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Abstract We develop and use a novel mixed-precision weighted essentially non-
oscillatory (WENO) method for solving the Teukolsky equation, which arises when
modeling perturbations of Kerr black holes. We show that WENO methods out-
perform higher-order finite-difference methods, standard in the discretization of
the Teukolsky equation, due to the need to add dissipation for stability purposes
in the latter. In particular, as the WENO scheme uses no additional dissipation
it is well-suited for scenarios requiring long-time evolution such as the study of
Price tails and gravitational wave emission from extreme mass ratio binaries. In
the mixed-precision approach, the expensive computation of the WENO weights is
performed in reduced floating-point precision that results in a significant speedup
factor of ≈ 3.3. In addition, we use state-of-the-art Nvidia general-purpose graphics
processing units and cluster parallelism to further accelerate the WENO compu-
tations. Our optimized WENO solver can be used to quickly generate accurate
results of significance in the field of black hole and gravitational wave physics.
We apply our solver to study the behavior of the Aretakis charge – a conserved
quantity, that if detected by a gravitational wave observatory like LIGO/Virgo
would prove the existence of extremal black holes.

1 Introduction

The field of computational relativity is undergoing a transformative renaissance of
sorts, due to multiple new discoveries such as the direct detection of gravitational
waves from a black hole binary system by LIGO in 2015 [1], which was a awarded
a Nobel Prize in 2017, the first-ever image of a black hole event horizon by the
Event Horizon Telescope in 2019 [2], and others. Accurate computational models
are critical for the success of such efforts since high-fidelity models enable improved
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data analysis efforts required for parameter estimation, tests of general relativity,
and studying the formation channels of compact binaries [3,4,5].

Black hole perturbation theory is the standard framework for studying gravi-
tational phenomena, such as gravitational waves and linear stability of black hole
solutions. The theory of such perturbations is well developed, and starts with pi-
oneering investigations by Regge and Wheeler [6] for Schwarzschild (nonspinning)
black holes. The theory was later extended by Teukolsky to handle perturbations
of the Kerr metric [7], which is an exact solution of the Einstein equation. The
Kerr solution is parameterized by the black hole mass, M , and the hole’s spin, a,
and small perturbations about this solution obey the Teukolsky master equation
Eqn. (1).

For many realistic problems, we require highly-accurate numerical solutions to
the Teukolsky equation over extremely long simulation times. Yet most state-of-
the-art solvers are based on a finite-difference numerical evolution scheme stabi-
lized with numerical dissipation [8,9,10,11], which, as we will show, can signifi-
cantly degrade the quality of the numerical solution.

In this paper, we develop and use a novel mixed-precision weighted essentially
non-oscillatory (WENO) method for solving the Teukolsky equation. Our work is
one of the first applications of WENO methods to the modeling of gravitational
waves, and the first WENO-based Teukolsky solver. To showcase the improve-
ments of this new solver, we compare a standard sixth-order centered differencing
approach (with an eighth-order Kreiss-Oliger dissipation operator [12] for numer-
ical stability) and third-order and fifth-order weighted essentially non-oscillatory
(WENO) schemes. We show that the fifth order WENO of Jiang and Shu [13]
performs well in the sense of stability and preservation of accuracy over long evo-
lutions.

While our new numerical solver can be used to study a variety of interesting
questions in gravitational physics, in this paper, we focus our attention on a specific
computational problem in the area of black hole physics. The physical scenario
one may imagine is that of an isolated rotating, Kerr black hole, spinning at the
maximum possible rate, i.e. an extremal Kerr black hole. If such a black hole is
perturbed because of any nearby material, or scalar or gravitational wave, analytic
results suggest that the hole will undergo a rather unexpected evolution that would
result in a unique signal which, if measured, would be a “signature” of an extremal
black hole [14,15]. In particular, Aretakis derived a mathematical quantity, often
called “charge” or “horizon hair”, that is conserved (stays constant in time) in
such a system and this quantity is measurable from a far away distance. Black
holes that are not extremally spinning are unable to preserve the constancy of
such a quantity [16].

Aretakis had derived those key results in the context of scalar waves, that are
simpler to work with. However, the key ideas of Aretakis have been extended to
the astrophysically realistic context of gravitational waves using a computational
approach by Khanna and collaborators [17]. In this paper, we focus entirely on
the realistic gravitational waves scenario and discuss the computational challenges
involved with the relevant simulations and how to solve them. The main challenge
that is involved is the accuracy of computed numerical solution and being able
maintain that accuracy in long evolutions. As a simple example, one may com-
pute the Aretakis conserved charge numerically and study how long the numerical
simulation is able to maintain its constancy (within some tolerance). That is a
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key test that we use in this work. There are also additional similar tests based on
the expected temporal behavior of the spatial derivatives of the solution that we
conduct in this work. The numerical results from our WENO simulations retain
the predicted behavior of the Aretakis conserved charge in fidelity with rigorous
mathematical results. The simulations are computationally costly, and take many
months of computational time. To alleviate this problem, we implement a GPU-
accelerated version of this code on a GPU-cluster, IBM/MIT’s Satori a 64-node
GPGPU system with 256 Nvidia V100 GPUs. Furthermore, we introduce and use
a mixed precision WENO algorithm which speeds up the computation by a factor
of between 3 – 4 without meaningfully reducing its accuracy.

