
energies

Article

Nitrogen Deprivation in Fremyella diplosiphon
Augments Lipid Production without
Affecting Growth

Behnam Tabatabai 1, Afua Adusei 1, Alok Kumar Shrivastava 2, Prashant Kumar Singh 3

and Viji Sitther 1,*
1 Department of Biology, Morgan State University, Baltimore, MD 21215, USA; betab1@morgan.edu (B.T.);

afadu1@morgan.edu (A.A.)
2 Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India;

alokbotbhu@gmail.com
3 Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College

Campus, Aizawl 796001, Mizoram, India; prashantbotbhu@gmail.com
* Correspondence: viji.sitther@morgan.edu

Received: 2 September 2020; Accepted: 27 October 2020; Published: 4 November 2020
����������
�������

Abstract: Metabolic products such as lipids and proteins produced in cyanobacteria represent an
excellent source of biomass and do not compete with agricultural land use unlike soybean and
corn. Given their potential use as novel materials for biodiesel production, we aimed to explore
the effect of cultivation period and nitrogen concentration on the growth rate and lipid content of
Fremyella diplosiphon, a model cyanobacterium. In this study, F. diplosiphon grown in BG11/HEPES
medium supplemented with 1.5 g L−1 sodium nitrate (NaNO3) for 7, 10, 15, and 20 days were compared
to the untreated control in media amended with 0.25, 0.5, and 1.0 g L−1 NaNO3. Cultures were
inoculated in liquid media and grown under continuous fluorescent light in an orbital incubator shaker,
and extracted lipids subjected to gravimetric analysis and gas chromatography-mass spectroscopy
to determine the best culture conditions for lipid production. Our results demonstrated that a
reduction in nitrogen concentration had no significant effect on the growth rate across all cultivation
periods; however, the accumulation of total lipid content was significantly influenced by nitrogen
concentration. A maximum lipid production (40%) with no reduction in growth was observed in
10-day old cultures in a BG11/HEPES medium supplemented with 1.0 g L−1 NaNO3. Fatty acid
methyl ester composition of transesterified lipids demonstrated high amounts of methyl palmitate
(50–70%) followed by methyl octadecenoate (17–30%) in the accumulated lipids at all treatments.
Trace quantities of methyl dodecanoate, methyl hexadecanoate, methyl octadecanoate, and methyl
octadecadienoate (1–8%) were also observed in all tested samples, indicating that nitrogen deprivation
in culture media increases lipid production without affecting growth.
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1. Introduction

Adopting fossil fuels as the chief energy source has resulted in the surplus emissions of CO2 and
other greenhouse gases leading to global climate change. Simultaneously, worldwide nonrenewable
energy resource supplies are dwindling, while energy demand is increasing day-by-day [1]. Exhaustion
of fossil fuel reserves, increased oil prices, and rising levels of greenhouse gases have driven worldwide
interest in renewable energy as an alternative to fossil fuels. Biofuels are renewable green fuels, which
have driven interest in methods to maximize production and attracted researchers to meet the growing
demand for fuel [2]. Their production offers an opportunity to develop an alternative for fossil fuels
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while also assisting rural economies [3–6]. In addition, harmful emissions of carbon monoxide and
hydrocarbons can be mitigated, which can decrease greenhouse effects and improve environmental
sustainability [7,8]. Most recently, research efforts have been aimed at identifying suitable strains of
algae/cyanobacteria which can provide greater energy yields to displace conventional fuels.

