and energy,

where schedulers can similarly choose between using buying or

renting resources to service various types of “jobs.” Under this

emerging Anything-as-a-Service (XaaS) model, schedulers face

the same problem as in the cloud: they must determine how many

fixed resources to provision versus rent on demand based on their

expected workload to optimize their cost and job waiting times.

There are many emerging scenarios in other domains, including

transportation and energy, where waiting policies may apply, albeit

under slightly different circumstances. We discuss scenarios in

energy and transportation where waiting policies may apply, and

how they might differ from their use with cloud platforms. Of

course, fully adapting our models to other scenarios is future work,

since, similar to the cloud, each scenario presents its own specific

context, which might require adaptations to the models.

Transportation. Uber, Lyft, and others have enabled on-demand

transportation by connecting those needing rides with cars (and

drivers) willing to provide them. As a result, users can now choose

between buying their own car, or renting cars on-demand on a

per-ride basis. These services have now evolved to transporting,

not only people, but also packages within urban environments,

e.g., Uber Connect and Lyft Essential Deliveries. Thus, similar to

cloud schedulers, companies that schedule package deliveries now

have a choice between maintaining their own vehicle fleet (and

drivers) to deliver packages, or renting vehicles on-demand. As

with our cloud example, buying a vehicle is cheaper than renting

one if its utilization is high, and thus the optimal provisioning of

vehicles depends on how long the company, and its customers,

are willing to wait for their packages. In this case, the resource

is the vehicle, and the “job” is delivering the package, which

takes different lengths of time depending on the distance to the

destination. Unlike with computing, the distance and thus the job

length is well-known, although there may be some variation due

to traffic. With the emergence of autonomous vehicles, we expect

this scenario to become even more important.

Energy. A similar concept also occurs in the energy sector when

considering choosing between using locally generated solar energy

and grid energy. In this case, solar energy is fixed, since it requires

an initial capital expense, while grid energy is “rented” on-demand

since users can access it anytime and pay only for what they use.

Solar energy’s cost is lower than grid energy is most locations,

as long as it can be productively used. We assume here that

locally generated solar energy is not “grid-tied,” and thus cannot

be sold back to the grid. Such grid-tied solar is increasingly being

restricted as grid solar penetration increases, requiring users to

consume their excess solar energy locally or store it in a battery.

Waiting policies apply to this scenario, since there is a choice

between using locally generated solar energy and grid energy to

execute some “job.” For example, consider a solar-powered EV

charging station where each “job” is the task of fully charging

an EV. An EV charging scheduler must decide whether fixed

solar energy or on-demand grid power should charge each EV.

The optimal provisioning of solar capacity depends on how long

the charging station is willing to have users wait for solar energy

to become available. However, a key difference from the cloud

example is that the fixed solar resource’s capacity is variable in

addition to job durations and inter-arrival times. Thus, optimal

provisioning for solar requires extending our model to account for

stochasticity in the fixed resource capacity, which is part of future

work. Even so, waiting policies that which jobs wait, and for how

long, are fundamental to optimally provisioning these systems.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

8 RELATED WORK

Our work is related to, and builds on, a wide variety of prior work

in multiple different areas, which we summarize below.

Cloud Computing. While our queuing model is general and

applies to any XaaS scheduler, our primary motivating example

is from cloud platforms that present users with a choice of renting

cloud resources on demand at a higher price than purchasing them

(or reserving them for a long period). While prior work focuses

on optimizing the provisioning of reserved VMs in the cloud, it

makes simple workload assumptions. In particular, prior work

often assumes the workload is continuous and uniform, rather

than composed of discrete jobs, which leads to solutions based

on dynamic and integer programming [15], [23], [24], [30], [33],

[34]. The canonical application is a distributed web server with

a front-end load balancer that distributes requests. As a result,

this work does not explore the tradeoff between price and job

waiting time. These techniques do not map to cloud-enabled job

schedulers, such as Kubernetes and Slurm, that must schedule jobs

on on-demand and fixed resources.

Shen et al. focus on a similar problem in the context of a

job scheduler, but do not permit any queuing, and instead use

integer programming to determine the size of VMs to allocate

and how to efficiently pack jobs onto on-demand and reserved

VMs [30]. Our queuing models do not consider jobs with different

resource requirements, and how to bin pack them on resources.

Since providers typically offer VMs in fixed sizes, this results in

some model inaccuracy and cost inefficiency.

Queuing Theory and Marginal Analysis. Our work applies a

number of previously developed queuing theory results to gain

insights into key tradeoffs exposed by different waiting policies.

