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Weyl sums and the Lyapunov exponent

for the skew-shift Schrödinger cocycle

Rui Han, Marius Lemm, and Wilhelm Schlag

Abstract. We study the one-dimensional discrete Schrödinger operator with the skew-shift
potential 2� cos
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. This potential is long conjectured to behave like
a random one, i.e., it is expected to produce Anderson localization for arbitrarily small
coupling constants � > 0. In this paper, we introduce a novel perturbative approach for
studying the zero-energy Lyapunov exponent L.�/ at small �. Our main results establish
that, to second order in perturbation theory, a natural upper bound on L.�/ is fully con-
sistent with L.�/ being positive and satisfying the usual Figotin–Pastur type asymptotics
L.�/ � C�2 as � ! 0. The analogous quantity behaves completely differently in the
almost-Mathieu model, whose zero-energy Lyapunov exponent vanishes for � < 1. The
main technical work consists in establishing good lower bounds on the exponential sums
(quadratic Weyl sums) that appear in our perturbation series.
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1. Introduction and main results

A central task of ergodic theory is to compare the orbits of a given ergodic dy-
namical system with sequences of independent and identically distributed (i.i.d.)
random variables. For instance, we can phrase the classical ergodic theorem as the
statement that empirical means along orbits are asymptotically indistinguishable
from empirical means of i.i.d. random variables distributed according to the equi-
librium measure. Going beyond the ergodic theorem, refined comparisons to the
random case typically involve correlations within the sequences. For example,
it is known that certain ergodic dynamical systems exhibit the Poissonian two-
point correlations and Poissonian spacing associated with i.i.d. sequences; see,
e.g., [35, 36] for ergodic systems related to the skew-shift.

The comparison between the orbits of a dynamical system and an i.i.d. se-
quence can also be made from the perspective of a quantum particle living on Z.
In a nutshell, the question becomes whether the orbits are sufficiently “random-
like” to localize the quantum particle in a finite region of space. Localization
occurs due to destructive interference of waves and therefore it depends crucially
on correlations within the underlying dynamical system.

Let us now define the model precisely. We introduce the Schrödinger operator
��C�v on `2.Z/whose parameters space consists of the real-valued sequence of
“potentials” v D ¹vj ºj 2Z and the global “coupling constant” � > 0. By definition,
the Schrödinger operator maps a sequence  2 `2.Z/ to the sequence

..��C �v/ /j WD  j C1 C  j �1 C �vj j :

The basic idea is then to generate the bi-infinite sequence of potentials v D
¹vj ºj 2Z by sampling along the orbits of an underlying ergodic dynamical system,
and to compare the resulting Schrödinger operator �� C �v with one that is
generated by an i.i.d. sequence of ¹vj ºj 2Z.

We first recall the benchmark for “random-like behavior” of these models,
i.e., we take ¹vj ºj 2Z to be an i.i.d. family of random variables. In that case,
the Schrödinger operator exhibits Anderson localization [2] for any � > 0. This
means, for instance, that its eigenfunctions decay exponentially [27]; for further
references, see [1].

Anderson localization, specifically, the exponential decay of Schrödinger
eigenfunctions is closely related to the associated cocycle having a positive Lya-

punov exponent for any � > 0, see [18]. Let us recall the definition of the
Schrödinger cocycle and the associated Lyapunov exponent L.�;E/. Consider
a general Schrödinger operator ��C �v on `2.Z/ whose (real-valued) sequence
of potentials ¹vj ºj 2Z is generated by some underlying dynamical system. The
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eigenvalue equation reads .�� C �v/ D E on `2.Z/, with E 2 R. It is a
second-order difference equation and can therefore be solved by iteratively apply-
ing transfer matrices Aj , given by

Aj WD
�

E � �vj �1
1 0

�

: (1.1)

Since the transfer matrices Aj depend on the orbit of the underlying dynamical
system through vj , they generate a cocycle and we can define the associated
Lyapunov exponent L.�;E/ via

L.�;E/ WD lim
n!1

1

n
log TrŒM�

nMn�; with Mn WD An : : : A1: (1.2)

The limit exists by the Fürstenberg–Kesten theorem or Kingman’s subadditive
ergodic theorem, under appropriate assumptions on the underlying dynamical
system [38].

If the Lyapunov exponent L.�;E/ is strictly positive at an energy E which
lies in the spectrum of the Schrödinger operator, then this strongly indicates (but
does not imply) that the model exhibits localization and therefore “random-like
behavior” at that energy E. In this paper, we therefore focus on the positivity of
the Lyapunov exponent as the telltale sign of localization.

Before we introduce the skew-shift potential, let us consider the most natural
ergodic system—circle rotation (or a shift on the 1-torus). First, for periodic
sequences of ¹vj ºj 2Zd , the Lyapunov exponent vanishes everywhere inside the
spectrum. (E.g., when vj D 0, the eigenfunctions are plane waves.) In other
words, the lack of ergodicity of rational circle rotation fails to localize the quantum
particle.

For rotation by an irrational angle, the situation changes. This is the case of
the famous almost-Mathieu operator, whose potential is given by

vj D 2 cos.2�.j˛ C �//; (1.3)

with ˛ 2 Œ0; 1� n Q and � 2 Œ0; 1�. In this case, the positivity of the Lyapunov
exponent depends critically on the size of the coupling constant � > 0. We
have the bound L.�;E/ � log� by Herman’s subharmonicity trick [24], so
L.�;E/ > 0 for � > 1 at all energies. The threshold � D 1 is sharp, i.e.,
L.�;E/ D 0 for 0 < � < 1, and E in the spectrum of the Schrödinger
operator. (This follows from the duality properties of the model under Fourier
transformation.) For later, we note that E D 0 is in the spectrum [3, 10] and
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so L.�; 0/ D 0 when 0 < � < 1 and vj is given by (1.3). To summarize, the
weak ergodic properties of irrational circle rotation are only sufficient to localize
the quantum particle subjected to (1.3), if the coupling constant � is sufficiently
large.

