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Abstract:  In a diabatic picture metastable states subject to decay by electron detachment can be 

viewed as arising from the coupling between a discrete state and a continuum. In treating such 

states with bound-state quantum chemical methods, the continuum is discretized.  In this study, 

we elucidate the role of overlap in this interaction in the application of the stabilization method 

to temporary anion states. This is accomplished by use of a minimalist stabilization calculation 

on the lowest energy ℓ = 2 (D) resonance of the finite spherical well potential using two basis 

functions, one describing the diabatic discrete state and the other a diabatic discretized 

continuum state.  We show that even such a simple treatment predicts a complex resonance 

energy in good agreement with the exact result.  If the energy of the discrete state is assumed to 

be constant, which is tantamount to orthogonalizing the discretized continuum state to the 

discrete state, it is demonstrated that the square of the off-diagonal coupling has a maximum 

close to the crossing point of the orthogonalized diabatic curves and that the curvature in the 

coupling is responsible for the complex stationary point associated with the resonance.  

Moreover, this curvature is a consequence of the overlap between the two diabatic states. 
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INTRODUCTION 

Metastable states that are subject to electron detachment play a role in a wide range of chemical 

processes. Examples include temporary anions, electronically excited states above the first 

ionization potential, and atoms and molecules in electric fields.  In this article, we focus on 

temporary anions, which are subject to electron detachment because they lie energetically above 

the electronic ground state of the neutral atom or molecule. There are different classes of 

temporary anions, distinguished by the electron trapping mechanism.1 Of particular interest are 

temporary anions that result from electron capture into a low-lying empty valence orbital, with 

the electron trapping being due to an angular momentum barrier.  Such anions appear as shape 

resonances in various low energy electron scattering cross sections1-3 and are known to play 

important roles in a wide range of chemical processes.4-7   

When standard electronic structure approaches are applied to temporary anions, they are subject 

to variational collapse, i.e., as the basis set is more extended spatially the wavefunction collapses 

onto that of the neutral species plus a “free” electron in a discretized continuum (DC) orbital.  A 

variety of methods have been developed to address this issue. These include complex coordinate 

rotation,8 the complex absorbing potential (CAP) method,9 modified potential methods combined 

with analytic continuation,10 and the stabilization method.11  All of these approaches characterize 

a resonance by a complex energy.12 

Eres = Er - iΓ/2,        (1) 

where Er and Γ denote the resonance position and half-width respectively in atomic units.  The 

complex energy is consistent with a state that decays exponentially in time. 
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The present article focuses on the stabilization method which involves calculating the energy 

levels of the excess electron system as a function of a parameter that controls the extent of the 

basis set, the size of a constraining box, or the strength of a perturbing potential term in the 

Hamiltonian.  We limit ourselves here to the first approach as used with Gaussian basis 

functions, in which case the scaling is accomplished by multiplying the exponents of a set of 

diffuse functions by a scale parameter, denoted here by z.   

To set the stage for the present analysis, we 

show in Figure 1 a stabilization graph for the 

widely studied Πg temporary anion of N2.1,13-16   

This stabilization graph was generated using 

the equation-of-motion Møller-Plesset (EOM-

MP2) method17,18 with the exponents of four 

diffuse p functions on each N atom being 

scaled as described in Ref. 15.  The 

stabilization graph displays two avoided 

crossings that can be viewed as arising from 

the interactions between a diabatic discrete state, the energy of which is independent or only 

weakly dependent on the scale parameter, and a set of diabatic discretized continuum levels 

whose energies depend strongly on the scale parameter.  Various methods can be used to extract 

the resonance energy and width from a stabilization graph,19-22 the most common of which is to 

analytically continue the energies into the complex plane and to find complex stationary points 

z* for which dE/dz = 0. These appear as complex conjugate pairs. Substitution of these z* values 

back into the expression for the energy gives complex energies, which again occur as complex 

 

