Automatic Variationally Stable Analysis )
for FE Computations: An Introduction ek

Victor M. Calo, Albert Romkes, and Eirik Valseth

Abstract We introduce an automatic variationally stable analysis (AVS) for finite
element (FE) computations of scalar-valued convection-diffusion equations with
non-constant and highly oscillatory coefficients. In the spirit of least squares FE
methods (Bochev and Gunzburger, Least-Squares Finite Element Methods, vol 166,
Springer Science & Business Media, Berlin, 2009), the AVS-FE method recasts
the governing second order partial differential equation (PDE) into a system of
first-order PDEs. However, in the subsequent derivation of the equivalent weak
formulation, a Petrov-Galerkin technique is applied by using different regularities
for the trial and test function spaces. We use standard FE approximation spaces for
the trial spaces, which are CY, and broken Hilbert spaces for the test functions. Thus,
we seek to compute pointwise continuous solutions for both the primal variable and
its flux (as in least squares FE methods), while the test functions are piecewise dis-
continuous. To ensure the numerical stability of the subsequent FE discretizations,
we apply the philosophy of the discontinuous Petrov-Galerkin (DPG) method by
Demkowicz and Gopalakrishnan (Comput Methods Appl Mech Eng 199(23):1558-
1572, 2010; Discontinuous Petrov-Galerkin (DPG) method, Tech. rep., The Institute
for Computational Engineering and Sciences, The University of Texas at Austin,
2015; SIAM J Numer Anal 49(5):1788-1809, 2011; Numer Methods Partial Differ
Equ 27(1):70-105, 2011; Appl Numer Math 62(4):396-427,2012; Carstensen et
al., SIAM J Numer Anal 52(3):1335-1353, 2014), by invoking test functions that
lead to unconditionally stable numerical systems (if the kernel of the underlying
differential operator is trivial). In the AVS-FE method, the discontinuous test
functions are ascertained per the DPG approach from local, decoupled, and well-
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posed variational problems, which lead to best approximation properties in terms
of the energy norm. We present various 2D numerical verifications, including
convection-diffusion problems with highly oscillatory coefficients and extremely
high Peclet numbers, up to O (10”). These show the unconditional stability without
the need for any upwind schemes nor any other artificial numerical stabilization. The
results are not highly diffused for convection-dominated problems nor show any
strong oscillations, but adequately capture and indicate the presence of boundary
layers, even for very coarse meshes and low polynomial degrees of approximation,
p. Remarkably, we can compute the test functions by using the same p level as the
trial functions without significantly impacting the numerical accuracy or asymptotic
convergence of the numerical results. In addition, the AVS method delivers high
numerical accuracy for the computed flux. Importantly, the AVS methodology
delivers optimal asymptotic error convergence rates of order p+1 and p are obtained
in the L? and H' norms for the primal variable. Our experience indicates that for
convection-dominated problems we often observe a convergence rate of p 4+ 1 for
the L? norm of the flux variable.

1 Introduction

Singularly perturbed problems are ubiquitous in many engineering applications. We
seek to develop a framework to tackle this large class of problems in a constructive
manner. We start with a common model problem, that is, the convection-diffusion
problem which is relevant to many engineering applications where transport mecha-
nisms play a significant role, e.g., subsurface flow through porous media, dynamics
of viscous flow, convective transfer of heat, drug delivery, turbulence modeling, etc.
In this paper, we focus on the stationary version of the scalar-valued convection-
diffusion equation and therefore limit our consideration to solutions which only
depend on spatial variables and not the temporal variable. To date, the numerical
analysis of even the stationary problem poses significant challenges due to the
presence of the convection term, which dominates the diffusion processes. Classical
FE methodologies, such as the Bubnov-Galerkin FE method [16, 45, 57, 61],
mixed FE methods [14, 60], and Petrov-Galerkin method [58], struggle in their
numerical analysis due to the numerical instability introduced by the convection
term. The corresponding discrete systems of equations can be ill-posed (i.e., a
discrete solution does not exist) or lead to either spurious solutions or solutions
with severe oscillations. These generally do not tend to attenuate with continued
mesh refinements and/or enrichments until the boundary layers are resolved, which
in many applications is prohibitively expensive. The least squares FE methods
(LSFEMs) [13], the k-version of the FE method by Surana et al. [1, 2, 64, 65],
and the DPG method by Demkowicz and Gopalakrishnan [20, 29-33] resolve the
numerical instability issues by choosing test/weight functions that lead to uncondi-
tionally stable systems of equations governing the FE discretizations. However, in
the case of LSFEM and the k-version FE method, the numerical solutions, while
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stable, can be overly diffusive, particularly for coarse mesh partitions, and therefore
fail to indicate the presence and/or location of any sharp boundary layers or other
local solution features. As a result, the corresponding adaptive mesh strategies
can be ineffective in the presence of strong convection and require overly refined
mesh partitions with large numbers of degrees of freedom to resolve boundary
layers or other local phenomena. Contrarily, the DPG method does not suffer from
overly diffused solutions but also requires edge fluxes and traces (referred to as
numerical fluxes and traces). The number of degrees of freedom, once you statically
condense the degrees of freedom internal to each element, is similar to the count
of the method we propose herein. In addition, although the DPG method provides
unconditionally stable FE discretizations, the stabilization is problem-dependent.
To ensure the numerical stability and asymptotic convergence of the FE process, the
numerical fluxes and traces have to be numerically stabilized through multiplication
by mesh dependent terms. This stabilization is akin to upwind-schemes used in
other FE methodologies and depends highly on the form/nature of the diffusion
and convection coefficients. It is therefore problem-dependent.