2 Numerical Solution of the Teukolsky Equation

In this section we briefly describe the Teukolsky equation (1) and the context
in which it arises. We provide a description of the coordinate-systems used, the
relevant evolution equations, and a fully first-order reduction of the Teukolsky
equation (8) which is subsequently discretized using the WENO method presented
in Sec. 3.

The Kerr metric, which describes a rotating black hole, is both an astrophysi-
cally and theoretically important exact solution of the Einstein equation. Studying
small perturbations of the Kerr metric is an especially important line of inquiry
and can be used, for example, to understand the behavior of gravitational waves
in the spacetime of a rotating black hole. The coordinate system that is typi-
cally used to describe the spacetime of black holes is the Boyer-Lindquist system,
(t, r, θ, ϕ), that has many similarities with spherical coordinates. However, because
they suffer from a coordinate-singularity at the horizon locations, Boyer-Lindquist
coordinates are not well for numerical computations. We instead make use of a
better suited coordinate system known as ingoing Kerr coordinates. These are a
Kerr spacetime generalization of the better-known Eddington-Finkelstein coordi-
nates that are able to smoothly “penetrate” the horizon of a black hole. In the
following subsection, we review the relationship between these different coordinate
systems and emphasize some of their important aspects.

The main evolution equation of interest in this work is the Teukolsky master
equation that describes scalar, vector and tensor field perturbations in the space-
time of a Kerr black hole [7] to linear order. We numerically solve this equation
for the gravitational waves case using a compactified form of the ingoing Kerr
coordinates. Using hyperboloidal compactification allows us to directly sample the
behavior of fields throughout the spacetime, including even (null) infinity. One
important aspect of this work is that we must evolve the fields for a long dura-
tion because we are interested in the late-time, power-law decay behavior of these
fields. This behavior typically appears after the quasi-normal modes of the system
have exponentially decayed enough to become subdominant. This poses certain
challenges that are explained in some detail in the following sections.

The following subsections offer additional details including the main expres-
sions for the quantities involved and also our computational methodology.
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2.1 Teukolsky Equation

The Teukolsky master equation describes scalar, vector and tensor field pertur-
bations in the space-time of Kerr black holes [7]. In Boyer-Lindquist coordinates,
this equation takes the form

−
[

(r2 + a2)2

∆
− a2 sin2 θ

]
∂ttΨ −

4Mar

∆
∂tφΨ

−2s

[
r − M(r2 − a2)

∆
+ ia cos θ

]
∂tΨ

+∆−s∂r
(
∆s+1∂rΨ

)
+

1

sin θ
∂θ (sin θ∂θΨ) +[

1

sin2 θ
− a2

∆

]
∂φφΨ + 2s

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂φΨ

−
(
s2 cot2 θ − s

)
Ψ = 0, (1)

where M is the mass of the black hole, a its angular momentum per unit mass,
∆ = r2 − 2Mr + a2 and s is the “spin weight” of the field. The s = ±2 versions of
these equations describe the radiative degrees of freedom of the gravitational field,
and thus are the equations of interest here. As mentioned previously, this equation
is an example of linear, hyperbolic, homogeneous PDEs which are quite common
in several areas of science and engineering. Finite-difference methods are by far
the most common numerical schemes developed for the Teukolsky Equation.

2.2 Teukolsky Equation in Ingoing-Kerr Coordinates

We begin with an expression of the usual Boyer-Lindquist coordinate version of
the Kerr spacetime metric and the associated Teukolsky equation [7]. It is clear
that the equation exhibits pathological behavior at the horizon locations, i.e. when
∆ = 0. Note that this coordinate singularity can be easily removed by a suitable
change of coordinates.

To remove the coordinate singularity at the horizon locations determined by
∆ = 0, we consider the above equations in the ingoing Kerr coordinate sys-
tem (t̃, r, θ, ϕ̃), also called “horizon penetrating” coordinates. These coordinates
are related to the Boyer-Lindquist coordinates through the transformations ϕ̃ =
ϕ +

∫
a∆−1 dr and t̃ = t − r + r∗, where the “tortoise” radial coordinate r∗ =∫

(r2 + a2)∆−1 dr. This system does not suffer from any pathologies at the hori-
zon locations and is therefore well-suited for analyzing fields both in the exterior
and interior spacetimes of a rotating black hole. It is also useful to note that at
the horizon location at late times, the t̃ variable is essentially the null variable
v = t+ r∗.

