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Weyl sums and the Lyapunov exponent
for the skew-shift Schrodinger cocycle

Rui Han, Marius Lemm, and Wilhelm Schlag

Abstract. We study the one-dimensional discrete Schrodinger operator with the skew-shift
potential 21 cos (2n((£)w + jy + x)). This potential is long conjectured to behave like
a random one, i.e., it is expected to produce Anderson localization for arbitrarily small
coupling constants A > 0. In this paper, we introduce a novel perturbative approach for
studying the zero-energy Lyapunov exponent L(A) at small A. Our main results establish
that, to second order in perturbation theory, a natural upper bound on L(A) is fully con-
sistent with L(A) being positive and satisfying the usual Figotin—Pastur type asymptotics
L(X) ~ CA? as A — 0. The analogous quantity behaves completely differently in the
almost-Mathieu model, whose zero-energy Lyapunov exponent vanishes for A < 1. The
main technical work consists in establishing good lower bounds on the exponential sums

(quadratic Weyl sums) that appear in our perturbation series.
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1. Introduction and main results

A central task of ergodic theory is to compare the orbits of a given ergodic dy-
namical system with sequences of independent and identically distributed (i.i.d.)
random variables. For instance, we can phrase the classical ergodic theorem as the
statement that empirical means along orbits are asymptotically indistinguishable
from empirical means of i.i.d. random variables distributed according to the equi-
librium measure. Going beyond the ergodic theorem, refined comparisons to the
random case typically involve correlations within the sequences. For example,
it is known that certain ergodic dynamical systems exhibit the Poissonian two-
point correlations and Poissonian spacing associated with i.i.d. sequences; see,
e.g., [35, 36] for ergodic systems related to the skew-shift.

The comparison between the orbits of a dynamical system and an i.i.d. se-
quence can also be made from the perspective of a quantum particle living on Z.
In a nutshell, the question becomes whether the orbits are sufficiently “random-
like” to localize the quantum particle in a finite region of space. Localization
occurs due to destructive interference of waves and therefore it depends crucially
on correlations within the underlying dynamical system.

Let us now define the model precisely. We introduce the Schrédinger operator
—A+ Av on ¢?(Z) whose parameters space consists of the real-valued sequence of
“potentials” v = {v;},ez and the global “coupling constant” A > 0. By definition,
the Schrodinger operator maps a sequence ¥ € £2(7Z) to the sequence

(A +AV)Y); = Y41 + ¥j—1 + Av; ;.

The basic idea is then to generate the bi-infinite sequence of potentials v =
{vj};jez by sampling along the orbits of an underlying ergodic dynamical system,
and to compare the resulting Schrodinger operator —A + Av with one that is
generated by an i.i.d. sequence of {v;},ez.

We first recall the benchmark for “random-like behavior” of these models,
i.e., we take {vj};ez to be an i.i.d. family of random variables. In that case,
the Schrodinger operator exhibits Anderson localization [2] for any A > 0. This
means, for instance, that its eigenfunctions decay exponentially [27]; for further
references, see [1].

Anderson localization, specifically, the exponential decay of Schrodinger
eigenfunctions is closely related to the associated cocycle having a positive Lya-
punov exponent for any A > 0, see [18]. Let us recall the definition of the
Schrodinger cocycle and the associated Lyapunov exponent L(A, E). Consider
a general Schrédinger operator —A + Av on £2(Z) whose (real-valued) sequence
of potentials {v;};ez is generated by some underlying dynamical system. The
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eigenvalue equation reads (—A + Av)y = Ey on {%(Z), with E € R. Itis a
second-order difference equation and can therefore be solved by iteratively apply-
ing transfer matrices A;, given by

4; = (E ~ —01)_ (1.1

Since the transfer matrices A; depend on the orbit of the underlying dynamical
system through v;, they generate a cocycle and we can define the associated
Lyapunov exponent L(A, E) via

1
LE) := nli)ngoglogTr[M:M,,], with M, := A, ... A;. (1.2)

The limit exists by the Fiirstenberg—Kesten theorem or Kingman’s subadditive
ergodic theorem, under appropriate assumptions on the underlying dynamical
system [38].

If the Lyapunov exponent L(A, E) is strictly positive at an energy E which
lies in the spectrum of the Schrodinger operator, then this strongly indicates (but
does not imply) that the model exhibits localization and therefore “random-like
behavior” at that energy E. In this paper, we therefore focus on the positivity of
the Lyapunov exponent as the telltale sign of localization.

Before we introduce the skew-shift potential, let us consider the most natural
ergodic system—circle rotation (or a shift on the 1-torus). First, for periodic
sequences of {vj};cza, the Lyapunov exponent vanishes everywhere inside the
spectrum. (E.g., when v; = 0, the eigenfunctions are plane waves.) In other
words, the lack of ergodicity of rational circle rotation fails to localize the quantum
particle.

For rotation by an irrational angle, the situation changes. This is the case of
the famous almost-Mathieu operator, whose potential is given by

vj = 2cosLr(jo + 0)). (1.3)

with @ € [0,1]\ Q and 8 € [0, 1]. In this case, the positivity of the Lyapunov
exponent depends critically on the size of the coupling constant A > 0. We
have the bound L(A, E) > logA by Herman’s subharmonicity trick [24], so
L(A,E) > 0 for A > 1 at all energies. The threshold A = 1 is sharp, i.e.,
L(AE) = 0for0 < A < 1, and E in the spectrum of the Schrodinger
operator. (This follows from the duality properties of the model under Fourier
transformation.) For later, we note that £ = 0 is in the spectrum [3, 10] and
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so L(A,0) = O when 0 < A < 1 and v; is given by (1.3). To summarize, the
weak ergodic properties of irrational circle rotation are only sufficient to localize
the quantum particle subjected to (1.3), if the coupling constant A is sufficiently
large.

In this paper, we consider an ergodic potential which is believed to be “slightly
more random” than (1.3). It is obtained by projecting orbits of the standard skew-
shift on the 2-torus on its first coordinate, leading to the potential

vj(x,y) = 2cos (2n((£)w+jy+x)), (1.4)

where w € [0, 1]\ Q and x, y € [0, 1] are parameters. (We call w the “frequency.”)

The key difference between (1.4) and (1.3) is the appearance of a quadratic
term, j2w. Rudnick, Sarnak, and Zaharescu [36] conjectured that the fractional
part of such sequences exhibits Poissonian spacing (and proved that this holds for
topologically generic w along a subsequence of j — o0). The phenomenon of
Poissonian spacing also occurs for i.i.d. sequences, but not for the fractional parts
of jw (i.e., not for circle rotation) which, by contrast, exhibits level repulsion
[5, 34]. Other results in this direction were proved in [22, 30, 31, 35].

The conjecture that (1.4) is “more random-like” than (1.3) from the perspective
of a quantum particle can now be phrased as follows.

Conjecture 1.1. For the potential (1.4), one has L(A, E) > Oforall A > 0 and all
E eR.