Another technique which enlarges the approximation, introduced in [18], extends
the use of the generalized multiscale finite elements to stabilize the advection-
diffusion model problem. Alternatively, stabilized finite element methods do not add
extra degrees of freedom to the global system, but require problem specific modi-
fications of the stabilization parameter. The original stabilization technique is the
streamlined-upwind Petrov-Galerkin (SUPG) stabilization, introduced by Brooks
and Hughes [15] for the Navier-Stokes system. Using the analytical framework
proposed by Hughes [44], we can interpret many stabilization methods as residual-
based modifications of the discrete weak forms where a locally scaled differential
operator acts on the test function to weight the residual of each trial function. The
multiscale interpretation of the stabilization process was illuminating and opened
many application opportunities [47, 51, 52], but did not simplify the design process
of the stabilization technique. Effectively, this design process is arduous, and
problem specific. Among the many successful stabilized methods we cite several
that were applied to the transport and Navier-Stokes equations [12, 22, 23, 37—
39, 42, 46, 48-50, 54, 55, 62, 63].

In this manuscript, we introduce the automatic variationally stable (AVS)
analysis for FE computations of the convection-diffusion equation in which the
diffusion and convection coefficients can be highly oscillatory. The method is
essentially a hybrid of the LSFEM, Petrov-Galerkin, and the DPG methods by
employing the strength and benefits of each approach separately, leading to a FE
process that is unconditionally stable and produces numerical solutions that are not
overly diffusive, even for coarse FE mesh partitions and low polynomial degrees of
approximation. There is no need for the determination of any mesh- and problem-
dependent stabilization parameters to warrant unconditionally stable numerical
schemes nor overly refined/enriched initial FE mesh partitions to ascertain the
presence and location of any boundary layers or local phenomena.



22 V. M. Calo et al.

Firstly, we follow mixed FE approaches, by introducing the fluxes as auxiliary
variables and thereby recast the second order, scalar-valued convection, diffusion
problem into a first order vector-valued PDE. We subsequently apply the Petrov-
Galerkin philosophy in the derivation of the equivalent integral formulation (i.e. the
weak form) of the established vector-valued PDE by allowing a different regularity
for the trial and test spaces. The FE discretization of the weak form is then
applied such that the base variable and the fluxes are classical global C functions.
However, we apply broken (i.e., discontinuous) Hilbert spaces for the test functions
in an effort to allow a maximum flexibility in choosing test functions that lead to
unconditionally stable FE processes. To do so, we invoke the philosophy of the DPG
method in the FE discretization of the weak form by constructing a test function
for every C¥ trial function, which is a solution to decoupled element-wise local
variational problems; called ‘test problems.” Conforming to the DPG philosophy,
the test problems employ bilinear forms which define a local inner product on
each element. In the AVS-FE method, we apply a local H! inner product as the
bilinear form in the test problems. As in DPG, the resulting test functions lead to
unconditionally stable systems of equations governing the FE approximation of the
problem. In addition, the specific choice for local H! inner products in the test
problems, appears to result in FE approximations that are not overly diffusive; even
for convection-dominated problems with Peclet numbers of order 10°. Remarkably,
the numerical solutions we obtain for the flux variables with the AVS-FE method
are highly accurate.

Our choice for C? trial functions is motivated by the fact that it enables us to
enforce the continuity of all variables strongly and in a straightforward manner.
This is of particular benefit for the analysis of the fluxes in the presence of
highly oscillatory diffusion coefficients. Moreover, it negates the need to introduce
numerical (edge) fluxes and traces as auxiliary variables and thereby reduces the
computational cost and removes the need for any problem-dependent numerical
stabilization of such variables. A key benefit of this functional choice is that
legacy software for pre- and post-processing the data for the simulations can be
directly used to prepare and analyze the data required and produced by AVS-
FE. Importantly, our simulations rely on continuous discretizations which facilitate
solution interpretations and analyses from an engineering point of view. That is,
from the user point of view, they are standard finite element solutions where all
variables are continuous, simplifying the adoption of the technique by the end-user
community.

