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Scalar and gravitational hair for extreme Kerr black holes
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For scalar perturbations of an extreme Reissner-Nordstrom black hole we show numerically that the Ori
prefactor equals the Aretakis conserved charge. For a family of scalar or gravitational perturbations of an
extreme Kerr black hole, whose members vary only in the radial location of the center of the initial packet,
we demonstrate a linear relation of a generalized Ori prefactor—a certain expression obtained from the late-
time expansion or the perturbation field at finite distances—and the Aretakis conserved charge. We infer
that it can be established that there is an Aretakis conserved charge for scalar or gravitational perturbations
of extreme Kerr black holes. This conclusion, in addition to the calculation of the Aretakis charge, can be
made from measurements at a finite distance: Extreme Kerr black holes have gravitational hair that can be
measured at finite distances and violates the uniqueness theorems. This gravitational hair can in principle

be detected by gravitational-wave detectors.
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I. INTRODUCTION AND SUMMARY

Extreme spherically symmetric and charged black holes
[extreme Reissner-Nordstrom black holes (BHs), hereafter
ERN] have been shown to carry massless scalar hair that
can be measured at future null infinity (Z*) [1]. This scalar
hair is a certain quantity s[y| which is evaluated at Z* and
which equals the Aretakis charge, a nonvanishing quantity
H{[w] which is calculated on the BH’s event horizon (EH,
‘H™T) but vanishes if the BH is nonextreme.

Since the scalar hair at Z* is intimately related to the
Aretakis conserved charge on H™*, one may suspect that
corresponding conserved charges for other fields on either
ERN or extreme Kerr (EK) BHs may also be related to
observable hair at Z+ or be measurable at finite distances.
Specifically, conserved Aretakis charges were found in
ERN, in addition for massless scalar fields [2] also for
massive scalar fields, for coupled linearized gravitational
and electromagnetic fields [3], for charged scalar pertur-
bations [4], and in EK for scalar [2], electromagnetic, and
gravitational perturbations [5-7].

Ori showed that the Aretakis charge can also be used in
order to determine a certain prefactor e[y] in the late-time
expansion of scalar field perturbation fields in ERN as
measured at a finite distance [8]. (See also [9] for more
detail.) Here, we first show numerically that for scalar
perturbations of ERN the Ori prefactor e[y equals H|[y|
and, therefore, can be used in order to measure the Aretakis
conserved charge at a finite distance. It follows that e|y]
can be interpreted as scalar hair measured outside the BH.

We then go beyond the framework of scalar perturba-
tions of ERN to EK and show numerically that analogous
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prefactors can be formulated also for scalar and gravita-
tional perturbations of EK. Since the value of the Aretakis
charge depends on the initial data of the perturbation field,
it follows that information on the preparation of the
perturbation field can be inferred from the BH measure-
ments at great distances, in apparent contradiction of the
established no-hair and BH uniqueness theorems [10-12]
and specifically their extensions to EK [13,14]. That is, we
bring evidence that in addition to the three externally
observable classical parameters, specifically the BH’s mass
M, charge ¢, and spin angular momentum a, it is in
principle possible to also detect with a gravitational-wave
detector the gravitational Aretakis charge of EK.

While the proposed gravitational hair of EK is intriguing
as a counterexample for the uniqueness theorem, we
emphasize that EK would require fine-tuning to result
from a dynamical process (cf. [15]). However, for nearly
extreme BHs one could identify transient gravitational hair
that would persist for a duration related to its closeness to
extremality, following which the hair would decay.

II. SETTING UP THE PROBLEM

Following Ori [8] we write the late-time expansion of a
field v} ,,, as

0 0
W (t.1.0) = € 4,7 (r = M) Pecnt™en® ,  (0)

=+ O(t_n£.t’.rn_k£'.f.m ) ( 1)

in Boyer-Lindquist coordinates, where s is the field’s spin,
¢ and m are the spherical harmonic numbers, and the
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index I corresponds to the BH type, i.e., I = {ERN, EK}.
Here, ei’f‘m is a generalized Ori prefactor. The case studied
in [8] corresponds to y{RY, for which it was found that
eh 0= (—4)"T'M¥*+2¢ [8], where ely] is a certain pre-
factor that depends on the initial data (and which is given
explicitly in [8]), and p{BT =7+ 1, n%&% =2¢+2, and
0651(0) = 1. The late-time expansion (1) is expected to be
valid for > r,, where r, is the tortoise coordinate.
Specifically, we may expect r-dependent correction terms
when this condition is not satisfied. Comparing [1,8] we
expect that ef% [w] = —4M*H|y].

