
 

Adiabatic waveforms for extreme mass-ratio inspirals
via multivoice decomposition in time and frequency

Scott A. Hughes ,1 Niels Warburton ,2 Gaurav Khanna ,3,4 Alvin J. K. Chua ,5 and Michael L. Katz 6

1Department of Physics and MIT Kavli Institute, Cambridge, Massachusetts 02139, United States
2School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

3Physics Department, University of Massachusetts, Dartmouth, Massachusetts 02747, United States
4Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, United States

5Theoretical Astrophysics Group, California Institute of Technology,
Pasadena, California 91125, United States

6Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,
Am Mühlenberg 1, 14476 Potsdam-Golm, Germany

(Received 4 February 2021; accepted 7 April 2021; published 11 May 2021)

We compute adiabatic waveforms for extreme mass-ratio inspirals (EMRIs) by “stitching” together a
long inspiral waveform from a sequence of waveform snapshots, each of which corresponds to a particular
geodesic orbit. We show that the complicated total waveform can be regarded as a sum of “voices.” Each
voice evolves in a simple way on long timescales, a property which can be exploited to efficiently produce
waveform models that faithfully encode the properties of EMRI systems. We look at examples for a range
of different orbital geometries: spherical orbits, equatorial eccentric orbits, and one example of generic
(inclined and eccentric) orbits. To our knowledge, this is the first calculation of a generic EMRI waveform
that uses strong-field radiation reaction. We examine waveforms in both the time and frequency domains.
Although EMRIs evolve slowly enough that the stationary phase approximation (SPA) to the Fourier
transform is valid, the SPA calculation must be done to higher order for some voices, since their
instantaneous frequency can change from chirping forward ( _f > 0) to chirping backward ( _f < 0). The
approach we develop can eventually be extended to more complete EMRI waveform models—for example,
to include effects neglected by the adiabatic approximation, such as the conservative self-force and
spin-curvature coupling.
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I. INTRODUCTION

A. Extreme mass-ratio inspirals and self-forces

The large mass-ratio limit of the two-body problem is a
laboratory for studying strong-field motion in general
relativity. By treating the spacetime of such a binary as
an exact black hole solution plus a perturbation due to the
less massive orbiting body, it is possible to analyze the
binary’s dynamics and the gravitational waves it generates
using the tools of black hole perturbation theory. Because
the equations of perturbation theory can, in many circum-
stances, be solved very precisely, the large mass-ratio limit
serves as a high-precision limit for understanding the two-
body problem in general (see, e.g., Ref. [1]).
This limit is also significant thanks to the importance

of extreme mass-ratio inspirals (EMRIs) as gravitational
wave sources. Binaries formed by the capture of stellar-
mass (μ ∼ 1–100 M⊙) compact bodies onto relativistic
orbits of black holes with M ∼ 106 M⊙ in the cores of
galaxies will generate low-frequency (f ∼ 0.01 Hz) gravi-
tational waves, right in the sensitive band of space-based

detectors like LISA. A typical EMRI will execute
∼104 − 105 orbits in LISA’s band as gravitational wave
backreaction shrinks its binary separation. Because the
small body orbits in the larger black hole’s strong field,
EMRI waves are highly sensitive to the nature of the large
black hole’s spacetime. EMRI events will make it possible
to precisely map black hole spacetimes, weighing black
holes’ masses and spins with exquisite accuracy, and
testing the hypothesis that astrophysical black holes are
described by the Kerr spacetime [2].

To achieve these ambitious science goals for EMRI
measurements, we will need waveform models, or tem-
plates, that accurately match signals in data over their
full duration. Such templates will provide guidance to
algorithms for finding EMRI signals in detector noise, and
will be necessary for characterizing astrophysical sources.
Developing such models is one of the goals of the self-force
program, which seeks to develop equations describing the
motion of objects in specified background spacetimes,
including the interaction of that object with its own
perturbation to that spacetime—i.e., including the small
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body’s “self-interaction” [3]. Taking the background space-
time to be that of a black hole, self-forces can be developed
using tools from black hole perturbation theory, with the
mass ratio of the system ε≡ μ=M (where μ is the mass of
the orbiting body, and M the mass of the black hole)
serving as a perturbative order counting parameter.
To make this more quantitative, we sketch the general

form of such equations of motion in the action-angle
formulation used by Hinderer and Flanagan [4]. Let qα ≐
ðqt; qr; qθ; qϕÞ be a set of angle variables which describe
the motion of the smaller body in a convenient coordinate
system, let Jβ ≐ ðJt; Jr; Jθ; JϕÞ be a set of actions asso-
ciated with those motions, and let λ be a convenient time
variable. The motion of the smaller body is then governed
by a set of equations with the form

dqα
dλ

¼ωαðJÞþεgð1Þα ðqr;qθ;JÞþε2gð2Þα ðqr;qθ;JÞþ���;
ð1:1Þ

dJα
dλ

¼ εGð1Þ
α ðqr; qθ; JÞ þ ε2Gð2Þ

α ðqr; qθ; JÞ þ � � � : ð1:2Þ

The frequency ωα describes the rate at which the angles
accumulate per unit λ, neglecting the self-interaction. The
term ωαðJÞ thus characterizes the geodesic motion of the

small body in the black hole background. The terms gðnÞα

describe how the small body’s trajectory is modified by the

self-interaction at OðεnÞ; the terms GðnÞ
α describe how the

actions (which are constant along geodesics) are modified.
Note that the self-interaction terms only depend on the
angles qr and qθ—because black hole spacetimes are
axisymmetric and stationary, these terms are independent
of qt and qϕ. Many aspects of this problem are now under
control at OðεÞ (see, e.g., Ref. [5]), and work is rapidly
proceeding on the problem at Oðε2Þ [6].
As the issue of the smaller body’s motion is brought

under control, more attention is now being paid to the
gravitational waveforms that arise from this motion. That is
the focus of this paper.

B. The adiabatic approximation and its use

The forcing terms in Eqs. (1.1) and (1.2) can be further
decomposed by splitting them into averages and oscilla-
tions about their average. Consider the first-order forcing
term Gð1Þ

α . We set

Gð1Þ
α ðqr; qθ; JÞ ¼ hGð1Þ

α ðJÞi þ δGð1Þ
α ðqr; qθ; JÞ; ð1:3Þ

where the averaged contribution is

hGð1Þ
α ðJÞi ¼ 1

ð2πÞ2
Z

2π

0

dqr

Z
2π

0

dqθG
ð1Þ
α ðqr; qθ; JÞ; ð1:4Þ

and we define the oscillations about this average as

δGð1Þ
α ðqr;qθ;JÞ≡Gð1Þ

α ðqr;qθ;JÞ−hGð1Þ
α ðJÞi. The oscillations

vary about zero on a rapid orbital timescale To ∼M; the
average evolves on a much slower dissipative inspiral
timescale T i ∼M2=μ, or T i ∼ To=ε. Because of the large
separation of these two timescales for EMRIs, the oscil-
lations nearly average away during an inspiral. For most
orbits, neglecting the impact of the oscillations introduces
errors of OðTo=TiÞ ¼ OðεÞ.
The simplest model for inspiral which captures the

strong-field dynamics of black hole orbits is known as
the adiabatic approximation. It amounts to solving the
following variants of Eqs. (1.1) and (1.2):

dqα
dλ

¼ ωαðJÞ;
dJα
dλ

¼ εhGð1Þ
α ðJÞi: ð1:5Þ

In words, we treat the short-timescale orbital dynamics as
geodesic, but we use the orbit-averaged impact of the self-
force on the actions Jα. This amounts to including the
“dissipative” part of the orbit-averaged self-force, since to

OðεÞ, the action of hGð1Þ
α i is equivalent to computing the

rates at which an orbit’s energy E, axial angular momentum
Lz, and Carter constantQ change due to the backreaction of
gravitational-wave emission. The adiabatic approximation
treats inspiral as “flow” through a sequence of geodesics,
with the rate of flow determined by the rates of change
of E, Lz, and Q [7].
It is worth noting that the picture we have sketched breaks

down near the so-called resonant orbits [8–11]. These are
orbits for which the frequency ratio ωx=ωy ¼ nx=ny, where
nx and ny are small integers. Resonances have been shown to
arise from the gravitational self-force itself [8] (for which
x ¼ r and y ¼ θ), as well as from tidal perturbations from
stars or black holes that are near an astrophysical EMRI
system [10,11] (for which x ¼ r or θ, and y ¼ ϕ). Near
resonances, some terms change from oscillatory to nearly
constant; neglecting their impact introduces errors of
Oðε1=2Þ. As such, they will be quite important, contributing
perhaps the leading postadiabatic contribution to waveform
phase evolution. We neglect the impact of resonances in
this analysis, though where appropriate we comment on
their importance and how they may be incorporated into
future work.
The computational cost associated with even the rather

simplified adiabatic waveform model is quite high. As we
outline in Sec. III, computing adiabatic backreaction
involves solving the Teukolsky equation for many multi-
poles of the radiation field and harmonics of the orbital
motion; tens of thousands of multipoles and harmonics may
need to be calculated for tens of thousands of orbits. To
produce EMRI models which capture the most important
elements of the mapping between source physics and
waveform properties, the community has developed several
kludges as a stopgap for data analysis and science return
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studies. The analytic kludge of Barack and Cutler [12]
essentially pushes post-Newtonian models beyond their
domain of validity. Their match with fully relativistic
models is not good, but they capture the key qualitative
features of EMRI physics. Almost as importantly, the
analytic kludge is fast and is easy to implement; as such,
it has been heavily used for many LISA measurement
studies.
The numerical kludge of Babak et al. [13] is closer to the

spirit of the adiabatic approximation we describe here, in
that it treats the small body’s motion as a Kerr geodesic, but
it uses semianalytic fits to strong-field radiation emission
to describe inspiral. Wave emission is treated with a crude
multipolar approximation based on the small body’s
coordinate motion. Despite the crudeness of some of the
underlying approximations, the numerical kludge fits
relativistic waveform models fairly well. It is, however,
slower and harder to use than the analytic kludge, and as
such has not been used very much. More recently, Chua and
Gair [14] showed that one can significantly improve
matches to relativistic models by using an analytic kludge
augmented with knowledge of the exact frequency spec-
trum of Kerr black hole orbits.
The shortcomings of the kludges illustrate that, ulti-

mately, one needs waveform models that capture the
strong-field dynamics of Kerr orbits and that accurately
describe strong-field radiation generation and propagation
through black hole spacetimes. Waveforms based on the
adiabatic approximation are the simplest ones that accu-
rately include both of these effects. Though the adiabatic
approximation misses important aspects from neglected
pieces of the self-force, they get enough of the strong-field
physics correct that they will be effective and useful tools
for understanding the scope of EMRI data analysis chal-
lenges, and for accurately assessing the science return that
EMRI measurements will enable.

C. This paper

Although the computational cost of making adiabatic
inspiral waveforms is high, the most expensive step of this
calculation—computing a set of complex numbers which
encode rates of change of (E, Lz, Q), as well as the
gravitational waveform’s amplitude—need only be done
once. These numbers can be computed in advance for a
range of astrophysically relevant EMRI orbits, and then
stored and used to assemble the waveform as needed. The
goal of this paper is to lay out what quantities must be
computed, and to describe how to use such precomputed
data to build adiabatic waveforms.
Our particular goal is to show how to organize and store

the most important and useful data needed to assemble
the waveforms in a computationally effective way. A key
element of our approach is to view the complicated EMRI
waveform as a sum of simple “voices.” Each voice
corresponds to a mode ðl; m; k; nÞ representing a particular

multipole of the radiation and harmonic of the fundamental
orbital frequencies. The voice-by-voice decomposition was
suggested long ago to one of us by L. S. Finn, and was first
presented in Ref. [15] for the special case of spherical Kerr
orbits (i.e., orbits of constant Boyer-Lindquist radius,
including those inclined from the equatorial plane). This
paper corrects an important error in Ref. [15] (which left
out a phase that is set by initial conditions) and extends this
analysis to fully generic configurations.
The approach that we present has several important

features. First, we find that the data which must be stored to
describe the waveform voice by voice evolve smoothly
over an inspiral. This suggests that these data can be
sampled at a relatively low cadence, and we can then build
a high-quality waveform using interpolation. Such behavior
had been seen in earlier work [15]; this analysis demon-
strates that this behavior is not unique to spherical orbits,
but is generic. We describe the methods we have used for
our initial exploration, and that were used in a related study
[16] focusing on the rapid evaluation of waveforms for data
analysis. Reference [16] showed that the chasm between
the computational demands of accurate modeling and
efficient analysis can be bridged, but much work remains
in order to “optimize” these methods—for example, in
determining the best way for the numerical data to be
sampled and interpolated.
Second, we show that this framework works well in both

the time and frequency domains. The frequency-domain
construction is particularly interesting. Thanks to their
extreme mass ratios, EMRIs evolve slowly enough that
the stationary-phase approximation (SPA) to the Fourier
transform should provide an excellent representation of the
frequency-domain form. However, for some EMRI voices,
the instantaneous frequency grows to a maximum and then
decreases. For such voices, the first time derivative of the
frequency vanishes at some point along the inspiral. The
standard SPA is singular at these points. We show that
including information about the second derivative fixes
this behavior, allowing us to compute frequency-domain
waveforms for all EMRI voices.
Third, we show that several of the waveform’s param-

eters can be included in a simple way which effectively
reduces the dimensionality of the waveform parameter
space. These parameters are angles which control the initial
position of the orbit in its eccentric radial motion, and its
initial polar angle in the range of motion allowed by its
orbital inclination. They are initial conditions on the
relativistic analog of the “true anomaly angles” used in
Newtonian celestial mechanics. Associated with these
initial anomaly angles are phases, originally introduced
in Ref. [17], which correct the complex amplitudes asso-
ciated with the waveform’s voices. By comparing with
output from a time-domain Teukolsky equation solver
[18,19], we show that these phases allow one to match
any allowed initial condition with very little computational
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cost. This means that we can generate a suite of data using
only a single initial choice of the anomaly angles, and then
transform to initial conditions corresponding to any other
choice. This significantly reduces the computational cost
associated with covering the full EMRI parameter space.
Finally, it should not be difficult to extend this framework

to include at least some important effects beyond the adiabatic
approximation, many of which are discussed in detail in
Refs. [20,21]. For example, both conservative self-forces and
spin-curvature coupling have orbit-averaged effects that are
small, but that secularly accumulate over many orbits
[22–25]. Such effects can be included in this framework
by allowing the relativistic anomaly angles discussed above
(which in the adiabatic limit are constant) to evolve over the
inspiral; the phases associatedwith these angleswill evolve as
well.Wealso expect that the impact of small oscillations (such
as arise from both self-forces and spin-curvature coupling)
can likewise be incorporated, perhaps very efficiently using a
near-identity transformation [26].

As we were completing the bulk of the calculations
which appear here, a similar analysis of adiabatic EMRI
waveforms was presented by Fujita and Shibata [27]. Their
analysis focuses to a large extent on the measurability of
EMRI waves by LISA, confining their discussion to
eccentric and equatorial sources. Like us, they also take
advantage of the fact that one can precompute the most
expensive data on a grid of orbits, and then assemble the
waveform by interpolation. We are encouraged by the fact
that their independently developed framework is substan-
tially similar to what we present here.