We note that Herman’s subharmonicity trick, which holds in a wider con-
text [37], also applies to the Schrodinger operator with v; given by (1.4). It still
implies that L(A, E) > logA is positive for A > 1, so Conjecture 1.1 is only
concerned with 0 < A < 1.

The Schrodinger operator with skew-shift potential has been studied in [9] us-
ing the large deviation approach to Lyapunov exponents [6, 8, 19]. In [9], Ander-
son localization was derived for large A; see also the recent effective version [20].
So far, however, there has been little concrete evidence for Conjecture 1.1, i.e.,
for random-like behavior of the skew-shift potential with 0 < A < 1. We are
only aware of a work by Bourgain [7] which studies the closely related potential
v; = 2cos(27j%w), and an unpublished preprint by Kriiger [26]. The former
establishes that, for any A > 0 and a positive-measure set of frequencies w, the
Schrodinger operator has point spectrum whose closure has positive measure. The
latter establishes the positivity of the Lyapunov exponent for a modified skew-shift
model.
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In this paper, we make a modest first contribution towards Conjecture 1.1. We
approach the problem perturbatively, i.e., we consider the zero-energy Lyapunov
exponent L(4, 0) as a power series in A > 0. (In analogy with the random case, it
is expected that for the skew-shift the spectrum is an interval. In particular, £ = 0
should be in the interior of the spectrum.) We study a natural upper bound on
L(A,0) which is obtained by Jensen’s inequality and which we expect captures
some of the essential features, as we formulate in Conjecture 2.1. We hope that
our results motivate further research into the delicate localization question for the
skew-shift model.

To a large extent, the motivation for this work stems from our earlier paper [20]
where the positivity of the Lyapunov exponent was derived from finite-volume
properties at a sufficiently large scale. One of these properties is the growth of
|My,| as n — oo, at least generically in the phase parameters. We therefore
average the trace in (1.2) without first taking a logarithm. We show that this
alternative conjecture is true to second order in perturbation theory. In fact, the
result is consistent with the Figotin—Pastur asymptotics L(A,0) ~ cA? as A — 0.
(The Figotin—Pastur asymptotics are expected to hold if Conjecture 1.1 is true.)

We now summarize the main contributions of this paper.

e Qur first main result, Theorem 2.4, provides manageable formulae for the two
lowest-order coefficients of the relevant perturbation series (cf. the original
formula in Proposition 2.2). The first-order term in the perturbation series
can be computed directly and we see that it behaves markedly differently
from the almost-Mathieu case. The second-order term is given by a sum
over quadratic Weyl sums. The growth properties of these exponential sums
are well known to be related to questions in number theory, specifically about
the number of solutions to Diophantine equations.

e In our second and third main results, Theorems 2.7 and 2.11, we prove com-
plementary lower bounds on the relevant Weyl sums. (They are complemen-
tary in the order of quantifiers.) These are the key results on a technical level.
Both results are ultimately based on rational approximation and asymptotic
formulae in the spirit of Hardy and Littlewood, but the details are quite dif-
ferent. Theorem 2.7 is proved by a probabilistic argument (second moment
method), with input from the central limit theorem for purely quadratic Weyl
sums proved in [25]. Theorem 2.11 is based on asymptotic formulae for fre-
quencies that are close to a rational and a variant of Khinchin’s theorem [16].

e Taking a clue from the cluster expansion method from statistical mechanics,
we rephrase Conjecture 1.1 as a counting problem, namely, as a precise
relation between the number of solutions to certain Diophantine equations
(Section 2.6).
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The paper is organized as follows. In Section 2, we present our main results
Theorems 2.4, 2.7, and 2.11. These are proved in Sections 3-5, respectively. In
Appendix A, we derive a similar perturbation series for the almost-Mathieu model,
and in Appendix B, we discuss the relation between our setup and the one studied
recently using homogeneous dynamics [11, 12, 29].

Acknowledgments The authors are grateful to the Institute for Advanced Study
for its hospitality during the 2017-2018 academic year. They thank I. Jauslin,
P. Sarnak and T. Spencer for useful discussions. This material is based upon work
supported by the National Science Foundation under Grant No. DMS-1638352.
The third author was partially supported by the NSF through DMS-1500696.

2. Main results

2.1. Setup. Given a function 7:[0, 1]> — R, we introduce the notation

11
Ep2[f] 2=//f(x,y)dxdy.
00

For the skew-shift potential (1.4) at irrational frequency w, the Flirstenberg-
Kesten theorem implies that the Lyapunov exponent (1.2) can be computed by
the following spatial average

. 1 %
LA E)= nll)ngo ;ETZ [log Tr[M, M,]].
Hence, by Jensen’s inequality, we have the upper bound
1
L(A, E) < liminf — log Eqx2[Tr[M,’ M,]].
n—oo n
We see that a necessary condition for Conjecture 1.1 to hold is that the following

polynomial in A,
Pu(A, E) := Ep2[Tr[M, M,]], (2.1)

satisfies the following variant of Conjecture 1.1.

Conjecture 2.1. There exists c; > 0 such that
Pn(A, E) = exp(n(cy + o(1))), (2.2)

asn — oQ.
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In fact, taking a clue from the Figotin—Pastur asymptotics established for the
Lyapunov exponent of potentials with better ergodic properties [17, 13], we expect
that

ey =CA% +0(1?), (2.3)

for some constant C > 0, as A — 0.

We focus on the zero-energy case, P,(4,0), and establish Conjecture 2.1
to second order in perturbation theory in A. More specifically, the polynomial
P, (A, 0) is an even function of A and we show that its A% and A* coefficients are
consistent with (2.2) and (2.3). That is, we show that

Pn(1,0) > 2nA% + %n%‘* +.ne

for some constant C > 0.

We remind the reader that at £ = 0 and 0 < A < 1 the Lyapunov exponent of
the almost-Mathieu model (1.3) vanishes. In fact, one can easily see that also the
polynomial P, (A, 0) behaves completely differently in the almost-Mathieu case—
the coefficient of A2 remains bounded in 7. (See Appendix A.)

This shows that the application of Jensen’s inequality above apparently did
not destroy the critical difference between these two models for small A. Conse-
quently, our results indicate that the Lyapunov exponent for (1.3) and (1.4) behave
markedly differently for small A.

2.2. The perturbation series. We have found it suitable to take a direct approach
to the perturbation theory. This is in contrast to the perturbation theory for the
Lyapunov exponent successfully used by Figotin and Pastur [17] in the random
case and Chulaevsky and Spencer [13] for some deterministic potentials.

It turns out that the zero-energy condition leads to certain parity conditions on
the summands. This phenomenon significantly complicates matters and does not
usually appear either in the context of perturbation theory in statistical mechanics,
or in the context of exponential sums.