The last ingredient that goes into the setup of our coordinate system is hy-
perboloidal compactification as developed by Zenginoǧlu [18,19,20,21,22,23,24,
25,26]. We define a compactified coordinate system (τ, ρ, θ, ϕ̃) by

τ = t̃− r2/(r + S) + 4 ln[S/(r + S)] (2)
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and
ρ = r/[1 + r/S] (3)

where a free parameter S controls both the domain and also the foliation. Note that
ρ ∈ [0, S) maps r ∈ [0,∞) and is therefore a one-to-one compactifying coordinate.
A Penrose diagram of the slices defined by these coordinates in the Kerr spacetime
context can be found in Ref. [27]. We do not show the final form of the Teukolsky
master equation in these compactified coordinates because of the lengthy nature
of the expression and the fact that it is not particularly illuminating. We simply
refer to it in the symbolic form,

Aττ∂2τΨ + Aτρ∂τ∂ρΨ +Aρρ∂2ρΨ +Aθθ∂2θΨ

+ Bτ∂τΨ +Bρ∂ρΨ +Bθ∂θΨ + CΨ = 0, (4)

and refer the reader to Refs. [28,29] wherein additional details may be found.
The computational grid is defined as a uniform grid over the compactified ρ

coordinate. As pointed out earlier, this allows us to access null infinity directly on
the computational grid (ρ = S maps to infinity). Moreover, the compactification
offers a solution to the “outer boundary problem” in numerical relativity. Typical
boundary conditions used in the research community lead to spurious wave re-
flections from the edge of the computational grid. However, with the approach of
hyperboloidal compactification, one is able to extend the computational domain
to infinity, making it possible to completely eliminate any such reflections [28]1.
In addition, the compactification allows us to employ a very dense computational
grid (typically, S ∼ 20) which results in highly accurate numerical results. Those
details are provided in the next subsection.

2.3 Additional Implementation Remarks

After performing the transformations presented in the previous sections, we rewrite
the vacuum equation in the form

∂2τΨ = Ãτρ∂τ∂ρΨ + Ãρρ∂2ρΨ + Ãθθ∂2θΨ

+ B̃τ∂τΨ + B̃ρ∂ρΨ + B̃θ∂θΨ + C̃Ψ, (5)

where the coefficients with a tilde are obtained by dividing the coefficients of
Teukolsky equation (4) by −Aττ . We put the equation (5) in first-order form (in
ρ and τ) by defining two new field variables

π ≡ ∂τΨ + b ∂ρΨ , (6)

b ≡ −(Ãτρ +

√
(Ãτρ)2 + 4Ãρρ)/2 . (7)

We chose these auxiliary variables because it has been discovered through extensive
experimentation that the resulting first-order form,

∂τu + M∂ρu + Lu + Au = 0, (8)

1 Note that a different approach towards compactification was used therein – a hyperboloidal
compactified layer was attached to the outer part of a Boyer-Lindquist coordinates based
computational grid.
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is ideally suited for long stable evolutions. Here

u ≡ {ΨR, ΨI , πR, πI} (9)

is the solution vector and the subscripts R and I refer to the real and imaginary
parts respectively. The matrices M , A and L are obtained from (5) as in [8,9].
Here it will suffice to simply indicate the final form taken by these matrices:

M ≡


b 0 0 0
0 b 0 0
m31 m32 −b 0
−m32 m31 0 −b

 , (10)

A ≡


0 0 −1 0
0 0 0 −1
a31 a32 a33 a34
−a32 a31 −a34 a33

 , (11)

and

L ≡


0 0 0 0
0 0 0 0
l31 0 0 0
0 l31 0 0

 . (12)

The angular derivatives are encoded in L.
The main advantage of casting the equation (5) into the form (8) is that the

system has advantageous properties in the variable ρ. The matrix M has a com-
plete set of linearly independent eigenvectors with real eigenvalues. This is not a
rigorous statement on the hyperbolicity of the system because the matrix L con-
tains second-order angular derivatives. Nevertheless, experiments show that the
system is numerically well-behaved.

3 Computational Approach

The numerical approach used to solve the first-order Teukolsky equation (8) in the
compactified ingoing Kerr coordinate system is very similar to the one presented in
our earlier work [28]. We simply outline the main steps here and refer the reader
to that reference for additional details. We begin by taking advantage of Kerr
spacetime’s axisymmetry and separating out the ϕ̃ dependence of the system using
an exp(imϕ̃) form for the gravitational field Ψ . This transforms the original (3+1)D
equation into a system of (2+1)D equations. In this work we restrict ourselves to
axisymmetric fields only, and therefore we set m = 0 throughout. Next, we cast
the equations into a first-order hyperbolic partial differential equation form, by
defining a new “momentum” field that is related to the derivative of the field Ψ .