D. Organization of this paper

The remainder of this paper is organized as follows. Since
inspiral in the adiabatic approximation is treated as a sequence
of geodesic orbits, we begin by reviewing the properties of
Kerr geodesics in Sec. II. Nothing in this section is new; it is
included primarily to keep themanuscript self-contained, and
to allow us to carefully define our notation and themeaning of
important quantities which are used elsewhere. Section III
reviews how we solve the Teukolsky equation and use its
solutions in order to calculate adiabatic backreaction on an
orbit. This allows us to compute how a system evolves from
orbit to orbit, as well as the gravitational-wave amplitude
produced by that orbit. This material is likewise not new,
but is included for completeness, as well as to introduce and
explain all relevant notation.
In Sec. IV, we lay out how one “stitches” together data

describing radiation from geodesics to construct an adia-
batic waveform. This construction essentially amounts to
taking the solution to the Teukolsky equation for a geodesic
orbit and promoting various factors which are constants on
geodesics into factors which vary slowly along an inspiral.
This construction introduces a two-timescale expansion:
some quantities vary on the “fast” timescale associated
with orbital motions, To ∼M; others vary on the “slow”

timescale associated with the inspiral, T i∼M2=μ¼To=ε.
The adiabatic waveform is only accurate up to corrections
of order the system’s mass ratio, essentially because it
assumes that all time derivatives only include information
about the system’s “fast” time variation. One way in which
a postadiabatic analysis will improve on these results will
be by including information about time derivatives with
respect to the slow variation along the inspiral.
Section V describes how to compute multivoice signals

in the frequency domain. Because EMRI systems are
slowly evolving, the stationary phase approximation
(SPA) should accurately describe the Fourier transform
of EMRI signals. However, because the evolution of certain
voices is not monotonic, the “standard” SPA calculation
can fail, introducing singular artifacts at moments when a
voice’s frequency evolution switches sign. We review the
standard SPA Fourier transform and show how by includ-
ing an additional derivative of the frequency it is straight-
forward to correct this artifact. We conclude this section by
showing how to combine multiple voices to construct the
full frequency-domain EMRI waveform.
In Sec. VI, we present various important technical details

describing how we implement this framework for the
results we present in this paper. We strongly emphasize
that there is a great deal of room for improvement on the
techniques described here. We have not, for example,
carefully assessed the most effective method for laying
out the grid of data on which we store information about
adiabatic backreaction and waveform amplitudes, nor have
we thoroughly investigated efficient methods for interpo-
lating these data to off-grid points (e.g., Ref. [16]). These
important points will be studied in future work, as we begin
assessing how to take this framework and use it to develop
EMRI waveforms in support of LISA data analysis and
science studies.
In Secs. VII and VIII, we present examples of adiabatic

EMRI waveforms. In both of these sections, we show
examples of the complete time-domain waveform produced
by summing over many voices, as well as the (much simpler)
structure of representative voices which contribute to these
waveforms. Section VII shows results for inspiral into
Schwarzschild black holes, presenting the details of an
inspiral with small initial eccentricity (einit ¼ 0.2) and
another with high initial eccentricity (einit ¼ 0.7).
Section VIII examines several examples for inspiral into
Kerr, including a case that is spherical, a case that is
equatorial with high eccentricity, and one example that is
generic, both eccentric and inclined.Although generic EMRI
waveforms based on various “kludge” approximations have
been presented before, to our knowledge thegeneric example
shown in Sec. VIII is the first calculation that uses strong-
field backreaction and strong-field wave generation for the
entire computation. We find that there is a great deal of
similarity between qualitative features of the Kerr and
Schwarzschild waveforms. As such, our presentation of

HUGHES, WARBURTON, KHANNA, CHUA, and KATZ PHYS. REV. D 103, 104014 (2021)

104014-4



Kerr results is somewhat brief, concentrating on the most
important highlights and differences as compared to the
Schwarzschild cases.
For all the cases we examine, we demonstrate how one

can account for a system’s initial conditions by adjusting a
set of phase variables which depend on the initial values of
the anomaly angles that parametrize the system’s radial and
polar motions. We calibrate our calculations in one case
(presented in Sec. VII) by comparing with an EMRI
waveform computed using a time-domain Teukolsky equa-
tion solver [18,19]. Interestingly, in this case we find a
small phase offset that, for most initial conditions, secularly
accumulates, causing the waveforms computed with this
paper’s techniques to dephase from those computed with
the time-domain code by up to several radians over the
course of an inspiral. We argue that this is an artifact of the
adiabatic approximation’s neglect of terms which vary on
the slow timescale, and is not unexpected. We show in this
comparison case that we can empirically compensate for
much of the dephasing using an ad hoc correction that
corrects some of the neglected “slow-time” evolution.
Though this correction is not rigorously justified, its form
suggests that the dephasing may arise from a slow-time
evolution of the phase variables which are set by the orbit’s
initial conditions.
Our conclusions are presented in Sec. IX. Along with

summarizing the main results of this analysis, we describe
plans and directions for future work. Chief among these
plans is to investigate how to optimize the implementation
in order to make EMRI waveforms as rapidly as possible,
which will be very important in order for these waveforms
to be usable for LISA data and science analysis studies, as
well as investigating how to include postadiabatic effects
with small modifications of the framework we present here.
We also plan to publicly release the code and data used in
this study, and we describe the status of our plans as this
analysis is being completed.

II. KERR GEODESICS

We begin by discussing bound Kerr geodesics. The most
important aspects of this content are discussed in depth
elsewhere [28–32]; we briefly review this material for this
paper to be self-contained, as well as to introduce notation
and conventions that we use. Certain lengthy but important
formulas are given in Appendix A.

A. Mino-time formulation of orbital motion

Consider a pointlike body of mass μ orbiting a Kerr black
hole with mass M and spin parameter a ¼ jSj=M (where S
is the black hole’s spin angular momentum in units with
G ¼ 1 ¼ c), and use Boyer-Lindquist coordinates (with
the angle θ measured from the black hole’s spin axis)
to describe its motion. We use Mino time as our time
parameter describing these orbits. An interval of Mino time

dλ is related to an interval of proper time dτ by dλ ¼ dτ=Σ,
where Σ ¼ r2 þ cos2θ, and where r and θ are the Boyer-
Lindquist radial and polar coordinates. With this para-
metrization, motion in Boyer-Lindquist coordinates is
governed by the equations

�
dr
dλ

�
2

¼ ½Eðr2 þ a2Þ − aLz�2 − Δ½r2 þ ðLz − aEÞ2 þQ�

≡ RðrÞ; ð2:1Þ
�
dθ
dλ

�
2

¼ Q − cot2θL2
z − a2cos2θð1 − E2Þ

≡ ΘðθÞ; ð2:2Þ

dϕ
dλ

¼ csc2θLz þ
2MraE

Δ
−
a2Lz

Δ
≡ΦrðrÞ þΦθðθÞ; ð2:3Þ

dt
dλ

¼ E

�ðr2 þ a2Þ2
Δ

− a2sin2θ

�
−
2MraLz

Δ
≡ TrðrÞ þ TθðθÞ: ð2:4Þ

We have introduced Δ ¼ r2 − 2Mrþ a2. The quantities E,
Lz, and Q are the orbit’s energy (per unit μ), axial angular
momentum (per unit μ), and Carter constant (per unit μ2).
These quantities are conserved along any geodesic;
choosing them specifies an orbit, up to initial conditions.
Writing d=dλ ¼ Σd=dτ puts these equations into more
familiar forms typically found in textbooks, such as
Eqs. (33) and (32a)–(32d) of Ref. [28].
Equations (2.1) and (2.2) tell us that bound Kerr orbits

are periodic in r and θ when parametrized using λ:

rðλÞ ¼ rðλþ nΛrÞ; θðλÞ ¼ θðλþ kΛθÞ; ð2:5Þ

where n and k are each integers. Simple formulas exist
for the Mino-time periods Λr and Λθ [31]; we define the
associated frequencies by ϒr;θ ¼ 2π=Λr;θ.
The motions in t and ϕ are the sums of secularly

accumulating pieces and oscillatory functions:

tðλÞ ¼ t0 þ Γλþ Δtr½rðλÞ� þ Δtθ½θðλÞ�; ð2:6Þ

ϕðλÞ ¼ ϕ0 þϒϕλþ Δϕr½rðλÞ� þ Δϕθ½θðλÞ�: ð2:7Þ

In these equations, t0 and ϕ0 describe initial conditions,

Γ ¼ hTrðrÞi þ hTθðθÞi; ð2:8Þ

ϒϕ ¼hΦrðrÞi þ hΦθðθÞi; ð2:9Þ

and
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Δtr½rðλÞ� ¼ Tr½rðλÞ� − hTrðrÞi≡ ΔtrðλÞ;
Δtθ½θðλÞ� ¼ Tθ½θðλÞ� − hTθðθÞi≡ ΔtθðλÞ; ð2:10Þ

Δϕr½rðλÞ� ¼ Φr½rðλÞ� − hΦrðrÞi≡ ΔϕrðλÞ;
Δϕθ½θðλÞ� ¼ Φθ½θðλÞ� − hΦθðθÞi≡ ΔϕθðλÞ: ð2:11Þ

The quantity Γ describes the mean rate at which observer
time t accumulates per unit λ; the Mino-time frequency ϒϕ

describes the mean rate at which ϕ accumulates per unit λ.
The associated period is Λϕ ¼ 2π=ϒϕ. Simple formulas
likewise exist for Γ and ϒϕ [31]. The averages used in
Eqs. (2.8)–(2.11) are given by

hfrðrÞi ¼
1

Λr

Z
Λr

0

fr½rðλÞ�dλ; ð2:12Þ

hfθðθÞi ¼
1

Λθ

Z
Λθ

0

fθ½θðλÞ�dλ: ð2:13Þ

The ratio of the Mino-time frequencies to Γ gives the
observer-time frequencies:

Ωr;θ;ϕ ¼ ϒr;θ;ϕ

Γ
: ð2:14Þ

We thus have useful closed-form expressions for all
frequencies, conjugate to both Mino time λ and observer
time t, that characterize black hole orbits.

B. Orbit parametrization and initial conditions

Take the orbit to oscillate over θmin ≤ θ ≤ θmax, with
θmax ¼ π − θmin, and over rmin ≤ r ≤ rmax, with

rmin =max ¼
p

1� e
: ð2:15Þ

Choosing p, e, and θmin is equivalent to choosing the
integrals of motion E, Lz, and Q. We have found it
particularly convenient to replace θmin with an inclination
angle1 I, defined by

I ¼ π=2 − sgnðLzÞθmin: ð2:16Þ

The angle I varies smoothly from 0 for equatorial prograde
to π for equatorial retrograde. The definition (2.16) may
seem a bit awkward thanks to the branch associated with
the sign of Lz. It is simple to show that

cos θmin ¼ sin I: ð2:17Þ

We have found that xI ≡ cos I is a particularly good
parameter to describe inclination: xI varies smoothly from
1 to −1 as orbits vary from prograde equatorial to
retrograde equatorial, with Lz having the same sign as
xI . Schmidt [29] first showed how to compute ðE;Lz;QÞ
for generic Kerr orbits; a particularly clean representation
is provided by van de Meent [32]. We summarize his
formulas in Appendix A, tweaking them slightly to use our
preferred parameter set ðp; e; xIÞ.
Initial conditions for t and ϕ are set by the parameters t0

and ϕ0 given in Eqs. (2.6) and (2.7). To set initial conditions
on r and θ, we introduce anomaly angles χr and χθ to
reparametrize those coordinate motions:

r ¼ p
1þ e cosðχr þ χr0Þ

; ð2:18Þ

cos θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2I

q
cosðχθ þ χθ0Þ: ð2:19Þ

We set χθ ¼ 0, χr ¼ 0, t ¼ t0, and ϕ ¼ ϕ0 when λ ¼ 0. The
phase χr0 then determines the value of r at λ ¼ 0, and χθ0
determines the corresponding value of θ. When χθ0 ¼ 0,
the orbit has θ ¼ θmin when λ ¼ 0; when χr0 ¼ 0, it has
r ¼ rmin when λ ¼ 0.
We define the fiducial geodesic to be the geodesic that

has χθ0 ¼ χr0 ¼ ϕ0 ¼ 0 ¼ t0. We denote with a “check
mark” accent any quantity which is defined along the
fiducial geodesic. For instance, řðλÞ is the orbital radius
along the fiducial geodesic, and θ̌ðλÞ is the polar angle θ
along the fiducial geodesic. For nonfiducial geodesics, we
define λ ¼ λr0 to be the smallest positive value of λ at which
r ¼ rmin; likewise,

2 λ ¼ λθ0 is the smallest positive value of
λ at which θ ¼ θmin. This means that

rðλÞ ¼ řðλ − λr0Þ; θðλÞ ¼ θ̌ðλ − λθ0Þ: ð2:20Þ

There is a one-to-one correspondence between λθ0 and χθ0,
and between λr0 and χr0. A useful corollary is

ΔtrðλÞ ¼ Δťrðλ − λr0Þ − Δťrð−λr0Þ;
ΔtθðλÞ ¼ Δťθðλ − λθ0Þ − Δťθð−λθ0Þ; ð2:21Þ

with analogous formulas for Δϕr and Δϕθ.
Some of our definitions differ from those used in

Ref. [17]. In that reference,3 χθ0 and χr0 were not used.

1The angle I has been labeled θinc in some previous work, such
as Ref. [33]. We have found this label to be potentially confusing,
since the Boyer-Lindquist angle θ is measured from the black
hole’s spin axis, whereas the inclination angle is measured from
the plane normal to this axis. We have changed notation to avoid
confusion with the coordinates.

2These definitions account for the fact that these motions
are periodic: rðλr0 þ nΛrÞ ¼ rmin for any integer n, and
θðλθ0 þ kΛθÞ ¼ θmin for any integer k.

3Reference [17] also used slightly different symbols for the
anomaly angles, writing χ for the polar anomaly and ψ for the
radial. Here, we only use ψ for the Newman-Penrose curvature
scalars.
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Instead, χθ ¼ 0 corresponded to λ ¼ λθ0, and χr ¼ 0 cor-
responded to λ ¼ λrθ. As we discuss briefly in Secs. IV
and IX, the angles χr0 and χθ0 will play an important role
going beyond adiabatic waveforms. In the adiabatic approxi-
mation, the angles χr0, χθ0, and ϕ0 are constant as we move
from geodesic to geodesic. When we include, for example,
orbit-averaged conservative self-force effects or orbit-
averaged spin-curvature forces, we find secularly accumu-
lating phases associated with each of these motions.
Allowing the angles χr0, χθ0, and ϕ0 to evolve during
inspiral is a simple and robust way to “upgrade” this
framework to include these next-order effects.

III. ADIABATIC EVOLUTION AND
WAVEFORM AMPLITUDES VIA THE

TEUKOLSKY EQUATION

The next critical ingredient to constructing an adiabatic
inspiral is the backreaction which arises from the orbit-
averaged self-interaction. The quantities which encode the
backreaction also tell us the amplitude of the inspiral’s

associated gravitational waveform. In this section, we
briefly summarize how these quantities are calculated
using the Teukolsky equation. As with Sec. II, the contents
of this section are discussed at length elsewhere, but are
summarized here to introduce critical quantities and con-
cepts important for later parts of this analysis.