Figure 1. Stabilization graph for the 
Πg anion of N2 at its equilibrium 
geometry calculated using the EOM-
MP2 method and multiplying the 
exponents of four diffuse p functions 
on each atom by the scale factor z. 
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conjugate pairs, with the solution with the negative imaginary part being that associated with the 

resonance.19,20  In general, the analytic continuation is done using generalized Pade´ 

approximants (GPAs)23 or continued fractions.  Alternatively, in the case of a reasonably well 

isolated avoided crossing, one can choose physically motivated functional forms for the two 

diabatic states, one describing the discrete state and the other a DC level, as well as for their off-

diagonal coupling.22,24  

In a two-level characterization of an avoided crossing in a stabilization graph, it is useful to 

associate wave functions ψ1 and ψ2 with the discrete state and the DC level, respectively, and 

with the corresponding energies denoted by H11 and H22.  In the analysis that we presented in 

Ref. 24, we chose H11 to be independent of the scale parameter and further orthogonalized ψ2 to 

ψ1, giving 𝜓෨ଶ. With these assumptions, a two-level treatment allows one to extract the functional 

form of  𝐻෩ଵଶ2 from the stabilization graph. (The tilde on a matrix element denotes that it includes 

the effects of orthogonalization of the DC level to the discrete level.)   Significantly, this result 

did not require any assumption about the functional form of  𝐻෩ଶଶ.  For the case of the Πg anion of 

N2,  𝐻෩ଵଶ2 deduced from a two-level treatment of the avoided crossing near z = 1.0 in the 

stabilization graph shown in Figure 1 was found to be peaked near the crossing point of the 

orthogonalized diabatic curves.  This result led us to introduce a 2x2 model Hamiltonian for 

extracting complex resonance energies from a stabilization graph.  In addition to the assumption 

that H11 = constant, this model further assumed that the energy of the orthogonalized DC level, 

𝐻෩ଶଶ, varies linearly with z and that in the region of the avoided crossing the square of the 

coupling,  𝐻෩ଵଶ2 is well described by an expression with terms up through quadratic in z.  The 

width as calculated in this model was shown to be proportional to the square root of the absolute 
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value of the curvature in  𝐻෩ଵଶ2.  In Ref. 24 we conjectured that the curvature in  𝐻෩ଵଶ2 is a result of 

the overlap between ψ2 and ψ1. 

The main objective of the present study is to elucidate the role of overlap in establishing the 

resonance parameters as deduced from the stabilization method. To this end we consider the 

lowest energy resonance with angular momentum ℓ=2 (and hereafter referred to as D) of a finite 

spherical well potential.   For this problem we perform stabilization calculations with a basis set 

consisting of a discrete state and a single DC level. While such a treatment is not expected to 

give a quantitatively accurate resonance energy, it allows for a detailed analysis of the effect of 

overlap on the off-diagonal coupling and on the resonance parameters.  In addition, complex 

stationary points can be determined for this problem without fitting data points from the 

stabilization graph to a GPA or other functional form, which allows us to also determine the 

flexibility required in a GPA to accurately locate the stationary points.  These results help in 

understanding the successes of the stabilization method in describing temporary anions and other 

metastable states. 

COMPUTATIONAL DETAILS  

Model Potential and Exact S-matrix Results. In order to explore, in detail, the role of overlap 

between the wave functions of the discrete state and a DC level in determining the location of the 

relevant stationary point and the associated resonance parameters, we consider the lowest energy 

D resonance of the finite spherical well model with 

V = -V0, for r < R 

    = 0, for r ≥ R.        (2) 
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This model allows for exact determination of the complex resonance energy (via the associated 

S-matrix25), and when used in the context of the stabilization method gives analytical expressions 

for the overlap and Hamiltonian matrix elements.  Due to the spherical symmetry, the resonances 

resulting from this potential can be associated with the angular momentum ℓ, with the 

0.5ℓ(ℓ+1)/r2 angular momentum term (expressed in atomic units) being responsible for the 

trapping of an electron in low-energy resonances for ℓ ≠ 0.  We focus on the ℓ = 2 case, as it is 

relevant for the lowest energy temporary anions of N2 and ethylene, as well as for the D shape 

resonance resulting from electron capture into the 3d orbital of the Ca atom.26 However, the main 

conclusions of our analysis are equally valid for systems for which the dominant partial wave has 

other non-zero values of ℓ.  We choose V0 = 15.51 eV (0.57 hartree) and R = 3.8 bohr, for which 

the resonance energy is 1.812 - 0.356i eV, as determined from the pole of the S-matrix using the 

exact phase shift.   This width is consistent with values reported for N2 at its equilibrium 

geometry, although the position is about 0.5 eV below that of the resonance of N2. 