In this paper, we consider an ergodic potential which is believed to be “slightly
more random” than (1.3). It is obtained by projecting orbits of the standard skew-
shift on the 2-torus on its first coordinate, leading to the potential

vj .x; y/ D 2 cos

�

2�

��

j

2

�

! C jy C x

��

; (1.4)

where ! 2 Œ0; 1�nQ and x; y 2 Œ0; 1� are parameters. (We call ! the “frequency.”)

The key difference between (1.4) and (1.3) is the appearance of a quadratic
term, j 2!. Rudnick, Sarnak, and Zaharescu [36] conjectured that the fractional
part of such sequences exhibits Poissonian spacing (and proved that this holds for
topologically generic ! along a subsequence of j ! 1). The phenomenon of
Poissonian spacing also occurs for i.i.d. sequences, but not for the fractional parts
of j! (i.e., not for circle rotation) which, by contrast, exhibits level repulsion
[5, 34]. Other results in this direction were proved in [22, 30, 31, 35].

The conjecture that (1.4) is “more random-like” than (1.3) from the perspective
of a quantum particle can now be phrased as follows.

Conjecture 1.1. For the potential (1.4), one has L.�;E/ > 0 for all � > 0 and all
E 2 R.

We note that Herman’s subharmonicity trick, which holds in a wider con-
text [37], also applies to the Schrödinger operator with vj given by (1.4). It still
implies that L.�;E/ � log� is positive for � > 1, so Conjecture 1.1 is only
concerned with 0 < � � 1.

The Schrödinger operator with skew-shift potential has been studied in [9] us-
ing the large deviation approach to Lyapunov exponents [6, 8, 19]. In [9], Ander-
son localization was derived for large �; see also the recent effective version [20].
So far, however, there has been little concrete evidence for Conjecture 1.1, i.e.,
for random-like behavior of the skew-shift potential with 0 < � < 1. We are
only aware of a work by Bourgain [7] which studies the closely related potential
vj D 2 cos.2�j 2!/, and an unpublished preprint by Krüger [26]. The former
establishes that, for any � > 0 and a positive-measure set of frequencies !, the
Schrödinger operator has point spectrum whose closure has positive measure. The
latter establishes the positivity of the Lyapunov exponent for a modified skew-shift
model.
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In this paper, we make a modest first contribution towards Conjecture 1.1. We
approach the problem perturbatively, i.e., we consider the zero-energy Lyapunov
exponent L.�; 0/ as a power series in � > 0. (In analogy with the random case, it
is expected that for the skew-shift the spectrum is an interval. In particular, E D 0

should be in the interior of the spectrum.) We study a natural upper bound on
L.�; 0/ which is obtained by Jensen’s inequality and which we expect captures
some of the essential features, as we formulate in Conjecture 2.1. We hope that
our results motivate further research into the delicate localization question for the
skew-shift model.

To a large extent, the motivation for this work stems from our earlier paper [20]
where the positivity of the Lyapunov exponent was derived from finite-volume
properties at a sufficiently large scale. One of these properties is the growth of
kMnk as n ! 1, at least generically in the phase parameters. We therefore
average the trace in (1.2) without first taking a logarithm. We show that this
alternative conjecture is true to second order in perturbation theory. In fact, the
result is consistent with the Figotin–Pastur asymptotics L.�; 0/ � c�2 as � ! 0.
(The Figotin–Pastur asymptotics are expected to hold if Conjecture 1.1 is true.)

We now summarize the main contributions of this paper.

� Our first main result, Theorem 2.4, provides manageable formulae for the two
lowest-order coefficients of the relevant perturbation series (cf. the original
formula in Proposition 2.2). The first-order term in the perturbation series
can be computed directly and we see that it behaves markedly differently
from the almost-Mathieu case. The second-order term is given by a sum
over quadratic Weyl sums. The growth properties of these exponential sums
are well known to be related to questions in number theory, specifically about
the number of solutions to Diophantine equations.

� In our second and third main results, Theorems 2.7 and 2.11, we prove com-
plementary lower bounds on the relevant Weyl sums. (They are complemen-
tary in the order of quantifiers.) These are the key results on a technical level.
Both results are ultimately based on rational approximation and asymptotic
formulae in the spirit of Hardy and Littlewood, but the details are quite dif-
ferent. Theorem 2.7 is proved by a probabilistic argument (second moment
method), with input from the central limit theorem for purely quadratic Weyl
sums proved in [25]. Theorem 2.11 is based on asymptotic formulae for fre-
quencies that are close to a rational and a variant of Khinchin’s theorem [16].

� Taking a clue from the cluster expansion method from statistical mechanics,
we rephrase Conjecture 1.1 as a counting problem, namely, as a precise
relation between the number of solutions to certain Diophantine equations
(Section 2.6).
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The paper is organized as follows. In Section 2, we present our main results
Theorems 2.4, 2.7, and 2.11. These are proved in Sections 3–5, respectively. In
Appendix A, we derive a similar perturbation series for the almost-Mathieu model,
and in Appendix B, we discuss the relation between our setup and the one studied
recently using homogeneous dynamics [11, 12, 29].

Acknowledgments The authors are grateful to the Institute for Advanced Study
for its hospitality during the 2017-2018 academic year. They thank I. Jauslin,
P. Sarnak and T. Spencer for useful discussions. This material is based upon work
supported by the National Science Foundation under Grant No. DMS-1638352.
The third author was partially supported by the NSF through DMS-1500696.