As in the DPG method, we establish a best approximation property in terms of
the energy norm that is induced by the bilinear form of the integral formulation of
the AVS-FE method and obtain optimal asymptotic convergence rates in L? and H'
for the base variable and in L? for the flux variables.

In the following, we present the derivation of the AVS-FE weak formulation for
the convection-diffusion problem in Sect. 2.1 and its subsequent FE discretization in
Sect. 2.2, and various two-dimensional verifications in Sect. 3. Concluding remarks
and future efforts are discussed in Sect. 4.
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2 Derivation of Integral Statement and FE Discretization

Let 2 C R? be an open bounded domain (see Fig. 1) with Lipschitz boundary 92
and outward unit normal vector n. The boundary 902 consists of open subsections
I'p,I'yv C 082, such that I'p N Iy = @ and 02 = IpUIy. For our
model problem, we consider the following convection-diffusion equation in £2 with
homogeneous Dirichlet boundary conditions applied on I'p and (possibly) non-
homogeneous Neumann boundary conditions on I'y:

Find u such that:

-V -DVu) +b-Vu=f, in £2, 1)

u=0, on Ip,
DVu-n=g, on Iy,

where D denotes the second order diffusion tensor, with symmetric, bounded,
and positive definite coefficients D;; € L*°(£2); b € [L2(£2)]? the convection
coefficient; f € L2(£2) the source function; and g € H —1/2(Iy) the Neumann
boundary data. We consider the scenario in which the diffusion coefficients D;; can
be highly heterogeneous and therefore can change many orders in magnitude over
small length scales throughout £2 (e.g., in Fig. 1, the differently colored subdomains
represent areas with different values of the diffusions coefficients).

In this work, we seek to derive a DPG weak formulation of (1) by using a
regular partition &7, of §2 into open subdomains, or elements, K,, (see Fig. 1),
with diameters h,,, such that :

Fig. 1 The model problem
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Any such partition &, of £2 is applied such that any discontinuities in the diffusion
coefficient D;; or convection coefficient b are restricted to the boundaries 0K, of
the elements K,, € & (see Fig. 1). That is, we assume our mesh fully resolves
these spatial features, while it may not resolve the induced internal layers.

We apply a mixed FE methodology and introduce the flux q = {q., qy}T =DVu
as an auxiliary variable, then, accordingly, q € H(div, £2) and (1) can be recast
equivalently as a first-order system of PDEs, where the regularity of u can be relaxed
to be in H(£2):

Find (1, q) € H'(£2) x H(div, £2) such that:
q—DVu=0, in £,

—-V.-q+b-Vu=f in 2, (2)

u=0, on Ip,

q-n=g, on [y.

2.1 Derivation of Integral Formulation

To start the derivation of the DPG formulation of (2), we enforce the PDE weakly
on each element K, € &, i.e., we seek the restrictions u,, and q,, of u and q to
each K,,, such that:

/ {[qm—DVum]-wm + [-V - -qm + b-Vu,] vm}dx=/ f vy dx,
Kn K

Y (Ui, Win) € L*(Kn) X [L*(Km) .
3)
By repeating this process for all K,,, € &7, and summing the resulting local integral
formulations, we get:

Find (u,q) € H'(£2) x H(div, 2) :

E / {[qm_Dvum]'wm+[_V'qm+b'vum] Um}dx
K
Kmegh

“4)
= Z f f v dx, Y(v,w) € L>(£2) x [L*(£2))?

KneZy
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Next, we apply Green’s identity to the (V - q,,) v, terms, which demands that we
increase the regularity of each v to be in H! locally for every K,, € &, i.e.,

Find (u,q) € H'(£2) x H(div, 2) :

Z {/ [(qm_Dvum)'Wm+qm'VUm+(b'V”m)Um] dx
Kne, Ko (3)

—7&( y,?(qmwa"(vm)ds} > / £ vm dx,

Kne2,
Y(v,w) € H'(Z)) x [L2(2)]?

where the broken H' Hilbert space on &7, is defined as follows:

def

HY () = {v e L*(2): vy e H' (Ky), YKy € %}, (6)

and y" : HY(K) :—> HY?(3K,) and y" : H(div, K,) — H™Y2(3Ky)
denote the trace and normal trace operators (e.g., see [40]) on K,,;; and n,, is the
outward unit normal vector to the element boundary 0 K, of K,,. Strictly speaking,
the edge integral on 0K,, in (5) is to be interpreted as the duality pairing in
HY2K,,) x H'?(3K,,) of Y (@m) and y;" (v ), but we apply the engineering
notation here by using an integral representation.