In particular, our work builds on classic marginal analysis and

queuing results by Erlang and others [19], [25], [31], [35]. The

emergence of cloud-enabled schedulers is increasing the impor-

tance of these results in optimizing cost. As we discuss, AJW’s

analysis is simply that of an M/M/s/∞ queue, and NJW’s

analysis applies classic marginal analysis where jobs never wait

for resources [25]. Our analysis for AJW-T and SWW combines

recent results on reneging and balking by Liu and Kulkarni [27]

with classic marginal analysis, and shows how a waiting time

threshold defines a spectrum between AJW and NJW. Our SWW

analysis also models inaccurate waiting time predictions.

In general, reneging and balking are examples of “customer

abandonment” policies from queuing theory, which model cus-

tomers, i.e., jobs, becoming impatient and leaving the queue. Many

of these models are probabilistic and assume an increasing fraction

of customers (or jobs) abandon the queue as their waiting time

increases based on diverse customer preferences. These customer-

centric models do not apply to our context, where the waiting

policy determines whether jobs abandon the queue (and run on

on-demand resources). Finally, our LJW analysis leverages a well-

known approximation for the waiting time of a M/G/s/∞ queue.

Finally, our compound policy analysis combines and extends

elements from each waiting policy.

Ski Rental Problems. Our problem is similar to the classic ski

rental problem in online algorithms [11]. However, the assumption

in online algorithms is that there is no (or limited) knowledge of

the future, whereas our queueing analysis leverages a workload

characterization to model the system. Ski rental problems also

typically focus on whether to buy or rent a single resource whereas

our problem focuses on provisioning, i.e., how many resources

to buy versus rent, and generally do not consider the cost and

waiting time tradeoff. Recent work examines improving online

algorithms, including the ski rental problem and job scheduling,

using ML predictions [26]. Our model accounts for inaccurate

predictions of waiting time made by ML classifiers, and thus offers

a benchmark accuracy that ML classifiers must satisfy to achieve

specific waiting time and cost targets.

Job Scheduling. Our work is orthogonal to prior work on job

scheduling for fixed resources. A waiting policy is the dual of

a scheduling policy: while a scheduling policy determines which

jobs should execute when fixed resources are available, a waiting

policy determines which jobs should wait when fixed resources

are not available. Given a cloud platform, where jobs never need

wait, the waiting time and cost to execute jobs is a function of the

waiting policy. The scheduling policy may also affect waiting time

and cost. Our simple models assume FCFS scheduling. Some our

waiting policies exhibit similar properties as scheduling policies.

For example, LJW is akin to shortest job first scheduling, and

reduces mean waiting time for a modest increase in cost.

Prediction Accuracy. The SWW, LJW, and compound waiting

policies require knowledge of job runtime and queue waiting

times, which, as we discuss, may not be available a priori. There is

significant prior work on methods for predicting both job running

time and queue waiting time [16], [17], [20], [29], [32]. For

example, [32] estimates job runtime by categorizing jobs using

their common attributes, such as user ID or resources requested,

and chooses the estimate from the category that has produced the

best estimates in the past. Similarly, [29] presents a simple job

runtime and waiting time prediction model for a fixed cluster (or

grid) system, while [17] develops a model to derive the upper

bound of a job’s duration based on both workload and cluster load

prediction errors. [18] also utilize runtime predictions to derive an

upper bound on the cost required to execute a workload, assuming

a particular margin in their prediction errors. Our goal in this

paper is not to improve upon this prior work, but to highlight the

asymmetry in over- and under-predictions with respect to waiting

policies, which can enable future work on prediction methods to

better contextualize their accuracy for cloud-enabled schedulers.

9 CONCLUSION

This paper introduces the concept of a waiting policy for cloud-

enabled schedulers, and defines, models, analyzes, and empirically

validates multiple fundamental waiting policies. Our analysis

reveals key tradeoffs in designing waiting policies under FCFS

and SJF scheduling, and also captures the impact of inaccurate

predictions of job running time and waiting time on the fixed

resource provisioning, price, and mean waiting time. A goal of

this paper is to provide a formal foundation for future work

on waiting policies both analytically and empirically, including

on more general distributions of job inter-arrival and service

times, different scheduling policies, and machine learning (ML)

classifiers to accurately estimate job waiting and running times.

In addition, waiting policies are important in understanding how

users value and provision fixed and on-demand resources. Under-

standing these user valuations is important for cloud providers in

determining how to set the price of fixed and on-demand resources

to maximize their revenue. Finally, while our paper focuses on

evaluating waiting policies in the context of cloud platforms, as

we discuss in §7, the concept is general and may also apply to

emerging XaaS-enabled schedulers for other resources.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

✶�✁✂✄☎✆✝✞ ✟✠✡ ☛☞✌✍ ✎✏✑✒✓ ✔✕✖✗✘✙✚✛ ✜✢✣ ✤✥ ✦✧★✩✪✫✬✭✮✯ ✰✱✲ ✳✴✵✷✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋●❍■❏ ❑▲▼◆❖P◗❘ ❙❚❯❱ ❲❳❨❩❬❭❪❫❴❵❛ ❜❝❞ ❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈✇①②③④⑤⑥⑦⑧⑨⑩❶❷❸❹❺❻❼❽❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛➜➝➞➟➠➡➢ ➤➥➦ ➧➨➩➫ ➭➯➲➳➵➸➺➻➼➽➾➚

