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Abstract We introduce an automatic variationally stable analysis (AVS) for finite

element (FE) computations of scalar-valued convection-diffusion equations with

non-constant and highly oscillatory coefficients. In the spirit of least squares FE

methods (Bochev and Gunzburger, Least-Squares Finite Element Methods, vol 166,

Springer Science & Business Media, Berlin, 2009), the AVS-FE method recasts

the governing second order partial differential equation (PDE) into a system of

first-order PDEs. However, in the subsequent derivation of the equivalent weak

formulation, a Petrov-Galerkin technique is applied by using different regularities

for the trial and test function spaces. We use standard FE approximation spaces for

the trial spaces, which are C0, and broken Hilbert spaces for the test functions. Thus,

we seek to compute pointwise continuous solutions for both the primal variable and

its flux (as in least squares FE methods), while the test functions are piecewise dis-

continuous. To ensure the numerical stability of the subsequent FE discretizations,

we apply the philosophy of the discontinuous Petrov-Galerkin (DPG) method by

Demkowicz and Gopalakrishnan (Comput Methods Appl Mech Eng 199(23):1558–

1572, 2010; Discontinuous Petrov-Galerkin (DPG) method, Tech. rep., The Institute

for Computational Engineering and Sciences, The University of Texas at Austin,

2015; SIAM J Numer Anal 49(5):1788–1809, 2011; Numer Methods Partial Differ

Equ 27(1):70–105, 2011; Appl Numer Math 62(4):396–427,2012; Carstensen et

al., SIAM J Numer Anal 52(3):1335–1353, 2014), by invoking test functions that

lead to unconditionally stable numerical systems (if the kernel of the underlying

differential operator is trivial). In the AVS-FE method, the discontinuous test

functions are ascertained per the DPG approach from local, decoupled, and well-
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posed variational problems, which lead to best approximation properties in terms

of the energy norm. We present various 2D numerical verifications, including

convection-diffusion problems with highly oscillatory coefficients and extremely

high Peclet numbers, up to O(109). These show the unconditional stability without

the need for any upwind schemes nor any other artificial numerical stabilization. The

results are not highly diffused for convection-dominated problems nor show any

strong oscillations, but adequately capture and indicate the presence of boundary

layers, even for very coarse meshes and low polynomial degrees of approximation,

p. Remarkably, we can compute the test functions by using the same p level as the

trial functions without significantly impacting the numerical accuracy or asymptotic

convergence of the numerical results. In addition, the AVS method delivers high

numerical accuracy for the computed flux. Importantly, the AVS methodology

delivers optimal asymptotic error convergence rates of order p+1 and p are obtained

in the L2 and H 1 norms for the primal variable. Our experience indicates that for

convection-dominated problems we often observe a convergence rate of p + 1 for

the L2 norm of the flux variable.

1 Introduction

Singularly perturbed problems are ubiquitous in many engineering applications. We

seek to develop a framework to tackle this large class of problems in a constructive

manner. We start with a common model problem, that is, the convection-diffusion

problem which is relevant to many engineering applications where transport mecha-

nisms play a significant role, e.g., subsurface flow through porous media, dynamics

of viscous flow, convective transfer of heat, drug delivery, turbulence modeling, etc.

In this paper, we focus on the stationary version of the scalar-valued convection-

diffusion equation and therefore limit our consideration to solutions which only

depend on spatial variables and not the temporal variable. To date, the numerical

analysis of even the stationary problem poses significant challenges due to the

presence of the convection term, which dominates the diffusion processes. Classical

FE methodologies, such as the Bubnov-Galerkin FE method [16, 45, 57, 61],

mixed FE methods [14, 60], and Petrov-Galerkin method [58], struggle in their

numerical analysis due to the numerical instability introduced by the convection

term. The corresponding discrete systems of equations can be ill-posed (i.e., a

discrete solution does not exist) or lead to either spurious solutions or solutions

with severe oscillations. These generally do not tend to attenuate with continued

mesh refinements and/or enrichments until the boundary layers are resolved, which

in many applications is prohibitively expensive. The least squares FE methods

(LSFEMs) [13], the k-version of the FE method by Surana et al. [1, 2, 64, 65],

and the DPG method by Demkowicz and Gopalakrishnan [20, 29–33] resolve the

numerical instability issues by choosing test/weight functions that lead to uncondi-

tionally stable systems of equations governing the FE discretizations. However, in

the case of LSFEM and the k-version FE method, the numerical solutions, while
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stable, can be overly diffusive, particularly for coarse mesh partitions, and therefore

fail to indicate the presence and/or location of any sharp boundary layers or other

local solution features. As a result, the corresponding adaptive mesh strategies

can be ineffective in the presence of strong convection and require overly refined

mesh partitions with large numbers of degrees of freedom to resolve boundary

layers or other local phenomena. Contrarily, the DPG method does not suffer from

overly diffused solutions but also requires edge fluxes and traces (referred to as

numerical fluxes and traces). The number of degrees of freedom, once you statically

condense the degrees of freedom internal to each element, is similar to the count

of the method we propose herein. In addition, although the DPG method provides

unconditionally stable FE discretizations, the stabilization is problem-dependent.