Before presenting results from stabilization calculations on this model system, we briefly 

consider the analytical results obtained using the phase shift which for the d-wave component 

finite spherical well problem is:  

 

         
         

2 0 3 0 2 3 0

2 0 3 0 2 3 0

2 j 2 + j 2  - 2( + ) j 2 j 2 +
δ=arctan

2 j 2 + n 2  - 2( + )  n 2 j 2 +

E R E V R E E V R E R E V

E R E V R E E V R E R E V

 
 
  
 

     (3) 

where R and V0 (in atomic units) are the potential parameters and jℓ and nℓ are, respectively, the 

spherical Bessel and spherical Neumann functions associated with angular momentum ℓ.  This 

result was obtained using the fact that the exact wave function involve a spherical Bessel 

function for r < R and as a linear combination of spherical Bessel and Neumann functions r ≥ R, 
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and matching the wave functions and their derivatives for the two regions at r = R. This result is 

then used to calculate the S-matrix using 

SD = e-2iδ,           (4) 

where the “D” subscript denotes that we are focusing on d-wave symmetry and to distinguish 

this from the symbol we use later to denote overlap. The complex resonance energies are then 

associated with the poles of the SD which are given by the zeros of  

      
      

2 0 3 3

0 0 2

2 j 2 + j 2  + n 2 i

( + ) j 2 + j 2  + n 2 i

E R E V R E R E

E V R E V R E R E

   
   3 22 0

    (5) 

As noted above, for our choice of parameters, the lowest energy D resonance is located at 1.812 

– 0.356i eV.  There are also very broad, higher energy resonances located energetically above the 

angular momentum barrier that are not relevant for the purpose of the current study.  The 

contribution to the cross section in atomic units from the ℓth partial wave is given by 

 σℓ =2π 
ሺଶℓାଵሻ

√ா
sin2(δℓ)        (6) 
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Figure 2 displays as a function of E the phase shift and cross section for d-wave scattering for the 

model potential with the choice of 

parameters given above. Note that for an 

“ideal” resonance, for which Γ << Er, the 

phase shift undergoes a jump of π radians 

as the energy moves through the 

resonance region.  For the model 

potential parameters employed, Γ is about 

40% of Er in magnitude, and, as a result, 

the phase shift jump is only about 2.4 

radians and the peak in the cross section 

is about 0.14 eV above Er, as determined from the pole of the S-matrix.  Depending on the choice 

of parameters defining the potential, the resonance can be tuned from one with a phase shift 

jump of π to one that is even further removed from ideal than that considered here.  

Stabilization Calculations. We now turn to application of the stabilization method to the 

spherical well problem. Most stabilization calculations on molecules have been carried out using 

Gaussian type orbitals (GTOs),14,15,27 and for this reason we use GTOs here, focusing on the dxy 

component.  For stabilization calculations on molecules, it is customary to scale only the diffuse 

basis functions of the relevant symmetry.  In part, this is because the tight functions generally 

also play a role in describing the occupied orbitals of the neutral molecule.  E.g., in stabilization 

calculations on the π* anion of N2, one often scales a set of diffuse p functions centered on each 

N atom.  If one also scaled the tight p functions this would significantly impact the energies of 

the occupied πu and σ orbitals of the neutral molecule.  Obviously, if one were using a code that 

 

Figure 2. Phase shift (a) and cross section 
(b) vs. E in the vicinity of the lowest energy 
D resonance of the finite spherical well 
problem.   
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allowed one to scale only basis functions of 

πg symmetry, the direct impact on the 

occupied orbitals would be eliminated but 

the problem would still be present due to the 

role of “tight” πg virtual orbitals in 

correlating the valence orbitals.  Note, that 

stabilization calculations on the Πg anion of 

N2 could be carried out by scaling a set of 

diffuse d functions located at the bond 

center, but the basis set would still have 

“tight” unscaled πg functions.  Although this 

is not generally stated in papers applying the 

stabilization method, it is often the case that 

the unscaled tight functions of the relevant symmetry provide a reasonable estimate of the energy 

for the discrete state.  With this in mind, we have carried out a stabilization calculation on the 

spherical well problem in which we first generate a basis function that approximates the discrete 

state. This function is represented in terms of five GTOs with exponents of 0.045, 0.090, 0.180, 

