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Abstract: In a diabatic picture metastable states subject to decay by electron detachment can be
viewed as arising from the coupling between a discrete state and a continuum. In treating such
states with bound-state quantum chemical methods, the continuum is discretized. In this study,
we elucidate the role of overlap in this interaction in the application of the stabilization method
to temporary anion states. This is accomplished by use of a minimalist stabilization calculation
on the lowest energy £ = 2 (D) resonance of the finite spherical well potential using two basis
functions, one describing the diabatic discrete state and the other a diabatic discretized
continuum state. We show that even such a simple treatment predicts a complex resonance
energy in good agreement with the exact result. If the energy of the discrete state is assumed to
be constant, which is tantamount to orthogonalizing the discretized continuum state to the
discrete state, it is demonstrated that the square of the off-diagonal coupling has a maximum
close to the crossing point of the orthogonalized diabatic curves and that the curvature in the
coupling is responsible for the complex stationary point associated with the resonance.

Moreover, this curvature is a consequence of the overlap between the two diabatic states.



INTRODUCTION

Metastable states that are subject to electron detachment play a role in a wide range of chemical
processes. Examples include temporary anions, electronically excited states above the first
ionization potential, and atoms and molecules in electric fields. In this article, we focus on
temporary anions, which are subject to electron detachment because they lie energetically above
the electronic ground state of the neutral atom or molecule. There are different classes of
temporary anions, distinguished by the electron trapping mechanism.! Of particular interest are
temporary anions that result from electron capture into a low-lying empty valence orbital, with
the electron trapping being due to an angular momentum barrier. Such anions appear as shape
resonances in various low energy electron scattering cross sections'™ and are known to play

important roles in a wide range of chemical processes.*’

When standard electronic structure approaches are applied to temporary anions, they are subject
to variational collapse, i.e., as the basis set is more extended spatially the wavefunction collapses
onto that of the neutral species plus a “free” electron in a discretized continuum (DC) orbital. A
variety of methods have been developed to address this issue. These include complex coordinate
rotation,® the complex absorbing potential (CAP) method,” modified potential methods combined
with analytic continuation,'? and the stabilization method.!! All of these approaches characterize

a resonance by a complex energy.'?
Eres=E; - 1F/2, (1)

where Erand I' denote the resonance position and half-width respectively in atomic units. The

complex energy is consistent with a state that decays exponentially in time.



The present article focuses on the stabilization method which involves calculating the energy
levels of the excess electron system as a function of a parameter that controls the extent of the
basis set, the size of a constraining box, or the strength of a perturbing potential term in the
Hamiltonian. We limit ourselves here to the first approach as used with Gaussian basis
functions, in which case the scaling is accomplished by multiplying the exponents of a set of

diffuse functions by a scale parameter, denoted here by z.

To set the stage for the present analysis, we .

show in Figure 1 a stabilization graph for the
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stabilization graph displays two avoided
crossings that can be viewed as arising from
the interactions between a diabatic discrete state, the energy of which is independent or only
weakly dependent on the scale parameter, and a set of diabatic discretized continuum levels
whose energies depend strongly on the scale parameter. Various methods can be used to extract
the resonance energy and width from a stabilization graph,'®? the most common of which is to
analytically continue the energies into the complex plane and to find complex stationary points
z* for which dE/dz = 0. These appear as complex conjugate pairs. Substitution of these z* values

back into the expression for the energy gives complex energies, which again occur as complex



conjugate pairs, with the solution with the negative imaginary part being that associated with the
resonance.!>?° In general, the analytic continuation is done using generalized Pade’
approximants (GPAs)* or continued fractions. Alternatively, in the case of a reasonably well
isolated avoided crossing, one can choose physically motivated functional forms for the two
diabatic states, one describing the discrete state and the other a DC level, as well as for their oft-