According to the 2019 World Gas and Renewables Review, over 2.6 million barrels/day of biofuels
were produced worldwide in 2018. The world’s biodiesel supply has exponentially increased from
3.9 billion liters in 2005 to 18.1 billion liters in 2010, and is expected to reach 41.4 billion liters in
2025 [9]. As a result of this growing demand for renewable biodiesel, many researchers have attempted
to produce biodiesel from sources such as rapeseed, soybean, peanut, and vegetable oils [10,11].
However, these first-generation fuels are not practical for commercial production since they compete
for water and arable lands [12]. The price of biodiesel remains a major hindrance for commercial
production, primarily as a result of the high feed cost of vegetable oils [13], thus we are in dire need
to identify other new sources. In recent years, microalgae and cyanobacteria have emerged as one
of the most promising sources of biodiesel and gained great importance as its high lipid content can
serve as raw material for biofuel production [2,14]. These organisms have higher photosynthetic
efficiency (10–100 times higher than for plants) and faster growth rate compared to any other energy
crop [15–18]. With a short and non-seasonal life-cycle, these microbes can thrive without the use of
agrochemicals. Additionally, cyanobacteria are more efficient and can be cultivated in marginal lands
and used wastewater, thus minimizing competition with food crops [1]. Thus, mass cultivation of
cyanobacteria as a biofuel feedstock is being evaluated worldwide, especially since these organisms
thrive in the presence of basic nutrients, such as water, CO2, mineral salts, and light [19]. Cyanobacteria
are also easily subjected to genetic modification allowing the generation of high-value products such
as lipids and proteins [20–23]. In spite of the advantages that these organisms provide, generating
significant amounts of bioenergy at a plausible scale to impact the energy economy and the return
of investment based on capital input are potential bottlenecks faced. In particular, a key challenge
to achieving viability is the cultivation and harvesting steps, which is critical in maximizing yield
while minimizing inputs such as light and nutrients. For commercial production of biodiesel from
cyanobacteria, factors such as optimized harvesting, oil extraction, and conversion to fuel processes
is imperative. Ideal strains need to be selected and optimized for biomass production, and the fatty
acid composition analyzed [24]. Unless we reach a high lipid production per gallon per acre from the
selected strains, economic viability would be very hard to achieve. Major breakthroughs in this area can
be advanced via the induction of lipid biosynthesis by environmental stresses [25–27]. Cyanobacterial
strains generate varying quantities of carbohydrates, lipids, and proteins; choice species can adjust
their metabolism through basic changes to the composition of growth media. A significant increase in
lipid content has been reported in several species grown in nitrogen-deficient environments. Factors
such as phosphorous, nitrogen, and iron levels in the medium, salt stress, radiation, acidity, heavy
metals, temperature, light intensity, and irradiance [28–32] have been reported to impact the lipid
content. Under optimal growth, significant quantities of biomass are produced, but with limited lipid
abundance, while species with high lipid levels are typically slow-growing. This indicates an inverse
relationship between lipid content and nitrate concentration [7]. Several reports suggest that lipids
tend to accumulate in nitrogen-deficient conditions [7,10,24].

High-lipid yield is a major prerequisite for commercial biodiesel production. Fremyella diplosiphon
is a model organism for studying photosynthetic pathways and exhibits extreme regulation of
phycoerythrin and phycocyanin using a process known as complementary chromatic adaptation.
Furthermore, its fast generation time and potential to grow in a wide range of light including shaded
light, make this organism an ideal candidate for large-scale cultivation while reducing capital input.
However, it is crucial to establish stable culture conditions for achieving high lipid yield in scaled-up
generation of biofuels from F. diplosiphon, while reducing capital input [33]. Prior efforts to overexpress
genes using electroporation-mediated transformation in this strain has resulted in salt tolerant [34]
and high-lipid producing strains [35], as well as the identification of fatty acid methyl esters (FAMEs)



Energies 2020, 13, 5769 3 of 12

that prove its efficacy as a biodiesel agent [36]. In this study, we investigated the growth response and
lipid yield of F. diplosiphon when subjected to varying levels of sodium nitrate (NaNO3) in the culture
medium. We also examined the best culture conditions for maximal lipid production, and analyzed
extracted lipids by gravimetric and gas chromatographic methods to determine the impact of nitrogen
deprivation on biodiesel quality.

2. Materials and Methods

2.1. Cyanobacterial Strain and Culture Conditions

A short filamentous F. diplosiphon strain (SF33) obtained from Dr. Beronda Montgomery at
Michigan State University, capable of growth in both red and green light, was used in this study.
Actively growing cells from 3–6 day old cultures were inoculated from plates into sterilized 250 mL
flasks containing 150 mL of BG11/HEPES buffer, and grown under continuous shaking at 170 rpm and
permanent 30 µmol/m2/s white light at a temperature of 28 ◦C in an Innova 44R incubator shaker series
(Eppendorf). The BG11 medium (hereafter referred to as BG11/HEPES) was composed of stock cultures
containing Na2Mg EDTA, ferric ammonium citrate, citric acid, MgSO4.7H2O, K2HPO4.3H2O, Na2CO3,
H3BO3, MnCl2.4H2O, ZnSO4.7H2O, CuSO4.5H2O, CoCl2.6H2O, Na2MoO4.2H2O, and 1.5 g of NaNO3.