2. Main results

2.1. Setup. Given a function f W Œ0; 1�2 ! R, we introduce the notation

ET2Œf � WD
1

Z

0

1
Z

0

f .x; y/dxdy:

For the skew-shift potential (1.4) at irrational frequency !, the Fürstenberg-
Kesten theorem implies that the Lyapunov exponent (1.2) can be computed by
the following spatial average

L.�;E/ D lim
n!1

1

n
ET2 Œlog TrŒM�

nMn��:

Hence, by Jensen’s inequality, we have the upper bound

L.�;E/ � lim inf
n!1

1

n
logET2ŒTrŒM�

nMn��:

We see that a necessary condition for Conjecture 1.1 to hold is that the following
polynomial in �,

Pn.�; E/ WD ET2 ŒTrŒM�
nMn��; (2.1)

satisfies the following variant of Conjecture 1.1.

Conjecture 2.1. There exists c� > 0 such that

Pn.�; E/ � exp.n.c� C o.1///; (2.2)

as n ! 1.
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In fact, taking a clue from the Figotin–Pastur asymptotics established for the
Lyapunov exponent of potentials with better ergodic properties [17, 13], we expect
that

c� D C�2 C o.�2/; (2.3)

for some constant C > 0, as � ! 0.

We focus on the zero-energy case, Pn.�; 0/, and establish Conjecture 2.1
to second order in perturbation theory in �. More specifically, the polynomial
Pn.�; 0/ is an even function of � and we show that its �2 and �4 coefficients are
consistent with (2.2) and (2.3). That is, we show that

Pn.�; 0/ � 2n�2 C C

2
n2�4 C � � �

for some constant C > 0.
We remind the reader that at E D 0 and 0 < � < 1 the Lyapunov exponent of

the almost-Mathieu model (1.3) vanishes. In fact, one can easily see that also the
polynomial Pn.�; 0/ behaves completely differently in the almost-Mathieu case—
the coefficient of �2 remains bounded in n. (See Appendix A.)

This shows that the application of Jensen’s inequality above apparently did
not destroy the critical difference between these two models for small �. Conse-
quently, our results indicate that the Lyapunov exponent for (1.3) and (1.4) behave
markedly differently for small �.

2.2. The perturbation series. We have found it suitable to take a direct approach
to the perturbation theory. This is in contrast to the perturbation theory for the
Lyapunov exponent successfully used by Figotin and Pastur [17] in the random
case and Chulaevsky and Spencer [13] for some deterministic potentials.

It turns out that the zero-energy condition leads to certain parity conditions on
the summands. This phenomenon significantly complicates matters and does not
usually appear either in the context of perturbation theory in statistical mechanics,
or in the context of exponential sums.

We denote the set of even (odd) integers by e and o, respectively. Let
N
j D

.j1; : : : ; jk1
/ and

N
l D .l1; : : : ; lk2

/ be two vectors with integer entries. The set |
is defined by the conditions

.
N
j;

N
l/ 2 | () j1 � l1 2 e and jsC1 � js 2 o; for all 1 � s � k1 � 1;

and lsC1 � ls 2 o; for all 1 � s � k2 � 1:
(2.4)

Recall Definition (2.1) of Pn.�; E/.
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Proposition 2.2. Let ! 2 Œ0; 1� and let n � 1 be an integer. The polynomial

Pn.�; 0/ D
n

X

kD0

˛2k�
2k

has coefficients given by ˛0 D 2 and

˛2k D
X

0�k1;k2�n

k1Ck2D2k

k1�k2�0 mod 4

X

1�j1<:::<jk1
�n

1�l1<:::<lk2
�n

1|.
N
j;

N
l/ET2Œvj1

: : : vjk1
vl1
: : : vlk2

�; (2.5)

for k � 1.

Let us also denote

eŒx� WD exp.2�ix/; cŒx� WD cos.2�x/;

and write
N
1 for the vector .1; : : : ; 1/ of a length that is given from context. The

expectation appearing in (2.5) can be expressed as an exponential series

ET2 Œvj1
: : : vjk0

� D Re
X

N
a2¹˙1ºk0

N
a?

N
1;

N
j

e
h!

2

k0
X

sD1

asj
2
s

i

D2
X

N
a2¹˙1ºk0

a1D1

N
a?

N
1;

N
j

c
h!

2

k0
X

sD1

asj
2
s

i

;

(2.6)

(For the second equality, we used that c is an even function to fix a1 D 1.)
Above, we used the notation

N
a ?

N
1;

N
j to encode the equations

k0
X

sD1

as D 0;

k0
X

sD1

asjs D 0:

Remark 2.3. We point out that the orthogonality condition
N
j ?

N
1 in (2.6) is a

consequence of the fact that the potential (1.4) is generated by the true skew-shift.
It would be absent for the potential vj D 2 cos.2�j 2!/, for instance.

2.3. Identities for ˛2 and ˛4. Our first main result, Theorem 2.4, concerns
the lowest order coefficients, ˛2 and ˛4, which are a priori defined by the rather
unwieldy formula (2.5). For small �, Conjecture 2.1 translates to the lower bounds

˛2 � Cn; ˛4 � C
n2

2
; (2.7)

which should hold for some constant C > 0, as n ! 1.
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Theorem 2.4 (first main result). Let ! 2 Œ0; 1�. For any integer n � 1, we have

˛2 D2n; (2.8)

˛4 D4
b n

2 c
X

mD1

ˇ

ˇ

ˇ

ˇ

m
X

lD1

eŒ!.l2 � l/�
ˇ

ˇ

ˇ

ˇ

2

C 4

bn�1
2 c

X

mD1

ˇ

ˇ

ˇ

ˇ

m
X

lD1

eŒ!.l2 � l/�
ˇ

ˇ

ˇ

ˇ

2

: (2.9)

Remark 2.5. (i) Notice that Theorem 2.4 is entirely algebraic.