To ensure the numerical stability and asymptotic convergence of the FE process, the

numerical fluxes and traces have to be numerically stabilized through multiplication

by mesh dependent terms. This stabilization is akin to upwind-schemes used in

other FE methodologies and depends highly on the form/nature of the diffusion

and convection coefficients. It is therefore problem-dependent.

Another technique which enlarges the approximation, introduced in [18], extends

the use of the generalized multiscale finite elements to stabilize the advection-

diffusion model problem. Alternatively, stabilized finite element methods do not add

extra degrees of freedom to the global system, but require problem specific modi-

fications of the stabilization parameter. The original stabilization technique is the

streamlined-upwind Petrov-Galerkin (SUPG) stabilization, introduced by Brooks

and Hughes [15] for the Navier-Stokes system. Using the analytical framework

proposed by Hughes [44], we can interpret many stabilization methods as residual-

based modifications of the discrete weak forms where a locally scaled differential

operator acts on the test function to weight the residual of each trial function. The

multiscale interpretation of the stabilization process was illuminating and opened

many application opportunities [47, 51, 52], but did not simplify the design process

of the stabilization technique. Effectively, this design process is arduous, and

problem specific. Among the many successful stabilized methods we cite several

that were applied to the transport and Navier-Stokes equations [12, 22, 23, 37–

39, 42, 46, 48–50, 54, 55, 62, 63].

In this manuscript, we introduce the automatic variationally stable (AVS)

analysis for FE computations of the convection-diffusion equation in which the

diffusion and convection coefficients can be highly oscillatory. The method is

essentially a hybrid of the LSFEM, Petrov-Galerkin, and the DPG methods by

employing the strength and benefits of each approach separately, leading to a FE

process that is unconditionally stable and produces numerical solutions that are not

overly diffusive, even for coarse FE mesh partitions and low polynomial degrees of

approximation. There is no need for the determination of any mesh- and problem-

dependent stabilization parameters to warrant unconditionally stable numerical

schemes nor overly refined/enriched initial FE mesh partitions to ascertain the

presence and location of any boundary layers or local phenomena.
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Firstly, we follow mixed FE approaches, by introducing the fluxes as auxiliary

variables and thereby recast the second order, scalar-valued convection, diffusion

problem into a first order vector-valued PDE. We subsequently apply the Petrov-

Galerkin philosophy in the derivation of the equivalent integral formulation (i.e. the

weak form) of the established vector-valued PDE by allowing a different regularity

for the trial and test spaces. The FE discretization of the weak form is then

applied such that the base variable and the fluxes are classical global C0 functions.

However, we apply broken (i.e., discontinuous) Hilbert spaces for the test functions

in an effort to allow a maximum flexibility in choosing test functions that lead to

unconditionally stable FE processes. To do so, we invoke the philosophy of the DPG

method in the FE discretization of the weak form by constructing a test function

for every C0 trial function, which is a solution to decoupled element-wise local

variational problems; called ‘test problems.’ Conforming to the DPG philosophy,

the test problems employ bilinear forms which define a local inner product on

each element. In the AVS-FE method, we apply a local H 1 inner product as the

bilinear form in the test problems. As in DPG, the resulting test functions lead to

unconditionally stable systems of equations governing the FE approximation of the

problem. In addition, the specific choice for local H 1 inner products in the test

problems, appears to result in FE approximations that are not overly diffusive; even

for convection-dominated problems with Peclet numbers of order 109. Remarkably,

the numerical solutions we obtain for the flux variables with the AVS-FE method

are highly accurate.

Our choice for C0 trial functions is motivated by the fact that it enables us to

enforce the continuity of all variables strongly and in a straightforward manner.

This is of particular benefit for the analysis of the fluxes in the presence of

highly oscillatory diffusion coefficients. Moreover, it negates the need to introduce

numerical (edge) fluxes and traces as auxiliary variables and thereby reduces the

computational cost and removes the need for any problem-dependent numerical

stabilization of such variables. A key benefit of this functional choice is that

legacy software for pre- and post-processing the data for the simulations can be

directly used to prepare and analyze the data required and produced by AVS-

FE. Importantly, our simulations rely on continuous discretizations which facilitate

solution interpretations and analyses from an engineering point of view. That is,

from the user point of view, they are standard finite element solutions where all

variables are continuous, simplifying the adoption of the technique by the end-user

community.

As in the DPG method, we establish a best approximation property in terms of

the energy norm that is induced by the bilinear form of the integral formulation of

the AVS-FE method and obtain optimal asymptotic convergence rates in L2 and H 1

for the base variable and in L2 for the flux variables.

In the following, we present the derivation of the AVS-FE weak formulation for

the convection-diffusion problem in Sect. 2.1 and its subsequent FE discretization in

Sect. 2.2, and various two-dimensional verifications in Sect. 3. Concluding remarks

and future efforts are discussed in Sect. 4.
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2 Derivation of Integral Statement and FE Discretization

Let Ω ⊂ R
2 be an open bounded domain (see Fig. 1) with Lipschitz boundary ∂Ω

and outward unit normal vector n. The boundary ∂Ω consists of open subsections

ΓD,ΓN ⊂ ∂Ω , such that ΓD ∩ ΓN = ∅ and ∂Ω = ΓD ∪ ΓN . For our

model problem, we consider the following convection-diffusion equation in Ω with

homogeneous Dirichlet boundary conditions applied on ΓD and (possibly) non-

homogeneous Neumann boundary conditions on ΓN :

Find u such that:

−∇ · (D∇u) + b · ∇u = f, in Ω,

u = 0, on ΓD,

D∇u · n = g, on ΓN ,

(1)

where D denotes the second order diffusion tensor, with symmetric, bounded,

and positive definite coefficients Dij ∈ L∞(Ω); b ∈ [L2(Ω)]2 the convection

coefficient; f ∈ L2(Ω) the source function; and g ∈ H−1/2(ΓN ) the Neumann

boundary data. We consider the scenario in which the diffusion coefficients Dij can

be highly heterogeneous and therefore can change many orders in magnitude over

small length scales throughout Ω (e.g., in Fig. 1, the differently colored subdomains

represent areas with different values of the diffusions coefficients).