Now, by decomposing each edge term in (5) into a sum of several terms, i.e.,
one term concerning the portion of the edge d K, that intersects with neighboring
elements and possibly one or two additional terms concerning the portion of 9K,
that intersects with I'p or Iy, we can rewrite (5) as follows:

Find (u,q) € H'(£2) x H(div, 2) :

Z {/ |:(qm —DVuy)-wy + qu - Vo, + (b‘Vum)Um] dx

KnePy

_/ yl’ln(qm) V(;n(vm) ds _/ Vlin(qm) V(;n(vm) ds
m\'pUI'n oK,,NIp
_/ qun(qm) V(;n(vm) ds} = / f vy dx,
0K,,NIy K, c 7 Knm

Y(v,w) € H'(2) x [L2(2)]?

By subsequently enforcing the Neumann boundary condition on the normal trace
of q as well as constraining the traces of the test function v, on the Dirichlet
boundary (since we apply the Dirichlet condition on u strongly), we arrive at the
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final variational statement:
Find (u,q) e U(£2) :

Z :/ |:((Im —DVuy) - Wiy + qm - Vo, + (b'Vum)Umi| dx

K€, mn

_/ V;T(Qm))/ﬁ(vm)ds}z Z {/ fvl71dx+/ g)’é"(vm)dS},
OK \I'pUly K KNIy

Kmegh

Y(v,w) € V(Z)
(7

where the trial and test function spaces, U (§2) and V (&), are defined as follows:

U« {(u, @) € H'(2) x H(div, 2) : 1" um)pknnry =0, YKy € %},

def

V(Pp) = {(v, w) € H' (D) x [L* () §' Wm)jakunrp =0, YKy € @h}

®)

with norms |||y (@) : U(2)—>[0, c0) and ||-[ly(2,) : V(Zh)—>[0, oo) defined
as:

def
l(u, Dllue) = \// [VM-VM+M2+(V'CI)2+Q'Q} dx.
Q

®)

def
. Wiy S | Y. / [h%va VU + 02+ Wy, -wm] dx.
KneP, mn

By introducing the bilinear form, B : U (£2) x V(&) —> R, and linear functional,
F:V(Z,) — R, ie.,

B, @ ww) E {/ [(qm —DVity) - W + Q- Vo + (b-Vum>vm} dx
K
Kmegzh
—/ Yo (@m) vy (Um) ds},
0K \I'pUI'y

F(wn € Y {/K £ vm d”faK . gyé"(vm)ds},

K€,

(10)
we can rewrite the weak formulation (7) in compact form as follows:

Find (u, q) € U ($2) such that:
B((u, q); (v,w)) = F((v,w)), V(v,w) € V(H).
(11)
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Lemma 2.1 Let f € (HY(2,)) and g € H=Y2(I'y). Then there exists a unique
solution (u, q) € U(82) of the weak formulation (11).

We refer to [19] for a proof of this lemma. O

Now, (11) essentially represents a DPG formulation [20, 29-33, 56], as the spaces
U(£2) and V(%) have different regularities. However, it differs significantly by
using (weakly) globally continuous trial spaces. Currently existing DPG methods
require weak enforcement of continuity conditions across inter-element edges by
introducing numerical traces and fluxes as auxiliary variables. Thus, by employing
trial spaces in which continuity of the primal variable and the normal fluxes is
inherent (weakly), we attempt to keep the formulation, from the point of view of
the user, as close as possible to a standard FE discretization. Lastly, the discrete
description of the solution behaves like standard finite element discretizations,
which will accelerate the adoption of this discretization technique by practitioners
and paves the way to extend it to solutions with higher order global continuity,
such as the ones produced by isogeometric analysis [3—11, 17, 21, 24-28, 34—
36, 41, 43, 53, 59], to show just a few of the relevant applications of this powerful
simulation technique.

2.2 AVS-FE Discretization

We now seek numerical approximations (u”, q") of solutions (u, q) of the weak
form (11) by using classical globally continuous, CY%£2), trial functions for
(u", q). However, the discontinuous topology is maintained for the space of test
functions, as this allows the maximum flexibility in constructing test functions
that lead to unconditionally numerically stable discrete systems and provide best
approximation properties in terms of the energy norm, ||-||p : U(£2) —> [0, oo], of
the error, i.e.:

|B((u, q); (v, w))|
w,weV (@00} 1V, Wy,

. @lls € (12)

The discrete fluxes we use, are more regular than is required by the minimal
topology we described in the previous section. We apply discrete fluxes that belong
to H'(§2) rather than H(div, £2). Our experience indicates that the numerical
solutions we obtain when we use approximations in H(div, £2) yield similar
accuracy, as long as the domain does not exhibit any re-entrant corners and/or
cracks. Convergence is observed in the latter case, but the onset of asymptotic
convergence is then generally observed at a higher number of mesh refinements.
Raviart-Thomas discretizations most likely resolve this and will be investigated
in an upcoming manuscript. Currently, using discrete fluxes in C°(£2) is certainly
less challenging to implement H ' (£2) partitions on standard meshes. Possibly more
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importantly, this will allow the use of AVS formulations in commercial simulation
software by redefining the user-defined elemental routines.