0.360, and 0.720. The exponents were chosen so that the discrete state has an energy close to that 

of Er.  Specifically, the calculation with this basis set locates the discrete state at 1.867 eV, only 

0.055 eV above the resonance position as established from the S-matrix.  The coefficients 

obtained by minimizing the energy are reported in the Supporting Information.  The radial 

probability distribution function of the discrete state is shown in Figure 3 from which it is seen 

that a significant portion of the charge is in the barrier region. The stabilization calculations are 

 

Figure 3. Plot of the radial probability 
distribution function of the discrete state 
of the finite spherical well problem with 
R = 3.8 bohr and V0 = 0.57 hartree. The 
left vertical line indicates the radius of 
the well and the right vertical line 
indicates the distance at which the energy 
of the angular momentum barriers equals 
that of the discrete state.
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then carried out using two basis functions, one corresponding to the discrete state with fixed 

coefficients and the other being a single primitive GTO with an exponent 0.025 which is 

multiplied by the scale parameter, z. The analytical expressions for the overlap and kinetic and 

potential energy integrals are reported in the Supporting Information. 

We now return to the issue of locating the stationary points and the resonance energy from the 

stabilization graph.  Although, our two-level treatment of the finite spherical well problem 

permits determining these quantities directly from analytical expressions for the energy 

eigenvalues, for stabilization calculations on molecular systems, this is not possible in general. 

Instead, the usual approach involves fitting the data from the two curves involved in an avoided 

crossing to an appropriate function of z and using this to determine the complex stationary 

points.  One of the most common approaches for doing this makes use of GPAs which 

incorporate the branch point structure of an avoided crossing.23    The quadratic GPA used here is 

defined as P(z)E2 + Q(z)E + R(z) = 0, where P, Q, and R are polynomials in z.  The ijk GPA uses 

polynomials of order i, j, and k, for P, Q, and R, respectively.  

RESULTS AND DISCUSSION 
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Stabilization Calculations. Figure 4 

displays the stabilization graph for the two 

basis function treatment of the D resonance 

of the finite spherical well problem. Also 

included in the figure are the energies of the 

discrete state and the orthogonalized DC 

level.  There is a clear avoided crossing near 

z = 0.65. As will be seen below, it is essential 

to account for both the presence of the 

potential and the orthogonalization of ψ2 to 

ψ1 in determining the crossing point of 

diabatic curves. 

The stationary point, z*, obtained by solving dE/dz = 0 where E is the analytical expression for 

the energy obtained from the two basis function treatment, is 0.580-0.386i.  Interestingly, the real 

part of z* is appreciably shifted from the point of closest approach of the two energy levels as 

well as from the crossing point of H11 and 𝐻෩ଶଶ. The associated complex energy is 2.071 – 0.278i 

eV in reasonable agreement with the exact result of 1.822 – 0.356i eV obtained from the S-

matrix.  The fact that one can obtain reasonable resonance parameters from a stabilization 

calculation using only two basis functions may be surprising to many readers as applications of 

the method generally employ basis sets with multiple scaled diffuse functions.  However, to get 

qualitatively accurate results from such simple calculations requires having a reasonable 

description of the discrete state.  For quantitatively accurate results one does need to employ a 

basis set with more than one scaled diffuse basis function, but for the purpose of examining in 

 

Figure 4. Stabilization graph for the finite  
spherical well problem using the discrete 
state depicted in Figure 3 and a single 
scaled diffuse GTO. The dashed lines 
indicate the diabatic levels (H11 and 𝐻෩ଶଶ) 
and the dots the adiabatic energy levels. 
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detail the role of overlap on the resonance parameters, this minimalist basis set treatment is very 

useful. 