III. NUMERICAL APPROACH

To test this prediction, and to set up the framework for
generalization to EK and to gravitational perturbations, we
write the 2 + 1 Teukolsky equation in ERN or EK back-
grounds for azimuthal (m = 0) modes in compactified
hyperboloidal coordinates (z,p, 0, ), such that Z* is
included in the computational domain at a finite radial
(in p) coordinate [16]. We rewrite the second-order hyper-
bolic partial differential equation as a coupled system
of two first-order hyperbolic equations. We solve this
system for the scalar field case by implementing a
second-order Richtmeyer-Lax-Wendroff iterative evolution
scheme [17,18]. For the gravitational case we implement a
sixth-order (in p) weighted essentially nonoscillatory
finite-difference scheme with explicit time stepping [6].
These codes converge with second-order temporally and
angularly.

The initial data are compactly supported “truncated”
Gaussians with nonzero initial field values on H™, but
similar results are expected also for other forms of initial
data. Specifically, in hyperboloidal coordinates (p,7) (see
[17] for definitions), the initially spherical (£ = 0) Gaussian
pulse is nonvanishing in the range p/M € [0.95, 8], has a
width of 0.1 M and is centered close tothe BH (atp/M = 1.0,
1.1, 1.2, 1.3, 1.4 and 1.5, respectively). (The EH H™ is at
p = 0.95M for ERN and EK in these coordinates.) The outer
boundary is located at S = p(Z*) = 19.0M.

The computations were performed on IBM 32-core
Power9 servers accelerated by Nvidia V100 GPGPUs.
Our resolution for each production run was Ap =
M/6,400, Ar = M /12,800, and A6 = n/64, which we
run in quadrupole precision (128-bit, i.e., to ~30 decimal
digits). The combination of quadruple-precision floating
point numerics and the extremely high-resolution resulted
in computationally intensive simulations, which took 2 weeks
for each run to get to t/M ~ 1600.

IV. SCALAR PERTURBATIONS OF ERN

We calculate ef'y [] directly from Eq. (1) and Hg ' [w]

from
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FIG. 1. The values of e} ,([w](r) as functions of r/M. These
values are shown for the dataset for which at the Gaussian’s
center p/M = 1.0. Top panel (a): ERN with s = 0,7 = 0. Middle
panel (b): EK with s =0, £ = 0. Bottom panel (c): EK with
s = =2, £ =2. The values are plotted for /M = 1100 (blue
line), 1200 (red line), 1300 (green line), 1400 (cyan line), 1500
(purple line), and 1600 (black line). [For panel (c) the time value
was replaced with 1553.] The function f(z,r) = (t/M)*(1 -
M/r) and the function g(z,7) = M(t/M)°(r/M)*(1 — M/7)>.

2
Hhooly) = -7
00,0 az e

9, (ry)dQ, (2)

where I = ERN. To determine egj[y] we calculate it for a

set of finite values of the time. Figure 1(a) shows e§[y/] at

a number of time values as a function of the Schwarzschild
coordinate r, for the initial dataset for which the Gaussian is
centered at p/M = 1.0. Notice that the numerical con-
stancy of (t/M)*(1 — M/r)y§N for small values of r/M
suggests that piN = 1 and niSy = 2, as expected from
[8]. For larger values of r/M the constant value starts to
vary, as expected from the expansion of [8]. Equation (1)

suggests that eGy [w](r) is time dependent and that, when

(1/M)*(1 = M /r)y3ly is plotted as a function of inverse
time, the value of k can be determined. We see in Fig. 1 that
there is indeed time dependence as expected.

The time dependence of eg{{j[y](¢) is shown in greater
detail in Fig. 2, which displays for each initial dataset the
values of ef\[y](z). We then extrapolate the values to

M/t — 0 by fitting to a linear function and finding the

intercept and the slope to determine ef;y'y []. The linearity
suggests that ki) = 1, in agreement with [8].