Let us now proceed by deriving the FE discretization of (11) by first introducing
the family of invertible maps, {F,, : K c R2 — 2}, such that every K,, € & is
the image of a master element K through one of the mappings F,, (see Fig. 1). The
(conforming) space of trial functions, U h(£2) c U(£2), is then defined as:

U2 € {(go", 0") € CO2) x [CY(D)P: (¢, . 0%,) = (#.6) 0 Fy,

¢ e PPn(K) A 0 e[PP"(K))?, YKy € %},
(13)

where p,, denotes the local polynomial degree of approximation on K,,. We
are essentially following the classical FE method here and therefore accordingly
represent the FE approximations, u” and q* = {qfc’, qg}T, as linear combinations
of trial functions (¢’ (x), (Ei(x), E’y‘(x))) e UM"(2) and corresponding degrees
of freedom, {uf? e R,i = 1,2,..., N}, {qf” e R,j = 1,2,...,N} and
g eR, k=1,2,..., N} ie,

N N N
l_ i
W'x) =) uld®, qix) =) g’ Eix). qlx) =) gt ESx).
i=1 j=1 k=1
(14)

As mentioned previously, contrary to the trial functions (which are global C°
functions), the test functions are to be piecewise discontinuous and constructed
by invokﬁng the DPG strategy [20, 29-33, 56]. Each of the 3N trial functions

e (x), EL(x), and E ly‘ (x), is paired with a vector-valued test function. Thus, et (x)
is paired with (&', E') € V() E{(x) with (¢, E{) € V(), and ¢ (x) with

(é’;, E’;) € V(). Following the DPG philosophy, these pairings are established
through the following variational problems:

<(r, 2): (é",f«:i))v(%): B((e,0): (r.2)), Virnz) e V(#,), i=1,....N,

(o @ ED), = BOO.(ELOY: (). Yim) € V(). j=1....N,

((r, 2); (é’;,E’;))V(%>: B((0, (0, EY); (r,2), Y(r,2) € V(Zy), k=1,...,N,
(15)
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where (5 )y (z,) : V(P) x V(Z) — R, is the inner product:

def
((r,2); (v, w))V(@h) = Z / |:hyznvrm Vg + rm v + 2 Wm:| dx,
K, e, Ko
(16)

which induces the norm |||y (2,), as defined in (9). The solution of these Riesz
representation problems in the test space norm produces the set of test functions
that we use in our variational framework.

Remark 2.1 The variational statements (15) are infinite dimensional problems
which we approximate numerically. To do so, we compute piecewise discontinuous
polynomial approximations (E;l, Eﬁl), (é)]ww E)jch), and (él;h, Eﬁh) of (¢!, E"), (e],ED),
and (é’y‘, E’;), respectively, by applying local polynomial degrees of approximation

of order p,, + Ap.

Remark 2.2 By applying functions (r,z) € V(%) in the variational statements
of (15) that vanish outside a given element K,,, the local restriction of the test
functions to K,,, can easily be computed by solving the following local restrictions
of (15):

(2 @, b)w = Bk, (. 0): (. 2)), V(r.z) € V(Kn),
(2 (éi,,iip)m = Bik, (0. (EL,0)): (n2), V(rz) e V(Kn),

m

(o @, B ), = B (O.0.ED): (nm). Vi) € ViKy),
(17)

where Bk, (-; -) denotes the restriction of B(-; -) (see (10)) to the element K, and:

V(K & {(v, W) € H'(Kp) x [L2(Kn)? © ¥ n) ok, nrp = o},

((rn2); (U, W)k, déf/ |:h,%1Vr Vodrvtz. wi| dx.
K,

m

If we look at the action of the local restriction of the bilinear form B(-; -) onto
functions (¢, @), that have the same regularity as our FE trial functions (i.e., they
belong to CY(2) x[C%(£2)]?), and test functions (r, z) € V() that vanish outside
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K, we get from (10):
Ble (((0’ 0)’ (r.z)) = / |: (0m - DV(Pm) “Zm + 0y - Vi + (b - V(Dm) rm] dx

- f P ) 70 ) ds
K \I'pUl'y

(19)

Thus, in the computations of the local variational statements of (17), the action of
Bk, (+; -) can be applied as shown in (19).

Remark 2.3 Since the action of the bilinear form in the RHS of (17) is entirely
local to the element K,,, as given in (19), a trial function only induces a nonzero
test function in elements where it has support. Hence, an additional consequence
of (19) is that the support of every test function is identical to the support of the
corresponding trial function.