In the next subsections we will describe the numerical methods used to dis-
cretize these equations. We implement a fifth-order WENO finite-difference and
a third-order WENO finite-difference scheme, and compare it with a sixth-order
finite-difference scheme with numerical dissipation required for stability. The time-
stepping method used is the third-order Shu-Osher explicit Runge–Kutta scheme.

It is worth commenting on the fact that numerical computations are rather
challenging in the context of studying the late-time tails. As remarked before, these
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computations must be long duration because the observed field initially exhibits an
exponentially decaying oscillatory behavior known as quasi-normal ringing. Only
much later, once the exponential decay has made these modes subdominant, does
the field transition over to a power-law tail. Moreover, there are often intermediate
tails [26], that do not necessarily have the true late-time asymptotic rates that we
are interested in here. These intermediate tails decay faster than the asymptotic
rate, but may have dominant amplitudes for a period of time. We must evolve
longer than these intermediate tails last in order to obtain the tail solution with
the true asymptotic decay rate.

In addition, each of the field’s spherical harmonic multipoles Y`m has its own
decay rate (that is proportional to `). Thus, at late times we obtain numerical data
in which different multipoles may have widely ranging amplitudes (typically 15 –
20 orders of magnitude apart!). It is thus important for the numerical scheme to
have high grid density in order to reduce the truncation errors to very low levels. In
addition, due to the very large range of amplitudes involved, these computations
also require high-precision floating-point numerics that allow us to reduce round-

off error that can otherwise easily overwhelm the fast decaying multipoles. In
particular, we satisfy this requirement by using quad-precision numerics (128-bit
or ∼30 decimal digits). This keeps the round-off error in our computations at
acceptably low levels.

Finally, to complete these long duration, high-accuracy and high-precision com-
putations in a reasonable time-frame we make extensive use GPGPU-based parallel
computing. For additional details on implementation of such intensive computa-
tions on a parallel GPU architecture, we refer the reader to our earlier work on
the subject [30].

3.1 Spatial Discretization

We compare two approaches in this work: a sixth-order finite difference method
that is stabilized by an eighth-order Kreiss-Oliger dissipation operator [12] and the
weighed essentially non-oscillatory methods of Jiang and Shu [13]. Note that the
WENO discretization is only applied in the radial (ρ) direction, not the angular
(θ) direction. This is because the solution is expected to have a very smooth profile
in the θ direction. In that direction, standard centered-differencing is used for all
methods under consideration in this work.

3.1.1 Sixth Order Finite Difference Method

Standard sixth-order centered finite-difference stencils and an eighth-order Kreiss-
Oliger dissipation operator are explicitly included below. The sixth-order deriva-
tive stencil we use takes this form

u′(ρ) =
uj+3 − 9uj+2 + 45uj+1 − 45uj−1 + 9uj−2 − uj−3

60∆ρ
. (13)

The Kreiss-Oliger dissipation operator of the proper order for a sixth-order scheme
is computed as [12]

Q =
σh7D4

+D
4
−

256
(14)
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where D+ = (uj+1 − uj)/∆ρ and D− = (uj − uj−1)/∆ρ are the standard forward
and backward differencing operators and σ is parameter that is usually a value set
between (0, 1). Based on many numerical experiments, we found that a value of
σ = 0.01 achieves stability for a large class of computations.

3.1.2 WENO Methods

To discretize the problem
ut + f(u)ρ = 0

in space using a WENO method we split the flux into its positive and negative
parts

f(u) = f+(u) + f−(u),

such that
df+(u)

du
≥ 0, and

df−(u)

du
≤ 0.

– The third order WENO method: For both the positive direction flux f̂+ and
the negative direction flux f̂− the smoothness measurements are:

IS1 =
(
f+j − f

+
j−1

)2
, IS2 =

(
f+j+1 − f

+
j

)2
and the weights of the candidate stencils are given by

α1 =
1

3

(
1

ε+ IS1

)2

, α2 =
2

3

(
1

ε+ IS2

)2

,

ω1 =
α1

α1 + α2
, ω2 =

α2

α1 + α2
.

The fluxes are:

f̂+
j+ 1

2

= ω1

(
3

2
f+j −

1

2
f+j−1

)
+ ω2

(
1

2
f+j +

1

2
f+j+1

)
f̂−
j+ 1

2

= ω1

(
3

2
f+j −

1

2
f+j+1

)
+ ω2

(
1

2
f+j +

1

2
f+j−1

)
.