In this work, we seek to derive a DPG weak formulation of (1) by using a

regular partition Ph of Ω into open subdomains, or elements, Km (see Fig. 1),

with diameters hm, such that :

Ω = int(
⋃

Km∈Ph

Km).

Fn

N

D

Km

Kn

Fm

n

K̂

Fig. 1 The model problem
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Any such partition Ph of Ω is applied such that any discontinuities in the diffusion

coefficient Dij or convection coefficient b are restricted to the boundaries ∂Km of

the elements Km ∈ Ph (see Fig. 1). That is, we assume our mesh fully resolves

these spatial features, while it may not resolve the induced internal layers.

We apply a mixed FE methodology and introduce the flux q = {qx, qy}
T = D∇u

as an auxiliary variable, then, accordingly, q ∈ H(div,Ω) and (1) can be recast

equivalently as a first-order system of PDEs, where the regularity of u can be relaxed

to be in H 1(Ω):

Find (u, q) ∈ H 1(Ω) × H(div,Ω) such that:

q − D∇u = 0, in Ω,

−∇ · q + b · ∇u = f, in Ω,

u = 0, on ΓD,

q · n = g, on ΓN .

(2)

2.1 Derivation of Integral Formulation

To start the derivation of the DPG formulation of (2), we enforce the PDE weakly

on each element Km ∈ Ph, i.e., we seek the restrictions um and qm of u and q to

each Km, such that:

∫

Km

{

[qm − D∇um] · wm + [−∇ · qm + b · ∇um] vm

}

dx =

∫

Km

f vm dx,

∀(vm, wm) ∈ L2(Km) × [L2(Km)]2.

(3)

By repeating this process for all Km ∈ Ph and summing the resulting local integral

formulations, we get:

Find (u, q) ∈ H 1(Ω) × H(div,Ω) :

∑

Km∈Ph

∫

Km

{

[qm − D∇um] · wm + [−∇ · qm + b · ∇um] vm

}

dx

=
∑

Km∈Ph

∫

Km

f vm dx, ∀(v, w) ∈ L2(Ω) × [L2(Ω)]2

(4)
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Next, we apply Green’s identity to the (∇ · qm) vm terms, which demands that we

increase the regularity of each v to be in H 1 locally for every Km ∈ Ph, i.e.,

Find (u, q) ∈ H 1(Ω) × H(div,Ω) :

∑

Km∈Ph

{ ∫

Km

[

(qm − D∇um) · wm + qm · ∇vm + (b · ∇um) vm

]

dx

−

∮

∂Km

γ m
n (qm) γ m

0 (vm) ds

}

=
∑

Km∈Ph

∫

Km

f vm dx,

∀(v, w) ∈ H 1(Ph) × [L2(Ω)]2

(5)

where the broken H 1 Hilbert space on Ph is defined as follows:

H 1(Ph)
def
=

{

v ∈ L2(Ω) : vm ∈ H 1(Km), ∀Km ∈ Ph

}

, (6)

and γ m
0 : H 1(Km) :−→ H 1/2(∂Km) and γ m

n : H(div,Km) −→ H−1/2(∂Km)

denote the trace and normal trace operators (e.g., see [40]) on Km; and nm is the

outward unit normal vector to the element boundary ∂Km of Km. Strictly speaking,

the edge integral on ∂Km in (5) is to be interpreted as the duality pairing in

H−1/2(∂Km) × H 1/2(∂Km) of γ m
n (qm) and γ m

0 (vm), but we apply the engineering

notation here by using an integral representation.

Now, by decomposing each edge term in (5) into a sum of several terms, i.e.,

one term concerning the portion of the edge ∂Km that intersects with neighboring

elements and possibly one or two additional terms concerning the portion of ∂Km

that intersects with ΓD or ΓN , we can rewrite (5) as follows:

Find (u, q) ∈ H 1(Ω) × H(div,Ω) :

∑

Km∈Ph

{∫

Km

[

(qm − D∇um) · wm + qm · ∇vm + (b · ∇um) vm

]

dx

−

∫

∂Km\ΓD∪ΓN

γ m
n (qm) γ m

0 (vm) ds −

∫

∂Km∩ΓD

γ m
n (qm) γ m

0 (vm) ds

−

∫

∂Km∩ΓN

γ m
n (qm) γ m

0 (vm) ds

}

=
∑

Km∈Ph

∫

Km

f vm dx,

∀(v, w) ∈ H 1(Ph) × [L2(Ω)]2

By subsequently enforcing the Neumann boundary condition on the normal trace

of q as well as constraining the traces of the test function vm on the Dirichlet

boundary (since we apply the Dirichlet condition on u strongly), we arrive at the
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final variational statement:

Find (u, q) ∈ U(Ω) :

∑

Km∈Ph

{ ∫

Km

[

(qm − D∇um) · wm + qm · ∇vm + (b · ∇um) vm

]

dx

−

∫

∂Km\ΓD∪ΓN

γ m
n (qm) γ m

0 (vm) ds

}

=
∑

Km∈Ph

{∫

Km

f vm dx +

∫

∂Km∩ΓN

g γ m
0 (vm) ds

}

,

∀(v, w) ∈ V (Ph)

(7)

where the trial and test function spaces, U(Ω) and V (Ph), are defined as follows:

U(Ω)
def
=

{

(u, q) ∈ H 1(Ω) × H(div,Ω) : γ m
0 (um)|∂Km∩ΓD

= 0, ∀Km ∈ Ph

}

,

V (Ph)
def
=

{

(v, w) ∈ H 1(Ph) × [L2(Ω)]2 : γ m
0 (vm)|∂Km∩ΓD

= 0, ∀Km ∈ Ph

}

,

(8)

with norms ‖·‖U(Ω) : U(Ω)−→[0,∞) and ‖·‖V (Ph) : V (Ph)−→[0,∞) defined

as:

‖(u, q)‖U(Ω)
def
=

√

∫

Ω

[

∇u · ∇u + u2 + (∇ · q)2 + q · q

]

dx.

‖(v, w)‖V (Ph)
def
=

√

√

√

√

∑

Km∈Ph

∫

Km

[

h2
m∇vm · ∇vm + v2

m + wm · wm

]

dx.

(9)

By introducing the bilinear form, B : U(Ω)×V (Ph) −→ R, and linear functional,

F : V (Ph) −→ R, i.e.,

B((u, q); (v.w))
def
=

∑

Km∈Ph

{ ∫

Km

[

(qm − D∇um) · wm + qm · ∇vm + (b · ∇um) vm

]

dx

−

∫

∂Km\ΓD∪ΓN

γ m
n (qm) γ m

0 (vm) ds

}

,

F ((v, w))
def
=

∑

Km∈Ph

{∫

Km

f vm dx +

∫

∂Km∩ΓN

g γ m
0 (vm) ds

}

,

(10)

we can rewrite the weak formulation (7) in compact form as follows:

Find (u, q) ∈ U(Ω) such that:

B((u, q); (v, w)) = F((v, w)), ∀(v, w) ∈ V (Ph).

(11)
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Lemma 2.1 Let f ∈ (H 1(Ph))
′ and g ∈ H−1/2(ΓN ). Then there exists a unique

solution (u, q) ∈ U(Ω) of the weak formulation (11).

We refer to [19] for a proof of this lemma. -.

Now, (11) essentially represents a DPG formulation [20, 29–33, 56], as the spaces

U(Ω) and V (Ph) have different regularities. However, it differs significantly by

using (weakly) globally continuous trial spaces. Currently existing DPG methods

require weak enforcement of continuity conditions across inter-element edges by

introducing numerical traces and fluxes as auxiliary variables. Thus, by employing

trial spaces in which continuity of the primal variable and the normal fluxes is

inherent (weakly), we attempt to keep the formulation, from the point of view of

the user, as close as possible to a standard FE discretization. Lastly, the discrete

description of the solution behaves like standard finite element discretizations,

which will accelerate the adoption of this discretization technique by practitioners

and paves the way to extend it to solutions with higher order global continuity,

such as the ones produced by isogeometric analysis [3–11, 17, 21, 24–28, 34–

36, 41, 43, 53, 59], to show just a few of the relevant applications of this powerful

simulation technique.

2.2 AVS-FE Discretization

We now seek numerical approximations (uh, qh) of solutions (u, q) of the weak

form (11) by using classical globally continuous, C0(Ω), trial functions for

(uh, qh). However, the discontinuous topology is maintained for the space of test

functions, as this allows the maximum flexibility in constructing test functions

that lead to unconditionally numerically stable discrete systems and provide best

approximation properties in terms of the energy norm, ‖·‖B : U(Ω) −→ [0,∞], of

the error, i.e.:

‖(u, q)‖B
def
= sup

(v,w)∈V (Ph)\{(0,0)}

|B((u, q); (v, w))|

‖(v, w)‖V (Ph)

. (12)

The discrete fluxes we use, are more regular than is required by the minimal

topology we described in the previous section. We apply discrete fluxes that belong

to H 1(Ω) rather than H(div,Ω). Our experience indicates that the numerical

solutions we obtain when we use approximations in H(div,Ω) yield similar

accuracy, as long as the domain does not exhibit any re-entrant corners and/or

cracks. Convergence is observed in the latter case, but the onset of asymptotic

convergence is then generally observed at a higher number of mesh refinements.

Raviart-Thomas discretizations most likely resolve this and will be investigated

in an upcoming manuscript. Currently, using discrete fluxes in C0(Ω) is certainly

less challenging to implement H 1(Ω) partitions on standard meshes. Possibly more
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importantly, this will allow the use of AVS formulations in commercial simulation

software by redefining the user-defined elemental routines.