(ii) In particular, Conjecture 2.1 ensures the positivity of the coefficients
˛2; ˛4, which is rather unexpected in view of (2.5) and (2.6). While it does follow
from (2.9) that ˛4 > 0, most of the effort of this paper will be to show from that
formula that in fact ˛4 � n2.

(iii) Equation (2.8) is almost immediate and shows that ˛2 indeed grows
linearly in n, as required for (2.7). It should be compared with the formula for
the �2-coefficient for the almost-Mathieu potential (1.3), which remains bounded

in n. See Appendix A.

(iv) Equation (2.9) is ultimately a consequence of completing a square appro-
priately. Its advantages over the original formula (2.5) for k D 2 are twofold: (a)
The parity conditions have almost completely disappeared, and (b) it features only
a modulus of Weyl sums, so bounding it from below is more feasible (though still
non-trivial). Indeed, a lower bound on the Weyl sums appearing in (2.9) is the
content of our other main results.

Looking beyond this paper, it seems difficult to deduce that ˛6 � n3. However,
it is possible to give lower bounds on the top coefficients which are consistent with
Conjecture 2.1.

Proposition 2.6 (top coefficients). There exist constants c1; c2 > 0 such that

˛2n � cn
1 ; ˛2n�2 � cn

2 : (2.10)

2.4. Lower bounds on quadratic Weyl sums. Recall that eŒx� D exp.2�ix/.
By Theorem 2.4, we have

˛4 � 8

b n�1
2 c

X

mD1

ˇ

ˇ

ˇ

ˇ

m
X

lD1

eŒ!.l2 � l/�

ˇ

ˇ

ˇ

ˇ

2

: (2.11)
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Considering the conjectured bounds (2.7), the next question is whether we can
find irrational numbers ! 2 Œ0; 1� and a constant C > 0 such that we have the
bound

8

b n�1
2 c

X

mD1

ˇ

ˇ

ˇ

ˇ

m
X

lD1

eŒ!.l2 � l/�
ˇ

ˇ

ˇ

ˇ

2

� Cn2 C o.n2/; (2.12)

as n ! 1. The two main results presented in this section provide positive answers
to this question, taking complementary perspectives.

The sum

Sm.!/ WD
m

X

j D1

eŒ!.j 2 � j /�; (2.13)

with ! irrational, is an example of an exponential sum. The study of exponential
sums has a rich history with close ties to analytic number theory; a classic ref-
erence is Montgomery’s book [32]. Specifically, (2.13) is a quadratic Weyl sum,
first analyzed by Weyl [39, 40]. We review methods for estimating Weyl sums in
the next section.

We come to our second main result. For every large n, it establishes the
existence of a “good set” �n � Œ0; 1� of uniformly positive Lebesgue measure,
such that the lower bound on the Weyl sums holds for all ! in the good set.

Theorem 2.7 (second main result). There exist universal constants ı; C0 > 0

and an integer n0 � 1 such that, for every integer n � n0, there exists a subset

�n � Œ0; 1� of Lebesgue measure at least ı such that for all ! 2 �n, we have

n�1
X

mD1

jSm.!/j2 � C0n
2: (2.14)

Notice that (2.14) is in line with the intuition that Weyl sums should scale in
accordance with the central limit theorem, i.e., that Sm.!/ should be of the orderp
m, for irrational !.
The proof of Theorem 2.7 is probabilistic and based on the second moment

method. A crucial input are moment asymptotics derived in [25] from the central
limit theorem for purely quadratic Weyl sums. We briefly discuss the main
technical difficulties and how we address them in the following section.

Remark 2.8 (the constants). The constants C0 and ı are semi-explicit; they are
given by the formulae

C0 WD C 2
JVH

.
p
2 � 1/2
64

; ı WD C 2
JVH

.
p
2 � 1/2
8

:
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Here CJVH WD
R 1

0 ˆ.x/dx > 0 is a quantity from [25]. It is defined in
terms of the m ! 1 limit, ˆ.x/, of the distribution function of the Weyl sum
m�1=2

Pm
j D1 eŒ!j

2�. (The fact that this limit exists is exactly the central limit
theorem, Theorem 3 of [25].) Hence, numerical information on CJVH translates
directly into numerical information on C0 and ı.

The fact that the good sets have uniformly positive measure allows us to obtain,
for every subsequence nk ! 1, a fixed set � � Œ0; 1�, that is good along a
subsubsequence.

Corollary 2.9. Let � > 0 and let .nk/k�1 be a subsequence of the integers. There

exists a set � � Œ0; 1� of Lebesgue measure at least ı such that, for every ! 2 �,

we have
nkl

�1
X

mD1

jSm.!/j2 � C0n
2;

along a subsubsequence nkl
! 1.

The good set� is defined as the lim sup of the good sets�n; the corollary then
follows from Theorem 2.7 by a variant of the converse Borel-Cantelli lemma.

Remark 2.10. (i) We emphasize that the result holds for arbitrary subsequences
.nk/k�1. In particular, one can take nk D k.

(ii) Combining the estimates (2.11) and (2.14), we obtain the following lower
bound for all ! 2 �:

˛4 � C0n
2;

along the subsubsequence nkl
! 1. Hence, Corollary 2.9 verifies the conjec-

tured bound (2.12), for all irrational ! 2 � and along subsequences.

Our third main result is a complementary result to Corollary 2.9. Concerning
!, it is stronger because it holds for Lebesgue-almost every ! 2 Œ0; 1�. Moreover,
it yields a numerically explicit lower bound. Concerning n, it is weaker because
it only holds along one special subsequence.