In general, stabilization calculations on atoms and molecules have multiple sources of error, 

including those due to basis set truncation and approximations in the treatment of electron 

correlation as well as those associated with the analytic continuation procedure.  Obviously, a 

one electron model potential treatment is free of electron correlation errors. Also, because we can 

determine the exact stationary point and resonance energy for the two basis function treatment of 

the finite spherical well problem, we are able to separate errors due to analytic continuation from 

those from basis set deficiencies. The results of various GPA fits to data points between z = 0.45 

and 0.85 are summarized in Table 1.   We also report in the Table the branch point with negative 

imaginary part associated with the avoided crossing. For the two basis function treatment, 

accurate location of the branch and stationary points and determination of the resonance energy 

is achieved is achieved by the 345 GPA with 14 parameters, and the 035 GPA with only 10 

parameters performs nearly as well.  Even the 6-parameter 013 GPA gives an accurate value for 

the complex resonance energy, but this is likely fortuitous given the fact that the 024 GPA 

treatment fares less well. 

 

Methoda Branch point Stat. point Energy at stat. point 
012 GPA (5) 0.660 – 0.315i 0.660 – 0.613i 1.888 – 0.259i 
013 GPA (6) 0.708 – 0.293i 0.564 – 0.372i 2.080 – 0.264i 
024 GPA (8) 0.724 – 0.303i 0.639 – 0.397i 2.054 – 0.318i 
123 GPA (8) 0.720 – 0.324i 0.661 – 0.474i 2.008 – 0.327i 
234 GPA (11) 0.728 – 0.310i 0.643 – 0.412i 2.057 – 0.310i 
035 GPA (10) 0.723 – 0.306i 0.589 – 0.422i 2.052 – 0.278i 
135 GPA (11) 0.723 – 0.305i 0.603 – 0.393i 2.065 – 0.288i 
345 GPA (14) 0.723 – 0.304i 0.583 – 0.350i 2.085 – 0.275i 
456 GPA (17) 0.723 – 0.306i 0.580 – 0.386i 2.070 – 0.278i 
Exact 0.723 – 0.306i 0.580 – 0.386i 2.068 – 0.278i 

 

Table 1. Branch points and stationary points and associated energies 

(eV) from GPA fits to the stabilization graph shown in Figure 4.  

a The number of parameters in the GPA is indicated in parentheses.  



12 
 

We now turn to the issue of the role of overlap between the discrete state and the DC level in 

establishing the complex resonance energy.  Since only ψ2 is scaled, the energy of the discrete 

state, H11 is independent of z. The relevant matrix elements are 

𝐻෩ଵଶ ൌ
ுభమିௌுభభ
√ଵିௌమ

       (7) 

and  

𝐻෩ଶଶ ൌ
ுమమିଶௌுభమାௌమுభభ

ଵିௌమ
      (8) 

 

The resulting adiabatic levels are  

𝐸േ ൌ
ுభభାு෩మమ

ଶ
േ  ଵ

ଶ
ට൫𝐻ଵଵെ𝐻෩ଶଶ ൯

ଶ
൅ 4𝐻෩ଵଶ

ଶ
     (9) 

Note that the adiabatic energies, unlike the energies of the diabatic states and their off-diagonal 
coupling, do not depend on the choice made for the orthogonalization. For a two-level problem 

one can extract H11 + 𝐻෩ଶଶ and 𝐻෩ଵଶ
ଶ
െ 𝐻ଵଵ𝐻෩ଶଶ from the adiabatic energy levels by use of 

(E+ + E-) ൌ 𝐻ଵଵ൅𝐻෩ଶଶ       (10) 

(E+ – E-)2 ൌ ൫𝐻ଵଵ൅𝐻෩ଶଶ൯
ଶ
൅ 4ሺ𝐻෩ଵଶ

ଶ
െ 𝐻ଵଵ𝐻෩ଶଶሻ   (11) 

With the assumption that H11 = constant, one can obtain 

 𝐻෩ଵଶ2 = H11(E+ + E- – H11) – E+E-     (12) 
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from the stabilization graph with no further 

assumptions. 