We denote the set of even (odd) integers by e and o, respectively. Let j =
(J1s---sJiy) and [ = (I1,...,lx,) be two vectors with integer entries. The set &
is defined by the conditions

(j,j)e& < j1—lLee and js41—jsc€o0, foralll <s<k;—1,
and [+ —Il;€eo0, foralll <s<k,—1.
2.4

Recall Definition (2.1) of P, (A, E).
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Proposition 2.2. Let w € [0, 1] and let n > 1 be an integer. The polynomial
n
Pu(2,0) =) azed™
k=0

has coefficients given by oy = 2 and

ot = > Y e DBelvy vy vy vy ) (25)

0<kiko<n 1=j1<.<jk,<n
k1+ko=2k 15]1<...<lk2§n
k] —szO mod 4

fJork > 1.
Let us also denote
e[x] := exp(2mix), c[x] := cos(2mx),
and write 1 for the vector (1,..., 1) of a length that is given from context. The

expectation appearing in (2.5) can be expressed as an exponential series

ko
w .
Era[vj, ... vj, ] =ReZe[E Zasjsz]

ae{x1}ko  s=1
all,j

ko
W .5
Y [0S w2
gE{:I:l}kO s=1
a;=1
all,j

(2.6)

(For the second equality, we used that ¢ is an even function to fix a; = 1.)
Above, we used the notation g 1 1, J to encode the equations

ko ko
D ag=0. Y azjs=0.
s=1 s=1

Remark 2.3. We point out that the orthogonality condition j L 1in (2.6) is a
consequence of the fact that the potential (1.4) is generated by the true skew-shift.
It would be absent for the potential v; = 2 cos(27j ?w), for instance.

2.3. Identities for a; and o4. Our first main result, Theorem 2.4, concerns
the lowest order coefficients, o, and a4, which are a priori defined by the rather
unwieldy formula (2.5). For small A, Conjecture 2.1 translates to the lower bounds

2

> Cn, MZC%n Q2.7)

which should hold for some constant C > 0, as n — oo.
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Theorem 2.4 (first main result). Let w € [0, 1]. For any integer n > 1, we have

oy =2n, (2.8)

3], m 2 %]
o4 :421 IZe[a)(Zz—l)] + 4 Z
m= =1

m=1

m 2
> elw(> =)

=1

2.9)

Remark 2.5. (i) Notice that Theorem 2.4 is entirely algebraic.

(ii) In particular, Conjecture 2.1 ensures the positivity of the coeflicients
o>, a4, which is rather unexpected in view of (2.5) and (2.6). While it does follow
from (2.9) that o4 > 0, most of the effort of this paper will be to show from that
formula that in fact a4 ~ n2.

(iii) Equation (2.8) is almost immediate and shows that «, indeed grows
linearly in n, as required for (2.7). It should be compared with the formula for
the A2-coefficient for the almost-Mathieu potential (1.3), which remains bounded

in n. See Appendix A.

(iv) Equation (2.9) is ultimately a consequence of completing a square appro-
priately. Its advantages over the original formula (2.5) for k = 2 are twofold: (a)
The parity conditions have almost completely disappeared, and (b) it features only
a modulus of Weyl sums, so bounding it from below is more feasible (though still
non-trivial). Indeed, a lower bound on the Weyl sums appearing in (2.9) is the
content of our other main results.

Looking beyond this paper, it seems difficult to deduce that ag ~ n>. However,
it is possible to give lower bounds on the top coefficients which are consistent with
Conjecture 2.1.

Proposition 2.6 (top coeflicients). There exist constants c1, cy > 0 such that
Oon > €Y, O2p—2 >Cj. (2.10)

2.4. Lower bounds on quadratic Weyl sums. Recall that e[x] = exp(2mwix).
By Theorem 2.4, we have

m

Z [w(?=1)]

2
@.11)

I_";
52,
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Considering the conjectured bounds (2.7), the next question is whether we can
find irrational numbers w € [0, 1] and a constant C > 0 such that we have the
bound

"3 ] | m 2
8 Y | D elo(®—D]| =Cn®+ o>, (2.12)
m=1 '[=1

asn — oo. The two main results presented in this section provide positive answers
to this question, taking complementary perspectives.
The sum

Sm(@) ==Y elw(j* = /)], (2.13)
j=1

with w irrational, is an example of an exponential sum. The study of exponential
sums has a rich history with close ties to analytic number theory; a classic ref-
erence is Montgomery’s book [32]. Specifically, (2.13) is a quadratic Weyl sum,
first analyzed by Weyl [39, 40]. We review methods for estimating Weyl sums in
the next section.

We come to our second main result. For every large n, it establishes the
existence of a “good set” Q2,, C [0, 1] of uniformly positive Lebesgue measure,
such that the lower bound on the Weyl sums holds for all w in the good set.

Theorem 2.7 (second main result). There exist universal constants §,Cy > 0
and an integer ny > 1 such that, for every integer n > ny, there exists a subset
Q, C [0, 1] of Lebesgue measure at least § such that for all v € Q,, we have

n—1

> 1Sm(@)* = Con. (2.14)

m=1

Notice that (2.14) is in line with the intuition that Weyl sums should scale in
accordance with the central limit theorem, i.e., that S, (w) should be of the order
/m, for irrational w.

The proof of Theorem 2.7 is probabilistic and based on the second moment
method. A crucial input are moment asymptotics derived in [25] from the central
limit theorem for purely quadratic Weyl sums. We briefly discuss the main
technical difficulties and how we address them in the following section.

Remark 2.8 (the constants). The constants Cy and § are semi-explicit; they are
given by the formulae

(v2-1)°

(V2 -1)?
64 ‘

Co := Ciyy 3
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Here Cyjyg = f0°° ®(x)dx > 0 is a quantity from [25]. It is defined in
terms of the m — oo limit, ®(x), of the distribution function of the Weyl sum
m~1/2 Yoi i e[wj?]. (The fact that this limit exists is exactly the central limit
theorem, Theorem 3 of [25].) Hence, numerical information on Cyyy translates
directly into numerical information on Cy and §.

The fact that the good sets have uniformly positive measure allows us to obtain,
for every subsequence ny — oo, a fixed set @ C [0, 1], that is good along a
subsubsequence.

Corollary 2.9. Let € > 0 and let (ny)r>1 be a subsequence of the integers. There
exists a set Q C [0, 1] of Lebesgue measure at least § such that, for every o € ,

we have
nkl_l

> ISm(@)? = Con?,
m=1

along a subsubsequence ny, — oo.

The good set €2 is defined as the lim sup of the good sets €2,,; the corollary then
follows from Theorem 2.7 by a variant of the converse Borel-Cantelli lemma.

Remark 2.10. (i) We emphasize that the result holds for arbitrary subsequences
(nk)k>1. In particular, one can take ny = k.

(i) Combining the estimates (2.11) and (2.14), we obtain the following lower
bound for all w € Q:
ay > Con?,

along the subsubsequence ny, — oo. Hence, Corollary 2.9 verifies the conjec-
tured bound (2.12), for all irrational w € Q2 and along subsequences.