A. Solving the Teukolsky equation

The Teukolsky equation [34] describes perturbations to
the Weyl curvature of Kerr black holes. The version that we
will use in this analysis focuses on the Newman-Penrose
curvature scalar

ψ4 ¼ −Cαβγδnαm̄βnγm̄δ; ð3:1Þ

where Cαβγδ is the Weyl curvature tensor, and nα and m̄α are
legs of the Newman-Penrose null tetrad [35]. Teukolsky
showed that ψ4 is governed by the equation

�ðr2 þ a2Þ2
Δ

− a2sin2θ

�
∂2
tΨ − 4

�
rþ ia cos θ −

Mðr2 − a2Þ
Δ

�
∂tΨþ 4Mar

Δ
∂ϕ∂tΨ − Δ2∂rðΔ−1∂rΨÞ

−
1

sin θ
∂θðsin θ∂θΨÞ þ

�
a2

Δ
−

1

sin2θ

�
∂2
ϕΨþ 4

�
aðr −MÞ

Δ
þ i cos θ

sin2θ

�
∂ϕΨþ ð4cot2θ þ 2ÞΨ ¼ 4πΣT : ð3:2Þ

The field Ψ ¼ ðr − ia cos θÞ4ψ4, and T is a source term
whose precise form is not needed here. See Ref. [34] for
additional details and definitions.
An important point for our analysis is that

ψ4 ¼
1

2

d2

dt2
ðhþ − ih×Þ as r → ∞; ð3:3Þ

so ψ4 far from the source encodes the emitted gravitational
waves. These solutions also encode contributions to the
rates of change of E, Lz, and Q from gravitational-wave
backreaction. This is equivalent to the orbit-averaged self-
interaction arising from fields which are regular far from
the source (see Ref. [36], as well as additional discussion
on this point in Ref. [9]). As r → rþ ≡M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
(the coordinate radius of the event horizon), ψ4 encodes
tidal interactions of the orbiting body with the black hole’s
event horizon. These solutions encode contributions to the
rates of change of E, Lz, and Q from radiation absorbed by
the horizon, which is equivalent to the orbit-averaged self-
interaction arising from fields which are regular on the
event horizon [9,36]. Knowledge of ψ4 in the limits r → ∞
and r → rþ provides all the data we need to construct
adiabatic inspirals.

The frequency-domain approach we use to solve the
Teukolsky equation begins by writing ψ4 in a Fourier and
multipolar expansion. Writing

ψ4 ¼
1

ðr − ia cosϑÞ4

×
Z

∞

−∞
dω

X∞
l¼2

Xl

m¼−l
Rlmðr;ωÞSlmðϑ;aωÞei½mφ−ωðt−t0Þ�;

ð3:4Þ

Eq. (3.2) separates [34], with ordinary differential equa-
tions governing Rlmðr;ωÞ and Slmðϑ; aωÞ.
The field ψ4 is measured at the event ðt; r; ϑ;φÞ. (Note

the distinction between the orbit’s polar and axial angles, θ
and ϕ, and the polar and axial angles at which the field is
measured, ϑ and φ.) The function Slmðϑ; aωÞ is a sphe-
roidal harmonic (of spin-weight −2, left out for brevity);
this function and methods for computing it are discussed at
length in Appendix A of Ref. [37]. For reasons we will
explain below, we have also introduced the initial time t0
into our expansion (3.4).
The separated radial dependence has simple asymptotic

behavior:
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Rlmðr;ωÞ → Z∞
lmωr

3eiωr� ; r → ∞; ð3:5Þ

→ ZH
lmωΔe−iðω−mΩHÞr� ; r → rþ: ð3:6Þ

(We have absorbed a coefficient Ctrans
lmω into the definition of

Z∞
lmω, and a coefficient Btrans

lmω into the definition of ZH
lmω;

see Refs. [38–40] for further discussion of these
quantities.) These asymptotic forms depend on the “tortoise
coordinate,”

r�ðrÞ ¼ rþ Mrþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ln

�
r
rþ

− 1

�

−
Mr−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ln

�
r
r−

− 1

�
; ð3:7Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. The frequency

ΩH ¼ a
2Mrþ

ð3:8Þ

is often called the rotation frequency of the horizon. It
describes the frequency at which an observer held infini-
tesimally outside the event horizon will orbit the black hole
as seen by distant observers.
The quantities Z∞;H

lmω are computed by integrating homo-
geneous solutions of the radial Teukolsky equation against
the source term of the separated radial Teukolsky equation.
Further detailed discussion can be found in Ref. [33], with
updates to notation and minor corrections in Ref. [41]. Of
importance for this analysis is that these quantities are
computed by evaluating integrals of the form

Z∞;H
lmω ¼

Z
∞

−∞
dτeiω½tðτÞ−t0�e−imϕðτÞI∞;H

lmω ½rðτÞ; θðτÞ�: ð3:9Þ

The integration variable τ is proper time along the geodesic,
and we subtract off t0 because it is already accounted for
in Eq. (3.4). The function I∞;H

lmω ðr; θÞ is discussed in
Refs. [33,41]; schematically, it is a Green’s function used
to solve the radial Teukolsky equation, multiplied by this
equation’s source term.Using the properties ofKerr geodesic
orbits and using themethods developed inRefs. [38–40], it is
well understood how to build I∞;H

lmω ½rðτÞ; θðτÞ�.
Changing the integration variable from proper time τ to

Mino time λ, and using Eqs. (2.6) and (2.7), this becomes

Z∞;H
lmω ¼ e−imϕ0

Z
∞

−∞
dλeiðωΓ−mϒϕÞλJ∞;H

lmω ½rðλÞ; θðλÞ�; ð3:10Þ

where we have introduced

J∞;H
lmω ðr; θÞ ¼ ðr2 þ a2cos2θÞI∞;H

lmω ðr; θÞ
× eiω½ΔtrðrÞþΔtθðθÞ�e−im½ΔϕrðrÞþΔϕθðθÞ�: ð3:11Þ

By virtue of the periodicity of the orbit’s r and θ motions
with respect to Mino time, the function J∞;H

lmω can be written
as a double Fourier series:

J∞;H
lmω ¼

X∞
k¼−∞

X∞
n¼−∞

J∞;H
lmkne

−iðkϒθþnϒrÞλ; ð3:12Þ

where

J∞;H
lmkn ¼

1

ΛrΛθ

Z
Λr

0

dλreinϒrλr

×
Z

Λθ

0

dλθeikϒθλθJ∞;H
lmω ½rðλrÞ; θðλθÞ�: ð3:13Þ

Combining Eqs. (3.10), (3.12), and (3.13) plus the
relations Ωr;θ;ϕ ¼ ϒr;θ;ϕ=Γ, we find that

Z∞;H
lmω ¼

X∞
k¼−∞

X∞
n¼−∞

Z∞;H
lmknδðω − ωmknÞ; ð3:14Þ

where

ωmkn ¼ mΩϕ þ kΩθ þ nΩr ð3:15Þ

and

Z∞;H
lmkn ¼ e−imϕ0J∞;H

lmkn=Γ: ð3:16Þ

These coefficients have the symmetry

Z∞;H
l;−m;−k;−n ¼ ð−1ÞðlþkÞZ̄∞;H

lmkn; ð3:17Þ

where the overbar denotes complex conjugation. Our code
respects the symmetry in (3.17) to double-precision accu-
racy. We take advantage of this by computing Z∞;H

lmkn for all
l, all m, all k, and n ≥ 0, then using Eq. (3.17) to infer
results for n < 0. This cuts the amount of computation
roughly in half.
As we describe in the following two subsections, the

coefficients Z∞
lmkn set the amplitude of the gravitational

waves from a specified geodesic orbit, and also encode the
contribution to the orbit-averaged self-force from fields that
are regular at null infinity; the coefficients ZH

lmkn encode the
contribution to the orbit-averaged self-force from fields that
are regular on the event horizon. These sets of coefficients
are thus of crucial importance for computing adiabatic
inspiral and its gravitational waveform.

B. The gravitational waveform from an orbit

As shown in Sec. 8 of Ref. [17], the phase of Z∞;H
lmkn

depends on the values of λr0 and λθ0, which in turn depend
on the initial anomaly angles χr0 and χθ0. We denote by
Ž∞;H
lmkn the value of Z∞;H

lmkn for the fiducial geodesic. For a
general geodesic,
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Z∞;H
lmkn ¼ eiξmkn Ž∞;H

lmkn; ð3:18Þ

where the correcting phase is

ξmkn ¼ kϒθλθ0 þ nϒrλr0

þm½Δϕ̌rð−λr0Þ þ Δϕ̌θð−λθ0Þ − ϕ0�
− ωmkn½Δťrð−λr0Þ þ Δťθð−λθ0Þ�: ð3:19Þ

The form of ξmkn we use is slightly different from that
derived in Ref. [17]. In particular, we have separated out the
dependence on the initial axial phase ϕ0, as shown in
Eq. (3.16), and the dependence on t0, which is discussed
further in Sec. IV. See Ref. [17] for discussion and
derivation of the dependence on λθ0 and λr0.
The fact that the initial conditions only influence these

amplitudes via the phase factor ξmkn means that we only
need to compute and store quantities on the fiducial
geodesic. Using Eq. (3.19), we can then easily convert
these results to any initial condition. This vastly cuts down
on the amount of computation that must be done to cover
the space of physically important EMRI systems. In
addition, notice that ξmkn can be written

ξmkn ¼ mξ100 þ kξ010 þ nξ001: ð3:20Þ

For each orbit, one need only compute (ξ100, ξ010, ξ001) in
order to know the phases for all ðl; m; k; nÞ.
As we will see below, the values of these phases are

irrelevant for the orbit-averaged backreaction,4 but they are
critical for getting the phase of the gravitational waveform
correct given initial conditions. To write down the gravi-
tational waves, we use Eq. (3.3) to relate h to ψ4 far from
the source. Combining Eqs. (3.4), (3.5), and (3.14), we
further know that

ψ4 ¼
1

r

X
lmkn

Z∞
lmknSlmðϑ; aωmknÞei½mφ−ωmknðt−t0Þ� ð3:21Þ

as r → ∞. Here and in what follows, any sum over the set
ðl; m; k; nÞ will be assumed to be from 2 to∞ for l, from −l
to l for m, and from −∞ to ∞ for k and n. Let us define

h≡ hþ − ih× ≡ 1

r

X
lmkn

hlmkn

¼ 1

r

X
lmkn

AlmknSlmðϑ; aωmknÞei½mφ−ωmknðt−t0Þ�Þ: ð3:22Þ

Combining Eqs. (3.3), (3.21), and (3.22), we see that

Almkn ¼ −
2Z∞

lmkn

ω2
mkn

: ð3:23Þ

As with Z∞
lmkn, we define Ǎlmkn to be the wave amplitude for

the fiducial geodesic, and we have

Almkn ¼ eiξmkn Ǎlmkn: ð3:24Þ

The data Ǎlmkn interpolate very well and should be stored
for generating inspiral waveforms. It will be convenient for
later discussion to further define

Hlmkn ¼ AlmknSlmðϑ; aωmknÞ: ð3:25Þ

Because spheroidal harmonics slowly change along an
inspiral as ωmkn evolves, we find it useful to examineHlmkn
rather than Almkn when computing wave amplitudes during
inspiral.

C. Adiabatic backreaction

Here we summarize how to use the coefficients Z∞;H
lmkn to

compute the adiabatic dissipative evolution, or backreac-
tion, on a geodesic. We assume that a body is on a Kerr
geodesic orbit, and so is characterized (up to initial
conditions) by the orbital integrals E, Lz, and Q. Results
for dE=dt and dLz=dt have been known for quite a long
time [42]; these quantities each split into a contribution
from fields that are regular at infinity, which can be
extracted from knowledge of the distant gravitational
radiation, and a contribution from fields that are regular
on the black hole’s event horizon. Computing the down-
horizon contribution is a little more tricky; one must
compute how tidal stresses shear the horizon’s generators,
increasing its surface area (or its entropy), and then apply
the first law of black hole dynamics to infer the change
in the hole’s mass and spin. Results for dQ=dt were first
derived by Sago et al. [43] and are found by averaging the
action of the dissipative self-force on a geodesic. It also
separates into pieces that arise from fields regular at infinity
and fields regular on the horizon.
The results which we need for our analysis are

�
dE
dt

�
∞
¼
X
lmkn

jZ∞
lmknj2

4πω2
mkn

;

�
dE
dt

�
H
¼
X
lmkn

αlmknjZH
lmknj2

4πω2
mkn

;

ð3:26Þ

�
dLz

dt

�
∞
¼

X
lmkn

mjZ∞
lmknj2

4πω3
mkn

;

�
dLz

dt

�
H
¼

X
lmkn

αlmknmjZH
lmknj2

4πω3
mkn

; ð3:27Þ
4The phases are not irrelevant for backreaction as we go

beyond the adiabatic limit, and indeed play an important role in
determining the strength of backreaction at orbital resonances [9].
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�
dQ
dt

�
∞
¼

X
lmkn

jZ∞
lmknj2 ×

ðLmkn þ kϒθÞ
2πω3

mkn

;

�
dQ
dt

�
H
¼

X
lmkn

αlmknjZH
lmknj2 ×

ðLmkn þ kϒθÞ
2πω3

mkn

: ð3:28Þ

In these equations,

Lmkn ¼ mhcot2θiLz − a2ωmknhcos2θiE; ð3:29Þ

αlmkn ¼
256ð2MrþÞ5ðωmkn −mΩHÞ½ðωmkn −mΩHÞ2 þ 4ϵ2�½ðωmkn − ΩHÞ2 þ 16ϵ2�ω3

mkn

jClmknj2
: ð3:30Þ

The terms hcot2 θi and hcos2 θi in Eq. (3.29) mean cot2 θ and cos2 θ evaluated at the θ coordinate along the orbit, and then
averaged using Eq. (2.13). The terms jClmknj2 and ϵ in Eq. (3.30) are given by

jClmknj2 ¼ ½ðλ2lmkn þ 2Þ2 þ 4aωmkn − 4a2ω2
mkn�ðλ2lmkn þ 36amωmkn − 36a2ω2

mknÞ
þ ð2λlmkn þ 3Þð96a2ω2

mkn − 48amωmknÞ þ 144ω2
mknðM2 − a2Þ; ð3:31Þ

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

4Mrþ
: ð3:32Þ

The quantity λlmkn appearing in Eq. (3.31) is one form of
the eigenvalue of the spheroidal harmonic; see Ref. [37] for
discussion of the algorithm we use to compute it, and
Appendix C of Ref. [41] for discussion of the various forms
of the eigenvalue in the literature (which are simple to
convert between). Note that the factor ϵ which appears here
(and is not used elsewhere in this paper) is distinct from the
similar symbol ε≡ μ=M, the mass ratio.
In evaluating Eqs. (3.26), (3.27), and (3.28), we must

truncate the infinite sums, with cutoffs determined by the
needs of the analysis in question. For the purpose of this
paper, we have implemented the following cutoffs:

1. We include all l from 2 to 10.
2. At each l, we include all m from −l to l.
3. We truncate the k sum when the fractional change

to the accumulated sum is smaller than 10−5 for
three consecutive values of k. Holding all other
indices fixed, contributions to this sum tend to
fall off monotonically and fairly rapidly with
increasing k, so in practice this condition means
that neglected terms change the sum by less than
several ×10−7.

4. We truncate the n sum when the fractional change to
the accumulated sum is smaller than 10−6 for three
consecutive values of n. Especially for e≳ 0.4,
contributions to this sum do not fall off monoton-
ically with n until some threshold has been passed
(see Figs. 5 and 6 of Ref. [44], and Figs. 2 and 3 of
Ref. [33]). Once past that threshold, convergence is
quick, and we find that neglected terms in this case
also change the sum by less than several ×10−7.