➪➶➹➘ ➴➷➬➮➱✃❐ ❒❮❰ ÏÐÑÒ ÓÔÕÖ×ØÙÚ ÛÜÝ Þßàáâãäåæçè éê ë ìíîïðñ òóôõö ÷ø ùúûü ýþÿ❚�✁✂✄ ☎✆✝ ✞✟✠ ✡☛☞ ✌✍✎✏ ✑✒✓✔✕ ✖✗✘✙✚✛✜ ✢✣✤✥✦✧★ ✩✪✫ ✬✭✮✯✰✱ ✲✳✴✵✶ ✷✸ ✹✺✻✼✽ ✾✿❀❁❂❃❄❅❆❇❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗❘❙❯❱❲❳❨ ❩❬❭ ❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥♦♣qrst✉✈ ✇①②③

④⑤⑥⑦⑧⑨⑩❶❷❸❹❺ ❻❼ ❽❾❿➀➁➂➃➄ ➅➆➇ ➈➉➊➋➌➍➎➏➐➑➒ ➓➔→➣↔↕➙

REFERENCES

[1] Kubernetes on AWS. https://kubernetes-incubator.github.io/kube-aws/,
Accessed May 2018.

[2] Google Kubernetes Engine. https://cloud.google.com/kubernetes-
engine/, Accessed October 2019.

[3] Slurm Elastic Computing (Cloud Bursting). https://slurm.schedmd.com/
elastic computing.html, Accessed October 2019.

[4] Slurm Workload Manager. https://slurm.schedmd.com/, Accessed Octo-
ber 2019.

[5] AWS OutPost. https://aws.amazon.com/outposts/, Accessed August
2020.

[6] AWS ParallelCluster Auto Scaling. https://docs.aws.amazon.com/
parallelcluster/latest/ug/autoscaling.html, Accessed April 2020.

[7] UMass Trace Repository. http://traces.cs.umass.edu/, Accessed August
2020.

[8] University of Massachusetts Green High Performance Computing Clus-
ter. http://wiki.umassrc.org/wiki/index.php/Main Page, Accessed August
2020.

[9] Waiting Game Job Simulator. https://doi.org/10.5281/zenodo.3875634,
Accessed August 2020.

[10] Waiting Game Job Trace. https://doi.org/10.5281/zenodo.3872168, Ac-
cessed August 2020.

[11] L. Ai, X. Wu, L. Huang, L. Huang, P. Tang, and J. Li. The Multi-shop
Ski Rental Problem. In SIGMETRICS, June 2014.

[12] P. Ambati, N. Bashir, D. Irwin, and P. Shenoy. Waiting Game: Optimally
Provisioning Fixed Resources for Cloud-Enabled Schedulers. In SC,
November 2020.

[13] J. Brodkin. ArsTechnica, Netflix finishes its massive migration
to the Amazon cloud. https://arstechnica.com/information-
technology/2016/02/netflix-finishes-its-massive-migration-to-the-
amazon-cloud/, February 11th 2016.

[14] J. Chen. Medium, Why building your own Deep Learning Computer
is 10x cheaper than AWS. https://medium.com/the-mission/why-
building-your-own-deep-learning-computer-is-10x-cheaper-than-aws-
b1c91b55ce8c, September 24th 2018.

[15] R. V. den Bossche, K. Vanmechelen, and J. Broeckhove. IaaS Reserved
Contract Procurement Optimisation with Load Prediction. Future Gen-

eration Computer Systems, 53, December 2015.

[16] S. Di, D. Kondo, and C. Wang. Optimization and Stabilization of
Composite Service Processing in a Cloud System. In 2013 IEEE/ACM

21st International Symposium on Quality of Service (IWQoS), June 2013.

[17] S. Di, C. Wang, and F. Cappello. Adaptive Algorithm for Minimizing
Cloud Task Length with Prediction Errors. IEEE Transactions on Cloud

Computing, 2(2):194–207, 2014.

[18] S. Di, C. Wang, D. Kondo, and G. Han. Towards Payment-Bound
Analysis in Cloud Systems with Task-Prediction Errors. In 2013 IEEE

Sixth International Conference on Cloud Computing, June 2013.

[19] A. K. Erlang. On the Rational Determination of the Number of Circuits

(1924). In Life and Works of A K. Erlang , E. Brockmeyer, H J. Halstrom
and A. Jensen, Danish Academy of Technical Science, 1948.

[20] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Altru-
istic Scheduling in Multi-Resource Clusters. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, 2016.