2.2. Growth of F. diplosiphon in Varying Sodium Nitrate Concentrations

Actively growing cultures were transferred into 500 mL flasks containing 300 mL BGll/HEPES
media amended with 0.25, 0.5, 1.0, and 1.5 g of NaNO3 and grown for a period of 7, 10, 15, and 20 days.
Cultures grown in 1.5 g/L NaNO3, which is the standard amount in the BG11 media served as the
control. Inoculated cultures were grown in culture conditions as mentioned above, and optical densities
at 750 nm measured at 48-h intervals throughout the course of the experiment. Three replicated
treatments were maintained and the experiment repeated once.

2.3. Lipid Accumulation in F. diplosiphon Grown in Varying Levels of Sodium Nitrate

F. diplosiphon cultures were grown in BGll/HEPES media amended with varying nitrate levels
as mentioned in Section 2.1. Cells were centrifuged using a Beckman-Coulter Avani-J25I with a JA
25.50 rotor, lyophilized overnight, and sonicated in 5 mL chloroform:methanol (2:1) for 30 s. Lipids
were extracted using a 2:1 chloroform:methanol mixture according to the method of Folch et al. [37].
The mixture was agitated for 15–20 min in an orbital shaker after dispersion at room temperature and
the homogenate centrifuged to recover the liquid phase. The solvent was washed with 0.2 volumes
(1 for 5 ml) of distilled H2O, vortexed briefly, and centrifuged at 2000 rpm to separate the two phases.
The lower phase was transferred to a pre-weighed vial and the interface was rinsed twice using
methanol:water (1:1) without mixing the whole preparation. The lower chloroform phase containing
lipids was evaporated under vacuum in a rotary evaporator after centrifugation and siphoning.
The dried flasks were weighed to establish the total lipid content, which was determined by the
conventional gravimetric method [38].

2.4. Simultaneous Transesterification and Lipid Extraction

To investigate the effect of nitrate deprivation on the F. diplosiphon fatty acid profile, cultures
were grown under conditions mentioned above and extracted lipids were subjected to one-step direct
transesterification in a multimode commercial scientific reaction microwave (CEM Corp, Matthews,
NC, USA) as described by Tabatabai et al. [36].

2.5. Gas Chromatography-Mass Spectrometry in F. diplosiphon Grown in Varying Sodium Nitrate Levels

The fatty acid composition of F. diplosiphon transesterified product was determined using Shimadzu
GC17A/QP5050A gas chromatography-mass spectrometry (GC-MS) according to the method described
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by Rosenberg et al. [39] and Tabatabai et al. [36]. Peaks were identified by comparing mass spectra to
the lipid Web Archive of FAME mass spectra. Three biological replicates of each sample were analyzed.

2.6. Statistical Analysis

All measurements included triplicate treatments. The mean and standard deviation of the data
values were calculated using MS-Excel. The effect of treatments was determined by one-way analysis
of variance (ANOVA) and Tukey’s honestly significant difference (HSD) test conducted to determine
the statistical significance of the differences between means of various treatments.

3. Results and Discussion

3.1. Effect of Nitrogen Deprivation on F. diplosiphon Growth

Optimization of culture conditions for maximizing lipid yield is critical to enhance lipid production,
and is influenced by various interconnected factors such as growth rate, biomass, and lipid content.
The deprivation of essential nutrients including phosphorus, sulfur, nitrogen, and potassium has been
reported to result in significant alterations of cellular growth and compositions in algae [40,41]. As an
essential macronutrient, nitrogen significantly impacts growth and total lipid content, and is vital for
metabolism and development [42]. Exposure to nitrogen starvation has been reported to enhance
lipid levels in various microalgal and cyanobacterial species. Reduction in cellular thylakoid levels,
acyl hydrolase activation, and phospholipid hydrolysis stimulation have been reported to enhance
the intracellular fatty acid abundance [43–47]. Our results revealed that the growth rate was not
significantly affected by varying concentrations of NaNO3 (Figure 1), suggesting that partial nitrogen
deprivation is not detrimental to F. diplosiphon growth. By contrast, a previous study in Botrycoccus
sp., Scenedesmus obliquus, and Chlorella pyrenoidosa revealed that the organism exhibited a significant
reduction in growth when subjected to nitrogen starvation [7,28,48,49].
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Figure 1. The impact of varying sodium nitrate (NaNO3) concentrations (0.25, 0.5, 1.0, and 1.5 g L−1)
on Fremyella diplosiphon growth rate over a period of 7, 10, 15, and 20 days. The average growth rate
(± standard error) for three biological replicates for each treatment is shown. Different letters above
bars indicate significance among treatment means (p < 0.05).