Let us now proceed by deriving the FE discretization of (11) by first introducing

the family of invertible maps, {Fm : K̂ ⊂ R
2 −→ Ω}, such that every Km ∈ Ph is

the image of a master element K̂ through one of the mappings Fm (see Fig. 1). The

(conforming) space of trial functions, Uh(Ω) ⊂ U(Ω), is then defined as:

Uh(Ω)
def
=

{

(ϕh, θh) ∈ C0(Ω) × [C0(Ω)]2 : (ϕh
|Km

, θh
|Km

) = (ϕ̂, θ̂) ◦ Fm,

ϕ̂ ∈ P pm(K̂) ∧ θ̂ ∈ [P pm(K̂)]2, ∀Km ∈ Ph

}

,

(13)

where pm denotes the local polynomial degree of approximation on Km. We

are essentially following the classical FE method here and therefore accordingly

represent the FE approximations, uh and qh = {qh
x , qh

y }T , as linear combinations

of trial functions (ei(x), (E
j
x (x), Ek

y(x))) ∈ Uh(Ω) and corresponding degrees

of freedom, {uh
i ∈ R, i = 1, 2, . . . , N}, {q

h,j
x ∈ R, j = 1, 2, . . . , N} and

{q
h,k
y ∈ R, k = 1, 2, . . . , N}; i.e.,

uh(x) =

N
∑

i=1

uh
i ei(x), qh

x (x) =

N
∑

j=1

q
h,j
x E

j
x (x), qh

y (x) =

N
∑

k=1

qh,k
y Ek

y(x).

(14)

As mentioned previously, contrary to the trial functions (which are global C0

functions), the test functions are to be piecewise discontinuous and constructed

by invoking the DPG strategy [20, 29–33, 56]. Each of the 3N trial functions

ei(x), E
j
x (x), and Ek

y(x), is paired with a vector-valued test function. Thus, ei(x)

is paired with (ẽi, Ẽi) ∈ V (Ph), E
j
x (x) with (ẽ

j
x , Ẽ

j
x) ∈ V (Ph), and ek

y(x) with

(ẽk
y, Ẽk

y) ∈ V (Ph). Following the DPG philosophy, these pairings are established

through the following variational problems:

(

(r, z); (ẽi , Ẽi)
)

V (Ph)
= B( (ei, 0); (r, z) ), ∀(r, z) ∈ V (Ph), i = 1, . . . , N,

(

(r, z); (ẽ
j
x , Ẽ

j
x)

)

V (Ph)
= B( (0, (E

j
x , 0)); (r, z) ), ∀(r, z) ∈ V (Ph), j = 1, . . . , N,

(

(r, z); (ẽk
y , Ẽk

y)
)

V (Ph)
= B( (0, (0, Ek

y)); (r, z) ), ∀(r, z) ∈ V (Ph), k = 1, . . . , N,

(15)
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where ( ·; · )V (Ph) : V (Ph) × V (Ph) −→ R, is the inner product:

( (r, z); (v, w) )V (Ph)
def
=

∑

Km∈Ph

∫

Km

[

h2
m∇rm · ∇vm + rm vm + zm · wm

]

dx,

(16)

which induces the norm ‖·‖V (Ph), as defined in (9). The solution of these Riesz

representation problems in the test space norm produces the set of test functions

that we use in our variational framework.

Remark 2.1 The variational statements (15) are infinite dimensional problems

which we approximate numerically. To do so, we compute piecewise discontinuous

polynomial approximations (ẽi
h, Ẽi

h), (ẽ
j
xh

, Ẽ
j
xh

), and (ẽk
yh

, Ẽk
yh

) of (ẽi, Ẽi), (ẽ
j
x , Ẽ

j
x),

and (ẽk
y, Ẽk

y), respectively, by applying local polynomial degrees of approximation

of order pm + ∆p.

Remark 2.2 By applying functions (r, z) ∈ V (Ph) in the variational statements

of (15) that vanish outside a given element Km, the local restriction of the test

functions to Km, can easily be computed by solving the following local restrictions

of (15):

(

(r, z); (ẽi
h, Ẽi

h)
)

V (Km)
= B|Km( (ei, 0); (r, z) ), ∀(r, z) ∈ V (Km),

(

(r, z); (ẽ
j
xh

, Ẽ
j
xh

)
)

V (Km)
= B|Km( (0, (E

j
x , 0)); (r, z) ), ∀(r, z) ∈ V (Km),

(

(r, z); (ẽk
yh

, Ẽk
yh

)
)

V (Km)
= B|Km( (0, (0, Ek

y)); (r, z) ), ∀(r, z) ∈ V (Km),

(17)

where B|Km(·; ·) denotes the restriction of B(·; ·) (see (10)) to the element Km and:

V (Km)
def
=

{

(v, w) ∈ H 1(Km) × [L2(Km)]2 : γ m
0 (vm)|∂Km∩ΓD

= 0

}

,

( ·; · )V (Km) : V (Km) × V (Km) −→ R,

( (r, z); (v, w) )V (Km)
def
=

∫

Km

[

h2
m∇r · ∇v + r v + z · w

]

dx.