Theorem 2.11 (third main result). For Lebesgue almost-every ! 2 Œ0; 1�, there

exists a subsequence of n ! 1, along which we have

n
X

mD1

jSm.!/j2 � 2n2: (2.15)
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Remark 2.12. (i) The proof of Theorem 2.11 is based on an asymptotic formula
of Fiedler, Jurkat, and Körner [16] which says that Weyl sums become “unusually”
large (i.e., large on the diffusive scale

p
m) along special subsequences determined

by the rational approximations to ! (see also [15]).

(ii) The constant 2 on the right-hand side of (2.15) is not special and can be
replaced by larger numbers.

(iii) When we apply (2.15) to (2.11), we see that, for almost every irrational
! 2 Œ0; 1�, the conjectured bound (2.12) holds, with C D 4, along a certain
subsequence.

In summary, together, Theorems 2.4 and 2.7 verify Conjecture 2.1 up to
second-order in perturbation theory, taking a different order of quantifiers for n
and !.

We close this section with a cautionary remark.

Remark 2.13 (rational frequency). When the frequency ! D p=q is rational,
the quadratic Weyl sums

Pm
j D1 eŒ!.j

2 � j /� will typically be of order m (notp
m). However, in the rational case, the averages over x; y in the definition of

L.�; 0/ are not justified by the ergodic theorem and they can lead to a positive
Lyapunov exponent because E D 0 lies in a spectral gap for some values of x; y.
Therefore, the Lebesgue null set of rational ! should be ignored when interpreting
Theorems 2.7 and 2.11.

In the next section, we provide some background on the analysis of Weyl sums
for the benefit of readers with mathematical physics and spectral theory back-
grounds, and we explain how the methods we use fit into the general landscape.

2.5. Discussion on Weyl sums. A general quadratic Weyl sum is of the form

Sm.!; �/ WD
m

X

j D1

eŒ!j 2 C �j �

where ! 2 Œ0; 1� n Q and � 2 Œ0; 1� are parameters. (Often, the first and last
term of the sum are halved so that it is better approximated by an integral.) For
irrational !, we expect Weyl sums to live on the “diffusive scale”

p
m, indicating

the random-like behavior of the quadratic exponentials. (For rational ! D p=q,
these sums are called “Gauss sums” and they are asymptotically much larger, of
order m, unless q grows with m.)
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The analysis of Weyl sums has a long history in harmonic analysis, ergodic
theory and analytic number theory. Weyl [39, 40] originally estimated these sums
via a method now known as “Weyl differencing.” Improvements of his approach
by van der Corput, Vinogradov and others have become ubiquitous techniques in
the study of exponential sums [32].

A classical approach to Weyl sums is due to Hardy and Littlewood [23], who
viewed Weyl sums as a finitary analog of the Jacobi theta function and established
the approximate functional equation

Sm.!; �/ D
r

i

2!
e
h��2

4!

i

Sb2!mc
�

� 1

4!
;
�

2!

�

CO.!�1=2/: (2.16)

Notice that the Weyl sum on the right-hand side has macroscopically fewer terms,
b2!mc compared tom (using that one may assume ! 2 Œ0; 1=2� by symmetry and
periodicity arguments). We can iterate this procedure, replacing � 1

4!
by its frac-

tional part at every step. With the advent of computers, it was possible to study the
curves traced out by the Weyl sums in the complex plane (linearly interpolated).
In 1976, Lehmer [28] observed in this way that incomplete Gauss sums (the case
of rational !) form intricate self-similar spiral patterns (“curlicues”) which lie in-
side a ball of radius proportional to

p
m (like a random walk would) and whose

fine structure depends critically on the arithmetic properties of !. (For example,
Hardy-Littlewood showed that Sm � O.

p
m/ if ! is of bounded type. Notice

also that the fixed points of the dynamical system ! ! � 1
4!

C b 1
4!

c appearing
in (2.16) are quadratic irrationals.) From the modern perspective, Hardy and Lit-
tlewood’s formula (2.16) may be seen as a renormalization transformation which
groups together curlicues at the smallest scales [4, 14]. However, it is notoriously
difficult to control error terms in this procedure, even given the improved error
bounds established later [14, 15, 33, 41]. Instead, we will rely on more robust
modern variants, as we describe next.

Let us now return to our problem at hand—establishingTheorems 2.7 and 2.11.
There are three main technical difficulties: (i) we aim for a lower bound of
appreciable size (which requires good control on the asymptotics); (ii) we need
an estimate that holds for a sum of Weyl sums, i.e., the estimates on jSmj need to
hold simultaneously for various m; (iii) the Weyl sums are not purely quadratic,
i.e., they feature the additional linear term � D �!j in the exponential.

The proof of Theorem 2.7 is based on the second moment method. The main
technical issue (i) is to obtain the correct asymptotics: The higher moment can
be computed explicitly by solving a simple Diophantine equation (Lemma 5.2).
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For the lower moment, we invoke an asymptotic formula due to Jurkat and
Van Horne [25], which is a consequence of their central limit theorem for purely
quadratic Weyl sums. The technical difficulty (ii) is easily addressed by linearity
of the expectation and Cauchy–Schwarz. Regarding (iii), the key observation is
that the sum with the linear term can be rewritten as a purely quadratic Weyl sum
over odd integers (see the proof of Lemma 5.3).

Theorem 2.11 is instead based on an asymptotic formula for Weyl sums estab-
lished by Fiedler, Jurkat and Körner [16] which requires ! to be close to a rational
number. By a variant of Khinchin’s classical result, this situation occurs infinitely
often for Lebesgue almost-every !. This yields a good lower bound, thereby ad-
dressing (i), roughly speaking because Weyl sums are very large when ! D p=q

is exactly rational. Addressing the technical issue (ii) requires precise estimates
on the relevant scales involved. Regarding (iii), the results in [16] are fortunately
general enough to allow for linear terms.

In closing, we remark that, in recent years, Weyl-sum asymptotics have also
been established by using ergodic theory [11, 12, 29]. As these techniques might
become relevant for extending the results in this paper, we briefly discuss them in
Appendix B.