We emphasize that these cutoffs have not been selected
carefully, but are simply chosen for ease of calculation and
to produce results which are “converged enough” for the
exploratory purposes of this paper. A more careful analysis
and assessment of how to truncate these sums should be
done before using these ideas to make “production quality”
waveforms (e.g., for exploring LISA data analysis ques-
tions or science return with EMRI measurements) in order
to make sure that systematic errors in waveform modeling
are understood and do not adversely affect one’s analysis.
As E, Lz, and Q change, we require the system to evolve

from one geodesic to another. To do this, we let these
orbital integrals change by enforcing a balance law:�

dC
dt

�
orbit

¼ −
�
dC
dt

�
∞
−
�
dC
dt

�
H
; ð3:33Þ

for C ∈ ½E;Lz;Q�. As these orbital integrals evolve, the
orbit’s geometry slowly changes in order to keep the system
on a geodesic trajectory. Appendix B shows how to relate
rates of change for p, e, and xI to the rates of change of E,
Lz, and Q.

IV. ADIABATIC INSPIRAL AS DISSIPATIVE
EVOLUTION ALONG A SEQUENCE

OF GEODESICS

We now examine solutions to the Teukolsky equation for
a slowly evolving source. Critical to our analysis is the idea
of a two-timescale expansion: the waveform phase varies
on a “fast” orbital timescale To ∼M, and orbit character-
istics vary on a “slow” inspiral timescale T i ∼M2=μ.
The two timescales differ by the system’s mass ratio:
To=Ti ¼ μ=M ≡ ε. The waveforms we compute in this
way are accurate up to corrections of order ε.
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Suppose that we have used the rates of change dE=dt,
dLz=dt, dQ=dt to compute how a system evolves from
geodesic to geodesic. We parametrize inspiral by a book-
keeper time ti which measures evolution along the inspiral
as seen by a distant observer. We treat the inspiral as a
geodesic at each moment ti, and we call the geodesic at this
moment the “osculating” geodesic [45–47]. At each such
moment, the osculating geodesic’s energy EðtiÞ, its angular
momentum LzðtiÞ, and its Carter constant QðtiÞ are known.
By our assumption that the inspiral is a geodesic at each
moment, we can reparametrize and determine pðtiÞ, eðtiÞ,
and xIðtiÞ. We can also compute quantities such as the
frequencies Ωr;θ;ϕðtiÞ and the amplitudes Z∞

lmknðtiÞ for each
geodesic in this sequence.
To leading order in ε, the curvature scalar ψ4 that arises

from this sequence of geodesics is given by

ψ4ðtiÞ ¼
1

r

X
lmkn

Z∞
lmknðtiÞSlm½ϑ; aωmknðtiÞ�

× ei½mφ−ΦmknðtiÞ�: ð4:1Þ

This is Eq. (3.21), but with the amplitude Z∞
lmkn and the

frequency ωmkn now functions of ti. Notice the dependence
on harmonics of the accumulated orbital phase:

ΦmknðtiÞ ¼
Z

ti

t0

ωmknðt0Þdt0: ð4:2Þ

This reduces to ωmknðti − t0Þ in the limit where the orbit
does not inspiral. Equation (4.2) builds in the dependence
on the initial time t0, which is why we leave this parameter
out of the factor ξmkn in Eq. (3.19).
To justify this inspiraling solution for ψ4, we substitute

Eq. (4.1) into the Teukolsky equation, Eq. (3.2). Doing so,
one finds that it satisfies the Teukolsky equation up to
errors of the order of the orbital timescale over the inspiral
timescale, OðTo=TiÞ ∼OðεÞ. These errors in turn arise
from the fact that time derivatives have both fast-time
contributions, for which ∂t ∼ 1=To ∼ ωmkn, as well as slow-
time contributions, for which ∂t ∼ 1=T i ∼ ε=To. In the
adiabatic approximation, we neglect the slow-time deriv-
atives, expecting that at any moment their contribution will
be small as long as the system’s mass ratio is large. Some of
the errors arising from this neglect can accumulate secu-
larly, leading to phase errors up to several radians after an
inspiral. Postadiabatic corrections will change the ampli-
tude and phase of Eq. (4.1) in such a way as to correct the
adiabatic approximation’s fast-time over slow-time errors.
See Ref. [20] for further discussion.
In our applications, we are typically more interested in

the waveform hðtiÞ than in ψ4ðtiÞ. This is given by

hðtiÞ≡X
lmkn

hlmknðtiÞ ¼
1

r

X
lmkn

HlmknðtiÞei½mφ−ΦmknðtiÞ�; ð4:3Þ

where

HlmknðtiÞ ¼ AlmknðtiÞSlm½ϑ; aωmknðtiÞ� ð4:4Þ

and

AlmknðtiÞ ¼ −
2Z∞

lmknðtiÞ
ωmknðtiÞ2

: ð4:5Þ

Equation (4.3) showcases the “multivoice” structure of
EMRI waveforms: each hlmknðtiÞ that contributes to hðtiÞ
constitutes a single “voice” in this waveform. As we will
see in Secs. VII and VIII, even when the waveform is
complicated, each voice tends to be quite simple.
As discussed in Sec. III, we can compute the amplitudes

Ǎlmkn for the fiducial geodesic and then correct using the
phase factor ξmkn in order to get the wave amplitude for
our system’s initial conditions. Let us imagine we have
computed Ǎlmkn on a dense grid of orbits. Knowing
½pðti; eðtiÞ; xIðtiÞ�, it is then simple to construct the fiducial
amplitudes ǍlmknðtiÞ along an inspiral.
To convert from the fiducial amplitudes to AlmknðtiÞ, we

need the phase factor ξmknðtiÞ at each moment along the
inspiral. Recall that ξmkn depends on the angles χθ0 and χr0,
which set the polar and radial initial conditions. An
important feature of the adiabatic approximation is that
these angles are constant: χθ0 and χr0 do not change as
inspiral proceeds. However, the mapping between (χθ0, χr0)
and ξmkn does change as inspiral proceeds, leading to a
slow evolution in this phase factor. When postadiabatic
physics is included, this story changes: the angles χθ0 and
χr0 slowly evolve under the influence of orbit-averaged
conservative self-forces, and orbit-averaged spin-curvature
interactions. This will change the slow evolution of ξmkn
and is one way in which conservative effects leave an
observationally important imprint on EMRI waveforms.

V. FREQUENCY-DOMAIN DESCRIPTION

Our description so far has focused on presenting adia-
batic EMRI waveforms in the time domain. We showed that
the time-domain waveform can be regarded as a super-
position of different “voices,” each of which has its own
slowly evolving amplitude. In this section, we will exploit
this multivoice structure to compute the Fourier transform
of an EMRI waveform, thereby describing these waves in
the frequency domain.
Because all quantities in an EMRI evolve slowly (as long

as the two-timescale approximation is valid), our expect-
ation is that the stationary phase approximation (SPA) will
provide a high-quality approximation to the Fourier trans-
form. For some voices, the frequency evolution is not
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monotonic: some voices rises to a maximum frequency, and
then their frequency decreases. As we discuss below, it is
conceptually straightforward to extend the “standard” SPA
calculation in such a circumstance. We begin by reviewing
the standard calculation, then discuss voices whose fre-
quency evolution is not monotonic. We conclude this
section by describing how to assemble a frequency-domain
waveform with many voices.

A. Standard SPA calculation

We begin by assuming a single voice signal of the form

hþðtÞ − ih×ðtÞ≡ hðtÞ ¼ HðtÞe−iΦðtÞ: ð5:1Þ

The Fourier transform of this is given by

h̃ðfÞ≡
Z

∞

−∞
hðtÞe2πiftdt

¼
Z

∞

−∞
HðtÞei½2πft−ΦðtÞ�dt: ð5:2Þ

To compute the stationary phase approximation to the
Fourier transform, we expand the signal’s phase as

ΦðtÞ ¼ ΦðtSÞ þ 2πFðt − tSÞ þ π _Fðt − tSÞ2 þ � � � : ð5:3Þ

We will define the time tS momentarily. In Eq. (5.3), we
have introduced the signal’s instantaneous frequency and
the instantaneous frequency derivative at t ¼ tS:

F≡ 1

2π

dΦ
dt

����
tS

; _F ¼ dF
dt

≡ 1

2π

d2Φ
dt2

����
tS

: ð5:4Þ

We will assume that _F is small, in a sense to be made
precise below.
Using these definitions, we rewrite the Fourier transform

integral:

h̃ðfÞ ¼ e−iΦðtSÞ
Z

∞

−∞
HðtÞe2πi½ft−Fðt−tSÞ−ð1=2Þ _Fðt−tSÞ2�dt

¼ ei½2πftS−ΦðtSÞ�

×
Z

∞

−∞
Hðt0 þ tSÞe2πi½ft0−Ft0−ð1=2Þ _Fðt0Þ2�dt0: ð5:5Þ

On the second line, we changed the integration variable to
t0 ¼ t − tS. The integrand of Eq. (5.5) very rapidly oscil-
lates unless the Fourier frequency f matches the instanta-
neous frequency F. When this condition is met, the phase is
stationary: it is approximately constant, varying very
slowly due to the contribution from _F, which is assumed
to be small.
We take the time tS to be the time at which the phase

is stationary. Let us rewrite it as tðfÞ, the time at which
FðtÞ ¼ f. Under the assumption that the largest

contribution to the integral comes from t0 ≃ 0, or equiv-
alently from t ≃ tðfÞ, we have

h̃ðfÞ ≃H½tðfÞ�ei½2πftðfÞ−ΦðtðfÞÞ�
Z

∞

−∞
e−iπ _F½tðfÞ�ðt0Þ2dt0: ð5:6Þ

This integral can be evaluated with standard methods, and
we finally obtain

h̃ðfÞ ≃H½tðfÞ�ei½2πftðfÞ−ΦðtðfÞÞ−π=4�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_F½tðfÞ�

q : ð5:7Þ

Note that _F can be positive or negative, and it appears under
the square root. To eliminate ambiguity about the phase of
this voice in the frequency domain, we clean this up as
follows:

h̃ðfÞ ≃H½tðfÞ�ei½2πftðfÞ−ΦðtðfÞÞ∓π=4�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j _F½tðfÞ�j

q : ð5:8Þ

We choose the minus sign in the exponential if _F > 0, and
the plus sign for _F < 0. This approximation works well
when both FðtÞ and HðtÞ change slowly:���� 1F dH

dt

���� ≪ jHj;
���� 1F dF

dt

���� ≪ jFj: ð5:9Þ

It also requires that the signal frequency F evolve mono-
tonically—the sign of dF=dt cannot change.

B. Nonmonotonic frequency

What if our signal has a frequency which does not evolve
monotonically? In particular, what if F rises to a maximum
and then decreases, or falls to a minimum and then
increases? When this occurs, two problems arise with
the standard SPA analysis. First, in this circumstance there
are multiple solutions to the condition FðtÞ ¼ f. The signal
at frequency f must include contributions from all times
from which the signal frequency F equals the Fourier
frequency f. Second, _F ¼ 0 at the moment that the
evolution of F switches sign. The standard SPA Fourier
transform is singular at that point. These issues affect EMRI
signals, since the frequency associated with many voices
rises to a maximum and then decreases. In particular, this
occurs for EMRI voices which involve harmonics of the
radial frequency:Ωr reaches a maximum in the strong field,
then goes to zero as the inspiral approaches the last
stable orbit.
The root cause of the singularity is that the standard SPA

assumes that FðtÞ and _FðtÞ completely describe the signal’s
phase. If _F vanishes at frequency f, then the calculation
assumes that all times contribute to the Fourier integral at f,
and the integral (5.6) diverges. (This is consistent with the
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fact that the Fourier transform of a constant-frequency
signal is a delta function.) However, for real EMRI signals,
FðtÞ is not constant when _F ¼ 0; the singularity in the SPA
analysis is an artifact of our assumption that FðtÞ and _FðtÞ
completely characterize the signal’s phase. To remove this
artifact, we need more information about the signal’s phase
evolution. Let us therefore include the next term in the
expansion:

ΦðtÞ¼ΦðtSÞþ2πFðt− tSÞþπ _Fðt− tSÞ2þ
π

3
 Fðt− tSÞ3 � � � ;

ð5:10Þ

where

 F≡ 1

2π

d3Φ
dt3

����
tS

: ð5:11Þ

Now, we revisit Eq. (5.2) but use Eq. (5.10) to expand the
phase. We again find that tS is the stationary time, for which
F ¼ f. However, there may be multiple roots of the
equation FðtÞ ¼ f. Let us define tjðfÞ to be the jth time
at which FðtÞ ¼ f, and write _Fj ≡ _F½tjðfÞ�,  Fj ≡  F½tjðfÞ�.
For EMRI waveforms, N ≤ 2. Each value of j contributes
to the Fourier transform, so we have

h̃ðfÞ ≃
XN
j¼1

H½tjðfÞ�ei½2πftjðfÞ−ΦðtjðfÞÞ�
Z

∞

−∞
e−iπ½ _Fjðt0Þ2þ  Fjðt0Þ3=3�dt0: ð5:12Þ

To perform this integral, we set α ¼ γ þ 2πi _F, with γ real and positive. We define β ¼ 2π  F, and useZ
∞

−∞
e−αt

2=2−iβt3=6dt ¼ 2ffiffiffi
3

p α

jβj e
α3=3β2K1=3ðα3=3β2Þ; ð5:13Þ

where KnðzÞ is the modified Bessel function of the second kind. Taking the limit γ → 0, we find

h̃ðfÞ ≃ 2ffiffiffi
3

p
XN
j¼1

H½tjðfÞ�ei½2πftjðfÞ−ΦðtjðfÞÞ� i
_Fj

j  Fjj
e−2πi

_F3
j =3  F

2
jK1=3ð−2πi _F3

j=3  F2
jÞ: ð5:14Þ

This result defines our “extended” SPA.
It is useful to examine two limits of Eq. (5.14). To facilitate taking these limits, we define

Xj ≡ 2π

3

_F3
j

 F2
j
: ð5:15Þ

First, we take _Fj to be arbitrary and expand about  Fj ¼ 0. To set this up this, we eliminate  Fj in Eq. (5.14):

h̃ðfÞ ≃
ffiffiffi
2

π

r XN
j¼1

H½tjðfÞ�ei½2πftjðfÞ−ΦðtjðfÞÞ�
_Fjffiffiffiffiffiffi
_F3
j

q i
ffiffiffiffiffi
Xj

p
e−iXjK1=3ð−iXjÞ: ð5:16Þ

Expanding about  Fj is equivalent to examining Eq. (5.16) for Xj → �∞. Using

_Fjffiffiffiffiffiffi
_F3
j

q ¼ j _Fjj−1=2 _Fj > 0;

¼ ij _Fjj−1=2 _Fj < 0; ð5:17Þ

and, for X real,

lim
X→�∞

i
ffiffiffiffi
X

p
e−iXK1=3ð−iXÞ ¼

ffiffiffi
π

2

r
e−iπ=4

�
1 −

5i
72

1

X
þ � � �

�
; ð5:18Þ

we have
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h̃ðfÞ ¼
XN
j¼1

H½tjðfÞ�ei½2πftjðfÞ−ΦðtjðfÞÞ∓π=4�

j _Fjj1=2
�
1 −

5i
48π

 F2
j

_F3
j

þ � � �
�
: ð5:19Þ

The minus sign in the exponential is for _F > 0; the plus sign is for _F < 0. Equation (5.19) is an accurate approximation
when j  Fjj2 ≪ j _Fjj3. Notice that we recover the standard SPA result, Eq. (5.8), when  Fj ¼ 0 and N ¼ 1.
Next, we allow  Fj to be any real value and expand about _Fj ¼ 0. To do this, use Eq. (5.15) to replace _Fj with powers of