– The fifth order WENO method: For the positive direction flux f̂+, the smooth-
ness measurements are:

IS+
0 =

13

12

(
f+j−2 − 2f+j−1 + f+j

)2
+

1

4

(
f+j−2 − 4f+j−1 + 3f+j

)2
IS+

1 =
13

12

(
f+j−1 − 2f+j + f+j+1

)2
+

1

4

(
f+j−1 − f

+
j+1

)2
IS+

2 =
13

12

(
f+j − 2f+j+1 + f+j+2

)2
+

1

4

(
3f+j − 4f+j+1 + f+j+2

)2
For the negative-direction flux, f̂− the smoothness measurements are:

IS−0 =
13

12

(
f−j+1 − 2f−j+2 + f−j+3

)2
+

1

4

(
3f−j+1 − 4f−j+2 + f−j+3

)2
IS−1 =

13

12

(
f−j − 2f−j+1 + f−j+2

)2
+

1

4

(
f−j − f

−
j+2

)2
IS−2 =

13

12

(
f−j−1 − 2f−j + f−j+1

)2
+

1

4

(
f−j−1 − 4f−j + 3f−j+1

)2
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Next, we calculate the weights for each of the candidate stencils in ρ:

α±0 =
1

10

(
1

ε+ IS±0

)2

α±1 =
6

10

(
1

ε+ IS±1

)2

α±2 =
3

10

(
1

ε+ IS±2

)2

and

ω±0 =
α±0

α±0 + α±1 + α±2
ω±1 =

α±1
α±0 + α±1 + α±2

ω±2 =
α±2

α±0 + α±1 + α±2
.

Finally, we compute the fluxes, comprised of the candidate stencils with their
weights:

f̂+
j+ 1

2

= ω+
0

(
2

6
f+j−2 −

7

6
f+j−1 +

11

6
f+j

)
+ ω+

1

(
−1

6
f+j−1 +

5

6
f+j +

2

6
f+j+1

)
+ ω+

2

(
2

6
f+j +

5

6
f+j+1 −

1

6
f+j+2

)
and

f̂−
j+ 1

2

= ω−2

(
−1

6
f−j−1 +

5

6
f−j +

2

6
f−j+1

)
+ ω−1

(
2

6
f−j +

5

6
f−j+1 −

1

6
f−j+2

)
+ ω+

0

(
11

6
f−j+1 −

7

6
f−j+2 +

2

6
f−j+3

)
.

Now we discretize each flux as follows:

f+(u)ρ =
1

∆ρ

(
f̂+
j+ 1

2

− f̂+
j− 1

2

)
, and f−(u)ρ =

1

∆ρ

(
f̂−
j+ 1

2

− f̂−
j− 1

2

)
.

For the problem we are solving, we need to evaluate the term M∂ρu. The struc-
ture of M∂ρu suggests that the first two elements in u have wavespeed b, while
the second two elements have wavespeed −b. This is not completely correct, as the
terms m31 and m32 have an impact as well; however, these terms are very small
compared to the wavespeed for most of the computational domain. For simplicity,
then, we simply approximate each element of ∂ρu with a WENO discretization
corresponding to the sign of the wavespeed. This convenient shortcut makes the
numerical computation significantly faster and easier to code; however, the argu-
ment above is not rigorous and we do not have a complete numerical analysis that
guarantees convergence of this process.

Proceeding with this approach, we begin by computing the smoothness mea-
surements for each stencil. Note that each of the four elements of u is in fact a
two-dimensional array, with the ρ and θ directions. For convenience, we do not
explicitly denote the θ direction.

The determination of whether to use an upwind or downwind flux depends on
whether the corresponding diagonal term in M is b or −b. We treat the first two
elements of u (which correspond to the value of b > 0 in the diagonal of M) as
we would treat f+(u), and the last two elements of u, (which correspond to the
value of −b < 0 in the diagonal of M) as we would treat f−(u). For the first two
elements (arrays) of u, we define each of them in turn as an array f̂+, where the
values f̂+j refer to the ρ values. The WENO derivative is approximated for each
value of θ, but the index refers to the grid-value of ρ. For the last two elements of
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u, we define each of them in turn as f̂−. The WENO process gives us the arrays
f̂±
j+ 1

2

for all gridpoints ρj , and then we compute the first two arrays of ∂ρu by

1

∆ρ

(
f̂+
j+ 1

2

− f̂+
j− 1

2

)
and the last two element of ∂ρu are computed by

1

∆ρ

(
f̂−
j+ 1

2

− f̂−
j− 1

2

)
.