2.6. A reformulation in terms of Diophantine equations. Finally, we refor-
mulate Conjecture 1.1 entirely as a counting problem for Diophantine equations.
This is inspired by the cluster expansion method from statistical mechanics, where
the convergence radius of a series representation for the logarithm is a posteriori
found to be much larger than a naive guess would suggest.

We call ˇ2k the following (non-averaged) analog of ˛2k . Let ˇ0 D 2 and let

ˇ2k WD
X

0�k1;k2�n

k1Ck2D2k

.�1/
k1�k2

2

X

1�j1<:::<jk1
�n

1�l1<:::<lk2
�n

1|.
N
j;

N
l/vj1

: : : vjk2
vl1
: : : vlk2

for k � 1. By examining the first part of the proof of Proposition 2.2, we see that
ˇ2k are the series coefficients for TrŒM�

nMn� and so

L.�; 0/ D lim
n!1

1

n
ET2 log TrŒM�

nMn� D lim
n!1

1

n
ET2

h

log
n

X

kD0

ˇ2k�
2k

i

:

Let us now also take the average over ! 2 Œ0; 1�; denote the total average (over
x; y; !) by ET3 . If we can show that the resulting quantity is strictly positive, than
there must exist a “good set” � � Œ0; 1� of positive Lebesgue measure such that
L.�; 0/ > 0—confirming Conjecture 1.1 for all ! 2 �.
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For fixed n, we may expand the logarithm as a power series in � and then take
the expectationET3 . Note that this expansion is a priori only formal for sufficiently
large n, since the averages of the coefficients ˇ2k grow with n. Nonetheless,
Conjecture 1.1 can be reformulated as saying that, at every order in �, the averaged
coefficients cancel precisely to yield a quantity of order n (which is then multiplied
by the prefactor 1

n
from above).

If the cancellations occur at every order to yield a quantity of order n, then
this shows that the series expansion for the logarithm converges for small enough
� and arbitrarily large n. (As we mentioned before, this phenomenon occurs fre-
quently in statistical mechanics where the cluster expansion method can be used
to calculate the “partition function,” a quantity which is formally similar to the
Lyapunov exponent.)

For example, the �4 term of the logarithm is

1

2

�

ET3 Œˇ4��
ET3Œˇ2

2 �

4

�

:

(The additional 1=2 factors enter because ˇ0 D 2.) Note that ET3Œˇ4� D
R 1

0 ˛4d!
counts the number of solutions to Diophantine equations and can be seen to be
at least of order n2. This has to be canceled rather precisely by the other term
E
T3 Œˇ2

2
�

4
, which also counts solutions to other Diophantine equations, in order to

obtain an order n quantity.
The analogous statements at every order in �2 provide a reformulation of

Conjecture 1.1 as a counting problem for solutions to Diophantine equations,
though, admittedly, a rather non-trivial one.

3. Derivation of the perturbation series and Proposition 2.6

3.1. Proof of Proposition 2.2. For E D 0, we may write each transfer matrix
Aj as

Aj D
�

0 �1
1 0

�

� �vj

�

1 0

0 0

�

:

We expand the expression TrŒM�
nMn� as a polynomial in �. A straightforward

computation using cyclicity of the trace then shows that

Pn.�; E/ D ET2 ŒTrŒM�
nMn�� D

n
X

kD0

˛2k�
2k;
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with coefficients given by

˛2k D
X

0�k1;k2�n

k1Ck2D2k

.�1/
k1�k2

2

X

1�j1<:::<jk1
�n

1�l1<:::<lk2
�n

1|.
N
j;

N
l/ET2Œvj1

: : : vjk1
vl1
: : : vlk2

�:

We remark that this formula holds for any choice of the potential vj .
To prove Proposition 2.2, it remains to show that only terms with k1 � k2 � 0

mod 4 contribute to the sum. Notice that this condition is equivalent to k1�k2

2
� 0

mod 2 and so .�1/
k1�k2

2 D 1.
This part uses the skew-shift structure. We consider

X

1�j1<:::<jk1
�n

1�l1<:::<lk2
�n

1|.
N
j;

N
l/E

T2Œvj1
: : : vjk1

vl1
: : : vlk2

�:

The expectation is given by equation (2.6). From it, we see that a non-zero
contribution can only come from pairs of vectors .

N
j;

N
l/ for which there exists a

vector
N
a 2 ¹˙1º2k such that

N
a ? .

N
j;

N
l/, i.e.,

k1
X

sD1

asjs C
2k
X

sDk1C1

asls�k1
D 0:

Since as 2 ¹˙1º, this linear relation implies that among the entries of
N
j and

N
k,

we must have an even number of odd entries. That is, if we define

�.
N
j / WD j¹1 � s � k1W js oddºj

(with j � j denoting the cardinality of a set) and the analogous quantity �.
N
l/, then

we have
�.

N
j /C �.

N
l/ � 0 mod 2: (3.1)

Next, we show that (3.1) implies k1�k2

2
� 0 mod 2. By the | condition (2.4),

the parity of each entry of
N
j and of

N
l alternates. This may be formalized as follows.

�.
N
j / D

8

ˆ

<

ˆ

:

j

k1

2

k

if j1 is even;
l

k1

2

m

if j1 is odd;

and an analogous formula holds for �.
N
l/ with k1 replaced by k2. Suppose that j1

is even; notice that this implies that l1 is even as well. Then (3.1) yields
�

k1

2

�

C
�

k2

2

�

� 0 mod 2:
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By subtracting k2 from this equation, and distinguishing cases according to the
parity of k2, we conclude that

k1 � k2

2
� 0 mod 2

as claimed. A similar argument holds if j1 and l1 are odd. This finishes the proof
of Proposition 2.2. �

3.2. Proof of Proposition 2.6. We first consider ˛2n. The only contributions
to (2.5) come from the “diagonal” k1 D k2 D n and

N
j D

N
l D .1; 2; : : : ; n/.