The unaffected growth of F. diplosiphon under nitrogen-deprived conditions may also be due
to their diazotrophic nature which makes nitrogen available for proper growth by nitrogen fixation.
A possible reason for this might be that nitrogen pools could have been consumed to support the cell
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growth after nitrogen exhaustion [49]. This explanation also finds support from the study of Li et al. [50],
who reported that in nitrogen deficient conditions chlorophyll provides the nitrogen required to sustain
Chlorella growth. Furthermore, our results find support from the work of Suen et al. [51], who reported
the unaltered growth of microalgal species Nannochloropsis in nitrogen deprived conditions. Future
studies will be aimed towards investigating the effects of even more drastic reductions in nitrogen
supply in F. diplosiphon.

3.2. Effect of Nitrogen Deficiency on F. diplosiphon Total Lipid Content

While F. diplosiphon growth was unaffected in varying levels of nitrate concentrations, a reduction
in nitrate levels correlated to a significant increase in total lipid content. We observed maximum
lipid production in 1.0 g L−1 NaNO3 concentrations on 7 and 10-day-old cultures, indicating that
lipid yield in F. diplosiphon can be enhanced under these conditions (Figure 2). These results are in
accordance to a report by Stephenson et al. [52], where an increase in lipid content was reported in
nitrogen-deprived Chlorella vulgaris cultures. Similar results were also observed in the microalgae
Scenedesmus sp., where the lipid content was enhanced six-fold after exposure to nitrogen starvation
for 21 days [53]. High-lipid accumulation in a nitrogen-deprived medium was also reported in studies
by Stuart et al. [54] and Becker et al. [55]. Accumulation of lipid content under nitrogen deprivation in
F. diplosiphon as observed in our study, is comparable to the accumulated lipid content of Synechocystis
spp., Oscillatoria spp., Lyngbya semiplena, Limicolaria martensiana, Calothrix spp., and other algae [56].
Further, our results support the findings of Wahlen et al. [57], who demonstrated that microalgae could
be better sources for biodiesel production.
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Figure 2. Effect of total lipid production in Fremyella diplosiphon grown in nitrogen concentrations of
0.25, 0.5, 1.0, and 1.5 g L−1 sodium nitrate over a period of 7, 10, 15, and 20 days. The average % lipid
content of total cellular dry weight (±standard error) for three biological replicates of each treatment is
shown. Different letters above bars indicate significance among treatment means (p < 0.05).

3.3. Effect of Nitrogen Deficiecny on F. diplosiphon Fatty acid Profile

To determine the impact of nitrogen starvation on high-value fatty acid profile in F. diplosiphon,
cultures were grown in BG11/HEPES amended with 0.25, 0.5, 1.0, and 1.5 g L−1 NaNO3 and subjected
to FAME analysis. The determination of FAME composition using GC-MS showed a high abundance
of methyl palmitate (50–70%) followed by methyl octadecenoate (17–30%), trace amounts of methyl
dodecanoate, methyl hexadecanoate, methyl octadecanoate, and methyl octadecadienoate (1–8%) in all
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samples tested (Table 1; Figure 3). Saturated fatty acids such as methyl dodecanoate (12:0), methyl
myristate (14:0), methyl palmitate (16:0), and methyl octadecanoate (18:0) attributed for 60–80% of
the total FAMEs. Unsaturated fatty acids were present in smaller quantities relative to the saturated
fatty acids. Approximately 20–40% of extracted FAMEs were unsaturated, and were mainly comprised
of methyl hexadecanoate (16:1), methyl octadecenoate (18:1), and methyl octadecadienoate (18:2).
The FAME components, methyl palmitate (C16:0), methyl hexadecanoate (16:1), octadecanoate (18:0),
octadecenoate (C18:1), methyl octadecadienoate (C18:2), and methyl hexadecanoate (16:1) were the
major components observed in FAME analyses. These results are in accordance to the FAME profile
reported in Chlorella minutissima [58]. In addition, prior studies in our laboratory have reported
approximately 25% FAME in total transesterified lipids in wild type F. diplosiphon, while up to 70%
FAME were present in genetically modified strains [36]. A high ratio of saturated fatty acids in the
lipid profile was observed across all treatments, which is a desirable trait for a prospective biofuel
agent [59]. We observed methyl palmitate (C16:0) to be the major constituent, which is similar to
FAME profiles reported in the microalgae Chlorella pyrenoidosa and C. vulgaris [60–62]. Interestingly,
the level of methyl palmitate decreased over time in cultures grown in 0.5 and 1.0 g L−1 NaNO3