Our third main result is a complementary result to Corollary 2.9. Concerning
w, it is stronger because it holds for Lebesgue-almost every w € [0, 1]. Moreover,
it yields a numerically explicit lower bound. Concerning n, it is weaker because
it only holds along one special subsequence.

Theorem 2.11 (third main result). For Lebesgue almost-every o € [0, 1], there
exists a subsequence of n — oo, along which we have

> 1Sm(@)? = 2n%. (2.15)

m=1
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Remark 2.12. (i) The proof of Theorem 2.11 is based on an asymptotic formula
of Fiedler, Jurkat, and Korner [16] which says that Weyl sums become “unusually”
large (i.e., large on the diffusive scale \/m) along special subsequences determined
by the rational approximations to w (see also [15]).

(ii) The constant 2 on the right-hand side of (2.15) is not special and can be
replaced by larger numbers.

(iii) When we apply (2.15) to (2.11), we see that, for almost every irrational
w € [0, 1], the conjectured bound (2.12) holds, with C = 4, along a certain
subsequence.

In summary, together, Theorems 2.4 and 2.7 verify Conjecture 2.1 up to
second-order in perturbation theory, taking a different order of quantifiers for n
and .

We close this section with a cautionary remark.

Remark 2.13 (rational frequency). When the frequency w = p/q is rational,
the quadratic Weyl sums Z;’;l e[w(j% — j)] will typically be of order m (not
+/m). However, in the rational case, the averages over x, y in the definition of
L(4,0) are not justified by the ergodic theorem and they can lead to a positive
Lyapunov exponent because E = 0 lies in a spectral gap for some values of x, y.
Therefore, the Lebesgue null set of rational @ should be ignored when interpreting
Theorems 2.7 and 2.11.

In the next section, we provide some background on the analysis of Weyl sums
for the benefit of readers with mathematical physics and spectral theory back-
grounds, and we explain how the methods we use fit into the general landscape.

2.5. Discussion on Weyl sums. A general quadratic Weyl sum is of the form

m

Sm(@,€) =) elwj* +&j]

Jj=1

where w € [0,1] \ Q and & € [0, 1] are parameters. (Often, the first and last
term of the sum are halved so that it is better approximated by an integral.) For
irrational w, we expect Weyl sums to live on the “diffusive scale” \/m, indicating
the random-like behavior of the quadratic exponentials. (For rational ® = p/q,
these sums are called “Gauss sums” and they are asymptotically much larger, of
order m, unless ¢ grows with m.)
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The analysis of Weyl sums has a long history in harmonic analysis, ergodic
theory and analytic number theory. Weyl [39, 40] originally estimated these sums
via a method now known as ‘“Weyl differencing.” Improvements of his approach
by van der Corput, Vinogradov and others have become ubiquitous techniques in
the study of exponential sums [32].

A classical approach to Weyl sums is due to Hardy and Littlewood [23], who
viewed Weyl sums as a finitary analog of the Jacobi theta function and established
the approximate functional equation

7 2 1
S, £) = \/%e[%]SszmJ(— o %) + O V2. (2.16)

Notice that the Weyl sum on the right-hand side has macroscopically fewer terms,
|2wm | compared to m (using that one may assume w € [0, 1/2] by symmetry and
periodicity arguments). We can iterate this procedure, replacing —ﬁ by its frac-
tional part at every step. With the advent of computers, it was possible to study the
curves traced out by the Weyl sums in the complex plane (linearly interpolated).
In 1976, Lehmer [28] observed in this way that incomplete Gauss sums (the case
of rational w) form intricate self-similar spiral patterns (“curlicues’) which lie in-
side a ball of radius proportional to 4/m (like a random walk would) and whose
fine structure depends critically on the arithmetic properties of w. (For example,
Hardy-Littlewood showed that S,, < O(y/m) if w is of bounded type. Notice
also that the fixed points of the dynamical system & — —ﬁ + Lﬁj appearing
in (2.16) are quadratic irrationals.) From the modern perspective, Hardy and Lit-
tlewood’s formula (2.16) may be seen as a renormalization transformation which
groups together curlicues at the smallest scales [4, 14]. However, it is notoriously
difficult to control error terms in this procedure, even given the improved error
bounds established later [14, 15, 33, 41]. Instead, we will rely on more robust
modern variants, as we describe next.

Let us now return to our problem at hand—establishing Theorems 2.7 and 2.11.
There are three main technical difficulties: (i) we aim for a lower bound of
appreciable size (which requires good control on the asymptotics); (ii) we need
an estimate that holds for a sum of Weyl sums, i.e., the estimates on |S,,| need to
hold simultaneously for various m; (iii) the Weyl sums are not purely quadratic,
i.e., they feature the additional linear term § = —wj in the exponential.

The proof of Theorem 2.7 is based on the second moment method. The main
technical issue (i) is to obtain the correct asymptotics: The higher moment can
be computed explicitly by solving a simple Diophantine equation (Lemma 5.2).
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For the lower moment, we invoke an asymptotic formula due to Jurkat and
Van Horne [25], which is a consequence of their central limit theorem for purely
quadratic Weyl sums. The technical difficulty (ii) is easily addressed by linearity
of the expectation and Cauchy—Schwarz. Regarding (iii), the key observation is
that the sum with the linear term can be rewritten as a purely quadratic Weyl sum
over odd integers (see the proof of Lemma 5.3).

Theorem 2.11 is instead based on an asymptotic formula for Weyl sums estab-
lished by Fiedler, Jurkat and Korner [16] which requires w to be close to a rational
number. By a variant of Khinchin’s classical result, this situation occurs infinitely
often for Lebesgue almost-every w. This yields a good lower bound, thereby ad-
dressing (i), roughly speaking because Weyl sums are very large when w = p/gq
is exactly rational. Addressing the technical issue (ii) requires precise estimates
on the relevant scales involved. Regarding (iii), the results in [16] are fortunately
general enough to allow for linear terms.

In closing, we remark that, in recent years, Weyl-sum asymptotics have also
been established by using ergodic theory [11, 12, 29]. As these techniques might
become relevant for extending the results in this paper, we briefly discuss them in
Appendix B.

2.6. A reformulation in terms of Diophantine equations. Finally, we refor-
mulate Conjecture 1.1 entirely as a counting problem for Diophantine equations.
This is inspired by the cluster expansion method from statistical mechanics, where
the convergence radius of a series representation for the logarithm is a posteriori
found to be much larger than a naive guess would suggest.