diagonal coupling 2>

In a two-level characterization of an avoided crossing in a stabilization graph, it is useful to
associate wave functions 1 and w2 with the discrete state and the DC level, respectively, and
with the corresponding energies denoted by H11 and H22. In the analysis that we presented in
Ref. 24, we chose H11 to be independent of the scale parameter and further orthogonalized w2 to
w1, giving ,. With these assumptions, a two-level treatment allows one to extract the functional
form of H,;,? from the stabilization graph. (The tilde on a matrix element denotes that it includes
the effects of orthogonalization of the DC level to the discrete level.) Significantly, this result
did not require any assumption about the functional form of H,,. For the case of the IT; anion of
N2, H,,% deduced from a two-level treatment of the avoided crossing near z = 1.0 in the
stabilization graph shown in Figure 1 was found to be peaked near the crossing point of the
orthogonalized diabatic curves. This result led us to introduce a 2x2 model Hamiltonian for
extracting complex resonance energies from a stabilization graph. In addition to the assumption
that H11 = constant, this model further assumed that the energy of the orthogonalized DC level,
H,,, varies linearly with z and that in the region of the avoided crossing the square of the
coupling, H,,?is well described by an expression with terms up through quadratic in z. The

width as calculated in this model was shown to be proportional to the square root of the absolute



value of the curvature in H;,%. In Ref. 24 we conjectured that the curvature in H;,? is a result of

the overlap between y2 and 1.

The main objective of the present study is to elucidate the role of overlap in establishing the
resonance parameters as deduced from the stabilization method. To this end we consider the
lowest energy resonance with angular momentum {=2 (and hereafter referred to as D) of a finite
spherical well potential. For this problem we perform stabilization calculations with a basis set
consisting of a discrete state and a single DC level. While such a treatment is not expected to
give a quantitatively accurate resonance energy, it allows for a detailed analysis of the effect of
overlap on the off-diagonal coupling and on the resonance parameters. In addition, complex
stationary points can be determined for this problem without fitting data points from the
stabilization graph to a GPA or other functional form, which allows us to also determine the
flexibility required in a GPA to accurately locate the stationary points. These results help in
understanding the successes of the stabilization method in describing temporary anions and other

metastable states.

COMPUTATIONAL DETAILS

Model Potential and Exact S-matrix Results. In order to explore, in detail, the role of overlap
between the wave functions of the discrete state and a DC level in determining the location of the
relevant stationary point and the associated resonance parameters, we consider the lowest energy

D resonance of the finite spherical well model with
V=-Vo, forr<R

=0, forr>R. (2



This model allows for exact determination of the complex resonance energy (via the associated
S-matrix*®), and when used in the context of the stabilization method gives analytical expressions
for the overlap and Hamiltonian matrix elements. Due to the spherical symmetry, the resonances
resulting from this potential can be associated with the angular momentum £, with the
0.50(€+1)/#* angular momentum term (expressed in atomic units) being responsible for the
trapping of an electron in low-energy resonances for £ # 0. We focus on the £ =2 case, as it is
relevant for the lowest energy temporary anions of N2 and ethylene, as well as for the D shape
resonance resulting from electron capture into the 3d orbital of the Ca atom.? However, the main
conclusions of our analysis are equally valid for systems for which the dominant partial wave has
other non-zero values of £. We choose Vo =15.51 eV (0.57 hartree) and R = 3.8 bohr, for which
the resonance energy is 1.812 - 0.3561 eV, as determined from the pole of the S-matrix using the
exact phase shift. This width is consistent with values reported for N2 at its equilibrium

geometry, although the position is about 0.5 eV below that of the resonance of No.

Before presenting results from stabilization calculations on this model system, we briefly
consider the analytical results obtained using the phase shift which for the d-wave component

finite spherical well problem is:

V2, (R\2(E+7,) )i (RV2E ) ~J2E+7,)i, (RV2E ) iy (R2(E+7;))
2E, (R2(E+7,) |y (RNZE ) J2(E+V,) 0, (RV2E )iy (R\2(E+7,))

where R and Vo (in atomic units) are the potential parameters and j¢ and n¢ are, respectively, the