At last, the FE discretization of (7), governing the AVS-FE approximation
u", qh) e UMN(2) of (u, q) can now be introduced as follows:

Find (u", qh) e U"(£2) such that:
(20)
B((u"; q"); (v*, w¥)) = F((v*, w"), Y(v*, w¥) € V¥(Z),

where the finite dimensional subspace of test functions V*(%%,) C V(%)
is spanned by the numerical approximations of the test functions {(52, Ez)}lNz 1
{(éfch, ]:chh)}ﬂ.v:l, and {(é’;h, E’;h)},ivzl, as computed from the Riesz representation
problems (15) and (17) by using local polynomial degrees of approximation p,, +
Ap.

Since we essentially apply the DPG methodology [20, 29-33] in the construction
of the space of test functions V*(%,) via the Riesz representation statements (15),
an important consequence is that the FE discretization (20) also inherits the
unconditional numerical stability property of the DPG method. Thus, there is no
need for any, generally arduous, determination of problem and mesh dependent
stabilization terms to stabilize the numerical scheme, as done in stabilized FE
methods such as SUPG, GLS, and VMS. The discrete problem (20) is automatically

and unconditionally stable for any choice of the mesh parameters 4, and p,,.
Lemma 2.2 The FE discretization (20) is locally conservative.

We refer to [19] for a detailed proof of this lemma O
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3 Exemplary Numerical Results

To conduct numerical studies of our new method, we consider the following
simplified form of our model scalar-valued convection diffusion problem (1) on
the unit square domain £2 = (0,1) x (0,1) C R? with homogeneous Dirichlet
boundary conditions:

—DAu—+b-Vu=f, in $2,
(21
u =20, on ds2,

where the coefficient D € L°°(£2) is a scalar-valued isotropic diffusion coefficient.
In the following subsections, we first verify the asymptotic convergence behavior
of the newly introduced AVS-FE method. In Sect. 3.1 we analyze a case in
which convection is still rather moderate. However, since our main purpose is to
investigate the intrinsic stability property of the method, we focus our attention
on convection dominated problems in the subsections that follow. In Sect. 3.2, we
first look at a classical scenario in which all coefficients are homogeneous, i.e.,
constant, throughout §2. Next, we consider a scenario of importance to engineering
applications. In Sect. 3.3, the diffusion coefficient is heterogeneous and therefore
varies throughout the domain. Lastly, we briefly investigate the converse situation
in Sect. 3.4 in which the diffusion is homogeneous, but the convection varies
throughout the domain. Particularly, we look at an example in which the variation
of the convection coefficient causes the formation of an internal layer.

The purpose of studying these convection-dominated problem is to test the
intrinsic (automatic) stability property of the AVS-FE discretizations, which we
attained by using the DPG philosophy in the construction of our test functions. We
are particularly interested to see if we indeed: (1) obtain automatic stability for any
choice of mesh, (2) avoid overly diffused solutions for initial meshes, which is a
commonly encountered impediment of LSFEM solution, and (3) avoid solutions
with high oscillations at boundary and internal layers that do not tend to attenuate
upon mesh refinements, as encountered in classical FE analyses of such problems.

3.1 Asymptotic Convergence Study

To ascertain the asymptotic convergence rates in terms of the L%(£2), HY(),
and ||-||y () norms of the error, we consider a scenario of our model convection
diffusion problem (21) in which the diffusion coefficient D = 1/Pe, where we
refer to Pe € R as the Peclet number, and b = {1, 1}7. We choose Pe = 10 and
the source function f such that the exact theoretical solution is given by:

ePe-x -1 ePe~y -1
R R e | R e
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This solution exhibits a boundary layer along the boundaries x = 1 and y = 1, but
since there is a moderate level of diffusion (due to the relatively low value of the
Peclet number), these layers are not sharp.

In Fig. 2, we show error convergence results for uniform /-refinements in terms
of various error norms. For each h-refinement study a uniform p-level has been
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Fig. 3 Numerical accuracy comparison of q versus Vu; Ap =0.(@) p=2.(b) p =3

applied, ranging from p = 1 to p = 4. The test functions have been computed
at the same local polynomial degree of approximation as their corresponding trial
functions (i.e., Ap = 0). The plots in Fig. 2b and c clearly show that both the
L2(£2) and H'(£2) norms of the error in the primal variable, u — u”, exhibit optimal
convergence rates of order p 4 1 and p, respectively. Similarly, the L?(£2) norm of
the error in the flux, q — ¢, has an optimal convergence rate of p + 1, as shown in
Fig. 2d. The convergence rates in terms of the error norm ||(u, q) — (u”, q9) v @),
presented in Fig. 2a, are also optimal at a rate of p.

These results are representative of extensive convergence studies we have
conducted. In all these experiments, the observed asymptotic convergence rates have
been optimal. The corresponding a priori estimates of these convergence rates, and
their proofs, are to be presented in [19].