(18)

If we look at the action of the local restriction of the bilinear form B(·; ·) onto

functions (ϕ, θ), that have the same regularity as our FE trial functions (i.e., they

belong to C0(Ω)×[C0(Ω)]2), and test functions (r, z) ∈ V (Ph) that vanish outside
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Km, we get from (10):

B|Km((ϕ, θ); (r.z)) =

∫

Km

[

(θm − D∇ϕm) · zm + θm · ∇rm + (b · ∇ϕm) rm

]

dx

−

∫

∂Km\ΓD∪ΓN

γ m
n (θm) γ m

0 (rm) ds

(19)

Thus, in the computations of the local variational statements of (17), the action of

B|Km(·; ·) can be applied as shown in (19).

Remark 2.3 Since the action of the bilinear form in the RHS of (17) is entirely

local to the element Km, as given in (19), a trial function only induces a nonzero

test function in elements where it has support. Hence, an additional consequence

of (19) is that the support of every test function is identical to the support of the

corresponding trial function.

At last, the FE discretization of (7), governing the AVS-FE approximation

(uh, qh) ∈ Uh(Ω) of (u, q) can now be introduced as follows:

Find (uh, qh) ∈ Uh(Ω) such that:

B((uh; qh); (v∗, w∗)) = F((v∗, w∗)), ∀(v∗, w∗) ∈ V ∗(Ph),
(20)

where the finite dimensional subspace of test functions V ∗(Ph) ⊂ V (Ph)

is spanned by the numerical approximations of the test functions {(ẽi
h, Ẽi

h)}
N
i=1,

{(ẽ
j
xh

, Ẽ
j
xh

)}Nj=1, and {(ẽk
yh

, Ẽk
yh

)}Nk=1, as computed from the Riesz representation

problems (15) and (17) by using local polynomial degrees of approximation pm +

∆p.

Since we essentially apply the DPG methodology [20, 29–33] in the construction

of the space of test functions V ∗(Ph) via the Riesz representation statements (15),

an important consequence is that the FE discretization (20) also inherits the

unconditional numerical stability property of the DPG method. Thus, there is no

need for any, generally arduous, determination of problem and mesh dependent

stabilization terms to stabilize the numerical scheme, as done in stabilized FE

methods such as SUPG, GLS, and VMS. The discrete problem (20) is automatically

and unconditionally stable for any choice of the mesh parameters hm and pm.

Lemma 2.2 The FE discretization (20) is locally conservative.

We refer to [19] for a detailed proof of this lemma -.
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3 Exemplary Numerical Results

To conduct numerical studies of our new method, we consider the following

simplified form of our model scalar-valued convection diffusion problem (1) on

the unit square domain Ω = (0, 1) × (0, 1) ⊂ R
2 with homogeneous Dirichlet

boundary conditions:

−D'u + b · ∇u = f, in Ω,

u = 0, on ∂Ω,
(21)

where the coefficient D ∈ L∞(Ω) is a scalar-valued isotropic diffusion coefficient.

In the following subsections, we first verify the asymptotic convergence behavior

of the newly introduced AVS-FE method. In Sect. 3.1 we analyze a case in

which convection is still rather moderate. However, since our main purpose is to

investigate the intrinsic stability property of the method, we focus our attention

on convection dominated problems in the subsections that follow. In Sect. 3.2, we

first look at a classical scenario in which all coefficients are homogeneous, i.e.,

constant, throughout Ω . Next, we consider a scenario of importance to engineering

applications. In Sect. 3.3, the diffusion coefficient is heterogeneous and therefore

varies throughout the domain. Lastly, we briefly investigate the converse situation

in Sect. 3.4 in which the diffusion is homogeneous, but the convection varies

throughout the domain. Particularly, we look at an example in which the variation

of the convection coefficient causes the formation of an internal layer.

The purpose of studying these convection-dominated problem is to test the

intrinsic (automatic) stability property of the AVS-FE discretizations, which we

attained by using the DPG philosophy in the construction of our test functions. We

are particularly interested to see if we indeed: (1) obtain automatic stability for any

choice of mesh, (2) avoid overly diffused solutions for initial meshes, which is a

commonly encountered impediment of LSFEM solution, and (3) avoid solutions

with high oscillations at boundary and internal layers that do not tend to attenuate

upon mesh refinements, as encountered in classical FE analyses of such problems.

3.1 Asymptotic Convergence Study

To ascertain the asymptotic convergence rates in terms of the L2(Ω), H 1(Ω),

and ‖·‖U(Ω) norms of the error, we consider a scenario of our model convection

diffusion problem (21) in which the diffusion coefficient D = 1/P e, where we

refer to Pe ∈ R
+ as the Peclet number, and b = {1, 1}T . We choose Pe = 10 and

the source function f such that the exact theoretical solution is given by:

u(x, y) =

[

x +
ePe·x − 1

1 − ePe

] [

y +
ePe·y − 1

1 − ePe

]

.
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Fig. 2 Error convergence results for uniform h-refinements; ∆p = 0. (a)

‖(u, q) − (uh, qh)‖Uh(Ω). (b) ‖u − uh‖L2(Ω). (c) ‖u − uh‖H 1(Ω). (d) ‖q − qh‖L2(Ω)

This solution exhibits a boundary layer along the boundaries x = 1 and y = 1, but

since there is a moderate level of diffusion (due to the relatively low value of the

Peclet number), these layers are not sharp.