We call B, the following (non-averaged) analog of a,y. Let 8o = 2 and let

k1—ko .
Bok =Y (=) 2 D> Ma(.Dvjy v vy v,

0<kikp<n 1=<j1<..<jg =n
k1+ky=2k 15]1<...<lk2§n

for k > 1. By examining the first part of the proof of Proposition 2.2, we see that
B2k are the series coeflicients for Tr[M,’ M, ] and so

n
L(.0) = lim ~Eyalog Tr(M? My] = lim lJETz[log 3 ,32,(12"].
n—-oon n—oon o
Let us now also take the average over w € [0, 1]; denote the total average (over
x,y,w) by Eps. If we can show that the resulting quantity is strictly positive, than
there must exist a “good set” Q C [0, 1] of positive Lebesgue measure such that
L(%,0) > 0—confirming Conjecture 1.1 for all v € Q.
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For fixed n, we may expand the logarithm as a power series in A and then take
the expectation IE13. Note that this expansion is a priori only formal for sufficiently
large n, since the averages of the coefficients B, grow with n. Nonetheless,
Conjecture 1.1 can be reformulated as saying that, at every order in A, the averaged
coeflicients cancel precisely to yield a quantity of order n (which is then multiplied
by the prefactor % from above).

If the cancellations occur at every order to yield a quantity of order n, then
this shows that the series expansion for the logarithm converges for small enough
A and arbitrarily large n. (As we mentioned before, this phenomenon occurs fre-
quently in statistical mechanics where the cluster expansion method can be used
to calculate the “partition function,” a quantity which is formally similar to the
Lyapunov exponent.)

For example, the A* term of the logarithm is

1 Eps[83]
(E+s - —2>
HESARES,
(The additional 1/2 factors enter because By = 2.) Note that E3[84] = fol aqdw
counts the number of solutions to Diophantine equations and can be seen to be
at least of order n2. This has to be canceled rather precisely by the other term
Ep3[82 . . . . . .
%, which also counts solutions to other Diophantine equations, in order to
obtain an order n quantity.

The analogous statements at every order in A? provide a reformulation of
Conjecture 1.1 as a counting problem for solutions to Diophantine equations,

though, admittedly, a rather non-trivial one.

3. Derivation of the perturbation series and Proposition 2.6
3.1. Proof of Proposition 2.2. For E = 0, we may write each transfer matrix

A;j as
0 -1 1 0
Aj—(l 0)—)&1)]'(0 O).

We expand the expression Tr[M,’ M,] as a polynomial in A. A straightforward
computation using cyclicity of the trace then shows that

n
Pu(A, E) = Bpa[Te[My My]] = Y agd®,
k=0
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with coeflicients given by

k1—ko .
oo = Z(—l) 2 Zl‘(!,Z)ETz[U‘jl A B

0<kikr<n 1<j1<..<jk =n
kit+ko=2k  1<li<..<lg,<n

We remark that this formula holds for any choice of the potential v;.
To prove Proposition 2.2, it remains to show that only terms with k; —k, =0

mod 4 contribute to the sum. Notice that this condition is equivalent to @ =0
k1—ka

mod 2andso (—1)" 2 = 1.
This part uses the skew-shift structure. We consider

Zli(j’_l)Elﬁ[vjl c U Ul - 'vlkz]'

1§j1<...<jk1§n

1511<...<lk25n

The expectation is given by equation (2.6). From it, we see that a non-zero
contribution can only come from pairs of vectors (/j,/) for which there exists a
vector g € {+1}* such thata L (j,1),1i.e.,

k1 2k
Zasjs + Zasls—kl =0.
s=1

s=k1+1

Since a5 € {+£1}, this linear relation implies that among the entries of j and k,
we must have an even number of odd entries. That is, if we define

v(j) = {1 <5 < kq: js odd}|

(with | - | denoting the cardinality of a set) and the analogous quantity v(/), then
we have
v(j)+v(l)=0 mod 2. (3.1)

Next, we show that (3.1) implies @ = 0 mod 2. By the & condition (2.4),
the parity of each entry of j and of [ alternates. This may be formalized as follows.
. L%‘J if j; is even,
v(j) =
{’%] if j; is odd,
and an analogous formula holds for v (/) with k; replaced by k». Suppose that j;
is even; notice that this implies that /; is even as well. Then (3.1) yields

k1 ky |
LEJ + LTJ =0 mod 2.
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By subtracting k, from this equation, and distinguishing cases according to the
parity of k», we conclude that

ki —ks

=0 d2
3 mo

as claimed. A similar argument holds if j; and /; are odd. This finishes the proof
of Proposition 2.2. O

3.2. Proof of Proposition 2.6. We first consider a,,. The only contributions
to (2.5) come from the “diagonal” ky = k» = nand j =1 = (1,2,...,n).
Hence, by Jensen’s inequality,

Wy = ETz[ ﬁ vjz] > exp ( 2": Eq2 [log(vf)]) =cf,

Jj=1 Jj=1

with ¢1 := exp fol log cos?(2mx)dx > 0.

For a5,—7, the only contributions to (2.5) come from k; = k, = n — 1 and
either j =1 =(1,2,...,n—1)orj =1 =(2,...,n). An analogous application
of Jensen’s inequality finishes the proof of Proposition 2.6. O

4. Proof of the identities in Theorem 2.4
4.1. Proof of formula (2.8) for a3. By Proposition 2.2, we have

=Y Lee)(i1. j2)Byz[vj, vj,] + pec.

1<j1,j2=n

Here and in the following, we write p.c. for the “parity conjugate” of the preceding
expression, i.e., the same expression with all appearances of e and o interchanged.

We compute the expectation via (2.6). Since a; = 1, we must have a, = —1
and so

IQJ-j = 1=,
This implies ay j{ +a» j# = 0 and therefore E2 [v), vj,] = 21;,=, in the formula

for o, above. We see that the sum over j, collapses and (2.8) is proved. O

4.2. Proof of formula (2.9) for a4. For this part, it is convenient to introduce
some notation. Recall that we denote the sets of even (odd) integers by e and o,
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respectively. Given a choice of parities 7y,..., 7 € {e, o0} and real numbers
ri,...,re, we define

[ ... ¥ = Zl(,rl ,,,,, a0 U JU)! v]r:

1<j1<..<jx<n

We begin by applying Proposition 2.2 to find
o4 = Eq2 [2[eoeo] + [eo][eo] + p.c.]. 4.1)
We may compute the product in (4.1). Namely
[eo][eo] = 2[eoeo] + 4[eeoo] + 2[eeo0?] + 2[e*00] + [e*0?].

The following lemma provides the expectation of all terms containing higher
powers of v;.

Lemma 4.1. We have

Eq2[[eeo?] 4 [e*00] + p.c.] = 0, 4.2)
Eqz[e?0? + p.c] = n? —14(n). 4.3)

We postpone the proof of this lemma for now. Upon returning to (4.1),
Lemma 4.1 implies that

oy = 412 [[eoeo] + [eeoo]] + p.c. + n% —14(n).
Recalling our notation, we are led to consider

412 [[eoeo] + [eeoo]]

=4 Z 1(e,o) (jls j4)(1(e,0) + 1(0,e))(j27 j3)ET2[vj1 s vj4] (4.4)

1<j1<j2<Jj3<jazn

(plus its parity conjugate). We now compute the expectation via (2.6). There are
three choices of ¢ € {£1}* such thata; = 1 and g L 1; see the table.