[21] T. Guo, U. Sharma, S. Sahu, T. Wood, and P. Shenoy. Seagull: Intelligent
Cloud Bursting for Enterprise Applications. In USENIX ATC, June 2012.

[22] T. Hoff. High Scalability, The Eternal Cost Savings of Netflix’s Internal
Spot Market. http://highscalability.com/blog/2017/12/4/the-eternal-cost-
savings-of-netflixs-internal-spot-market.html, December 4th 2017.

[23] Y. Hong, J. Xue, and M. Thottethodi. Dynamic Server Provisioning to
Minimize Cost in an IaaS Cloud. In SIGMETRICS, June 2011.

[24] M. Hu, J. Luo, and B. Veeravalli. Optimal Provisioning for Scheduling
Divisible Loads with Reserved Cloud Resources. In ICON, December
2012.

[25] A. Jensen. Moe’s Principle: An Econometric Investigation Intended as an

Aid in Dimensioning and Managing Telephone Plant. The Copenhagen
Telephone Company, 1950.

[26] R. Kumar, M. Purohit, and Z. Svitkina. Improving Online Algorithms
via ML Predictions. In NIPS, December 2018.

[27] L. Liu and V. Kulkarni. Balking and Reneging in M/G/s Systems:
Exact Analysis and Approximations. Probability in the Engineering and

Informational Sciences, 22(3), July 2008.

[28] S. Niu, J. Zhai, X. Ma, X. Tang, and W. Chen. Cost-effective Cloud HPC
Resource Provisioning by Building Semi-Elastic Virtual Clusters. In SC,
November 2013.

[29] S. Omer, N.Yigitbasi, A. Iosup, and D. Epema. Trace-based Evaluation
of Job Runtime and Queue Wait Time Predictions in Grids. In HPDC,
June 2009.

[30] S. Shen, K. Deng, A. Iosup, and D. Epema. Scheduling Jobs in the Cloud
using On-demand and Reserved Instances. In Euro-Par, August 2013.

[31] L. Takacs. Introduction to the Theory of Queues. Oxford University
Press, 1962.

[32] A. Tumanov, A. Jiang, J. Park, M. Kozuch, and G. Ganger. Jamaisvu: Ro-
bust Scheduling with Auto-Estimated Job Runtimes, Accessed Septem-
ber 2016.

[33] W. Wang, B. Li, and B. Liang. To Reserve or Not to Reserve: Optimal
Online Multi-Instance Aquisition in IaaS Clouds. In ICAC, June 2013.

[34] W. Wang, D. Niu, B. Li, and B. Liang. Dynamic Cloud Resource
Reservation via Cloud Brokerage. In ICDCS, July 2013.

[35] W. Whitt. Erlang B and C Formulas: Problems and Solutions.
http://www.columbia.edu/ ww2040/ErlangBandCFormulas.pdf, 2002.

Pradeep Ambati Pradeep Ambati is a Ph.D.
candidate in the Electrical and Computer En-
gineering department at the University of Mas-
sachusetts Amherst. He received his M.S. in
Electrical and Computer Engineering from the
University of Massachusetts Amherst in 2017,
and his B.E. in Electrical, Electronics, and Com-
munications Engineering at Chaitanya Bharathi
Institute of Technology in 2012. His research
interests are in optimizing the management of
cloud platforms.

Noman Bashir Noman Bashir is Ph.D. candi-
date in the Electrical and Computer Engineering
department at the University of Massachusetts
Amherst. He received his M.S. in Energy Sys-
tems Engineering from the National University
of Science and Technology, Islamabad in 2016,
and his B.S. in Electrical Engineering at the Uni-
versity of Engineering and Technology, Lahore in
2013. His research interests are in data-driven,
machine learning techniques to optimize the per-
formance of distributed systems.

David Irwin David Irwin is an Associate Profes-
sor in the Department of Electrical and Com-
puter Engineering at the University of Mas-
sachusetts Amherst. He received his Ph.D. and
M.S. in Computer Science from Duke University
in 2007 and 2005, respectively, and his B.S. in
Computer Science and Mathematics from Van-
derbilt University in 2001. His research interests
are broadly in experimental computing systems
with a particular emphasis on sustainability.

Prashant Shenoy Prashant Shenoy received
the B.Tech degree in Computer Science and
Engineering from the Indian Institute of Technol-
ogy, Bombay, in 1993, and the M.S and Ph.D.
degrees in Computer Science from the Univer-
sity of Texas, Austin, in 1994 and 1998, respec-
tively. He is currently a Distinguished Professor
of Computer Science at the University of Mas-
sachusetts. His current research focuses on dis-
tributed systems and networking. He is a fellow
of the ACM, the IEEE, and the AAAS.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 10,2021 at 14:28:11 UTC from IEEE Xplore. Restrictions apply.