3.1.3 A mixed precision implementation of WENO methods

The WENO algorithm can be seen as having two parts: the inexpensive compu-
tation of a finite difference approximation to the derivative on several candidate
stencils, and a costly nonlinear computation of the stencil weights. The computa-
tional bottleneck is in the computations of the stencil weights used to combine the
stencil-based approximations. However, while the differentiation requires highly
accurate computation, the calculation of the stencil weights does not require high
precision. As long as the weights add up to 1.0 in high precision, the weights may
not need to be high precision in the smooth regions, especially if the region where
high precision is needed is near the location of the horizon With this in mind we
modified our quad-precision code to carry out a double-precision computation of
the weights, then promoting them to quad-precision before finally assembling the
WENO fluxes. This strategy is expected to speed up the computation significantly.

3.2 Time-discretization

When WENO is used to semi-discretize a problem of the form

ut + f(u)ρ = 0

we obtain a system of ODEs of the form

ut = F (u).

The WENO method is designed to have an essentially non-oscillatory property
when coupled with the forward Euler method,

un+1 = un +∆tF (un)

under some stability condition ∆t ≤ ∆tFE . To preserve this property, we use a
higher order strong stability preserving time discretization, which can be written
as convex combinations of forward Euler schemes. Such time-stepping methods will
preserve the properties of the spatial discretization coupled with forward Euler,
under the modified time-step restriction

∆t ≤ C∆tFE .

If C > 0 we call the method Strong Stability Preserving (SSP). While the time-step
depends on both the spatial and temporal discretizations, we isolate the contribu-
tion of the temporal discretization to the time-step restriction by considering the
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ratio C of the allowable time-step of the high order method to the forward Euler
time-step. This ratio is called the strong stability preserving coefficient. Using this
approach, we view the time-step restriction as a combination of two factors: the
forward Euler time-step ∆tFE that comes from the spatial discretization, and the
SSP coefficient C is a property only of the time-discretization. Among methods of
similar types, a more relevant quantity is the effective SSP coefficient Ceff = C/s,
which takes into account the computational cost of the method at each iteration,
defined by the number of stages s (typically also the number of function evaluations
per time-step). In this work we consider two such methods [31].
The three stage, third order strong stability preserving Runge–Kutta method

SSP-RK(3,3):

u(1) = un +∆tF (un)

u(2) =
3

4
un +

1

4

(
u(1) +∆tF

(
u(1)

))
un+1 =

1

3
un +

2

3

(
u(2) +∆tF

(
u(2)

))
.

This method has SSP coefficient C = 1 and effective SSP coefficient Ceff = 1/3.
The low storage, ten stage, fourth order strong stability preserving Runge–

Kutta method SSP-RK(10,4):

u(1) = un +
1

6
∆tF (un) ,

u(i) = u(i−1) +
1

6
∆tF

(
u(i−1)

)
, for i=2:4

u(5) =
3

5
un +

2

5
u(4) +

1

15
∆tF

(
u(4)

)
,

u(i) = u(i−1) +
1

6
∆tF

(
u(i−1)

)
, for i=6:9

un+1 =
1

25
un +

9

25
u(4) +

3

5
u(9) +

3

50
∆tF

(
u(4)

)
+

1

10
∆tF

(
u(9)

)
.

This method has SSP coefficient C = 6 and effective SSP coefficient Ceff = 0.6.
For the problems considered in this paper, we found no significant difference

between the performance of the two.

4 Results

Aretakis’ rigorous results apply to fairly generic situations, as long as the black
hole is extremal. In particular, the initial wave that perturbs an otherwise isolated
extremal black hole could be fairly generic as long as it has support on the horizon.
For the following results we chose a narrow Gaussian radial profile i.e., a “wave-
packet” centered at ρ = 1.0 with a width of 0.22. The angular profile of this
initial perturbation is chosen to be the (`,m) = (2, 0) spherical harmonic. And we
present results for the gravitational perturbation case with s = −2. The numerical
simulations presented here used a grid size of 16384(ρ)×64(θ) and the SSP-RK(3,3)
time-stepper.

We wrote the Teukolsky equation for a Kerr black hole with parameters M,a for
the variable Φ which is related to the Teukolsky function Ψ in the Kinnersley tetrad
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and Boyer-Lindquist coordinates via Φ = (r/∆2)Ψ , where ∆ = r2 − 2Mr + a2.
One may relate this function to the better-known Weyl curvature in the following
manner. The Weyl curvature scalar ψHH

4 in the Hartle-Hawking tetrad is related
to its Kinnersley tetrad counterpart, ψK