Hence, by Jensen’s inequality,

˛2n D ET2

h

n
Y

j D1

v2
j

i

� exp
�

n
X

j D1

ET2 Œlog.v2
j /�

�

D cn
1 ;

with c1 WD exp
R 1

0
log cos2.2�x/dx > 0.

For ˛2n�2, the only contributions to (2.5) come from k1 D k2 D n � 1 and
either

N
j D

N
l D .1; 2; : : : ; n� 1/ or

N
j D

N
l D .2; : : : ; n/. An analogous application

of Jensen’s inequality finishes the proof of Proposition 2.6. �

4. Proof of the identities in Theorem 2.4

4.1. Proof of formula (2.8) for ˛2. By Proposition 2.2, we have

˛2 D
X

1�j1;j2�n

1.e;e/.j1; j2/ET2Œvj1
vj2
�C p.c.

Here and in the following, we write p.c. for the “parity conjugate” of the preceding
expression, i.e., the same expression with all appearances of e and o interchanged.

We compute the expectation via (2.6). Since a1 D 1, we must have a2 D �1
and so

1
N
a?

N
j D 1j1Dj2

:

This implies a1j
2
1 Ca2j

2
2 D 0 and therefore ET2 Œvj1

vj2
� D 21j1Dj2

in the formula
for ˛2 above. We see that the sum over j2 collapses and (2.8) is proved. �

4.2. Proof of formula (2.9) for ˛4. For this part, it is convenient to introduce
some notation. Recall that we denote the sets of even (odd) integers by e and o,
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respectively. Given a choice of parities �1; : : : ; �k 2 ¹e; oº and real numbers
r1; : : : ; rk, we define

Œ�
r1

1 : : : �
rk

k
� WD

X

1�j1<:::<jk�n

1.�1;:::;�k/.j1; : : : ; jk/v
r1

j1
: : : v

rk

jk
:

We begin by applying Proposition 2.2 to find

˛4 D ET2 Œ2Œeoeo�C Œeo�Œeo�C p.c.� : (4.1)

We may compute the product in (4.1). Namely

Œeo�Œeo� D 2Œeoeo�C 4Œeeoo�C 2Œeeo
2�C 2Œe2

oo�C Œe2
o

2�:

The following lemma provides the expectation of all terms containing higher
powers of vj .

Lemma 4.1. We have

ET2ŒŒeeo
2�C Œe2

oo�C p.c.� D 0; (4.2)

ET2Œe2
o

2 C p.c.� D n2 � 1o.n/: (4.3)

We postpone the proof of this lemma for now. Upon returning to (4.1),
Lemma 4.1 implies that

˛4 D 4ET2 ŒŒeoeo�C Œeeoo��C p.c. C n2 � 1o.n/:

Recalling our notation, we are led to consider

4ET2 ŒŒeoeo�C Œeeoo��

D 4
X

1�j1<j2<j3<j4�n

1.e;o/.j1; j4/.1.e;o/ C 1.o;e//.j2; j3/ET2Œvj1
: : : vj4

� (4.4)

(plus its parity conjugate). We now compute the expectation via (2.6). There are
three choices of

N
a 2 ¹˙1º4 such that a1 D 1 and

N
a ?

N
1; see the table.

Table 1. Different choices of vectors
N
a 2 ¹˙1º4 with a1 D 1 and

N
a ?

N
1.

a1 a2 a3 a4

(I) 1 1 �1 �1
(II) 1 �1 1 �1
(III) 1 �1 �1 1
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Considering the fact that j1 < j2 < j3 < j4, we find that only case (III) yields
a non-zero indicator function 1

N
a?

N
j , namely

1.1;�1;�1;1/?
N
j D 1j1Cj4Dj2Cj3

:

An important observation is that the parity conditions in (4.4) amount precisely
to specifying that j1 C j4 D j2 C j3 is odd, i.e.,

4ET2 ŒŒeoeo�C Œeeoo��C p.c.

D 8

2n�1
X

sD3

1o.s/
X

1�j1<j2<j3<j4�n

1j1Cj4Dj2Cj3Ds e
h!

2
.j 2

1 C j 2
4 � j 2

2 � j 2
3 /

i

:

Next we observe that, conditional upon j1 Cj4 D j2 Cj3, the condition j1 < j2 <

j3 < j4 is equivalent to j1 < j2 < j3 and j1 < j4 (where the last constraint is in
fact redundant). We can use this fact to complete a square in the above expression:

8

2n�1
X

sD3

1o.s/
X

1�j1<j4�n

1j1Cj4Dj2Cj3Ds e
h!

2
.j 2

1 C j 2
4 /

i

�
X

1�j2<j3�n

j2>j1

1j2Cj3Ds e
h!

2
.�j 2

2 � j 2
3 /

i

D 4

2n�1
X

sD3

1o.s/
�ˇ

ˇ

ˇ

X

1�j1<j4�n

1j1Cj4Ds e
h!