(Figure 4) indicating that exhaustion of nitrogen supply could have altered the fatty acid composition of
F. diplosiphon. These results indicate a direct correlation between the depletion of nitrate in the medium
to the fatty acids produced. By contrast, an increase in unsaturated FAME species such as methyl
hexadecanoate (16:1), methyl octadecenoate (18:1), and methyl octadecadienoate (18:2) was observed
over time, suggesting that lipid profiles of nitrogen-starved cultures contain a higher proportion of
unsaturated fatty acids. The presence of saturated fatty acid in lipid profile is valuable for biofuel
production but its high melting point could result in fuel gelling in colder climates. On the contrary,
the low melting point of unsaturated fatty acids is necessary for biofuel generation, and aids their
endurance in cold weather [63]. In the present study, FAME profiling of F. diplosiphon indicated the
presence of methyl octadecadienoate (C18:2), which is reported to provide oxidative stability [35].
Further, the presence of both hexadecanoate (16:1) and methyl myristate (14:0) in the lipid profile of
F. diplosiphon is beneficial as hexadecanoate (16:1) improves the oxidative stability [63] and methyl
myristate (14:0), a shorter chain fatty acid improves NOx emissions [64]. Thus, carbon chain lengths
of fatty acid as well as the degree of unsaturation are both key properties for biodiesel quality [65].
Wang et al. [66] demonstrated that enhanced saturated fatty acid abundance in the marine protist,
Schizochytrium sp. PKU#Mn4, met the ASTM6751 standards. Tabatabai et al. [36] reported that the
high abundance of saturated FAMEs, while beneficial with regards to cetane number and oxidative
stability, resulted in high pour and cloud points. This suggests that use of the resultant biofuel from F.
diplosiphon in a blend with conventional fuels and additives would the most viable approach. Our
findings indicate that nitrogen deprivation at 1.0 g L−1 NaNO3 significantly enhances lipid yield in F.
diplosiphon, while achieving a desired saturated:unsaturated fatty acid ratio for biofuel production.
Since nitrogen is a major nutrient for chlorophyll production and other proteins, deprivation of this
essential macronutrient could inhibit structural and physiological components of photosynthesis [67].
In a report on the changes in lipid composition in Chlorella sp. and Nannochloropsis sp. during nitrogen
starvation, the comprehensive fatty acid composition of polar lipids was unaffected, indicating that
maintenance of a particular fatty acid profile in each compartment allows its continued function,
despite a significant decrease lipid quantity [68].
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Table 1. Fatty acid methyl ester (FAME) composition in Fremyella diplosiphon grown over 7, 10, 15,
and 20 days in media containing 0.25, 0.5, 1.0, 1.5 g L−1 sodium nitrate (NaNO3) based on relative
abundance of each component (% total extractable FAMEs ± SE).

7-Day NaNO3 Concentration

Fatty Acid Methyl Esters 0.25 g L−1 0.5 g L−1 1.0 g L−1 1.5 g L−1

methyl dodecanoate (12:0) 2.28 ± 0.618 1.25 ± 0.136 1.25 ± 0.439 3.53 ± 1.55
methyl myristate (14:0) 6.7 ± 0.861 1.61 ± 0.599 2.59 ± 1.199 1.97 ± 0.651
methyl palmitate (16:0) 63.38 ± 0.809 67.59 ± 8.78 66.67 ± 9.46 70.03 ± 3.90

methyl hexadecanoate (16:1) 3.72 ± 1.21 1.06 ± 0.726 3.92 ± 0.415 1.62 ± 0.305
methyl octadecanoate (18:0) 3.21 ± 1.45 0.75 ± 0.370 1.60 ± 0.693 2.45 ± 1.35
methyl octadecenoate (18:1) 18.46 ± 1.82 18.19 ± 6.11 22.81 ± 9.04 16.80 ± 3.98

methyl octadecadienoate (18:2) 2.23 ± 1.16 2.41 ± 0.916 1.15 ± 0.567 3.60 ± 0.940
10-Day

methyl dodecanoate (12:0) 1.78 ± 0.204 1.76 ± 0.224 1.90 ± 0.969 0.86 ± 0.193
methyl myristate (14:0) 0.84 ± 0.444 1.07 ± 0.662 1.90 ± 0.910 2.14 ± 1.11
methyl palmitate (16:0) 58.45 ± 2.13 62.45 ± 5.99 65.49 ± 3.63 56.71 ± 1.59