4 , via a type-III transformation, or ψHH
4 =

4(r2 + a2)2∆−2 ψK
4 [32] and that Ψ = (r − ia cos θ)4 ψK

4 [7] we find that

Φ =
r (r − ia cos θ)4

4 (r2 + a2)2
ψHH
4 , (15)

and use Φ with ` = 2,m = 0 and a = M .
Previous work by Aretakis and others [14,15,17] show that the radial deriva-

tives of the physical field on the horizon would be a conserved quantity, a so-called
“charge”. In addition, the same analysis also leads to an expectation of the time-
dependent behavior for the physical field itself on the horizon (proportional to
inverse time) and for higher radial derivatives (proportional to an increasing pos-
itive power of time: second-derivative ∝ τ , third-derivative ∝ τ2 and so on). To
summarize:

Φ(p+1) ∝ τp , (16)

when evaluated at the horizon an extremal black hole. It is this rigorous result that
we will compare our numerical solutions with, thus offering a precise assessment
of the quality of our computational results. We will show that the WENO(5,3)
method performs the best amongst the different methods we tested.

We begin with an example of some high-quality results from the WENO(5,3)
method. We plot Φ for a fixed θ as a function of ρ for a set of τ values in Fig. 1.
These radial snapshots of the solution Φ at different moments of time suggest how
the solution evolves forming a sharper-and-sharper feature at the horizon. This
plot is highly suggestive of the fact that the higher radial derivatives of the field
on the horizon will not decay, even though the field itself decays everywhere.

To observe that more clearly, in Fig. 2 we show the time-dependence of the
numerical solution Φ, and its radial-derivative Φ′ together. As pointed out above,
the physical field Φ ∝ τ−1 while the radial-derivative Φ′ should be a constant. The
plot clearly shows that both WENO(3,1) and WENO(5,3) perform significantly
better even when compared to a higher-order standard (6th-order) finite-difference
scheme. The 6th-order standard scheme requires the addition of a small amount
of dissipation (a standard Kreiss-Oliger 8th-order filter operator [12]) to suppress
high-frequency instabilities. However, even a small amount of dissipation is enough
to significantly degrade the quality of the numerical solution.

Next, in Fig. 3 we show the numerically computed local power-law index cal-
culated according to the formula p = τΦ̇/Φ. Here we can clearly see that the
WENO(5,3) performs the best i.e. maintains a value of p close to −1 better than
WENO(3,1) and also the standard 6th-order finite-difference scheme with dissi-
pation. The same can be seen in the Φ′ data as well, as shown in Fig. 4 and for
higher-order derivatives.

In Fig. 5 we depict the relative difference between two WENO solutions –
one using full quadruple-precision numerics and the other, using a mixed preci-
sion approach i.e. only the WENO “weights” are computed using double-precision
floating-point operations. The mixed precision approach offers a 3.3 fold speedup
while having no impact on the results in the regime of interest i.e. near the hori-
zon. Recall that the computed solution Φ is complex valued. It is interesting to
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Fig. 1 The gravitational field spatial profile snapshots in the background of an extremal Kerr
black hole: The solution’s radial dependence at different moments of time. It is clear that as
the evolution advances, the solution at the horizon (left-end of the computational domain)
develops an increasingly sharp profile with the higher gradients growing unboundedly.

note that even though we begin the evolution using purely real initial data, the
system’s evolution introduces a physical phase shift due to the spin of the black
hole resulting in a non-zero imaginary part. The mixed precision related error in
the imaginary part is considerably lower than in the real part.

4.1 Parallel Scaling Results

In this section we present the parallel scaling performance results of our WENO(5,3)
code on a GPGPU-cluster with multiple Nvidia V100 GPGPUs.

First, we offer some details on both the GPGPU many-core processor architec-
ture and implementation details relevant to our code. Nvidia’s CUDA framework2

is a set of software layers that allow for GPU devices to become more accessible
to the average computational scientist. At a high level, there is a CUDA Runtime
API; while at a low level, there is the CUDA Driver API. Each function call of the
Runtime API is broken into simpler instructions and managed by the Driver API.
Through CUDA, the GPU (called device) is accessible to the CPU (called host)
as a co-processor with its own memory. The device executes a function (usually

2 https://developer.nvidia.com/about-cuda

https://developer.nvidia.com/about-cuda
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Fig. 2 The gravitational field Φ, Φ′ temporal profile on the horizon of an extremal Kerr
black hole: The expected behaviors are indicated in the figure: Φ ∝ τ−1, Φ′ ∝ 1. It is clear
that the WENO methods perform significantly better when compared to an even higher-order
(dissipative) scheme.

referred to as a kernel) in a “data parallel” model, which means that a number of
threads run the same program on different data.

A data-parallel model is straightforward to implement in a code like ours.
We simply perform a domain-decomposition of our finite-difference numerical grid
and allocate the different parts of the grid to different GPU cores. Each thread
computes a time-step for a single pair of ρ and θ grid values. Note that all these
calculations are independent, i.e. no communication is necessary between the GPU
threads. However, it is necessary to establish the appropriate data communication
between the GPU-cores and the remaining code that is executing on the CPU
respectively. Of course, this fine-grain decomposition on the GPU is performed
after a standard coarse-grain level domain-decomposition using MPI over the many
GPUs that are part of a tightly-coupled cluster.