Xj and  Fj in Eq. (5.14),

h̃ðfÞ ≃ 22=3

31=6π1=3

XN
j¼1

H½tjðfÞ�ei½2πftjðfÞ−ΦðtjðfÞÞ�
 F2=3
j

j  Fjj
iXj

1=3e−iXjK1=3ð−iXjÞ; ð5:20Þ

and expand about Xj ¼ 0. Using

lim
X→0

iX1=3e−iXK1=3ð−iXÞ ¼
e2πi=3Γð1

3
Þ

22=3

�
1 − X2=3 e

2πi=3Γð− 1
3
Þ

22=3Γð1
3
Þ

�
; ð5:21Þ

we find

h̃ðfÞ ≃ e2πi=3Γð1
3
Þ

31=6π1=3

XN
j¼1

H½tjðfÞ�ei½2πftjðfÞ−ΦðtjðfÞÞ�
 F2=3
j

j  Fjj
�
1 − e2πi=3

�
π

3

�
2=3 Γð− 1

3
Þ

Γð1
3
Þ

_F2
j

 F4=3
j

þ � � �
�
: ð5:22Þ

Equation (5.22) is accurate when j _Fjj2 ≪ j  Fjj4=3. Notice
that this result is well behaved and finite at _Fj ¼ 0,
demonstrating that the extended SPA cures the singularity
at points where the rate of change of the instantaneous
signal frequency passes through zero.
We note here that the issue of a signal’s frequency and

frequency derivative both vanishing was examined by
Klein, Cornish, and Yunes [48] in the context of compa-
rable mass binaries with spinning and precessing constitu-
ents. Although superficially similar to the case we discuss
here, the root cause of the pathology in their case was rather
different. In addition to having an orbital timescale To and
an inspiral timescale T i, the waveforms from precessing
binaries vary on precession timescalesTp which are typically
intermediate to T i and To. A given binary typically exhibits
precession onmultiple timescales, depending on the binary’s
spins. Such a waveform may also be considered “multi-
voice,” due to the evolution of features in different harmon-
ics. One finds in this case that the stationary points of
different voices can coalesce, leading to a pathological SPA
estimate for the waveform’s Fourier transform. Each indi-
vidual voice, however, remains well behaved, in contrast to
the case for EMRIs. As such, their treatment does not need to
use additional information about the frequency evolution, as
we find is necessary in our analysis.
Figure 1 illustrates how these elements come together

for a voice that showcases many of the features we have
discussed here. We show the l ¼ m ¼ 2, k ¼ 0, n ¼ 20
voice for an equatorial Kerr inspiral with a ¼ 0.9M,

pinit ¼ 12M, einit ¼ 0.7, and mass ratio ε ¼ 10−3. The full
time-domain waveform and additional voices are discussed
for this case in more detail in Sec. VIII A.
On the left-hand side of Fig. 1, we show this voice’s

time-domain amplitude and the evolution of its frequency.
The voice frequency increases until it reaches a maximum,
then rapidly decreases, at least until the inspiral ends
several hundred M after reaching this maximum. The
Fourier transform, computed using Eq. (5.14) and shown
in the right-hand panels, has two branches: the branch with
_f > 0, shown as the long-dashed curve in the upper right-
hand panel of Fig. 1; and the branch with _f < 0, shown as
the short-dashed curve in this panel.
Combining the two branches yields the solid curve

shown in the lower right-hand panel of Fig. 1. We overlay
on this plot a discrete Fourier transform computed using
this time-domain voice; because of the large dynamic range
in the signal’s amplitude, we consider separately a low-
frequency DFT (focusing on data for ti ≲ 5.5 × 105M, for
which f ≲ 0.018M) and a high-frequency DFT (focusing
on data for ti ≳ 5.5 × 105M). We use a Tukey window of
width 500M to taper these segments of the time-domain
signal. Aside from lobes near the boundaries associated
with these windows, we see perfect agreement between the
DFT and the SPA. Notice the interesting structure in the
band 0.024≲Mf ≲ 0.037. This arises from beating
between the contributions along the branches with _f > 0

and _f < 0: at each frequency in this band, the signal
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contributes at two different times, and with two different
phases. Additional examples of voices, in both the time and
frequency domains, are shown in Secs. VII and VIII.

C. Multiple voices

Generalization to a multivoice signal is straightforward.
Let us write our signal in the time domain

hðtÞ ¼
X
V

HVðtÞe−iΦVðtÞ; ð5:23Þ

where V labels the voice and is shorthand for all the mode
indices which describe each voice of the waveform. For
generic EMRIs, V ≡ ðl; m; k; nÞ.

The calculation proceeds as before, but now the
phase is stationary for each voice at some moment. We
define

FV ¼ 1

2π

dΦV

dt
ð5:24Þ

and likewise define _FV ,  FV . We assume that the condition
FVðtÞ ¼ f has NV solutions for voice V, and we define
tj;VðfÞ to be the jth such solution. (As stated in the previous
section, NV will be either 1 or 2 for EMRIs.) The
stationary-phase Fourier transform is then

h̃ðfÞ ¼ 2ffiffiffi
3

p
X
V

XNV

j¼1

HV ½tj;VðfÞ�ei½2πftj;VðfÞ−ΦVðtj;VðfÞÞ� i
_Fj;V

j  Fj;V j
exp

�
−
2πi
3

_F3
j;V

 F2
j;V

�
K1=3

�
−
2πi
3

_F3
j;V

 F2
j;V

�

≡X
V

h̃lmknðfÞ: ð5:25Þ

FIG. 1. An example of the time-domain and frequency-domain structure of one voice: l ¼ m ¼ 2, k ¼ 0, n ¼ 20, for an equatorial
Kerr inspiral with a ¼ 0.9M, pinit ¼ 12M, einit ¼ 0.7, and mass ratio ε ¼ 10−3. On the left, we show this voice’s amplitude (top) and
frequency (bottom) as a function of time over the inspiral. The voice’s frequency increases until it reaches fmax ≃ 0.037=M; it then
reverses and falls to ffinal ≃ 0.024=M at the end of inspiral. The spiky features occur when this amplitude passes through zero (note the
log scale). On the right, we show the frequency-domain structure computed with the extended SPA. In the top right, we examine
contributions to the SPA along the two branches of FðtÞ ¼ f. The curve with long dashes is the magnitude of the SPA for the branch
with _f > 0; the curve with short dashes is for the branch with _f < 0. The bottom right shows the final SPA Fourier transform, obtained
by summing contributions from the two branches, and compares this to a discrete Fourier transform (DFT). Because of the large
dynamic range between the low-frequency and high-frequency behavior of this voice, we separately examine the DFT for the early-time,
low-frequency portion (corresponding to ti ≲ 5.5 × 105M, plotted with magenta dashes) and the DFT for the late, high-frequency
portion (ti ≳ 5.5 × 105M, plotted with blue dots). Modulo lobes at the boundaries of the two DFTs (associated with the Tukey window
used to taper the time-domain signal near these boundaries), the DFTs coincide perfectly with the SPA. Notice the interesting behavior in
the band 0.024≲Mf ≲ 0.037. This arises from beating between the contributions along the two branches.
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We have introduced _Fj;V ≡ _FV ½tj;VðfÞ� and  Fj;V≡
 FV ½tj;VðfÞ�. Depending on the relative values of various
powers of _Fj;V and  Fj;V , one can expand the Vth voice as in
Eqs. (5.19) or (5.22).

VI. IMPLEMENTATION

In this section, we describe various technical details by
which we implement this formalism for computing EMRI
waveforms. To make an adiabatic inspiral and its associated
waveform, we lay out a grid of orbits, parametrized by each
orbit’s ðp; e; xIÞ. We store all the data at each grid point
needed to construct the inspiral and the waveform. We then
interpolate to estimate the values of each datum at locations
away from the grid points. In this section, we describe this
data grid and the data which are stored on it, and details of
how we interpolate data off the grid. We emphasize that
there is surely a great deal of room to improve on the
techniques we present here; indeed, we used different
algorithms to design our data grid and to perform inter-
polation in a closely related companion analysis (Ref. [16]).
For this initial study, the grids and interpolation techniques
we use are chosen for ease of use. In later work, we plan to
investigate how best to optimize the grids and interpolation
methods for speed and accuracy of waveform calculation.

A. EMRI data grids

We store our data on a grid that is rectangular in
p − pLSO, e, and xI, where pLSO parametrizes the last
stable orbit (LSO). The value of pLSO is easy to calculate as
a function of e and xI [49], making it simple to set up a
grid in this space. We set our innermost grid point to
pmin ¼ pLSO þ 0.02M, slightly outside of the LSO. The
radial frequency Ωr → 0 as p → pLSO, which means that
Fourier expansions in Ωr tend to be badly behaved as the
LSO is approached; this can be regarded as a precursor to
the small body’s plunge into the black hole [50,51] at the
end of inspiral. Very little inspiral remains when the small
body has reached our choice ofpmin, sowe are confident that
the error incurred by truncating at pmin (rather than closer to
pLSO) is negligible. That said, it should be emphasized that
this choice ofpmin has not been carefully evaluated. It will be
useful to systematically examine how to select the grid’s
inner edge in future “production quality” work.
Many important quantities vary rapidly near the LSO.

Of particular importance is the phase of Ǎlmkn, which tends
to rotate rapidly as p → pLSO. It is crucial to resolve this
behavior in order to compute accurate waveforms. To
account for this behavior, we use a grid whose density
increases near pLSO. For this paper, our grid is uniformly
spaced in

u≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p − 0.9pLSO

p : ð6:1Þ

Using this spacing, we have laid down 40 points between
pmin ¼ pLSO þ 0.02M and pmax ¼ pmin þ 10M. Different
choices certainly could be used—for example, a grid
reaching to larger p and with a different algorithm for
increasing density near pLSO was used in Ref. [16]. The
choice of p spacing is an example of an issue that should be
more carefully investigated, and perhaps empirically
designed depending on what works best given computing
resources and accuracy needs for one’s application.
For any X stored on our grid, dX=de → 0 as e → 0.

Empirically, we find it is important to have dense grid
coverage for small e in order for this behavior to be
accurately captured. For this paper, we have used grids that
run over 0 ≤ e ≤ 0.8 in steps of Δe ¼ 0.1. Work in
progress [52] suggests that this spacing may introduce
small systematic errors in computing the inspiral rate as a
function of initial eccentricity; using higher density across
at least the small-e part of this range appears to effectively
address this. More detailed discussion of this point will be
presented in later work [52].
For fixed p − pLSO and fixed e, all our stored data tends

to be very smooth and indeed nearly linear as a function
of xI. Our grid covers the range −1 ≤ xI ≤ 1, with 16
points spaced by ΔxI ¼ 2=15 ≃ 0.1333.
We store the following data at each grid point:
1. The rates of change ðdE=dtÞ∞;H, ðdLz=dtÞ∞;H, and

ðdQ=dtÞ∞;H obtained by summing over many modes
until convergence has been reached, using the
convergence criteria described in Sec. III C.

2. The rates of change of the orbital elements
ðdp=dtÞ∞;H, ðde=dtÞ∞;H, and ðdxI=dtÞ∞;H obtained
by using the Jacobian described in Appendix B with
these fluxes.

3. The fiducial amplitude Ǎlmkn for all modes used to
compute ðdE=dtÞ∞, ðdLz=dtÞ∞, and ðdQ=dtÞ∞.

So far, we have constructed such datasets for spherical
(e ¼ 0) and equatorial orbits (xI ¼ �1) for a=M ∈
½0; 0.1; 0.2;…; 0.9; 0.95; 0.99�, as well as for generic orbits
for spin a ¼ 0.7M covering 0 ≤ e ≤ 0.4. These data are
produced using the code GREMLIN, a frequency-domain
Teukolsky solver primarily developed by author Hughes,
with significant input from collaborators. The core methods
of this code are described in Refs. [33,37] and updated to
use methods developed in Refs. [39,40] for solving the
homogeneous Teukolsky equation; see Ref. [53] for further
discussion.
Two-dimensional orbits (eccentric and equatorial, or

spherical and inclined) typically require several hundred
to several thousand modes in order to converge as described
in Sec. III C, reaching ∼104 modes in the strongest fields.
The number of modes needed for the convergence of
generic orbits is an order of magnitude or two larger.
Each spherical orbit mode requires about 0.1 seconds of
CPU time for small values of l, increasing to roughly
0.25 seconds for modes with l ¼ 10. Computing eccentric
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orbit modes is more time consuming, since each mode
involves an integral over the radial domain covered by its
orbit. This cost also varies significantly by radial mode
number n. For small l, modes for small eccentricity
(e≲ 0.2) take on average 1 CPU second or less,
medium-eccentricity modes (e ≈ 0.5) average about 5–10
CPU seconds, and large-eccentricity modes (e ¼ 0.8)
average 30–40 CPU seconds each. These averages are
skewed significantly by larger values of n, for which the
integrand of Eq. (3.13) rapidly oscillates, and the integral
tends to be small compared to the magnitude of the
integrand. At l ¼ 10, these times increase: small-
eccentricity modes take on average up to 20 CPU seconds,
medium eccentricity modes average about 40–50 CPU
seconds, and large eccentricity modes require on average
150 seconds.
The CPU cost per mode is ameliorated by the fact that

each orbit ðp; e; xIÞ and each mode ðl; m; k; nÞ is indepen-
dent of all others. As such, this problem is embarrassingly
parallelizable, and datasets can be effectively generated
on distributed computing clusters. The datasets described
above are publicly available through the Black Hole
Perturbation Toolkit [54]. Plans to extend these sets,
develop further examples, and release the GREMLIN code
are described in Sec. IX.

B. Interpolating and integrating across the grid

To find data away from the grid points, in this analysis
we use cubic spline interpolation in the three directions.
Because our grid is rectangular in ðp − pLSO; e; xIÞ, this can
be implemented effectively, and is adequate for demonstrat-
ing how to build adiabatic waveforms and illustrating the
results. Cubic spline interpolation for the individual mode
amplitudes will not scale well to “production-level” code, in
terms of computational efficiency and memory considera-
tions. In Ref. [16], a set of the present authors used reduced-
ordermethodswithmachine learning techniques to construct
a global fit to the set ofmode amplitudes, finding outstanding
efficiency gains in an initial study of Schwarzschild EMRI
waveforms. Future work will apply these techniques to the
more generic conditions we examine here.
Other data needed to construct the waveform (for

example, the geodesic frequencies Ωr;θ;ϕ and the phases
ξmkn) are calculated at each osculating geodesic as inspiral
proceeds. Substantial computing speed could be gained by
storing and interpolating such data; indeed, all such data
tend to evolve smoothly and fairly slowly over an inspiral,
so it is likely that effective interpolation could be imple-
mented. We leave an investigation of what to store and
interpolate versus what to compute for future work and
future optimization.