)

d=arctan

spherical Bessel and spherical Neumann functions associated with angular momentum £. This
result was obtained using the fact that the exact wave function involve a spherical Bessel

function for » < R and as a linear combination of spherical Bessel and Neumann functions » > R,



and matching the wave functions and their derivatives for the two regions at » = R. This result is
then used to calculate the S-matrix using

Sp=e™*, (4)

where the “D” subscript denotes that we are focusing on d-wave symmetry and to distinguish
this from the symbol we use later to denote overlap. The complex resonance energies are then

associated with the poles of the Sp which are given by the zeros of

\/ﬁjz(R 2(E+V0))[j3 (R\/ﬁ) +n3(R\/ﬁ)iJ—
+\/Mjg(RJW)[L(R\/ﬁ) + nz(Rx/ﬁ)i]=0

As noted above, for our choice of parameters, the lowest energy D resonance is located at 1.812

©)

—0.3561 eV. There are also very broad, higher energy resonances located energetically above the
angular momentum barrier that are not relevant for the purpose of the current study. The

contribution to the cross section in atomic units from the ¢ partial wave is given by

20+1) .
ot =271 (—\/;)smz(&a) (6)



Figure 2 displays as a function of £ the phase shift and cross section for d-wave scattering for the

model potential with the choice of
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Figure 2. Phase shift (a) and cross section
(b) vs. E in the vicinity of the lowest energy
D resonance of the finite spherical well
problem.

40% of Erin magnitude, and, as a result,
the phase shift jump is only about 2.4
radians and the peak in the cross section
is about 0.14 eV above E/, as determined from the pole of the S-matrix. Depending on the choice
of parameters defining the potential, the resonance can be tuned from one with a phase shift

jump of 7 to one that is even further removed from ideal than that considered here.

Stabilization Calculations. We now turn to application of the stabilization method to the
spherical well problem. Most stabilization calculations on molecules have been carried out using
Gaussian type orbitals (GTOs),'*!>?” and for this reason we use GTOs here, focusing on the dx,
component. For stabilization calculations on molecules, it is customary to scale only the diffuse
basis functions of the relevant symmetry. In part, this is because the tight functions generally
also play a role in describing the occupied orbitals of the neutral molecule. E.g., in stabilization
calculations on the * anion of N2, one often scales a set of diffuse p functions centered on each
N atom. If one also scaled the tight p functions this would significantly impact the energies of

the occupied mu and o orbitals of the neutral molecule. Obviously, if one were using a code that



allowed one to scale only basis functions of

ng symmetry, the direct impact on the

occupied orbitals would be eliminated but
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stabilization calculations on the I1g anion of O Distance from the center of the well (bohr)
N2 could be carried out by Scaling a set of Figure 3. Plot of the radial probability
distribution function of the discrete state
diffuse d functions located at the bond of the finite spherical well problem with
R =3.8 bohr and Vo= 0.57 hartree. The
center, but the basis set would still have left vertical line indicates the radius of

the well and the right vertical line
indicates the distance at which the energy
of the angular momentum barriers equals
that of the discrete state.

“tight” unscaled mg functions. Although this
is not generally stated in papers applying the
stabilization method, it is often the case that
the unscaled tight functions of the relevant symmetry provide a reasonable estimate of the energy
for the discrete state. With this in mind, we have carried out a stabilization calculation on the
spherical well problem in which we first generate a basis function that approximates the discrete
state. This function is represented in terms of five GTOs with exponents of 0.045, 0.090, 0.180,
0.360, and 0.720. The exponents were chosen so that the discrete state has an energy close to that
of Er. Specifically, the calculation with this basis set locates the discrete state at 1.867 eV, only
0.055 eV above the resonance position as established from the S-matrix. The coefficients
obtained by minimizing the energy are reported in the Supporting Information. The radial
probability distribution function of the discrete state is shown in Figure 3 from which it is seen

that a significant portion of the charge is in the barrier region. The stabilization calculations are



then carried out using two basis functions, one corresponding to the discrete state with fixed
coefficients and the other being a single primitive GTO with an exponent 0.025 which is
multiplied by the scale parameter, z. The analytical expressions for the overlap and kinetic and

potential energy integrals are reported in the Supporting Information.