Lastly, we show a comparison of the L?(§2) norm of the error in q — q" versus
Vu — Vu" in Fig. 3, for p = 2 and p = 3. These results are again representative
of extensive numerical experiments, in which consistently a significantly higher
accuracy is observed in the prediction of the flux variable versus the gradient of
the primal variable.

3.2 Convection Dominated Diffusion: Homogeneous
Coefficients

As mentioned in the introduction, we are particularly interested in diffusion
problems in which convection plays a dominant role. We start here with the
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case in which the problem coefficients D and b in (21) are constant. For our
numerical study, we enforce convection in the diagonal direction, i.e., the convection
coefficient b = {1, 1}7. The source function is set at f(x) = 1 and the diffusion
coefficient again at D = 1/Pe. However, the Peclet number is now set at a high
value of Pe = 10° to ensure the convection term is dominant in (21). With this
choice of parameters in place, the distribution of the primal variable exhibits strong
convection in the diagonal direction and a sharp boundary layer of width 1/ Pe along
the boundaries at x = 1 and y = 1.

For a graded regular mesh of only 2 x 2 elements, as illustrated in Fig. 4a, and a
uniform p = 2 and Ap = 0, the corresponding AVS-FE approximation u” is shown
in Fig. 4b. The FE approximation, at just 75 dofs, is stable and does not exhibit any
overly diffused behavior but captures the boundary layer well. Apparently, applying
an identical local polynomial degree of approximation for the test functions in (17)
(i.e. Ap = 0), suffices to capture the boundary layer with a relatively good accuracy.
Results for Ap = 1, 2, 3, which are not presented here, do not show any significant
difference with the results shown here.

If we apply several additional uniform refinements the solutions remain stable
and converge. In Fig. 5, results for the AVS-FE approximation are provided for the
fifth refinement (i.e., at 12,675 dofs). A zoomed-in plot of the distribution of ul
along the diagonal and in the vicinity of the corner at y = x = 1, do not show any
oscillations, which are commonly observed in solutions obtained via classical FE
methods or LSFEM. The resolution of the boundary layer is not distorted by any
oscillations and continuously sharpens as the mesh is refined.

To demonstrate that the AVS-FE method also produces sequences of stable
numerical solutions for unstructured meshes, we present results in Fig. 6 for
Pe = 400. As depicted in Fig. 6a, the initial coarse mesh is unstructured and does
not resolve the length scale of the boundary layer along x = 1 and y = 1. The

(a) (b)

Fig. 4 AVS-FE results for homogeneous coefficients, a 2 x 2 graded mesh (75 dofs); Pe = 100,
p =2, and Ap = 0. (a) Initial 2 x 2 FE mesh. (b) Distribution of 1"
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Fig. 5 AVS-FE results or homogeneous coefficients, a refined mesh (12,675 dofs); Pe = 10°,
p =2, and Ap = 0. (a) Distribution of 1" throughout (0, 1) x (0, 1). (b) Distribution of ul along
y—x=0

corresponding numerical solution of u” is shown in Fig. 6b for p = 2 and has poor
numerical accuracy, as is expected for such a coarse mesh. However, the solution is
stable and upon applying uniform refinements (see Fig. 6¢ for the first refinement),
the solutions indicate the presence of the boundary layer. Hence, any subsequent
hp-adaptive strategies can then be applied to fully resolve the boundary layer. Since
in this work our focus is not on hp-adaptivity, we simply apply several uniform /-
refinements to demonstrate that the solutions do converge for unstructured meshes,
as shown in Fig. 6d.

3.3 Heterogeneous Diffusion

We continue by looking at a more challenging case in which the diffusion D
is a discontinuous piecewise constant function. Specifically, D has a value of
Pe or 1/Pe following a checker board pattern, as depicted in Fig. 7a. Both the
source function and convection coefficient remain unchanged from the experiment
conducted in Sect. 3.2, i.e., f(x) = 1 and b = {1,1}’. By choosing a high
Peclet number of 10%, we essentially establish a zero solution in the diffusion
dominant quadrants of the domain, while strong convection is observed in the
remaining two quadrants. Consequently, in the convective regions, sharp internal
layers are formed at the interface with the diffusion dominant quadrants, with a
width of approximately 1/ Pe. Additionally, sharp boundary layers are present in the
convective quadrants along their boundaries that intersect with the outer boundaries
atx=1landy = 1.
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Fig. 6 AVS-FE results for homogeneous coefficients and unstructured meshes; Pe = 400, p = 2,
and Ap = 0. (a) Initial unstructured mesh. (b) u for initial coarse mesh (27 dofs). (¢) u” after
first refinement (75 dofs). (d) Converged ul