The values of ey [w] depend on the choice of the initial

dataset. In Fig. 3(a) we show (t/M)*(1 —M/r)yghy for
each initial dataset as functions of »/ M. As the center of the
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FIG. 2. The values of {3y [w](7), normalized by their values as
t — oo, as functions of M/t. These values are shown for each
initial dataset, parametrized by the p/M value at the center of the
Gaussian packet.
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FIG. 3. The values of ¢!, [w](r/M = 1500) as functions of
r/M, shown for each initial dataset, parametrized by the p/M
value at the center of the Gaussian packet. Left panel (a): ERN
with s = 0, £ = 0. Center panel (b): EK with s = 0, # = 0. Right
panel (c): EK with s = -2, £ = 2.

initial Gaussian packet moves outward (to larger p values)
the value of (1/M)*(1 — M /r)yg3ly decreases.

Finally, Fig. 4(a) shows the values of ef{h[w] as a
function of the corresponding HERY ] for the different

datasets. Fitting our numerical data to efy[w] =

aHE 8% [w] + B we find that a = —4.0024 +0.0013 and

p = (1.8 £9.6) x 107*, consistently with our expectation.
The Ori prefactor e equals the Aretakis charge H.

V. SCALAR PERTURBATIONS OF EK

We next extend the analysis from the case of a scalar
field in ERN to scalar and gravitational perturbations of
EK. First, we set up the initial value problem for scalar field
perturbations similarly as for ERN. We use the expansion
(1) as an ansatz. The results for the scalar case in EK are
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FIG. 4. The prefactor e}, [y] shown as a function of the
Aretakis charge H' , [y] for the different initial datasets (para-
metrized with p/m at the center of the Gaussian initial packet).
Top panel (a): ERN with s = 0, £ = 0. Middle panel (b): EK with
s =0, £ = 0. Bottom panel (c): EK with s = -2, £ = 2.

shown in Figs. 1(b), 3(b), and 4(b). These results suggest
that Eq. (1) describes well also the field for this case. Fitting
the parameters to this ansatz, we find that pff, =1 and
ng o = 2. We also find that ©ff ((6) = 1. To find H ,[y/]
we again use Eq. (2) with [ = EK. Seeking a linear relation
of the form g [y] = aHGSolw] + p we find that a =
—14.13 +0.03 and B = —0.048 + 0.023. The linear rela-
tion of eg§ o[y] and HE o [w] suggests that also in this case
the Aretakis conserved charge can be measured at a finite
distance and that a generalized Ori prefactor can be used in
order to measure it.

VI. GRAVITATIONAL PERTURBATIONS OF EK

Finally, we consider EK gravitational perturbations
with s = =2 and # = 2. We write the Teukolsky equation
for a Kerr BH with parameters M, a for the variable ®_,,
which is related to the Teukolsky function ‘I’Ifz in the
Kinnersley tetrad and Boyer-Lindquist coordinates via
@_, = (r/A%)¥X,, where A = r> —2Mr + a*. Since the
Weyl scalar yi in the Hartle-Hawking tetrad is related to
its Kinnersley tetrad counterpart X via a type-III trans-
formation, or wi = 4(r* + a?)>A2yX [19] and since
YK, = (r—iacos0)*yX [20] we find that

r(r—iacos)* 3)

Sy =—
2T TN r e

and use ®_, with # =2, m =0 and a = M for y=%, .
Note that at great distances, as r>> M, y&5, ~
(r/4)yiH ~ nylf. Therefore, determination of w&%, . at
great distances allows us to measure directly the Weyl
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FIG. 5. The relative difference of the Weyl scalar y, (normal-
ized by its maximal value) and ©®(0) = sin® € as a function on the
polar angle 6 at a fixed value of p/M = 2 for four different time
values, 1/M = 1050 (dotted line), 1150 (dash-dotted line), 1250
(dashed line), and 1350 (solid line). On the scale shown these
plots cannot be resolved.

scalar wX in the Kinnersley tetrad. Conversely, measure-
ment with a gravitational-wave detector at a great distance
of iy allows us to calculate w5, , if the distance to the
source is known.