We now return to the issue of locating the stationary points and the resonance energy from the
stabilization graph. Although, our two-level treatment of the finite spherical well problem
permits determining these quantities directly from analytical expressions for the energy
eigenvalues, for stabilization calculations on molecular systems, this is not possible in general.
Instead, the usual approach involves fitting the data from the two curves involved in an avoided
crossing to an appropriate function of z and using this to determine the complex stationary
points. One of the most common approaches for doing this makes use of GPAs which
incorporate the branch point structure of an avoided crossing.”®> The quadratic GPA used here is
defined as P(z)E* + Q(2)E + R(z) = 0, where P, O, and R are polynomials in z. The ijk GPA uses

polynomials of order i, j, and &, for P, O, and R, respectively.

RESULTS AND DISCUSSION



Stabilization Calculations. Figure 4
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The stationary point, z*, obtained by solving d£/dz = 0 where E is the analytical expression for
the energy obtained from the two basis function treatment, is 0.580-0.386i. Interestingly, the real
part of z* is appreciably shifted from the point of closest approach of the two energy levels as
well as from the crossing point of H11 and H,,. The associated complex energy is 2.071 — 0.278i
eV in reasonable agreement with the exact result of 1.822 — 0.356i1 eV obtained from the S-
matrix. The fact that one can obtain reasonable resonance parameters from a stabilization
calculation using only two basis functions may be surprising to many readers as applications of
the method generally employ basis sets with multiple scaled diffuse functions. However, to get
qualitatively accurate results from such simple calculations requires having a reasonable
description of the discrete state. For quantitatively accurate results one does need to employ a

basis set with more than one scaled diffuse basis function, but for the purpose of examining in

10



detail the role of overlap on the resonance parameters, this minimalist basis set treatment is very

useful.

In general, stabilization calculations on atoms and molecules have multiple sources of error,
including those due to basis set truncation and approximations in the treatment of electron
correlation as well as those associated with the analytic continuation procedure. Obviously, a
one electron model potential treatment is free of electron correlation errors. Also, because we can
determine the exact stationary point and resonance energy for the two basis function treatment of
the finite spherical well problem, we are able to separate errors due to analytic continuation from
those from basis set deficiencies. The results of various GPA fits to data points between z = 0.45
and 0.85 are summarized in Table 1. We also report in the Table the branch point with negative
imaginary part associated with the avoided crossing. For the two basis function treatment,
accurate location of the branch and stationary points and determination of the resonance energy
is achieved is achieved by the 345 GPA with 14 parameters, and the 035 GPA with only 10
parameters performs nearly as well. Even the 6-parameter 013 GPA gives an accurate value for
the complex resonance energy, but this is likely fortuitous given the fact that the 024 GPA

treatment fares less well.

Table 1. Branch points and stationary points and associated energies
(eV) from GPA fits to the stabilization graph shown in Figure 4.

Method? Branch point | Stat. point Energy at stat. point
012 GPA(5) |0.660—-0.3151 | 0.660 —0.6131 | 1.888 —0.2591
013 GPA (6) | 0.708 —0.293i | 0.564 — 0.372i | 2.080 — 0.264i
024 GPA (8) |0.724-0.303i | 0.639 —0.3971 | 2.054 — 0.318i
123 GPA (8) | 0.720-0.324i | 0.661 —0.4741 | 2.008 — 0.327i1
234 GPA (11) | 0.728 = 0.310i | 0.643 — 0.412i | 2.057 - 0.310i
035 GPA (10) | 0.723 —0.3061 | 0.589 — 0.422i | 2.052 — 0.278i
135 GPA (11) | 0.723 - 0.305i | 0.603 — 0.393i | 2.065 — 0.288i
345 GPA (14) [ 0.723 —0.304i | 0.583 —0.3501 | 2.085 — 0.2751
456 GPA (17) | 0.723 —0.3061 | 0.580 — 0.386i | 2.070 — 0.278i
Exact 0.723 — 0.306i | 0.580 —0.386i | 2.068 — 0.278i