FIG. 2. The waveform hþ for inspiral into a Schwarzschild black hole with ðpinit; einit; xI;initÞ ¼ ð12M; 0.2; 1Þ (left-hand panels) and
ðpinit; einit; xI;initÞ ¼ ð12M; 0.7; 1Þ (right-hand panels). The waves are observed in the plane of the orbit, so h× ¼ 0, and the mass ratio is
ε ¼ 10−3 in all cases. The top panels show the complete inspiral waveform over this domain, with the initial radial anomaly angle
χr0 ¼ 2π=3. The bottom panels compare hþ including the phase corrections ξm0n (solid [red] curves) with hþ neglecting these
corrections (i.e., incorrectly using the fiducial amplitudes Ǎlm0n; dashed [blue] curves). In both cases, we compare early times (the first
3000M of inspiral) and late times (an interval of 1000M near the end of inspiral). Neglecting ξm0n leads to significant differences in the
waveforms.
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To make an adiabatic inspiral, we construct a sequence of
osculating geodesics, parametrized by ½pðtiÞ; eðtiÞ; xIðtiÞ�
given initial conditions ½pinit; einit; xI;init�. To do this, we
interpolate to find dp=dt, de=dt, and dxI=dt at each
inspiral time ti, then use a fixed-step-size fourth-order
Runge-Kutta integrator to construct the inspiral. This
simple method is an obvious point for improvement in
future work; indeed, in the related analysis [16], we used a
variable-step-size eighth-order Runge-Kutta integrator.
Note that both ðdp=dtÞ and ðde=dtÞ are singular as

the LSO is approached. This is because the Jacobian
(Appendix B) relating these quantities has zero determinant
at the LSO. This singularity can adversely affect the accuracy
of interpolating these quantities. Multiplying both ðdp=dtÞ
and ðde=dtÞ by ðp − pLSOÞ2, which exactly describes the
singularity in the zero-eccentricity limit and approximately
describes it in general, yields smooth data which interpolate
very well. Another approach is to interpolate the fluxes
dE=dt, dLz=dt, and dQ=dt, normalized by post-Newtonian
expansions of these quantities in order to “divide out” their
most rapid variations across orbits. This would construct
a sequence of osculating geodesics parametrized as
½Eðti; LzðtiÞ; QðtiÞ�. Determining the most efficient way to
parametrize these orbits in order to optimize waveform
construction for speed and accuracy are very natural direc-
tions for future work.

VII. RESULTS I: EXAMPLE SCHWARZSCHILD
EMRI WAVEFORMS AND THEIR VOICES

We now present examples of EMRI waveforms and their
voices in the time and frequency domains. Our goal is not
to exhaustively catalog EMRI waveforms, but just to
present examples which showcase the behavior that we
find, and how this behavior tends to correlate with source
properties. We begin here with results for Schwarzschild;
the next section shows Kerr results.
Thanks to spherical symmetry, Schwarzschild orbits

are confined to a plane, which we define as equatorial.
We can thus set Q ¼ 0 and focus on voices with k ¼ 0 (i.e.,
neglecting harmonics of the θ motion). We examine two
cases: one starts at ðpinit; einitÞ ¼ ð12M; 0.2Þ and inspirals to
efinal ≃ 0.107; the other starts at ðpinit; einitÞ ¼ ð12M; 0.7Þ
and inspirals to efinal ≃ 0.374. In both cases, pfinal follows
from theSchwarzschild last stable orbit:pLSO ¼ ð6þ 2eÞM.
We use mass ratio ε ¼ 10−3 in all the cases we examine,
both here and in the following section. Results for other
extreme mass ratios can be inferred by scaling durations and
accumulated phases with 1=ε.

A. Waveforms in the time domain

The top two panels of Fig. 2 show hþ for the two
Schwarzschild inspirals we examine, both with initial
anomaly angle χr0 ¼ 2π=3. The waveform is shown in
the system’s equatorial plane, so h× ¼ 0. For the case with

FIG. 4. The same as Fig. 3, but for an inspiral with pinit ¼ 12M,
einit ¼ 0.7. These phases show more variation in this case than
when einit ¼ 0.2, although the curves still show only gentle
variations until the system approaches the end of inspiral.

FIG. 3. The phase correction ξ100 (bottom panel) and ξ001 (top
panel) for inspiral with pinit ¼ 12M, einit ¼ 0.2 at mass ratio
ε ¼ 10−3. In both panels, the solid (black) line corresponds to
χr0 ¼ 0, dotted (red) curves show χr0 ¼ π=6, short-dashed (blue)
curves show χr0 ¼ π=2, long-dashed (magenta) curves show
χr0 ¼ 11π=6, and dot-dashed (green) curves show χr0 ¼ 3π=2.
Notice that these curves show only gentle variation until nearly
the end, with many changing rapidly as the inspiral approaches
the last stable orbit.
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einit ¼ 0.2, we plot contributions from all modes with
l ∈ ½2; 3; 4�, m ∈ ½−l;…; l�, n ∈ ½0;…; 10� (as well as
modes simply related by symmetry); for the case with
einit ¼ 0.7, we use the same l and m range, but go over
n ∈ ½0;…; 40�. As in our discussion of the convergence of
adiabatic backreaction in Sec. III C, we emphasize that we
have not carefully analyzed how many modes to include.
This range produces visually converged waveforms—
additional modes do not change the waveform enough to
impact the figures. This is adequate for this paper.
The lower panels of Fig. 2 show the influence of the

phase ξm0n on the waveform, zooming in on early and late
times. The red curves include all ξm0n corrections, and the
blue curves neglect them, showing inspirals made using
the fiducial amplitudes Ǎlm0n. Both early and late in the
inspiral, the phase correction has a noticeable influence.
This is not surprising, since the impact of ξm0n is to adjust
the system’s initial conditions—different choices of ξm0n
correspond to physically different inspirals. The influence
on the large-eccentricity case is particularly strong.
Figures 3 and 4 show how the phases ξ001 (top panels)

and ξ100 (bottom panels) evolve over these inspirals.

We show these phases for initial anomaly angles χr0 ¼ 0
(solid [black] curves), π=6 (dotted [red]), π=2 (short-dashed
[blue]), 3π=2 (dot-dashed [green]), and 11π=6 (long-
dashed [magenta]). For the small-eccentricity case, both
ξ001 and ξ100 are nearly flat over the inspiral, though they
show significant variation in the very last moments. The
variation is larger in the higher-eccentricity case for ξ001,
changing by almost a radian over the inspiral for χr0 ¼ π=2
and 3π=2 even before reaching the large change at the very
end. In all cases, ξ100 and ξ001 are smooth and well behaved.
They are also relatively simple to calculate, only requiring
information about the geodesic with parameters p and e.
Since computing Alm0n is an expensive operation, one
should only compute the fiducial amplitudes Ǎlm0n and use
the phase ξm0n ¼ mξ100 þ nξ001 to convert.
To calibrate how well the phases ξm0n allow us to account

for initial conditions, we compare the waveform assembled
voice by voice with one computed independently using a
time-domain Teukolsky equation solver. For the compari-
son waveform, we compute the worldline followed by an
inspiraling body, use it to build the source for the time-
domain Teukolsky equation as described in Ref. [18], and
then compute the waveform using the techniques developed
in Refs. [18,19]. The time-domain solver projects its output

FIG. 6. Same as Fig. 5, but for χr0 ¼ 2π=3; the multivoice data
shown here are identical to the l ¼ 2, m ¼ 2 χr0 ¼ 2π=3 data
shown in Fig. 2. The two waveforms agree very well at early
times, but a secular offset accumulates in this case; as shown in
the lower panel, the two waveforms are roughly 2 radians out of
phase by ti ≃ 1.5 × 105M. This grows to about 4 or 5 radians by
the end of inspiral. Our hypothesis is that the time-domain
integrator includes slow-time contributions (i.e., contributions
from source terms that evolve on the longer inspiral timescale T i)
which are left out of the adiabatic waveform.

FIG. 5. The waveform for inspiral into a Schwarzschild black
hole with pinit ¼ 12M, einit ¼ 0.7, χr0 ¼ 0 at mass ratio ε ¼ 10−3

computed voice by voice using the methods described here (blue
crosses), and computed using a time-domain Teukolsky equation
solver for the worldline of an inspiral with these initial conditions.
Though only voices with l ¼ 2, m ¼ 2 are included, the multi-
voice data are otherwise identical to the χr0 ¼ 0 data shown in
Fig. 2. The top panel shows a stretch Δti ¼ 3000M near the
beginning of inspiral; the bottom shows a stretch Δti ¼ 1000M
near ti ¼ 1.5 × 105M, roughly the middle of this inspiral. The
two calculations agree perfectly in these two snapshots; we in fact
find that they hold this agreement all the way to the end
at ti ≃ 3 × 105M.
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onto spherical ðl; mÞ modes of spin-weight −2; we focus
our comparison on voices with l ¼ 2, m ¼ 2.

Figures 5–7 summarize the results that we find for
Schwarzschild inspiral with pinit ¼ 12M, einit ¼ 0.7.
Figure 5 shows what we find when the initial anomaly angle
χr0 ¼ 0. In this case, we find that the waveform assembled
voice by voice and the time-domain comparison remain in
phase for the entire inspiral. In the figure, we compare the
two waveforms for a stretch of duration Δti ¼ 3000M at
the beginning of inspiral as well as a stretch of duration
Δti ¼ 1000M in themiddle (near ti ¼ 1.5 × 105M). The two
waveforms lie on top of each other in both cases; for this
choice of χr0we find an excellentmatch all theway to the end
at ti ≃ 3 × 105M.
Figure 6 shows the inspiral waveforms when we set

χr0 ¼ 2π=3. In this case, we find a secular drift which
accumulates as inspiral proceeds. The top panel is again a
stretch Δti ¼ 3000M from the beginning of inspiral; as in
Fig. 5, the two computed waveforms lie on top of one
another. However, by ti ¼ 1.5 × 105M, the two waveforms
are about 2 radians out of phase, as can be seen in the lower
panel of this figure. This mismatch grows to about 4 or
5 radians by the end of the inspiral.
As discussed in Sec. IV, our solution neglects the impact

of “slow-time” derivatives on EMRI evolution, leaving
out time derivatives of terms which vary on the inspiral
timescaleT i. As such, our solution only solves the Teukolsky

FIG. 8. Some of the voices which contribute to hþ for the case ðpinit; einitÞ ¼ ð12M; 0.2Þ, as shown in the left panels of Fig. 2. The
magnitude of the amplitude jHlm0nðtiÞj is on the left; the phase Φm0nðtiÞ is on the right. The top panels show voices with l ¼ 4 and
m ¼ 4; the bottom panels show l ¼ 2 and m ¼ 2. Solid (red) curves are data with n ¼ 0, short-dashed (blue) curves are n ¼ 1, long-
dashed (green) curves are n ¼ 2, dot-dashed (magenta) curves are n ¼ 3, and dotted (black) curves are n ¼ 4. In all cases, both the
amplitude and the phase evolve smoothly and simply. As functions of time, these voices can be sampled much less densely than hþ must
be sampled in order to accurately track its behavior.

FIG. 7. Same as Fig. 6, but using the ad hoc phase modification
introduced in Eq. (7.1). This correction adjusts the orbital phase
with a term that depends on the inspiral rate. Though this
correction has not been rigorously computed, it nonetheless
substantially improves the agreement between the two wave-
forms, at least over this domain of ti. (As described in the text,
the waveforms drift from one another as inspiral continues.)
This supports the hypothesis that this drift arises due to slow-time
variations neglected in the adiabatic approximation.
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equation (3.2) up to errors ofOðεÞ. The time-domain solver,
by contrast, finds a solution which, up to numerical dis-
cretization, solves Eq. (3.2) at all orders in To=T i. Our
hypothesis is that this phase offset is because the time-
domain solver captures at least some of the “slow-time”
derivatives which are missed by the adiabatic construction.
Interestingly, the magnitude of the offset depends strongly
on χr0. By examining multiple values of χr0, we find that
the effect varies at least approximately as 1 − cos χr0. This
suggests that a slow-time variation in ξm0n may play a
particularly important role in this secular drift.
To test the hypothesis that the offset is due to overlooked

slow-time terms, we replaced the accumulated phase,
Eq. (4.2), with the following ad hoc modification:

Φmod
m0nðtiÞ ¼

Z
ti

t0

�
mΩϕ

�
1þ ð1 − cos χr0Þ

3

2

dp=dt
pΩϕ

�

þ nΩr

�
1þ ð1 − cos χr0Þ

3

2

dp=dt
pΩr

��
dt: ð7:1Þ

The factor of ð1 − cos χr0Þ in this modification accounts for
the empirical dependence on χr0 that we found; the factor of

dp=dt connects this phase to the inspiral, and the factors
1=p and 1=Ωr;ϕ provide dimensional consistency. The
numerical factor 3=2 was determined empirically. It is
interesting to note that a slow-time evolution in the
Newtonian limit yields

dΩ
dt

¼ −
3

2

dp
dt

Ω
p
− 3e

de
dt

Ω
1 − e2

: ð7:2Þ

Our empirical phase modification appears to be consistent
with a weak-field correction associated with the rate at
which p changes due to inspiral.
We strongly emphasize that Eq. (7.1) is completely

ad hoc, and has not been justified by any careful calcu-
lation. However, we find that it does surprisingly well at
improving the match between the two calculations.
Figure 7 is the equivalent of Fig. 6, but with Eq. (7.1)
used to compute the phase rather than Eq. (4.2). Notice that
the two waveforms lie on top of one another, at least over
the domain shown here. As inspiral proceeds, our ad hoc
fix becomes less accurate: we find a roughly 1-radian
offset between the two waveforms when ti ≃ 2.5 × 105M,

FIG. 9. Some voices with l ¼ 2 and m ¼ −2 which contribute
to hþ for the small-eccentricity case shown in Fig. 2. Colors and
definitions are exactly as in Fig. 8. The behavior of modes with
n ¼ 3 and n ¼ 4 are interesting: During the inspiral, there are
moments at which the phase evolution reverses direction,
corresponding to the voice’s instantaneous frequency changing
sign. The amplitudes corresponding to these voices pass through
zero at times very close to these moments. The zero passage of
these amplitudes leads to the sharp appearance that we see here.
The real and imaginary parts of H2−23 and H2−24 are perfectly
smooth.

FIG. 10. Some voices with l ¼ 2, m ¼ 2 which contribute to
the large-eccentricity waveform shown in Fig. 2. The top panel
shows the voices’ phase; the lower panel shows their amplitudes.
Solid (red) curves are data with n ¼ 0, short-dashed (blue) curves
are n ¼ 3, long-dashed (green) curves are n ¼ 6, dot-dashed
(magenta) curves are n ¼ 9, and dotted (black) curves are
n ¼ 12. In contrast to the small-eccentricity case, the voice with
n ¼ 0 does not dominate over most of the inspiral. In fact, of the
voices shown, the one which starts weakest (n ¼ 3) evolves to
become the loudest by the end of inspiral. Nonetheless, all
amplitudes and phases evolve in a smooth and simple way, just as
in the low-eccentricity case.
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growing to several radians by the end of inspiral. We find
nearly identically improved matches examining inspirals
with different values of χr0, and for different choices of
the mass ratio ε. Interestingly, including terms in de=dt
inspired by the weak-field rate of change of Ω does not
help, suggesting that the similarity to the weak-field
formula may be a coincidence.
This analysis indicates that the phase offset we find is

consistent with a postadiabatic effect, and therefore is
missed by construction when making adiabatic waveforms.
The surprising effectiveness of our ad hoc fix suggests that
it may not be too difficult to analytically model this
behavior and improve these waveforms.