Table 1. Different choices of vectors ¢ € {£1}* witha; = 1 anda L 1.

| a1 | a2 | a3 | a4 |
1 1] —1]-1
1| -1 1]-1
1| -1 |-1] 1

D
Im
(IIT)
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Considering the fact that j; < j, < j3 < j4, we find that only case (III) yields
a non-zero indicator function 1, ;, namely

a1~ = Litia=jtis-
An important observation is that the parity conditions in (4.4) amount precisely
to specifying that j; + j4 = j» + j3 is odd, i.e.,
41> [[eoeo] + [eeoo]] + p.c.
2n—1 w
=82 1) Y Visjmpinmse| 5GP +ii =3 —iD)]

s=3 1=<j1<j2<j3<jaszn
Next we observe that, conditional upon j; 4+ j4 = j» + j3, the condition j; < j, <
Jj3 < jaisequivalentto j; < j, < j3 and j; < js4 (Where the last constraint is in
fact redundant). We can use this fact to complete a square in the above expression:

2n—1

8210(5)2111+/4 =jo+j3=s e[ (i +J4)]

1<j1<jazn

X Z].j2+j3=s 6[5(—j2 —J3 )]

1<j2<j3=n

J2>J1
2n—1 5

= 4ZIO(S)<‘ le1+j4=s e[ (Jl + J4 ]‘ - le1+j4=s)
s=3 1<j1<ja=n 1<j1<ja=n
2n—1

= 4210(5‘)(‘ Z 1, <s—j, <n elo(jE — 5j1)] ‘ Z 1 <5 J1<n)
§s=3 J1=1 J1=1

= i (‘ Z 1J1>2m+1 —n e[w(h 2m + 1)]1)]‘

j1=1
- Z 1]1>2m+1 n)
j1=1
Now we change the inner summation variable to / := m + 1 — j; and obtain
n—1  min{m,n—m} min{m,n—m}
4y (‘ 3o [a)(lz—l)]‘ —Zl )
m=1 =1 I=

n—1

5] m L
=4Z‘Ze[a)(12—1)]‘2+4 ‘Ze[a)(ﬂ—l)]‘ —n? +1,(n).
m=1 [=1

m=1

This finishes the proof of Theorem 2.4, modulo Lemma 4.1.
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4.3. Proof of Lemma 4.1. For (4.2), we consider

4
Ey[eeo’] = 2 Z Liee,0)(J1. J2: J3) Z ¢ [3 Z as]sz]-

1<j1<j2<j3=ja<n ae{x1}* s=1
a1=1
all,j

We recall Table 1. One may check that 1,1 j= 0 in each case (I)-(IlI) separately,
and so Ep2[eeo?] = 0. Since the argument holds independently of parity, it also
gives Eq2[e?00] = 0 and hence (4.2).

It remains to prove (4.3). We consider

4
Er2[e?0?] =2 1ieo)(j1-j3) Y C[E > asjsz]-
1<j1=Jj2<j3=ja<n ae{+1}* s=1

a;=1
all,j

Recall Table 1 once more. For case (I), we obtain
1g,1,-1,-11j = 12j,=2j; =0,

because j; < j3. For cases (II) and (III), we obtain a non-zero contribution.
Indeed

la,-11,-n1j =1a,-1,-1,nL =lo=o = 1.
Since Y°¢_, a2 = 0in cases (II) and (III), we find

Er2[e?0” + p.c] =4 (Leo) (1. J3) + Lo (1. /3))

1<j1=Jj2<j3=ja<n

=1y Y
1<j=<n 1<l=<n
Jj€o lee

_ .2

=n" —1o(n).

This finishes the proof of Lemma 4.1 and hence of Theorem 2.4. O

5. Proof of the probabilistic lower bound (Theorem 2.7)

5.1. The second moment method. The proof is based on the second moment
method, i.e.,
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Proposition 5.1 (Paley—Zygmund inequality). Let Z > 0 be a random variable
and let 0 € [0, 1]. Then, it holds that

(E[Z])?
E[Z?]

P(Z > 6E[Z]) > (1 — 0)? (5.1

Proof. By Cauchy—Schwarz

E[Z] = E[Z1z<exz)] + E[Z1z>6p(z)] < OE[Z] + VE[Z2]P(Z > 0E[Z]),
and (5.1) follows by rearranging. O

We recall that S, = Z;’;l e[w(j? — j)]. We will apply the Paley—Zygmund
inequality to the family of random variables

(5.2)

which are obtained by sampling the frequency w € [0, 1] at random, according to
uniform (i.e., Lebesgue) measure. We write IE for expectation with respect to that
measure.

The following two lemmas allow us to control the first and second moment of
Z,, so that we can use (5.1).

Lemma 5.2. For any integer n > 1, we have

nn—1)
TR

E(Z;) =

Lemma 5.3. There exists a constant C1 > 0 such that

lim inf ElZ]

n—oo n

> (.

Lemma 5.2 is a straightforward computation; at its core stands the solution
of a simple Diophantine equation. Lemma 5.3, on the other hand, requires as an
input the asymptotics of the first moments of purely quadratic Weyl sums (without
a linear term), which are a consequence of the central limit theorem of Jurkat and
Van Horne [25].

Before, we prove Lemmas 5.2 and 5.3, let us see that they imply Theorem 2.7.

Proof of Theorem2.7. Let 6 = 1/2. We combine Proposition 5.1 with Lem-
mas 5.2 and 5.3 to obtain
(E[Za)? _ CF

o 1. .
hnn_l)})réfIP(Z,, > E[Z,]/2) zzhnn_l)gf E[Z2] > >
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Moreover, by Lemma 5.3, we have E[Z,]/2 > nC;/4 for all large enough n.
Hence, we have shown that

P = Ay . G\ _ C?
hmlnf]P(ﬁ Z |Sim(w)]? > i) = h,,rggéﬂP(Z" > Tn) > 71
m=1

n—o0

We can now define the “good” sets as

Q {a)e[O 1= Z|s (@) > } (5.3)

The statement above shows that €2, has uniformly positive Lebesgue measure,

with the lower bound § := CT‘, for every sufficiently large n. This proves
Theorem 2.7. O

5.2. Proof of Lemmas 5.2 and 5.3

Proof of Lemma 5.2. By orthonormality of {e[;]};ez and the fact that j2 — j =
k? — k is equivalent to j = k for positive integers, we have

o[ 3 15aP] = [ X | S etots” - 1] ]
m=1 =1 j=1

3

n—1

=Y Elelo(?—j —k>+ k)]l

Jk=

—

: 3
Il
’—‘ —

nn—1)
T

= m =
1

3
Il

This proves Lemma 5.2. O

The proof of Lemma 5.3 uses the following result from [25]. We define the
purely quadratic Weyl sum

Win(w) := Y elwj?].

We write f(m) ~ g(m), for lim,,— 2 = 1.