 

 

 

 

 

 

 

 

 

 

 

Figures 5 -7 report, respectively, S, H22 and 𝐻෩ଶଶ, 

H12 and  𝐻෩ଵଶ, determined from the analytical expressions for the relevant matrix elements 

(reported in the SI) for z values ranging from 0.45 to 0.85, the range that we used use in fitting 

the adiabatic curves for analytic continuation. From Figure 5 it is seen that the overlap between 

ψ1 and ψ2 is about 0.5 at the crossing point (z0 ≈ 0.65) of H11 and 𝐻෩ଶଶ, and moreover, that there is 

appreciable curvature in S in the vicinity of z0,   

Figure 6 reports the energy of the discrete continuum state unperturbed by the potential, H22, the 

energy of the discretized continuum state including the influence of the potential H22(KE+PE), 

and 𝐻෩ଶଶ which also includes the effect of orthogonalization of ψ2 to ψ1. As seen from this figure, 

the shift in the energy of the DC level caused by orthogonalization is much greater than that due 

to the potential energy contribution.  It is also seen that for the range of z values displayed, 𝐻෩ଶଶ is 

approximately linear in z, which is somewhat surprising given the significant curvature in S.  

 
Figure 6. Energy of the DC level in 
different approximations vs. the scale 
parameter. H22, unperturbed DC level 
(blue), H22(KE+PE), including the 
potential energy (orange), and 𝐻෩ଶଶ, 
including both the PE contribution and the 
effect of orthogonalization (green) for the 
two-level treatment of the D resonance of 
the finite spherical well problem. The 
dotted blue horizontal line indicates the 
energy of the discrete state. 

 

  Figure 5. Overlap vs. scale 
parameter for the two-level 
treatment of the D resonance of 
the finite spherical well problem. 
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This result indicates that there is some cancellation of the various contributions to the curvature 

in 𝐻෩ଶଶ. 

From Figure 7 it is seen that whereas H12 is 

positive (due to the domination of the kinetic 

energy contribution) and depends approximately 

linearly on z,  𝐻෩ଵଶ is negative and displays a 

minimum near z0.   The dramatic difference 

between H12 and  𝐻෩ଵଶ is a consequence of the -

SH11 term in the numerator of eq 7. Obviously, 

the minimum in  𝐻෩ଵଶ translates to a maximum in 

 𝐻෩ଵଶ2. 

Several “special” points, some of which have already been mentioned, can be associated with the 

two-state stabilization graph. These are summarized in Table 2. The most important is the 

stationary point, z*, which is associated with the complex resonance energy. Consistent with 

stabilization calculations on other models and on atoms and molecules this is located further in 

the complex plane than the branch point, zb.19 Other “special” points include, z0, the crossing 

point of the diabatic curves, z2 the point of closest approach of the adiabatic curves, and z1, the 

point at which  𝐻෩ଵଶ has its minimum.  z0 and z2 are close in value and are somewhat larger than 

z1.  Note, that if  𝐻෩ଵଶ were constant, then z0 = z2.  The values of these special points are dependent 

on the basis set used for the stabilization calculation. 

 
 
 
 

 

 

 

Figure 7. H12 and  𝐻෩ଵଶ vs. scale 
parameter for the two-level treatment of 
the D resonance of the finite spherical 
well problem.  
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Table 2. Special points derived from the two  
basis function stabilization calculation described  
in the text. 
Special point z value 
zb (branch point) 0.723 – 0.306i 
z* (stationary point) 0.580 – 0.386i 
z0 (H11 =  𝐻෩ଶଶ) 0.649  
z1 ( 𝐻෩ଵଶ

ᇱ  = 0) 0.590 
z2 (minimum of E+ - E-) 0.660 

 

Although we have analytical expressions for H12 and S, and, thus, also for  𝐻෩ଵଶ, for the two basis 

function stabilization calculation on the D resonance of the finite spherical well problem, the 

resulting expression for  𝐻෩ଵଶ, particularly when using the contracted function with five primitive 

GTOs for the discrete state, is quite involved.  Hence, for the purpose of elucidating the role of 

overlap in establishing the shape of the  𝐻෩ଵଶ curve in the vicinity of z1, it is more instructive to fit 

S and H12 to polynomials in powers of y = z - z1, keeping terms though second order in y:  

S ≈ s0 +s1y +s2y2       (13) 

H12 ≈ h0 + h1y +h2y2       (14) 

Least squares fitting these expansions of S and H12 to the results for z values between 0.45 and 

0.85, gives s0, s1, and s2 = 0.4998, 0.7316, and -0.4483, respectively, and h0, h1, and h2 = 0.555, 

1.556, and -0.106, respectively for H12 in eV. 