? The number of parameters in the GPA is indicated in parentheses.
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We now turn to the issue of the role of overlap between the discrete state and the DC level in
establishing the complex resonance energy. Since only y» is scaled, the energy of the discrete

state, 11 is independent of z. The relevant matrix elements are

a1 Hy3—SHq,

H, = —— 7
o == )

and

a4 _ H22_25H12+52H11

H,, = (8)

1-52

The resulting adiabatic levels are

Hyi+H 1 ~\2 o2

Note that the adiabatic energies, unlike the energies of the diabatic states and their off-diagonal
coupling, do not depend on the choice made for the orthogonalization. For a two-level problem

one can extract Hi1 + H,, and lez — H,,H,, from the adiabatic energy levels by use of
(E++E—) = H11+H22 (10)
~ \2 ~ 2 ~
(E+—E-)2: (H11+H22) + 4(Hy, — Hy1Hyy) (11)
With the assumption that H11 = constant, one can obtain

H,,>=Hu(E++E.— Hi)— E:E- (12)

12
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Figures 5 -7 report, respectively, S, H22 and H,,, energy of the discrete state.

Hizand Hj,, determined from the analytical expressions for the relevant matrix elements
(reported in the SI) for z values ranging from 0.45 to 0.85, the range that we used use in fitting
the adiabatic curves for analytic continuation. From Figure 5 it is seen that the overlap between
w1 and y2 is about 0.5 at the crossing point (zo = 0.65) of Hi1 and H,,, and moreover, that there is

appreciable curvature in S in the vicinity of zo,

Figure 6 reports the energy of the discrete continuum state unperturbed by the potential, H22, the
energy of the discretized continuum state including the influence of the potential H22(KE+PE),
and H,, which also includes the effect of orthogonalization of w2 to yi. As seen from this figure,
the shift in the energy of the DC level caused by orthogonalization is much greater than that due
to the potential energy contribution. It is also seen that for the range of z values displayed, H,, is

approximately linear in z, which is somewhat surprising given the significant curvature in S.
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This result indicates that there is some cancellation of the various contributions to the curvature
in H,,.

From Figure 7 it is seen that whereas Hi2 is

Hiz
L . . . . 0.8 Az
positive (due to the domination of the kinetic
< 06
energy contribution) and depends approximately :g 04
linearly on z, H,, is negative and displays a g >’
g 0.0
i
minimum near zo. The dramatic difference ° s
between Hi2 and Hj, is a consequence of the - e
0.5 0.6 0.7 0.8
Scale parameter
SHi1 term in the numerator of eq 7. Obviously, Figure 7. Hi2 and le vs. scale
_ parameter for the two-level treatment of

— well problem.
Hiy".

Several “special” points, some of which have already been mentioned, can be associated with the
two-state stabilization graph. These are summarized in Table 2. The most important is the
stationary point, z*, which is associated with the complex resonance energy. Consistent with
stabilization calculations on other models and on atoms and molecules this is located further in
the complex plane than the branch point, zv.!* Other “special” points include, zo, the crossing
point of the diabatic curves, z2 the point of closest approach of the adiabatic curves, and z1, the
point at which H,, has its minimum. zo and z2 are close in value and are somewhat larger than
z1. Note, that if H,, were constant, then zo = z2. The values of these special points are dependent

on the basis set used for the stabilization calculation.
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Table 2. Special points derived from the two
basis function stabilization calculation described

in the text.
Special point z value
zp (branch point) 0.723 — 0.3061
z* (stationary point) 0.580 — 0.3861
z0 (Hii= H,) 0.649
z1 (H{, =0) 0.590
z2 (minimum of E+ - E.) | 0.660

Although we have analytical expressions for Hi2 and S, and, thus, also for H,, for the two basis
function stabilization calculation on the D resonance of the finite spherical well problem, the
resulting expression for Hj,, particularly when using the contracted function with five primitive
GTOs for the discrete state, is quite involved. Hence, for the purpose of elucidating the role of
overlap in establishing the shape of the H;, curve in the vicinity of z1, it is more instructive to fit
S and H12 to polynomials in powers of y = z - z1, keeping terms though second order in y:

S = 50 +s1y +52)° (13)

Hu= ho + hiy +hyy? (14)

Least squares fitting these expansions of S and Hi2 to the results for z values between 0.45 and
0.85, gives so, s1, and 52 = 0.4998, 0.7316, and -0.4483, respectively, and ko, 41, and h2 = 0.555,

1.556, and -0.106, respectively for Hi2 in eV.
Keeping terms up to order y*, we have

H,, = -0.435+ 0.729)? (15)
Squaring this result, again retaining terms only up through quadratic in y gives
H,,> =~0.190 - 0.637)? (16)

Thus, we see that the sof11 contribution to H;, is responsible for the square of the latter quantity
being negative near z1, and also that the negative curvature in H,;,2 is due to the product of the

constant and quadratic terms in H,.
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Model Hamiltonian Results. As seen from the results reported in Table 1, sufficiently flexible
GPA fits to the stabilization graph allow accurately location of the stationary point and
determination of the associated complex resonance energy. However, greater insight into the
factors important for establishing the stationary point and the complex resonance energy can be
achieved by applying simpler, physically motivated, models with fewer parameters than in the
higher order GPAs needed to achieve convergence. With this in mind, we now turn to the five-

parameter model introduced in Ref. 24. In this model, with energies in eV:

Hiit=co (17)
Hy,=co+ci(z-2) (18)
H,>=A+B(z-z') (19)

where the various parameters are obtained from a least-squares fit of £+ and E- using data points
in the vicinity of an avoided crossing. Note that z” determined in this manner can differ from zi
defined above. A fit of the two energy eigenvalues for this model Hamiltonian to the data in the
stabilization graph for z values between 0.45 and 0.85 gives co, c1, z’, 4, and B = 1.888, 3.195,

0.6606, 0.187, and -0.675, respectively.
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Figure 8 compares for the two basis function treatment of the spherical well problem the H,,>

curves obtained directly from the analytical matrix elements as well as the fit of the model

described above to the stabilization graph
reported in Figure 4. The maximum in the
curve deduced from our model Hamiltonian
is shifted to a somewhat larger z value than
the exact curve, however, the peak maxima
and curvatures are in good agreement.
Referring back to the results in Table 2, we
see that the exact H,,?curve is peaked close
to the real value of the stationary point
while that from our model is peaked close to

the crossing point of the diabatic curves.
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Figure 8. H,,” vs. scale parameter for
the two-level treatment of the D
resonance of the finite spherical well
problem. Both the exact result and that
extracted from the stabilization graph
using eqs 17-19 are reported.

While Figure 8 focuses on the range of z values from 0.45 to 0.85 we note that the exact H;,” for

the two basis function treatment is necessarily positive over the entire range of meaningful z-

values (0 to about 2.0), whereas that given by eq 19 goes negative for z values less than about 0.1

and greater than about 1.2, which is unphysical, and is a consequence of the functional form

adopted for H,,%. Interestingly, when scaling multiple basis functions and focusing on an

avoided crossing flanked by other avoided crossing, H,,? extracted from the stabilization graph

(without any assumption concerning its functional form) also goes negative for small and large z

values. In Ref. 24 it was postulated that this is a consequence of folding a multi-level problem

into a two-level problem.
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In reference 24, we showed that the relevant stationary point for this model Hamiltonian is given

by

sogo |—ad 20
T Bl +4B) 20)

and that the associated complex resonance energy is

E,=c — 2{{?‘:?'2}] (21)

The existence of the complex stationary point, and hence, the resonance, requires that the
curvature B be negative. Although the parameters in this model were obtained by fitting the
stabilization graph with the assumption that H,, is linear rather than using the fits to the exact
matrix elements (eqs 13 — 15), it is still useful to analyze the coefficients 4 and B in eq 19 in
terms of the earlier analysis involving the series expansions of Hi2 and S. In particular, we note
that the 4 and B coefficients determined from fitting the model to the stabilization graph are
close to coefficients of the constant and quadratic terms in eq 16. We further see that B is given
by the product of the constant and quadratic terms in H,,, and that it is negative due to the
domination of the so/11 factor in the (%0 - soh11) contribution. Because z” from the fit of the model
to the stabilization graph differs slightly from z1, the expression for H;,? for the model contains
a small linear term when expanded about z". However. this term is very small and does not

impact the above analysis.