B. Waveform voices

The waveforms shown and discussed in Sec. VII A are
fairly complicated, especially for the high-eccentricity case.
By contrast, the individual voices which contribute to these
waveforms are very simple, evolving smoothly and simply
on the much longer inspiral timescale.
Figures 8 and 9 show individual voices that contribute

for the case with einit ¼ 0.2. A handful of the voices we
show look jagged in these figures due to how we have
presented the data: the amplitude passes through zero in
some cases, so jHlm0nj appears spiky on a log-linear plot.
These zero passings correspond to moments when the
instantaneous frequency Fm0n ¼ ð1=2πÞdΦm0n=dt changes

sign. In this low-eccentricity case, the voices with l ¼ 2,
m ¼ �2, n ¼ 0 have the largest amplitudes.

Figure 10 shows some of the voices that contribute for
the case with einit ¼ 0.7. Again we see that the voices’
amplitudes and phases are smooth and well behaved. In
contrast to the small-eccentricity case, modes with n ¼ 0
do not dominate here. Of the voices we plot, n ¼ 6
dominates at early times, though it falls below several
other voices as the inspiral ends. The voice with n ¼ 3
starts out weakest, but it becomes strongest roughly half-
way through this inspiral.
All of the voices we examine have this behavior: both the

amplitudes and phases of individual voices evolve smoothly
on the inspiral timescale Ti. This property is shared by the
voices’ frequency-domain behavior. Following Sec. V, we
compute the frequency-domain representation of the voices
examined here; Figs. 11 and 12 show our results. Again,
we see that all the voices evolve smoothly over the inspiral.
The apparent spikiness in some cases (for example, the voice
with l ¼ m ¼ 4, n ¼ 4 for einit ¼ 0.2) is because this
voice’s amplitude passes through zero, and we show its
magnitude on a log scale. It is also worth noting that the
frequency range of different voices varies. This is because
our analysis begins in the time domain, and then transforms
to the frequency domain using the SPA. Different voices thus
start at different frequencies and reach different frequencies
at the end of inspiral.

FIG. 11. Frequency-domain representation of the voices shown in Figs. 8 and 9. The top-left panel shows voices with l ¼ m ¼ 2; the
bottom-left panel shows voices with l ¼ m ¼ 4; both panels on the right show voices with l ¼ 2, m ¼ −2. In all cases, the solid (red)
curves are the frequency-domain amplitudes with n ¼ 0; short-dashed (blue) curves are for n ¼ 1; long-dashed (green) curves are
n ¼ 2; dot-dashed (magenta) curves are n ¼ 3; and dotted (black) curves are n ¼ 4. (We use two panels for the voices with m ¼ −2 to
showcase the range in amplitude of this case.) Because we generate the waveform in the time domain and use the stationary-phase
Fourier transform, each voice spans a slightly different range of frequency.
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Both the time-domain and the frequency-domain repre-
sentations of these voices can be computed quickly and
efficiently. Future work, particularly data-analysis-focused
applications which compare EMRI waves to detector noise,
could benefit substantially by focusing upon the waveform
in voice-by-voice fashion, studying which voices are most
relevant for detection and measurement as a function of
source parameters.

VIII. RESULTS II: EXAMPLE KERR EMRI
WAVEFORMS AND THEIR VOICES

We next consider a few examples of inspiral into Kerr
black holes. Although certain important details differ from
the results discussed in Sec. VII, much of what we find for
Kerr inspiral waveforms is qualitatively quite similar to
those we find for the Schwarzschild case. As such, we keep
this discussion brief, focusing on the most important
highlights of this analysis. Future work will explore these
waveforms and their properties in depth.
We begin in Sec. VIII A with a discussion of two

constrained cases: one that initially has zero eccentricity,
but is inclined with respect to the hole’s equatorial plane;
and a second case that is equatorial, but starts with large
eccentricity. We then discuss one example of fully generic
(inclined and eccentric) inspiral in Sec. VIII B.

A. Constrained orbital geometry:
Spherical and equatorial inspirals

We begin our Kerr study with two cases of inspiral into
black holeswith spina ¼ 0.9M. In the first case,we examine
an orbit that is spherical, with large inclination to the black
hole’s equatorial plane. We take ðrinit; xI;initÞ ¼ ð10M; 0.5Þ.
This inspiral reaches the last stable orbit at r ¼ 3.820M,
xI ¼ 0.483. The orbit’s inclination is nearly constant during
inspiral, with xI decreasing very slightly. A similarly slight
decrease of xI is seen in all of the cases we have examined.

The left-hand panels of Fig. 13 show the gravitational
waveform we find in this case. For the time-domain
waveform, we plot contributions from all modes with
l ∈ ½2; 3; 4�, m ∈ ½−l;…; l�, k ∈ ½0;…; 10�, plus modes
that are simply related by symmetry. (For inspirals with
zero eccentricity, only voices with n ¼ 0 contribute.) The
strong influence of spin-orbit modulation can be seen in the
lower left-hand panels, which zoom in on early and late
times. These lower panels also illustrate the role of the
initial polar anomaly angle χθ0, contrasting the waveform
with χθ0 ¼ 2π=3 versus the one with χθ0 ¼ 0. The two
waveforms are similar in shape but shifted, consistent with
the fact that χθ0 controls the system’s initial conditions:
when χθ0 ¼ 0, the orbit is at θ ¼ θmin when t ¼ 0; for χθ0,
the orbit starts at a value of θ roughly midway between the
equator and θmax ¼ π − θmin.
The right-hand panels of Fig. 13 show several of the

voices with l ¼ m ¼ 2 which contribute to this waveform.
The trend we have found across all the cases we examine is
that voices with jkþmj ¼ l are loudest, and they fall off as
jkþmj moves away from this peak. This trend can be seen
in the cases shown here: the strongest voice has k ¼ 0,
followed by k ¼ −1. In the time domain, the voices with
k ¼ 2 and k ¼ 1 have roughly the same amplitude; the
voice with k ¼ −2 is the weakest of those shown here.
Interestingly, the voices with k ¼ 2, k ¼ 1, and k ¼ −2
have similar magnitude in the frequency domain. The factor

1=
ffiffiffiffi
_F

p
which enters the frequency-domain magnitude

compensates for the fact that this voice’s time-domain
amplitude is smaller by a factor of 2 or 3. Such differences
have important implications for the measurability of these
signals.
The second case we examine is an equatorial eccentric

inspiral, with ðpinit; einitÞ ¼ ð12M; 0.7Þ. These are the same
initial conditions we used for the high-eccentricity inspiral
into Schwarzschild we examined in Sec. VII. For Kerr
with spin a ¼ 0.9M, these initial conditions lead to a
much longer inspiral that goes very deep into the strong
field, becoming nearly circular before the plunge: inspiral
lasts for Δti ≃ 6.1 × 105M, roughly twice the duration of
the high-eccentricity Schwarzschild inspiral, and ends
with ðpfinal; efinalÞ ¼ ð2.40M; 0.057Þ.
The left-hand panels of Fig. 14 show the gravitational

waveform for this inspiral. For the time-domain waveform,
we include contributions from modes with l ∈ ½2; 3; 4�,
m ∈ ½−l;…; l�, n ∈ ½0;…; 40�, plus modes that are simply
related by symmetry; as in the Schwarzschild cases we
examined, only voices with k ¼ 0 contribute, since there is
no θ motion. The early waveform is qualitatively quite
similar to the early large-eccentricity waveform we found
for Schwarzschild (Fig. 2). The late waveform, by contrast,
is quite different, reflecting the fact that the orbit has nearly
circularized as it approaches the final plunge. As in the
Schwarzschild case, we see that the initial radial anomaly
angle χr0 has a large impact on the waveform.

FIG. 12. Frequency-domain representation of the voices shown
in Fig. 10. All curves show voices with l ¼ m ¼ 2. The solid
(red) curve is the frequency-domain amplitude with n ¼ 0; the
short-dashed (blue) curve is for n ¼ 3; the long-dashed (green)
curve is for n ¼ 6; the dot-dashed (magenta) curve is for n ¼ 9;
and the dotted (black) curve is for n ¼ 12.
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The right-hand panels of Fig. 14 show some of the
l ¼ m ¼ 2 voices which contribute to this waveform. An
interesting trend we see is that the importance of different
voices changes dramatically during inspiral. The evolution
of the n ¼ 0 voice is especially dramatic: it is fairly weak at
early times (and in fact passes through zero during the
inspiral), but it dominates the waveform at late times. This
makes sense—at late times, the system’s geometry is nearly
circular, and voices corresponding to radial harmonics play
a substantially less important role.

B. Generic Kerr inspiral

We conclude our discussion of results by looking at a
Kerr inspiral that is both inclined from the equatorial plane
and eccentric. As discussed in Sec. VI, we have not yet
generated dense datasets covering a wide range of such
orbits. The example shown here demonstrates that the
techniques we have developed to build adiabatic EMRI
waveforms have no difficulty with such cases. Although
generic EMRI waveforms have been developed using
“kludges,” to our knowledge this is the first generic
example that uses strong-field backreaction and strong-
field wave generation for the entire calculation.

The case we examine begins at ðpinit; einit; xI;initÞ ¼
ð12M; 0.25; 0.5Þ. At mass ratio ε ¼ 10−3, inspiral lasts
for Δti ≃ 3.5 × 105M, at which time the smaller body
encounters the LSO at ðpfinal;efinal;xI;finalÞ¼ð4.64M;0.084;
0.488Þ. As in the spherical cases, notice that the total
change in inclination is very small: the change δxI ¼ 0.012
corresponds to the inclination angle I increasing by about
0.79°. Figure 15 shows the trajectory that the smaller body
follows in ðp; e; xIÞ. The left-hand panels of Fig. 16 shows
the time-domain þ-polarization of the waveform that we
find in this case, including all modes with l ∈ ½2; 3; 4�,
m ∈ ½−l;…; l�, k ∈ ½0;…; 10�, n ∈ ½0;…; 25� (as well as
modes simply related to these modes by symmetry). The
right-hand panel of Fig. 16 and both panels of Fig. 17 show
some of the voices that contribute to this waveform
(l ¼ m ¼ 2, k ¼ 0 voices in Fig. 16; l ¼ m ¼ 2, k ¼ �2
voices in Fig. 17).
Perhaps not surprisingly, the picture that emerges for

generic orbits is a blend of features seen in the spherical and
equatorial limits. The time-domain waveform has large
peaks corresponding to periapsis passage, separated by
lower-amplitude troughs as the orbit moves through apo-
apsis; the relatively small contrast between the peaks and

FIG. 13. Left panels: the waveform hþ for an example of spherical inspiral into a black hole with a ¼ 0.9M. This example has
ðrinit; xI;initÞ ¼ ð10M; 0.5Þ, is at mass ratio ε ¼ 10−3, and is observed in the black hole’s equatorial plane. During inspiral, the orbit’s
radius steadily shrinks, while xI decreases very slightly (see text for details). The polar anomaly angle χθ0 ¼ 2π=3. The top-left panel
shows the waveform over the entire inspiral; the bottom-left panels zoom in to early and late times. The lower panels also illustrate the
influence of the anomaly angle, comparing χθ0 ¼ 2π=3 (solid [red] curves) with inspiral on the fiducial geodesic (dashed [blue] curves).
We again see that this angle has a large effect on the waveform, in this case changing the initial orientation so that the frame-dragging
induced modulation begins at a different phase. Right panels: some of the l ¼ m ¼ 2 voices which contribute to this waveform, both
time domain (top) and frequency domain (bottom). Each line is a different k index: solid (red) is k ¼ 0, short-dashed (blue) is k ¼ 1,
long-dashed (green) is k ¼ −1, dot-dashed (magenta) is k ¼ 2, and dotted (black) is k ¼ −2. Across the examples of zero-eccentricity
inspiral we have examined, the tendency is that voices with jkþmj ¼ l are the strongest, and they fall off as jkþmj moves away from
this peak.
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FIG. 14. Left panels: the waveform hþ for an example of eccentric equatorial inspiral into a black hole with a ¼ 0.9M. This example
has ðpinit; einitÞ ¼ ð12M; 0.7Þ, is at mass ratio ε ¼ 10−3, and is observed in the black hole’s equatorial plane. The initial conditions
are similar to those used to make the large-eccentricity case shown in Fig. 2, and the two waveforms are similar at early times. However,
at this rapid spin, inspiral goes very deep into the strong field, becoming nearly circular before the plunge; we find
ðpfinal; efinalÞ ¼ ð2.40M; 0.057Þ. The late waveform is consistent with low eccentricity late in the inspiral. The top-left panel shows
the waveform for χr0 ¼ 2=3 over the inspiral; in addition to zooming in to early and late times, the bottom-left panels illustrate the
influence of the anomaly angle, comparing χr0 ¼ 2π=3 (solid [red] curves) with inspiral on the fiducial geodesic (dashed [blue] curves).
Right panels: some of the l ¼ m ¼ 2 voices which contribute to this waveform, both time domain (top) and frequency domain (bottom).
Solid (red) curves show the voices with n ¼ 0; short-dashed (blue) curves are for n ¼ 3; long-dashed (green) curves are n ¼ 6;
dot-dashed (magenta) curves are n ¼ 9; and dotted (black) curves show n ¼ 12.

FIG. 15. The inclined and eccentric trajectory in ðp; e; xIÞ for the generic inspiral we examine. This trajectory, illustrated by the blue
curve, begins at ðpinit; einit; xI;initÞ ¼ ð12M; 0.25; 0.5Þ and proceeds until the smaller body encounters the LSO (a section of which is
illustrated by the orange plane) at ðpfinal; efinal; xI;finalÞ ¼ ð4.64M; 0.084; 0.488Þ. A projection of this trajectory into the ðp; eÞ plane is
illustrated by the red curve, along with the projection of the LSO at the final value of xI (black line in lower plane); a projection of this
trajectory into the ðp; xIÞ plane is illustrated by the green curve, along with the projection of the LSO at the final value of e (black line on
back “wall” of the box).
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FIG. 16. Left panel: the waveform hþ for an example of generic inspiral into a black hole with a ¼ 0.7M. This example corresponds to
ðpinit; einit; xI;initÞ ¼ ð12M; 0.25; 0.5Þ, and has a mass ratio ε ¼ 10−3; the small body inspirals until it encounters the LSO at
ðpfinal; efinal; xI;finalÞ ¼ ð4.64M; 0.084; 0.488Þ. We show the waveform as observed in the black hole’s equatorial plane. The upper-left
panel shows the waveform over the inspiral; the lower-left panels zoom in to early and late times. The lower-left panels also illustrate the
influence of the anomaly angle, comparing χr0 ¼ χθ0 ¼ 2π=3 (solid [red] curves) with the inspiral on the fiducial geodesic (dashed
[blue] curves). Right panel: some of the voices that contribute to this waveform. The voices shown here are for l ¼ m ¼ 2, k ¼ 0; the
solid (red) curve is n ¼ 0, the short-dashed (blue) curve is n ¼ 1, the long-dashed (green) curve is n ¼ 2, the dot-dashed (magenta)
curve is n ¼ 3, and the dotted (black) curve is n ¼ 4. The behavior of these voices is quite simple, with n ¼ 0 being the strongest, and
the voices falling away as n increases.