methyl hexadecanoate (16:1) 2.17 ± 1.01 1.75 ± 0.332 2.90 ± 0.693 1.36 ± 0.047
methyl octadecanoate (18:0) 4.19 ± 1.35 2.07 ± 0.464 1.82 ± 0.754 1.92 ± 0.872
methyl octadecenoate (18:1) 27.51 ± 5.30 25.47 ± 3.52 21.02 ± 5.60 28.97 ± 0.623

methyl octadecadienoate (18:2) 5.06 ± 0.539 5.44 ± 2.02 4.98 ± 0.544 8.04 ± 0.640
15-Day

methyl dodecanoate (12:0) 1.44 ± 0.400 1.39 ± 0.278 1.55 ± 0.086 1.94 ± 0.202
methyl myristate (14:0) 0.76 ± 0.374 0.50 ± 0.117 0.63 ± 0.063 0.86 ± 0.108
methyl palmitate (16:0) 57.39 ± 5.25 62.14 ± 1.97 62.29 ± 0.523 65.80 ± 1.30

methyl hexadecanoate (16:1) 2.74 ± 0.957 7.46 ± 2.34 4.46 ± 2.52 4.92 ± 2.19
methyl octadecanoate (18:0) 1.75 ± 1.40 1.50 ± 0.931 2.44 ± 0.638 1.27 ± 0.170
methyl octadecenoate (18:1) 28.19 ± 5.135 21.15 ± 2.83 20.02 ± 1.61 18.62 ± 1.95

methyl octadecadienoate (18:2) 7.73 ± 0.815 5.85 ± 1.83 8.61 ± 0.924 6.59 ± 0.213
20-Day

methyl dodecanoate (12:0) 2.20 ± 1.61 2.83 ± 2.30 2.13 ± 0.958 2.41 ± 0.496
methyl myristate (14:0) 3.56 ± 2.45 8.13 ± 1.19 3.34 ± 1.65 3.69 ± 2.82
methyl palmitate (16:0) 60.71 ± 6.23 50.85 ± 6.11 50.25 ± 11.9 64.58 ± 4.13

methyl hexadecanoate (16:1) 2.24 ± 1.34 3.11 ± 1.65 4.94 ± 2.71 1.60 ± 0.472
methyl octadecanoate (18:0) 1.90 ± 0.923 3.60 ± 1.41 4.07 ± 1.41 2.31 ± 1.27
methyl octadecenoate (18:1) 25.03 ± 6.71 27.79 ± 4.91 30.88 ± 9.21 23.18 ± 5.26
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Figure 3. Fatty methyl ester composition (FAME) of Fremyella diplosiphon grown over (A) 7, (B) 10,
(C) 15, and (D) 20 days in media containing 0.25, 0.5, 1.0, 1.5 g L−1 sodium nitrate (NaNO3). Bars
represent the average % relative content of specific FAME species (± standard error) for three biological
replicates of each nitrate treatment. Different letters above bars indicate significant differences in FAME
species abundance between varying nitrate treatments (p < 0.05).
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Figure 4. Methyl palmitate relative abundance in Fremyella diplosiphon grown over 7, 10, 15, and 20 days
in media containing 0.25, 0.5, 1.0, 1.5 g L−1 sodium nitrate (NaNO3). Bars represent the average %
relative content of specific fatty acid methyl esters (± standard error) for three biological replicates
of each nitrate treatment. Different letters above bars indicate significant differences in the methyl
palmitate content between varying time periods (p < 0.05).

4. Conclusions

In the present study, we investigated the effect of nitrogen deprivation on growth rate, lipid yield,
and FAME composition in F. diplosiphon to identify optimal conditions that enhance lipid accumulation.
Maximum lipid productivity was observed under moderately nitrogen-limited conditions (i.e., 1.0 gL−1

sodium nitrate) on the 10th day, without the growth rate being hindered. In addition, we identified and
quantified the FAME profile in transesterified F. diplosiphon lipids, which is a prerequisite to evaluate
biofuel physical and chemical properties. These findings suggest that manipulating nitrogen input
during F. diplosiphon cultivation could enhance lipid production, thus increasing its potential viability
as a source of renewable biofuel. Results of this study could lead to a more optimal photobioreactor
design for large scale F. diplosiphon cultivation, for the development of natural bio-products across
various applications, from fuel to food and cosmetics.
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