Keeping terms up to order y2, we have  

 𝐻෩ଵଶ ≈  -0.435 + 0.729y2      (15) 

Squaring this result, again retaining terms only up through quadratic in y gives 

 𝐻෩ଵଶ2  ≈ 0.190 - 0.637y2      (16) 

Thus, we see that the s0H11 contribution to  𝐻෩ଵଶ is responsible for the square of the latter quantity 

being negative near z1, and also that the negative curvature in  𝐻෩ଵଶ2 is due to the product of the 

constant and quadratic terms in  𝐻෩ଵଶ.  
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Model Hamiltonian Results. As seen from the results reported in Table 1, sufficiently flexible 

GPA fits to the stabilization graph allow accurately location of the stationary point and 

determination of the associated complex resonance energy.  However, greater insight into the 

factors important for establishing the stationary point and the complex resonance energy can be 

achieved by applying simpler, physically motivated, models with fewer parameters than in the 

higher order GPAs needed to achieve convergence.  With this in mind, we now turn to the five-

parameter model introduced in Ref. 24. In this model, with energies in eV: 

H11 = c0       (17) 

𝐻෩ଶଶ = c0 + c1(z - z´)      (18) 

 𝐻෩ଵଶ2 = A + B(z - z´)2      (19) 

where the various parameters are obtained from a least-squares fit of E+ and E- using data points 

in the vicinity of an avoided crossing.  Note that z´ determined in this manner can differ from z1 

defined above.  A fit of the two energy eigenvalues for this model Hamiltonian to the data in the 

stabilization graph for z values between 0.45 and 0.85 gives c0, c1, z´, A, and B = 1.888, 3.195, 

0.6606, 0.187, and -0.675, respectively. 
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Figure 8 compares for the two basis function treatment of the spherical well problem the  𝐻෩ଵଶ2 

curves obtained directly from the analytical matrix elements as well as the fit of the model 

described above to the stabilization graph 

reported in Figure 4.  The maximum in the 

curve deduced from our model Hamiltonian 

is shifted to a somewhat larger z value than 

the exact curve, however, the peak maxima 

and curvatures are in good agreement. 

Referring back to the results in Table 2, we 

see that the exact  𝐻෩ଵଶ2 curve is peaked close 

to the real value of the stationary point 

while that from our model is peaked close to 

the crossing point of the diabatic curves.  

While Figure 8 focuses on the range of z values from 0.45 to 0.85 we note that the exact  𝐻෩ଵଶ2 for 

the two basis function treatment is necessarily positive over the entire range of meaningful z-

values (0 to about 2.0), whereas that given by eq 19 goes negative for z values less than about 0.1 

and greater than about 1.2, which is unphysical, and is a consequence of the functional form 

adopted for  𝐻෩ଵଶ2.  Interestingly, when scaling multiple basis functions and focusing on an 

avoided crossing flanked by other avoided crossing,  𝐻෩ଵଶ2 extracted from the stabilization graph 

(without any assumption concerning its functional form) also goes negative for small and large z 

values. In Ref. 24 it was postulated that this is a consequence of folding a multi-level problem 

into a two-level problem.  

 

 

 

 

 

Figure 8.  𝐻෩ଵଶ2 vs. scale parameter for 
the two-level treatment of the D 
resonance of the finite spherical well 
problem.  Both the exact result and that 
extracted from the stabilization graph 
using eqs 17-19 are reported. 
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In reference 24, we showed that the relevant stationary point for this model Hamiltonian is given 

by  

 
(c )

c A
z* z' i

| B | B
 


1
2
1 4

     (20) 

and that the associated complex resonance energy is 

res
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1

2
4

     (21) 

The existence of the complex stationary point, and hence, the resonance, requires that the 

curvature B be negative.  Although the parameters in this model were obtained by fitting the 

stabilization graph with the assumption that 𝐻෩ଶଶ is linear rather than using the fits to the exact 

matrix elements (eqs 13 – 15), it is still useful to analyze the coefficients A and B in eq 19 in 

terms of the earlier analysis involving the series expansions of H12 and S.  In particular, we note 

that the A and B coefficients determined from fitting the model to the stabilization graph are 

close to coefficients of the constant and quadratic terms in eq 16.  We further see that B is given 

by the product of the constant and quadratic terms in  𝐻෩ଵଶ, and that it is negative due to the 

domination of the s0h11 factor in the (h0 - s0h11) contribution. Because z´ from the fit of the model 

to the stabilization graph differs slightly from z1, the expression for  𝐻෩ଵଶ2 for the model contains 

a small linear term when expanded about z´.  However. this term is very small and does not 

impact the above analysis. 