We plot @_, for a fixed p as a function of @ for a set of =
values in Fig. 5. Since our angular resolution is A0 = z/64
and our code converges angularly with second order,
we would expect our angular numerical error to be
(a few) x 1073, We find that the angular function ©(0)
deviates from sin>@ by no more than (a few) x 1073,
Therefore, we could not distinguish numerically between
our numerical function ®(#) and sin’ 6.

We calculate €F%, [y] directly from Eq. (1), and
motivated by [3], we calculate H=5, \[y] by

8
HEK =—— M?
=220 y] 3r ”

0,®_,dQ. (4)
(Note that y, decays to 0 at late times on H™.) We only
calculate here the real part of y4: Because of the linearity of
the Teukolsky equation we can always perform a Wick
rotation and obtain commensurate results for the imagi-
nary part.

The results for the Weyl scalar y, are shown in Figs. 1(c),
3(c), and 4(c). Again, we find that the ansatz (1) describes
the field behavior well. Fitting the parameters to this ansatz,
we find that pE§, ) =5 and nF§, | = 6. Seeking a linear
relation of the form €%, \[y] = aHES, ([w] 4 p we find
that @ = —=729.7 £ 0.6 and f = —6.3 +0.3. The linear

relation of =5, ([y] and HEY, ] suggest that also in this

TABLE 1. The parameters used in the expansion (1), and
the fitted parameters a, f in the linear relation e, [y] =

aH' ;olw] + p.

I s ¢ pn 6@ a p

ERN 0012 1 —4.0024+0.0013 (1.84+9.6)x 107*
EK 0012 1 —14.13 £0.03 —0.048 +£0.023
EK -2 25 6 sin’6 -729.7+0.6 -63£03

case the Aretakis conserved charge can be measured at a
finite distance and that a generalized Ori prefactor can be
used in order to measure it. We summarize our results in
Table L.

VII. DISCUSSION

The values for the Ori prefactor, and therefore also for
the Aretakis charge—when compared between members of
the same initial data family which differ from each other
just by the distance of the center of the initial packet—are
suggested by our results to be universal; i.e., they depend
only weakly on the spin of the field and on whether the BH
is ERN or EK (Fig. 3).

The linear relation of the Ori prefactor and the Aretakis
conserved charge for either scalar or gravitational pertur-
bations of EK suggests that we could make measurements
at a finite distance, conclude that the BH has a conserved
charge, and therefore establish also that it is an extreme BH.
Moreover, by using the (numerically determined) value of
the parameter a (or, in the case of scalar perturbations of
ERN, its analytical value) we can calculate the value of the
Aretakis charge. If the measured quantity appears to behave
as for an ERN or EK for some time, and then decays as for a
nonextreme BH (i.e., it is a transient behavior), we can
establish that it is a nearly extreme BH [see also [21], where
relevant timescales are ~(afew) x 10°M]. Since the value
of the Aretakis charge depends on the perturbation field
(cf. Fig. 3), and this value can be found from observations
at a finite distance, this is a procedure for detecting
gravitational hair of EK.

Extreme Kerr BHs that are perturbed gravitationally have
hair, and this determination and also the calculation of the
strength of the hair can be made at finite distances by
measuring the Weyl scalar y, directly from the gravita-
tional-wave strain. Specifically, gravitational-wave detec-
tors can be used to measure this gravitational-field hair of
extreme black holes.

This apparent contradiction of the uniqueness theorems
pertains to extreme BHs, which require fine-tuning of the
astrophysical processes that created them. The uniqueness
theorems assume stationarity, which is violated on H*
because of the growth of certain transverse derivatives
associated with the Aretakis phenomenon. We comment
that the Aretakis phenomenon occurs only in perturbed
extreme BHs, and those are characterized by decaying
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external fields, consistently with the uniqueness theorems,
qualitatively similar to subextremal BHs. Despite the decay
of external perturbations, the conserved Aretakis charge
can be measured at a great distance, thus manifesting the
time dependence of transverse derivatives along H™.
Realistic BHs are more likely to be nearly extreme and
therefore would present transient hair that could in principle
be detected by gravitational-wave detectors.

Work on higher-# modes and nonazimuthal (m # 0)
modes is currently underway. Measurement of gravitational
hair of EK at Z" awaits further work.
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