In Fig. 2, we show error convergence results for uniform h-refinements in terms

of various error norms. For each h-refinement study a uniform p-level has been
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Fig. 3 Numerical accuracy comparison of q versus ∇u; ∆p = 0. (a) p = 2. (b) p = 3

applied, ranging from p = 1 to p = 4. The test functions have been computed

at the same local polynomial degree of approximation as their corresponding trial

functions (i.e., ∆p = 0). The plots in Fig. 2b and c clearly show that both the

L2(Ω) and H 1(Ω) norms of the error in the primal variable, u−uh, exhibit optimal

convergence rates of order p + 1 and p, respectively. Similarly, the L2(Ω) norm of

the error in the flux, q − qh, has an optimal convergence rate of p + 1, as shown in

Fig. 2d. The convergence rates in terms of the error norm ‖(u, q) − (uh, qu)‖U(Ω),

presented in Fig. 2a, are also optimal at a rate of p.

These results are representative of extensive convergence studies we have

conducted. In all these experiments, the observed asymptotic convergence rates have

been optimal. The corresponding a priori estimates of these convergence rates, and

their proofs, are to be presented in [19].

Lastly, we show a comparison of the L2(Ω) norm of the error in q − qh versus

∇u − ∇uh in Fig. 3, for p = 2 and p = 3. These results are again representative

of extensive numerical experiments, in which consistently a significantly higher

accuracy is observed in the prediction of the flux variable versus the gradient of

the primal variable.

3.2 Convection Dominated Diffusion: Homogeneous

Coefficients

As mentioned in the introduction, we are particularly interested in diffusion

problems in which convection plays a dominant role. We start here with the
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case in which the problem coefficients D and b in (21) are constant. For our

numerical study, we enforce convection in the diagonal direction, i.e., the convection

coefficient b = {1, 1}T . The source function is set at f (x) = 1 and the diffusion

coefficient again at D = 1/P e. However, the Peclet number is now set at a high

value of Pe = 106 to ensure the convection term is dominant in (21). With this

choice of parameters in place, the distribution of the primal variable exhibits strong

convection in the diagonal direction and a sharp boundary layer of width 1/P e along

the boundaries at x = 1 and y = 1.

For a graded regular mesh of only 2 × 2 elements, as illustrated in Fig. 4a, and a

uniform p = 2 and ∆p = 0, the corresponding AVS-FE approximation uh is shown

in Fig. 4b. The FE approximation, at just 75 dofs, is stable and does not exhibit any

overly diffused behavior but captures the boundary layer well. Apparently, applying

an identical local polynomial degree of approximation for the test functions in (17)

(i.e. ∆p = 0), suffices to capture the boundary layer with a relatively good accuracy.

Results for ∆p = 1, 2, 3, which are not presented here, do not show any significant

difference with the results shown here.

If we apply several additional uniform refinements the solutions remain stable

and converge. In Fig. 5, results for the AVS-FE approximation are provided for the

fifth refinement (i.e., at 12,675 dofs). A zoomed-in plot of the distribution of uh

along the diagonal and in the vicinity of the corner at y = x = 1, do not show any

oscillations, which are commonly observed in solutions obtained via classical FE

methods or LSFEM. The resolution of the boundary layer is not distorted by any

oscillations and continuously sharpens as the mesh is refined.

To demonstrate that the AVS-FE method also produces sequences of stable

numerical solutions for unstructured meshes, we present results in Fig. 6 for

Pe = 400. As depicted in Fig. 6a, the initial coarse mesh is unstructured and does

not resolve the length scale of the boundary layer along x = 1 and y = 1. The

1
Pe

1
Pe

y

x

Fig. 4 AVS-FE results for homogeneous coefficients, a 2 × 2 graded mesh (75 dofs); Pe = 106,

p = 2, and ∆p = 0. (a) Initial 2 × 2 FE mesh. (b) Distribution of uh
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Fig. 5 AVS-FE results or homogeneous coefficients, a refined mesh (12,675 dofs); Pe = 106,

p = 2, and ∆p = 0. (a) Distribution of uh throughout (0, 1) × (0, 1). (b) Distribution of uh along

y − x = 0

corresponding numerical solution of uh is shown in Fig. 6b for p = 2 and has poor

numerical accuracy, as is expected for such a coarse mesh. However, the solution is

stable and upon applying uniform refinements (see Fig. 6c for the first refinement),

the solutions indicate the presence of the boundary layer. Hence, any subsequent

hp-adaptive strategies can then be applied to fully resolve the boundary layer. Since

in this work our focus is not on hp-adaptivity, we simply apply several uniform h-

refinements to demonstrate that the solutions do converge for unstructured meshes,

as shown in Fig. 6d.