For a graded regular mesh of only 4 x 4 elements (see Fig. 7b), p = 2, and Ap =
0, a contour plot of the of the distribution of the corresponding AVS-FE solution, 1",
throughout the unit square is depicted in Fig. 8a; whereas in Fig. 8b its distribution
along the diagonal y — x = 0 is presented. Analogous to the results in Sect. 3.2,
the numerical solution successfully captures the main features of the solution, i.e.,
the solution indeed vanishes in the diffusion dominant quadrants, strong convection
is seen in the remaining regions, and the sharp internal and boundary layers are
adequately captured. It is remarkable that with only 16 elements, and 243 dofs,
the AVS-FE computation succeeds in resolving these features without any strong
oscillations and without the need for any artificial stabilization. Again, using the
same polynomial degree of approximation in solving the optimal test functions (17),
does not appear to inhibit the corresponding AVS-FE computation to resolve the

essential solution features.
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Fig. 8 AVS-FE results for heterogeneous diffusion, 4 x4 graded mesh (243 dofs), p = 2, Ap = 0.
(a) Distribution of u" throughout (0, 1) x (0, 1). (b) ul along the diagonal y —x =0

Subsequently applying uniform /-refinements results in a sequence of numerical
solutions, in which the resolution of the internal and boundary continuously
improves without inducing any oscillations. Results for the fourth /-refinement are
given in Fig. 9.

3.4 Non-constant Convection

Lastly, let us now consider a case in which the convection coefficient, b, rather
than the diffusion coefficient, is non-constant, i.e., b = {%(1 —2x),0}7, ie., we
only have convection in the x-direction, which varies linearly throughout £2 and
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Fig. 9 AVS-FE results for heterogeneous D, a refined graded mesh (12,675 dofs), p = 2, Ap =
0. (a) Distribution of u” throughout (0, 1) x (0, 1). (b) ul along the diagonal y —x =0

1 0.8
06
0.5-
0.4
0- 0.2
0
05 =02
04
-1
1 08
05 . - Wos
4 0.5

0 ¢ X

Fig. 10 AVS-FE results for non-constant convection, a refined uniform mesh (~ 790,000 dofs),
Pe=10°, p=1,and Ap =0

vanishes along the middle line segment x = % By choosing the Peclet number at

an extremely high level, Pe = 10°, we ensure that convection is heavily dominant
away from the line segment x = % Next, the source function is chosen to be:

4x — 2 2
flx,y)= Py + y(I —y")Bx —4).
e

Under these conditions, the solution exhibits a sharp internal layer along the middle
line segment x = %, with a width of the order of 1/Pe, i.e., 107°. Away from
the internal layer, or ‘shock’, the solution is convective. In Fig. 10, we present the
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distribution of u” for the case in which we started with a 2 x 2 uniform mesh, p=1,
and Ap = 0, and subsequently applied seven uniform /-refinements, arriving at
a mesh with approximately 790k dofs. The numerical solutions do not show any
oscillatory behavior close to the shock and continuously provide sharper resolutions
of the internal layer as the mesh is refined, while converging to a bounded amplitude.
It is striking that the results are automatically stable for a staggering value of a
billion for the Peclet number.

4 Concluding Remarks

We constructed a variationally stable finite element discretization. This hybrid
continuous-discontinuous Petrov-Galerkin method uses solution (trial) functions
that are piecewise continuous over the whole domain. That is, these functions corre-
spond to standard finite element partitions. We then use as weight (test) functions a
piecewise discontinuous basis. This broken test space allows us to extend the DPG
approach to compute optimal test functions automatically and with these to establish
numerically stable FE approximations. Important features of this discretization
are as follows. The support of each discontinuous test function is identical to
its corresponding continuous trial function. The local test-function contribution
computed locally on an element by element fashion(i.e. decoupled). This has a linear
cost with respect to the problem size and can be thought as an alternative assembly
process, where not only inner products, but the functions themselves need to be
computed on the fly. Additionally, our experience indicates that the computation of
the optimal test functions is achieved with sufficient accuracy by using the same
polynomial order of approximation, p, as that used in the trial function. As in every
other DPG formulation, the resulting algebraic system is symmetric and positive
definite, allowing us to use simple iterative strategies to compute the numerical
solution. Our future work will include developing variationally stable discretizations
based on isogeometric analysis (IGA) both in Galerkin as well as in collocation
form. Our preliminary results indicate that these methods are very promising by
delivering robust and efficient discretizations exploiting the smoothness of IGA
basis functions to deliver intrinsically stable discretizations that are symmetric and
positive definite for arbitrary partial differential equations.

We are confident in the impact this methodology will have. Thus, we are
partnering with the development communities around FireDrake, Fenics-HPC and
Camellia as well as our traditional partners who develop PetIGA and PetlGA-MF
to release portable parallel implementations of this methodology.
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