FIG. 17. Additional voices that contribute to the waveform shown in Fig. 16. The left panel shows voices with k ¼ 2; the right panel
shows voices with k ¼ −2. As in the right-hand panel of Fig. 16, the solid (red) curves are n ¼ 0, short-dashed (blue) curves are n ¼ 1,
long-dashed (green) curves are n ¼ 2, dot-dashed (magenta) curves are n ¼ 3, and dotted (black) curves are n ¼ 4. The behavior is
somewhat more complicated for these voices; although larger values of n tend to be weaker, the evolution for small values of n evolves
rather differently than in the k ¼ 0 case. For both the cases shown here, the n ¼ 0 voice in particular evolves in importance.
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troughs is consistent with this case’s fairly modest initial
eccentricity. Superposed on this structure is a more rapid
“whirling” associated with frame dragging. This is espe-
cially clear late in the waveform when the orbit has moved
to a small radius, and it resembles behavior seen in the
waveform for the spherical case at late times.
For k ¼ 0, the time-domain structure of voices that

contribute to this waveform is similar to what we saw in
the low-eccentricity Schwarzschild case shown in Fig. 8:
n ¼ 0 is the strongest voice, with contributions steadily
decreasing as n increases. For k ¼ �2, we see more
variation: n ¼ 0 often starts out relatively weak, but it
becomes much stronger late in the inspiral after eccentricity
is significantly decreased. The frequency-domain structure
of the voices is consistent with this picture; given the
already large number of plots in this paper, we do not
include figures showing this.

IX. CONCLUSION

In this paper, we have shown how to use precomputed
frequency-domain Teukolsky equation solutions to make
EMRI waveforms. In this way, one can compute and store
in advance the most computationally expensive aspects of
EMRI analysis, and then use the methods we describe to
rapidly assemble waveforms using the stored data. We
particularly emphasize the usefulness of the multivoice
waveform structure, which facilitates identifying particu-
larly important waveform multipoles and harmonics, both
in the time and frequency domains.
The framework and techniques we describe here have

not been optimized, so there is much scope for efficiency
gains. In a companion analysis [16], some of the present
authors examined several algorithmic improvements, show-
ing that we can in fact construct analysis-length time-
domain EMRI waveforms in the Schwarzschild limit in
under a second. There are two ways that the results of the
present work can be incorporated into the framework of
Ref. [16]. The first is to extend to Kerr inspirals. The main
challenges here are due to the higher-dimensional param-
eter space, and the need to sum over more modes, since
waveforms depend on an additional harmonic frequency.
Inspirals also extend deeper into the strong field, so more
modes are likely to make strong contributions to the
waveform. The framework in Ref. [16] is designed to
overcome these challenges. Its neural network interpolation
is a promising technique for dealing with the increased
dimensionality, and its use of GPU-based hardware accel-
eration alleviates the computational burden of summing
over thousands of additional ðl; m; k; nÞ modes.
The second extension is to incorporate frequency-domain

waveforms. For the Schwarzschild limit, Ref. [16] already
demonstrates how to efficiently interpolate waveform ampli-
tudes; the remainingnewchallenge is the efficient calculation
of the stationary time as a function of frequency. This can
likely be achieved by sparsely evaluating tðfÞ at a few key

frequencies and interpolating to compute additional values.
Knowing tðfÞ is in addition likely to be useful for connecting
the frequency-domain waveforms we describe here to a
detector response function. The LISA detector’s response
changes with time as the antenna orbits the Sun, introducing
time- and frequency-dependent modulations, and changing
the sensitivity to the two gravitational-wave polarizations
as the orientation of the antenna relative to a source varies
over the orbit. Though both these extensions will complicate
the development of fast waveforms, they do not change the
fundamental message of Ref. [16]. We are confident that
adapting those methods with the datasets and framework
described here will be quite effective.
Because of the high cost of generating the waveform

amplitude data, once computed, the data should be widely
shared. The datasetswehave computed, described in Sec.VI,
have been released through the Black Hole Perturbation
Toolkit [54] (hereafter “the Toolkit”). These data were all
computed using a fairly small (roughly 1000-core) in-house
cluster at the MIT Kavli Institute. This scale of cluster is
adequate for making inspiral data for 2D orbits (spherical or
equatorial), but is too small to be useful for fully generic 3D
(inclined and eccentric Kerr) datasets. We have ported our
frequency-domain Teukolsky equation solver, GREMLIN, to
the U.S. National Science Foundation’s XSEDE [55] envi-
ronment, and we plan to develop generic datasets there. It
shouldbe noted, however, that there is a lot to be learned from
2D cases about how best to lay out orbits on the grid (for
example, the work in progress mentioned in Sec. VI that
shows the importance of dense coverage at small eccentric-
ity). Datasets released through the Toolkit are likely to be
revised with some regularity as we learn more about the best
way to lay out the data grids.
Plans are in place to release the GREMLIN code which was

used to generate these datasets, and which includes tools
for postprocessing analysis and generating EMRI wave-
forms. A reduced-functionality version of GREMLIN (spe-
cialized to circular, equatorial orbits) has already been
released [54]. The generic version will be released after it is
cleaned of proprietary libraries and fully comports with
open-source licensing requirements.
In terms of analyses of the source physics, there are

several natural places to extend what we have done here.
One clear step is to consider how physics beyond the
adiabatic approximation affects waveforms. As described
in Sec. VII, we see evidence from comparison with
waveforms computed by a time-domain Teukolsky solver
that neglecting terms which vary on the long-inspiral
timescale leads to an initial-condition-dependent secular
drift in the waveform. Our hypothesis is that this arises due
to a slow evolution in the ξmkn phases described in Sec. III.
In a similar vein, we expect it will not be difficult to

incorporate the orbit-averaged first-order conservative
self-force. In brief, on average the conservative self-force
changes the rate at which the orbit precesses, and can be
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modeled as a slow “anomalous” change to the rate of
periastron advance and the advance of the line of nodes.
These anomalous changes can in turn be incorporated into
an osculating geodesic framework by allowing the param-
eters χr0, χθ0, and ϕ0 to slowly evolve under the influence
of this force. See, for example, Ref. [46] for further
discussion. A similar effect due to the orbit-averaged
coupling of the smaller body’s spin to the background
curvature probably can also be modeled in such a way. It
should also be possible to include many non-orbit-averaged
self-forces and spin-curvature couplings [22–25,56] by
using a near-identify transformation [26]. Such non-
orbit-averaged analyses will be needed in order to model
the impact of resonances [9,11], for example. It is likely
that an orbit-averaged-based analysis accurately describes
systems away from resonances, but one will need to do a
more complicated (and expensive) analysis in the vicinity
of each resonance to model how the system evolves
through each resonance crossing, and practical schemes
for efficiently combining the two within template models
must be devised. Regardless, extensions of this sort may
make it possible for this framework to incorporate the most
important postadiabatic effects quite easily, significantly
improving the ability of these models to serve as templates
for EMRI measurements.
Finally, we note that recent phenomenological frequency-

domain gravitational-wave models are being calibrated in
the large-mass-ratio limit with Teukolsky waveforms [57].
The directly constructed frequency-domain waveforms
presented in this work could be useful in this effort.
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APPENDIX A: FORMULAS FOR E, Lz, AND Q

In this Appendix, we list formulas for the geodesic
constants of the motion E, Lz, and Q as functions of our
preferred parameters p, e, and xI ≡ cos I. Formulas for
these constants were first worked out by Schmidt [29], and
are provided in particularly clean form for generic orbits by
van de Meent [32]. We list them here using our preferred
parametrization, and we also include formulas for spherical
orbits.
The three geodesic constants are given by

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κρþ 2ϖσ − 2sgnðxIÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðσϖ2 þ ρϖκ − ηκ2Þ

p
ρ2 þ 4ησ

s
;

ðA1Þ

Lz ¼ −
gðraÞE −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðraÞ2 þ hðraÞfðraÞE2 − hðraÞdðraÞ

p
hðraÞ

;

ðA2Þ

Q ¼ð1 − x2I Þ
�
a2ð1 − E2Þ þ L2

z

x2I

�
; ðA3Þ

where ra ¼ p=ð1 − eÞ is the coordinate radius of the orbit’s
apoapsis. For generic orbits, the quantities appearing here
are given by

κ ¼ dðraÞhðrpÞ − dðrpÞhðraÞ; ðA4Þ

ϖ ¼ dðraÞgðrpÞ − dðrpÞgðraÞ; ðA5Þ

ρ ¼ fðraÞhðrpÞ − fðrpÞhðraÞ; ðA6Þ

η ¼ fðraÞgðrpÞ − fðrpÞgðraÞ; ðA7Þ

σ ¼ gðraÞhðrpÞ − gðrpÞhðraÞ; ðA8Þ

where rp ¼ p=ð1þ eÞ is the coordinate radius of the orbit’s
periapsis, and where
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dðrÞ ¼ ΔðrÞ½r2 þ a2ð1 − x2I Þ�; ðA9Þ

fðrÞ ¼ r4 þ a2½rðrþ 2MÞ þ ð1 − x2I ÞΔðrÞ�; ðA10Þ

gðrÞ ¼ 2aMr; ðA11Þ

hðrÞ ¼ rðr − 2MÞ þ ð1 − x2I ÞΔðrÞ
x2I

: ðA12Þ

Note that we have switched notation slightly versus
Refs. [29,32]: we use ϖ in these lists rather than ϵ to
avoid notational collision with ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
=2Mrþ, as

well as with the very similar ε≡ μ=M.
For spherical orbits with e ¼ 0, ra ¼ rp ≡ ro. In this

limit, we use a different form of these quantities:

κ ¼ dðroÞh0ðroÞ − d0ðroÞhðroÞ; ðA13Þ

ϖ ¼ dðroÞg0ðroÞ − d0ðroÞgðroÞ; ðA14Þ

ρ ¼ fðroÞh0ðroÞ − f0ðroÞhðroÞ; ðA15Þ

η ¼ fðroÞg0ðroÞ − f0ðroÞgðroÞ; ðA16Þ

σ ¼ gðroÞh0ðroÞ − g0ðroÞhðroÞ: ðA17Þ

In these formulas, 0 denotes ∂=∂r.

APPENDIX B: JACOBIAN FROM
ðdE=dt; dLz=dt; dQ=dtÞ TO ðdp=dt; de=dt; dxI=dtÞ
Once the rates of change, dE=dt, dLz=dt, and dQ=dt,

have been computed, we use them to compute how a

system evolves from one geodesic to another in the
adiabatic limit. As part of this, we would like to know
how the geodesic geometry parameters p, e, and xI change
due to this backreaction. In this Appendix, we write out the
details of this procedure.
A generic Kerr orbit has turning points in its radial

motion at apoapsis, ra ¼ p=ð1 − eÞ, and at periapsis,
rp ¼ p=ð1þ eÞ. It also has a turning point in its polar
motion at θm. (The second polar turning point at π − θm
yields no new information because of reflection symmetry
about θ ¼ π=2.) Recall that θm is related to our inclination
angle I by Eq. (2.16). The radial turning points mean
that RðraÞ ¼ 0 and RðrpÞ ¼ 0, where RðrÞ is defined in
Eq. (2.1); the polar turning point means that ΘðθmÞ ¼ 0,
where ΘðθÞ is defined in Eq. (2.2). We require that these
conditions hold as the system evolves due to backreaction,
which means that we require

d
dt

RðraÞ ¼ 0;
d
dt

RðrpÞ ¼ 0;
d
dt

ΘðθmÞ ¼ 0: ðB1Þ

Expanding these total time derivatives, we find that the
results can be written as a matrix equation:

0
B@
JEra JLzra JQra

JErp JLzrp JQrp

JExI JLzxI JQxI

1
CA ·

0
B@

dE=dt

dLz=dt

dQ=dt

1
CA¼

0
B@
dra=dt

drp=dt

dxI=dt

1
CA: ðB2Þ

Computing the various matrix elements Jab, we find simple
expressions for dra;p=dt and dxI=dt. We examine the
change to the inclination first:

dxI
dt

¼ ð1 − x2I Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2I

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q − a2ð1 − E2Þð1 − x2I Þ

p
ðdLz=dtÞ − xIðdQ=dtÞ − 2xIð1 − x2I Þa2EðdE=dtÞ

2½Q − a2ð1 − E2Þð1 − x2I Þ2�
; ðB3Þ

¼ 2xIð1 − x2I ÞLzðdLz=dtÞ − x3I ½ðdQ=dtÞ þ 2ð1 − x2I Þa2EðdE=dtÞ�
2½L2

z þ x4I a
2ð1 − E2Þ� : ðB4Þ

Notice that Eq. (B3) is singular when Q → 0 (which
coincides with jxIj → 1), and Eq. (B4) is singular when
Lz → 0 (jxIj → 0). We use Eq. (B3) when jxIj ≤ 0.5, and
Eq. (B4) when jxIj > 0.5. The two expressions yield
identical results except right at their singular points.
To present our results for dra;p=dt, we first define

DðrÞ≡ 2M½Qþ ðLz − aEÞ2� − 2r½L2
z þQ − a2ð1 − E2Þ�

þ 6Mr2 − 4r3ð1 − E2Þ: ðB5Þ

Using this, we have

JEra;p ≡
4aMðLz − aEÞra;p − 2Er2a;pða2 þ r2a;pÞ

Dðra;pÞ
;

JLzra;p ≡
4MðaE − LzÞra;p þ 2Lzr2a;p

Dðra;pÞ
;

JQra;p ≡
r2a;p − 2Mra;p þ a2

Dðra;pÞ
: ðB6Þ

ADIABATIC WAVEFORMS FOR EXTREME MASS-RATIO … PHYS. REV. D 103, 104014 (2021)

104014-29



We then find

dra;p
dt

¼ JEra;p
dE
dt

þ JLzra;p

dLz

dt
þ JQra;p

dQ
dt

: ðB7Þ

Once dra;p=dt are known, it is simple to compute dp=dt
and de=dt:

dp
dt

¼ ð1 − eÞ2
2

dra
dt

þ ð1þ eÞ2
2

drp
dt

; ðB8Þ

de
dt

¼ ð1 − e2Þ
2p

�
ð1 − eÞ dra

dt
− ð1þ eÞ drp

dt

�
: ðB9Þ

In the spherical limit, e ¼ 0, ra ¼ rp ≡ ro, and the
conditions RðraÞ ¼ 0, RðrpÞ ¼ 0 are redundant. The equa-
tions we have derived here do not work in that limit.
Spherical orbits are instead governed by the conditions
RðroÞ ¼ 0, R0ðroÞ ¼ 0, where R0 ≡ ∂R=∂r. Past work
[58,59] long ago proved that adiabatic dissipative self-
interaction evolves a spherical orbit into a new spherical
orbit; the first derivation of dQ=dt [43] proved that this
result respected the “spherical goes to spherical” constraint.
Given ðdE=dt; dLz=dt; dQ=dtÞ from a spherical orbit, one
can infer dro=dt by enforcing the condition

d
dt

R0ðroÞ ¼ 0: ðB10Þ

[Alternately, one can enforce the conditions dRðroÞ=
dt ¼ 0, dR0ðroÞ=dt ¼ 0. Doing so yields solutions for
dro=dt and dQ=dt given dE=dt and dLz=dt. This is
how backreaction on spherical orbits was computed [37]
before dQ=dt was fully understood [43].] Implementing
Eq. (B10), we find

dro
dt

¼ JcEro
dE
dt

þ JcLzro

dLz

dt
þ JcQro

dQ
dt

; ðB11Þ

where the Jacobian elements for spherical orbits are

JcEr ¼
2aMðLz − aEÞ − 2a2Er − 4Er3

DcðrÞ ; ðB12Þ

JcLzr
¼ −2MðLz − aEÞ þ 2Lzr

DcðrÞ ; ðB13Þ

JcQr ¼
r −M
DcðrÞ ; ðB14Þ

with

DcðrÞ ¼ −½a2ð1 − E2Þ þ L2
z þQ� þ 6Mr − 6ð1 − E2Þr2:

ðB15Þ
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