In the limit that c1
2 >> 4B the half width reduces to A|B| / c12 . Using the parameters obtained 

by fitting the stabilization graph to the 2x2 model described by Equations 17 - 19, this 

approximation gives a half width of 0.222 eV, as compared to the 0.259 eV result from eq 21, 

and 0.278 eV from analytical expressions for the adiabatic energies.   
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We now briefly comment on the alternative two-level model for extracting resonance parameters 

from a stabilization graph introduced by Simons22. This model assumes that the two diabatic 

curves vary linearly with z near the avoided crossing and that the coupling is a constant.  Fits of 

the Simons model or our model to the data from a stabilization graph result in the same values of 

the resonance energy and width.  The connection between the two models can be seen by 

rewriting the quantity under the square root of eq 9 as (H11 + H22)2 + 4(H12
2 - H11H22).  Here we 

have dropped the tildes since the terms impacted by orthogonalization differ in the two models.  

In both models H11 + H22 depends linearly on z, a consequence of which is that H12
2 – H11H22 

must display at least a quadratic dependence on z for the existence of complex stationary points.  

In our model this dependence enters through H12
2 whereas in the Simons model it enters through 

the H11H22 term. In fact, one can show that the two models are related as follows: 

a2 = 0.5[c1 + ඥ𝑐ଵଶ ൅  4𝐵 ]      (22) 

a1= 0.5[c1 –ඥ𝑐ଵଶ ൅  4𝐵 ]      (23) 

where a1 is the slope of the discrete state and a2 the slope of the DC level in the Simons model. 

As noted above, B is negative and c1
2 is appreciably larger in magnitude than 4B.  Hence the 

slope of H11 in Simons model is a consequence of the overlap between ψ1 and ψ2.  Importantly, 

the conclusion of the vital role of overlap in establishing the resonance properties is independent 

of which of these models one adopts.  We further note that, the 012 GPA in which H11 + H22 also 

has a linear z dependence and H12
2 - H11H22 includes terms up through quadratic in z, gives 

resonance parameters identical to those from our model and the Simons model.   However, the 

012 GPA, unlike these two models, does not allow determining whether the quadratic 

dependence on the scale parameter is split across the H12
2 or H11H22 terms. 
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CONCLUSIONS 

In this study we have presented the results of a minimalist two-level stabilization calculation of a 

D resonance of a simple model potential.  Although such a treatment is not expected to give 

quantitatively accurate resonance parameters, it has the advantage of making clearer the role of 

the overlap between the discrete state and a DC level in establishing resonance parameters, and it 

provides a test for assessing the convergence of GPAs for extracting the resonance energy. With 

the assumption that the energy of the discrete state, H11, is independent of the scale parameter z, 

we show that for this model, the square of the off-diagonal coupling,  𝐻෩ଵଶ2, is peaked near the 

crossing point of the diabatic curves, just as we found previously for stabilization calculations on 

the Πg anion of N2.  We further show that this is a consequence of the overlap contribution that 

arises from the orthogonalization of the wave function associated with the DC level to that of the 

discrete state.  We also apply the model Hamiltonian that we introduced in Ref. 24 to this 

problem, showing that with the additional assumption that 𝐻෩ଶଶ varies linearly with z, the 

negative curvature in  𝐻෩ଵଶ2 is essential for the existence of the resonance for the finite spherical 

well problem.  We also examine more closely the connection of our model Hamiltonian 

approach and that of Simons which assumes that the off-diagonal coupling is independent of z 

and that both H11 and H22 are linear in z. The two models give identical resonance parameters, 

but the effect of orthogonalization is manifested differently in the diagonal and off-diagonal 

matrix elements.  We also obtain resonance parameters for the two-level stabilization 

calculations directly from the analytical expression for the energy levels and show that it is 

necessary to use a GPA with as many as 14 parameters to obtain results in close agreement with 

that obtained without fitting. 
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