Theorem 5.4 ([25], Theorem 4). There exists a constant Cyyyg > 0, such that, as

m — 0Q,
E[|Win|] ~ Cryum'/2. (5.4)
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We point out that [25] use a different convention for the quadratic Weyl sums,
where the first terms are halved (though this does not influence the asymptotics)
and w ranges only over [0, 1/2]. The statement (5.4) follows from their Theorem
4 by Z-periodicity of ¢[-] and the reflection symmetry |W,,(®)| = |Wp(—w)|. We
have Cyyy := f0°° ®(x)dx > 0 with & the limiting distribution function from
Theorem 3 in [25].

We are now ready to give the

Proof of Lemma 5.3. By Cauchy—Schwarz, we have

n—1 1 n—1
Zn= | D ISmP = > 1Sml- (5.5)
m=1 n_1m=1

We will bound the right-hand side from below via Theorem 5.4. The difference
between our Weyl sums S, and the purely quadratic ones treated by [25] is
the linear term —jw in the exponential. The key observation is that we may
nonetheless reduce the computation to the case of W, by parity arguments. We
decompose

Wy =W, + W,
where the e (0) terms are given by restricting j to the set of even (odd) integers,
respectively.
We have
Sm(@)| =Y elo(2 =Nl = | Y e[ 2@/ = 1?]| = [Wa.i (5)]

j=1 j=1
By the Z-periodicity of e[-], we have S;,(w) = Su(w + 1), and therefore, by a
change of variable,

E[[Sml] = E[lSm (4] = E[[W,—4 1.

By the triangle inequality and a change of summation index, we obtain the lower

bound
E[|Wy, 11l ZE[|Wam-1]] = E[|W;,, 5]

E[|Wam-11] = E[[Win-1(4)]]

=E[[Wam-1]] = E[|Wn-1]].
In the last step, we used the periodicity W,,,—1(®) = Wp—1(w + 1). Now we can
apply Theorem 5.4 to conclude that

E[|S m—1—
USmll Cyyy lim inf v2m Vm
m—00 ﬂ

—1
liminf = (V2= 1)Cyvn.

m—00 \/ﬁ
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Let us fix € € (0, 1). We now apply this estimate to (5.5) and obtain

E[Z,] "
lim inf " >liminf ——— E[|Smn(w
n—o0o n - n—>oo n\/njm;n [l m( )|]

Z(\/E — DCyvy lin_1)infn‘3/2 Z \/E

m=e€n
V2-1
>
=72

CyvH.

The last estimate holds for sufficiently small €. This proves Lemma 5.3 (with

C = */52_1 Cyvn) and hence finishes the proof of Theorem 2.7. O

5.3. Proof of Corollary 2.9. Recall (5.3) from above. We need to ensure that
the event that €2, occurs infinitely often has positive probability. Formally, this
event is defined as

o0 o0
Q :=limsup 2,, = ﬂ U Q.
k—o00 K=1 k=K

The claim of the corollary can then be compactly written as
P(Q) >8> 0. (5.6

By Theorem 2.7, we have that liminf, o, P(2,) > § > 0. Recall that any
probability measure is continuous on monotone sequences of events. Hence

K—o0

P() = P( ﬁ G 2, ) = lim P( G 2, ) = liminf P(2) = 5.
K=1k=K

This proves (5.6) and hence Corollary 2.9. O

6. Proof of the almost-sure lower bound (Theorem 2.11)

6.1. Preliminaries. The following results were proved in [16]. Let p and g be
integers and let

y
1 .
F(y) = w/e’”’z dt
0

be the Fresnel integral.
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Theorem 6.1. [16, Theorem 5] Let 6 be a real number, m be a positive integer and
0 < & < 1/2. Choose A such that pq + 2A is an even integer and that 0 = A+ a
holds with |a| < 1/2. Then, for real £ # 0 with |m& + a| <1 — g, we have

e (2P TE 20
Sm(p.q.§.0) -—’;exp (7”<”2—q +”?)) 6.1)
= Tm + O0:(Vq(1 + [£lg)),

where

h _a? §
= Lo (- )20 - ()]
in which h is a complex number with |h| = 1.

Corollary 6.2 ([16, Corollary of Theorem 5]). Let 0 < |§|<1/(4m), 0<g <4m,
a' = asigné, |a'| < 1/2, m?|&| + 2ma’)/q = 2k + y for some integer k and
|y| < 1. Then, for some absolute constants cy,c, > 0, we have

m
——— if —ml§| - Vql| <d’ < Vqlél,

T ~c1,c2 ﬂ_‘_mﬁ |V| (62)
\/c_](a/(m|$| ) + TR +a/)) otherwise.

where X ~c, ¢, Y meansc1Y <X <c,Y.

We will also use the following lemma, which is a variant of Khinchin’s theo-
rem.

Lemma 6.3. Let (Y (n));>, be a non-increasing sequence of positive numbers
such that Y o2 | ¥ (n) diverges. Then for Lebesgue almost-every w € R, the
inequality

lgw — pl < ¥(q)

has infinitely many solutions p,q with 2|p and (p,q) = 1.
We postpone the proof of this lemma to the end of this section.

6.2. Proof of Theorem 2.11. We let C > 0 be an absolute constant which is
chosen at the end of the proof; see (6.11). Lemma 6.3 with y(n) = (Cn)™!
implies that for Lebesgue almost-every w € R, there are infinitely many solutions
p,q with 2|p and (p,¢q) = 1, and

1
lgQw) — p| < I (6.3)
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We fix such an w € [0, 1]. Let us label the corresponding sequence of solutions by
Dk, qx With g in increasing order. We set

& = 2qrw — pr.
i.e.,
e — Pk + Sk’
qdk

and

With these choices, we have

Sm(®) = Sm( Pk k- &k qr)-
We check the conditions of Theorem 6.1. By (6.3), we have

1 1
Ekl < — < —, (6.4)
&4 Cqr — 164k
provided C > 16. Since py is an even number, we can take
A = —%, and ay = —%". 6.5)
We define the (w-dependent) subsequence Ny by
Ni := [VCqr.
and we let m be an integer with % < m < Ng. We check that
6] = Niléel < —= = 5 (6.6)
miSe| = NelSk| = —F—= = - .
JC T4
and hence in view of (6.4)
1 & 1
< — 2= —
Imé&x + ax| < 25 <7

Thus Theorem 6.1 implies that, for some absolute constant c¢3 > 0,

[Sm(0)| = |Sm(pr- gk k. Ok)| = Ton — €34/4k, (6.7)

where we used (6.4) to simplify the error term.
Next, we use the first estimate in Corollary 6.2 to estimate 7,. In view of (6.5)
and (6.6), it remains to compute that

qk < 2|V Cqi] = 2Ny < 4m,
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and
—mléx| — vV qrlék| < %' < vkl