3.3 Heterogeneous Diffusion

We continue by looking at a more challenging case in which the diffusion D

is a discontinuous piecewise constant function. Specifically, D has a value of

Pe or 1/P e following a checker board pattern, as depicted in Fig. 7a. Both the

source function and convection coefficient remain unchanged from the experiment

conducted in Sect. 3.2, i.e., f (x) = 1 and b = {1, 1}T . By choosing a high

Peclet number of 104, we essentially establish a zero solution in the diffusion

dominant quadrants of the domain, while strong convection is observed in the

remaining two quadrants. Consequently, in the convective regions, sharp internal

layers are formed at the interface with the diffusion dominant quadrants, with a

width of approximately 1/P e. Additionally, sharp boundary layers are present in the

convective quadrants along their boundaries that intersect with the outer boundaries

at x = 1 and y = 1.
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Fig. 6 AVS-FE results for homogeneous coefficients and unstructured meshes; Pe = 400, p = 2,

and ∆p = 0. (a) Initial unstructured mesh. (b) uh for initial coarse mesh (27 dofs). (c) uh after

first refinement (75 dofs). (d) Converged uh

For a graded regular mesh of only 4×4 elements (see Fig. 7b), p = 2, and ∆p =

0, a contour plot of the of the distribution of the corresponding AVS-FE solution, uh,

throughout the unit square is depicted in Fig. 8a; whereas in Fig. 8b its distribution

along the diagonal y − x = 0 is presented. Analogous to the results in Sect. 3.2,

the numerical solution successfully captures the main features of the solution, i.e.,

the solution indeed vanishes in the diffusion dominant quadrants, strong convection

is seen in the remaining regions, and the sharp internal and boundary layers are

adequately captured. It is remarkable that with only 16 elements, and 243 dofs,

the AVS-FE computation succeeds in resolving these features without any strong

oscillations and without the need for any artificial stabilization. Again, using the

same polynomial degree of approximation in solving the optimal test functions (17),

does not appear to inhibit the corresponding AVS-FE computation to resolve the

essential solution features.
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Fig. 7 Checker board problem. (a) Diffusion coefficient distribution. (b) Initial 4×4 graded mesh
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Fig. 8 AVS-FE results for heterogeneous diffusion, 4×4 graded mesh (243 dofs), p = 2, ∆p = 0.

(a) Distribution of uh throughout (0, 1) × (0, 1). (b) uh along the diagonal y − x = 0

Subsequently applying uniform h-refinements results in a sequence of numerical

solutions, in which the resolution of the internal and boundary continuously

improves without inducing any oscillations. Results for the fourth h-refinement are

given in Fig. 9.

3.4 Non-constant Convection

Lastly, let us now consider a case in which the convection coefficient, b, rather

than the diffusion coefficient, is non-constant, i.e., b = { 1
2
(1 − 2x), 0}T , i.e., we

only have convection in the x-direction, which varies linearly throughout Ω and
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Fig. 9 AVS-FE results for heterogeneous D, a refined graded mesh (12,675 dofs), p = 2, ∆p =

0. (a) Distribution of uh throughout (0, 1) × (0, 1). (b) uh along the diagonal y − x = 0

Fig. 10 AVS-FE results for non-constant convection, a refined uniform mesh (∼ 790,000 dofs),

Pe = 109, p = 1, and ∆p = 0

vanishes along the middle line segment x = 1
2
. By choosing the Peclet number at

an extremely high level, Pe = 109, we ensure that convection is heavily dominant

away from the line segment x = 1
2

. Next, the source function is chosen to be:

f (x, y) =
4x − 2

Pe
+ y(1 − y2)(8x − 4).

Under these conditions, the solution exhibits a sharp internal layer along the middle

line segment x = 1
2

, with a width of the order of 1/P e, i.e., 10−9. Away from

the internal layer, or ‘shock’, the solution is convective. In Fig. 10, we present the
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distribution of uh for the case in which we started with a 2×2 uniform mesh, p = 1,

and ∆p = 0, and subsequently applied seven uniform h-refinements, arriving at

a mesh with approximately 790k dofs. The numerical solutions do not show any

oscillatory behavior close to the shock and continuously provide sharper resolutions

of the internal layer as the mesh is refined, while converging to a bounded amplitude.

It is striking that the results are automatically stable for a staggering value of a

billion for the Peclet number.

4 Concluding Remarks

We constructed a variationally stable finite element discretization. This hybrid

continuous-discontinuous Petrov-Galerkin method uses solution (trial) functions

that are piecewise continuous over the whole domain. That is, these functions corre-

spond to standard finite element partitions. We then use as weight (test) functions a

piecewise discontinuous basis. This broken test space allows us to extend the DPG

approach to compute optimal test functions automatically and with these to establish

numerically stable FE approximations. Important features of this discretization

are as follows. The support of each discontinuous test function is identical to

its corresponding continuous trial function. The local test-function contribution

computed locally on an element by element fashion(i.e. decoupled). This has a linear

cost with respect to the problem size and can be thought as an alternative assembly

process, where not only inner products, but the functions themselves need to be

computed on the fly. Additionally, our experience indicates that the computation of

the optimal test functions is achieved with sufficient accuracy by using the same

polynomial order of approximation, p, as that used in the trial function. As in every

other DPG formulation, the resulting algebraic system is symmetric and positive

definite, allowing us to use simple iterative strategies to compute the numerical

solution. Our future work will include developing variationally stable discretizations

based on isogeometric analysis (IGA) both in Galerkin as well as in collocation

form. Our preliminary results indicate that these methods are very promising by

delivering robust and efficient discretizations exploiting the smoothness of IGA

basis functions to deliver intrinsically stable discretizations that are symmetric and

positive definite for arbitrary partial differential equations.

We are confident in the impact this methodology will have. Thus, we are

partnering with the development communities around FireDrake, Fenics-HPC and

Camellia as well as our traditional partners who develop PetIGA and PetIGA-MF

to release portable parallel implementations of this methodology.
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