It is worth pointing out that this CUDA implementation of our WENO code
is fairly straightforward. It should also be mentioned that we do not attempt
to hand-tune the codes to tailor them for each architecture, in order to obtain
maximal performance. Instead, we rely on the mature compiler suites to perform
all low-level optimizations (such as vectorization) automatically.
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Fig. 3 The gravitational field Φ power law tail on the horizon of an extremal Kerr black
hole: The expected behavior is Φ ∝ τ−1 i.e. a power-law of −1. It is clear that the WENO
methods perform significantly better when compared to an even higher-order (dissipative)
scheme. WENO(5,3) performs better than WENO(3,1).

The performance results on MIT’s Satori GPGPU supercomputer are presented
in Fig. 6. This system is an IBM machine with 64-nodes; each node offers two
Power9 CPUs (32-cores each) and four (4) Nvidia V100 GPGPUs connected via
NVLink2. We ran the exact same computation using different numbers of GPUs:
1, 2, 4, 8, 16, 32 each time. Note that the 32-GPU computation used 8-nodes of
this system i.e. a 12.5% of the entire system size. The results are clearly indicative
of nearly perfect scaling performance. As demonstrated by one of the authors in
Ref. [30] the GPU-acceleration alone speeds up the computation by nearly a factor
of 50 over a CPU-only computation.

5 Conclusion

In this work we applied a number of GPU-accelerated numerical methods, in-
cluding a novel mixed-precision fifth order WENO method to solve the Teukolsky
equation – the master equation of black hole perturbation theory. Our results are
in three distinct areas: numerical analysis, efficient computing, and gravitational
wave astrophysics.

First, we showed that the WENO finite-difference methods of Jiang and Shu
[13] out-performed the sixth order centered difference method with a standard
Kreiss-Oliger filter. The dissipation added to the sixth order centered difference
is needed to stabilize the method; however, it adversely impacts the quality of
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Fig. 4 The gravitational field Φ′ power law tail on the horizon of an extremal Kerr black
hole: The expected behavior is Φ′ ∝ τ0 i.e. a power-law of 0. It is clear that the WENO
methods perform significantly better when compared to an even higher-order (dissipative)
scheme. WENO(5,3) performs better than WENO(3,1).

the solution so that the expected behavior is not observed near the horizon. The
WENO methods correct this issue, as they achieve stability by clever automated
stencil choosing and no additional dissipation. For this reason, they attain the
correct behavior near the horizon. As expected, the low-order WENO is not suffi-
ciently accurate for this problem, but it still out-performs the sixth order centered
difference method with the filter. The fifth order (third order near discontinuities)
WENO method we employ confirms the predicted behavior of the system and
proves to be appropriate for solving the problem of interest i.e., computing the
so-called Aretakis charge, which is an important conserved physical quantity.

Next, we considered two computational approaches to speed up this code. Re-
gardless of the algorithms used, this is a computationally intensive problem, which
requires a very high precision computation (quad precision) to accurately resolve
the long-time integration. This problem requires GPU-acceleration to complete in
reasonable time. We show that our GPU-accelerated code scales very well as more
GPU devices are used. Additionally, to further speed up the computation, we con-
sidered a novel mixed-precision approach to the WENO algorithm, by computing
the WENO weights in double precision while the rest of the code is computed in
quad precision. The mixed precision WENO approach results in a speed-up of a
factor of 3.3. We investigated the errors introduced by this approach, and found
that the relative error in the solution is very small (< 10−4) near the horizon, which
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Fig. 5 Relative differences between two numerical solutions: spatial profile snapshot of the
relative differences at the last time-step i.e τ = 2000 between two WENO solutions. One
solution was generated using full quadruple-precision floating-point computations; the other
using a mixed precision approach i.e. the WENO “weights” are computed in double-precision.
While the relative error becomes significant in the middle portion of the computational domain;
it stays very low near the horizon while offering a 3.3 fold speedup.

is the regime of interest. This minor loss in accuracy is a small and worthwhile
price to pay for the dramatic speedup in the code.

Finally, such high-accuracy simulations may enable significant discoveries in
the field of computational and observational gravitational-wave physics. For ex-
ample, the gravitational wave analog of the (scalar) Aretakis charge is in principle
a measurable quantity that future observatories, like LIGO/Virgo, could detect.
Observational evidence for the Aretakis charge would reveal the existence of ex-
tremal or near-extremal black holes, settling a long-standing open problem in the
field of black hole physics.
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