In the limit that ¢i> >> 4B the half width reduces to 2/ 4|B| /¢, . Using the parameters obtained

by fitting the stabilization graph to the 2x2 model described by Equations 17 - 19, this
approximation gives a half width of 0.222 eV, as compared to the 0.259 eV result from eq 21,

and 0.278 eV from analytical expressions for the adiabatic energies.
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We now briefly comment on the alternative two-level model for extracting resonance parameters
from a stabilization graph introduced by Simons??. This model assumes that the two diabatic
curves vary linearly with z near the avoided crossing and that the coupling is a constant. Fits of
the Simons model or our model to the data from a stabilization graph result in the same values of
the resonance energy and width. The connection between the two models can be seen by
rewriting the quantity under the square root of eq 9 as (H11+ H)? + 4(H12? - Hi1H22). Here we
have dropped the tildes since the terms impacted by orthogonalization differ in the two models.
In both models H11 + Ha: depends linearly on z, a consequence of which is that H12> — Hi1H2»
must display at least a quadratic dependence on z for the existence of complex stationary points.
In our model this dependence enters through Hi>? whereas in the Simons model it enters through

the H11H>22 term. In fact, one can show that the two models are related as follows:

a2=0.5[c1 ++/c;?> + 4B ] (22)
a1=0.5[c1 —/c,% + 4B | (23)

where a1 is the slope of the discrete state and a2 the slope of the DC level in the Simons model.
As noted above, B is negative and ci? is appreciably larger in magnitude than 4B. Hence the
slope of Hi1 in Simons model is a consequence of the overlap between y1 and yw2. Importantly,
the conclusion of the vital role of overlap in establishing the resonance properties is independent
of which of these models one adopts. We further note that, the 012 GPA in which Hi1+ H>22 also
has a linear z dependence and H12? - H11H>2 includes terms up through quadratic in z, gives
resonance parameters identical to those from our model and the Simons model. However, the
012 GPA, unlike these two models, does not allow determining whether the quadratic

dependence on the scale parameter is split across the Hi>? or H11H>2 terms.
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CONCLUSIONS

In this study we have presented the results of a minimalist two-level stabilization calculation of a
D resonance of a simple model potential. Although such a treatment is not expected to give
quantitatively accurate resonance parameters, it has the advantage of making clearer the role of
the overlap between the discrete state and a DC level in establishing resonance parameters, and it
provides a test for assessing the convergence of GPAs for extracting the resonance energy. With
the assumption that the energy of the discrete state, H11, is independent of the scale parameter z,
we show that for this model, the square of the off-diagonal coupling, H;,>, is peaked near the
crossing point of the diabatic curves, just as we found previously for stabilization calculations on
the Ilg anion of N2. We further show that this is a consequence of the overlap contribution that
arises from the orthogonalization of the wave function associated with the DC level to that of the
discrete state. We also apply the model Hamiltonian that we introduced in Ref. 24 to this
problem, showing that with the additional assumption that H,, varies linearly with z, the
negative curvature in H;,” is essential for the existence of the resonance for the finite spherical
well problem. We also examine more closely the connection of our model Hamiltonian
approach and that of Simons which assumes that the off-diagonal coupling is independent of z
and that both H11 and Ha22 are linear in z. The two models give identical resonance parameters,
but the effect of orthogonalization is manifested differently in the diagonal and off-diagonal
matrix elements. We also obtain resonance parameters for the two-level stabilization
calculations directly from the analytical expression for the energy levels and show that it is
necessary to use a GPA with as many as 14 parameters to obtain results in close agreement with

that obtained without fitting.
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