Hence Corollary 6.2 implies that there exists an absolute constant ¢; > 0 such that

clm

oom
Ty > an (6.8)
\/ Kk +my NN
where we used (6.4) in the last inequality. Combining (6.8) with (6.7), we have
m C1 \/_
[Sm(w)] > —— — qx > > vm, (6.9)
J_ 4 «/— 42
where we used
C 4 8
m>£qk>ﬂqk’ or Cz(ﬂ)
2 C3
Squaring and summing (6.9) over m from Ny /2 to Ni, we obtain
Z |Sm (@) = > 2N, (6.10)
provided that
512
C>—
3c?
Finally it suffices to take
8C1 2 512
C = max (16, (Z) , 36%) 6.11)
This proves Theorem 2.11. O

6.3. Proof of Lemma 6.3. An analogous lemma with the condition 2|g instead
of 2| p can be found in [16]. Here we need 2| p. Let us note that it suffices to show

Lemma 6.4. Under the same condition as Lemma 6.3, we have that for Lebesgue
almost-every w € R, the inequality

lgo — p| < ¥ (q)

has infinitely many solutions p, q with odd q and (p, q) = 1.
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First let us show how Lemma 6.4 implies Lemma 6.3. Indeed, Lemma 6.4 with
¥ (n) = ¥(n)/2 implies that, for Lebesgue almost-every w, there are infinitely
many solutions (p, q) to the inequality
Y@

2
with odd ¢ and (p, ¢) = 1. Multiplying (6.12) by 2, we obtain

w
— — 6.12
‘q > p‘ (6.12)
lgw —2p| < ¥ (q).
where (¢,2p) = (¢, p) = 1. This proves Lemma 6.3.

Lemma 6.4 is a special case of the following theorem in [21].

Theorem 6.5 ([21, Theorem 4.2]). Suppose that W (n) is a non-increasing se-
quence with 0 < ¥ (n) < 1/2 and suppose that

Z Y (n) = oo.
n=1

Let A be an infinite set of positive integers. We write S(A, w, N) for the number
of solutions to
lnollr <y (), n=N neA,

where || x |1 := dist(x, Z). Then, for Lebesgue almost-every o € R,
S(A, @, N) = 2W(N, A) + O(¥(N)"2(log W(N))>+®),
for every ¢ > 0. Here
N N
W(N)=) ¥(n) and W(N,A) = v¥(n).
n=1 n=1
neA

We can now give the

Proof of Lemma 6.4. Let us take A = {2k — 1, k € IN} be the set of positive odd
numbers. Since ¥ (n) is a non-increasing sequence, we easily see that

2U(2N,A) > V(2N) — oo.
Thus Theorem 6.5 implies
SA,w,2N) — .

This proves Lemma 6.4. O
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Appendices

A. The perturbation series in the almost-Mathieu case

In this section only, we set ; = 2cos(2n(wj + 0)). We use analogous notation
as in the skew-shift case, occasionally using ~ for emphasis. By adapting the
calculation in the proof of Proposition 2.2, we find that the polynomial

Pp(X,0) := Tr[M Zazkﬁk

now has coefficients given by &, = 2 and

k1+ko
Gk = 23 14D Y e [ (Zas]s + Y agly- kl)] (A.1)
0<kikx<n 1=5j1<.<jg =n ge{£1}¥ s=1 s=ki+1
kit+ko=2k  1<li<..<lg,<n all
fork > 1.

Here we only consider the lowest non-trivial coefficient &.

Proposition A.1. We have

I—e[o+ ] _ 2

2cos?(mw) ~ cos2(nw)’ (A-2)

Oy =

We emphasize that the upper bound is independent of n. This is in stark
contrast with the skew-shift model, for which o, = 2n was proved in Theorem 2.4.
This serves as an important indication that we have not lost the critical features of
the models when applying Jensen’s inequality to move from Conjecture 1.1 to 2.1.

Proof of Proposition A.1. This is a calculation. By definition, we have

G =—4Re > (Leo) + Lo.e) (1. j2)e[@(j1 — j2)]

1<j1<j2=n

+2Re Y (Lee) + Lio.) (1. I)e[w(j1 — 1))

1<j1,l1<n

=2Re ) (—1)/"*elw(ji — )]

1<j1,l1<n
n . 2
:2Re‘Z(—1)1e[wj]‘
j=1
_Ji=e[(w + D]

2 cos?(mrw)

as claimed. O
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B. The analysis of Weyl sums via homogeneous dynamics

In recent years, Weyl-sum asymptotics have been established using techniques
from homogeneous dynamics [11, 12, 29]. In fact, it is possible to study the entire
path traced out by the Weyl sum in the complex plane as a stochastic process
in Wiener space (the space of continuous functions with sup-norm). Notice that
control on the entire path directly addresses the technical problem (ii) mentioned
in Section 2.5.

In particular, Cellarosi and Marklof recently established that Weyl sums
satisfy an “invariance principle”: if the frequency w € [0, 1] is chosen at random,
and c¢; € R is irrational, then the path of the normalized Weyl sum

m
m~2 Y elw(j? +c1j)) € C
Jj=1

converges to a non-trivial random variable in Wiener space; see Theorem 1.3
in [12]. The limit shares some properties with two-dimensional Brownian motion,
but is distinct from it; see Theorem 1.4 in [12]. The fact that the parameter
¢y is irrational guarantees the validity of the key equidistribution theorems for
horocycles in an appropriate hyperbolic space. Note that, for us, c; = —1 is
rational and so their theorems do not apply in our context. (In fact, we might expect
that, instead of equidistribution in the whole space, one now has equidistribution
along a certain geodesic.)

Nonetheless, in this appendix, we observe here that the tightness part of their
proof extends to our situation. We recall that S, = Z;’;l e[w(j?— j)] and define
the function Xy : [0, 1] — C by

Xn(t) =" 2(S ) + (tn — [t0])(S1en] — Sien)))- (B.1)
In other words, we take X, (¢) := n~'/2S,, whenever € {0,1,2 ... 1}, and we

interpolate linearly between these points. We now sample the frequency w € [0, 1]
at random, according to a fixed measure p that is absolutely continuous with
respect to Lebesgue measure. The random choice of w induces a stochastic process
Xy in the Wiener space C, defined as the Banach space C ([0, 1]; C) equipped with
the supremum norm.

The following tightness result is implicit in [12].

Theorem B.1. The sequence of stochastic processes (Xp)n>1 is pre-compact
under weak convergence in Wiener space C.
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Proof. To see this, it suffices to observe that the proof of Proposition 4.10 of [12]
extends verbatim to sums over e[w(j? — j)]. In particular, the tail bounds in
Proposition 3.17 of [12] hold uniformly in the vector & and do not require the
irrationality assumption stated in Theorem 1.3 there. O

We can use Theorem B.1 to obtain a limiting continuous random process

Xo : [0, 1] — C such that we have weak convergence in Wiener space, X, i Xo,
along a subsequence. We emphasize that the limit X, can be different from the
limiting process X found in [12] under an additional irrationality assumption.
Nonetheless, the two limiting processes are likely related. See also Remark 1.1
in [12].
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