2
.j 2

1 C j 2
4 /

iˇ

ˇ

ˇ

2

�
X

1�j1<j4�n

1j1Cj4Ds

�

D 4

2n�1
X

sD3

1o.s/
�ˇ

ˇ

ˇ

n�1
X

j1D1

1j1<s�j1�n eŒ!.j
2
1 � sj1/�

ˇ

ˇ

ˇ

2

�
n�1
X

j1D1

1j1<s�j1�n

�

D 4

n�1
X

mD1

�ˇ

ˇ

ˇ

m
X

j1D1

1j1�2mC1�n eŒ!.j
2
1 � .2mC 1/j1/�

ˇ

ˇ

ˇ

2

�
m

X

j1D1

1j1�2mC1�n

�

:

Now we change the inner summation variable to l WD mC 1� j1 and obtain

4

n�1
X

mD1

�ˇ

ˇ

ˇ

min¹m;n�mº
X

lD1

eŒ!.l2 � l/�
ˇ

ˇ

ˇ

2

�
min¹m;n�mº

X

lD1

1
�

D 4

b n
2 c

X

mD1

ˇ

ˇ

ˇ

m
X

lD1

eŒ!.l2 � l/�
ˇ

ˇ

ˇ

2

C 4

b n�1
2 c

X

mD1

ˇ

ˇ

ˇ

m
X

lD1

eŒ!.l2 � l/�
ˇ

ˇ

ˇ

2

� n2 C 1o.n/:

This finishes the proof of Theorem 2.4, modulo Lemma 4.1.
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4.3. Proof of Lemma 4.1. For (4.2), we consider

ET2Œeeo
2� D 2

X

1�j1<j2<j3Dj4�n

1.e;e;o/.j1; j2; j3/
X

N
a2¹˙1º4

a1D1

N
a?

N
1;

N
j

c
h!

2

4
X

sD1

asj
2
s

i

:

We recall Table 1. One may check that 1
N
a?

N
j D 0 in each case (I)-(III) separately,

and so ET2Œeeo2� D 0. Since the argument holds independently of parity, it also
gives ET2 Œe2oo� D 0 and hence (4.2).

It remains to prove (4.3). We consider

ET2Œe2
o

2� D 2
X

1�j1Dj2<j3Dj4�n

1.e;o/.j1; j3/
X

N
a2¹˙1º4

a1D1

N
a?

N
1;

N
j

c
h!

2

4
X

sD1

asj
2
s

i

:

Recall Table 1 once more. For case (I), we obtain

1.1;1;�1;�1/?
N
j D 12j1D2j3

D 0;

because j1 < j3. For cases (II) and (III), we obtain a non-zero contribution.
Indeed

1.1;�1;1;�1/?
N
j D 1.1;�1;�1;1/?

N
j D 10D0 D 1:

Since
P4

sD1 asj
2
s D 0 in cases (II) and (III), we find

ET2Œe2
o

2 C p.c.� D 4
X

1�j1Dj2<j3Dj4�n

.1.e;o/.j1; j3/C 1.o;e/.j1; j3//

D 4
X

1�j �n

j 2o

X

1�l�n

l2e

1

D n2 � 1o.n/:

This finishes the proof of Lemma 4.1 and hence of Theorem 2.4. �

5. Proof of the probabilistic lower bound (Theorem 2.7)

5.1. The second moment method. The proof is based on the second moment
method, i.e.,
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Proposition 5.1 (Paley–Zygmund inequality). Let Z � 0 be a random variable

and let � 2 Œ0; 1�. Then, it holds that

P.Z > �EŒZ�/ � .1� �/2
.EŒZ�/2

EŒZ2�
: (5.1)

Proof. By Cauchy–Schwarz

EŒZ� D EŒZ1Z��EŒZ��C EŒZ1Z>�EŒZ�� � �EŒZ�C
p

EŒZ2�P.Z > �EŒZ�/;

and (5.1) follows by rearranging. �

We recall that Sm D
Pm

j D1 eŒ!.j
2 � j /�. We will apply the Paley–Zygmund

inequality to the family of random variables

Zn.!/ WD

v

u

u

t

n�1
X

mD1

jSm.!/j2; (5.2)

which are obtained by sampling the frequency ! 2 Œ0; 1� at random, according to
uniform (i.e., Lebesgue) measure. We write E for expectation with respect to that
measure.

The following two lemmas allow us to control the first and second moment of
Zn, so that we can use (5.1).

Lemma 5.2. For any integer n � 1, we have

EŒZ2
n� D n.n � 1/

2
:

Lemma 5.3. There exists a constant C1 > 0 such that

lim inf
n!1

EŒZn�

n
� C1:

Lemma 5.2 is a straightforward computation; at its core stands the solution
of a simple Diophantine equation. Lemma 5.3, on the other hand, requires as an
input the asymptotics of the first moments of purely quadratic Weyl sums (without
a linear term), which are a consequence of the central limit theorem of Jurkat and
Van Horne [25].

Before, we prove Lemmas 5.2 and 5.3, let us see that they imply Theorem 2.7.

Proof of Theorem 2.7. Let � D 1=2. We combine Proposition 5.1 with Lem-
mas 5.2 and 5.3 to obtain

lim inf
n!1

P.Zn > EŒZn�=2/ �1
4

lim inf
n!1

.EŒZn�/
2

EŒZ2
n�

� C 2
1

2
:
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Moreover, by Lemma 5.3, we have EŒZn�=2 � nC1=4 for all large enough n.
Hence, we have shown that

lim inf
n!1

P
� 1

n2

n�1
X

mD1

jSm.!/j2 >
C 2

1

16

�

D lim inf
n!1

P
�

Zn >
C1

4
n
�

� C 2
1

2
:

We can now define the “good” sets as

�n WD
°

! 2 Œ0; 1�W 1
n2

n�1
X

mD1

jSm.!/j2 >
C 2

1

16

±

: (5.3)

The statement above shows that �n has uniformly positive Lebesgue measure,

with the lower bound ı WD C 2
1

2
, for every sufficiently large n. This proves

Theorem 2.7. �

5.2. Proof of Lemmas 5.2 and 5.3

Proof of Lemma 5.2. By orthonormality of ¹eŒj ��ºj 2Z and the fact that j 2 � j D
k2 � k is equivalent to j D k for positive integers, we have

E
h

n�1
X

mD1

jSmj2
i

WD E
h

n�1
X

mD1

ˇ

ˇ

ˇ

m
X

j D1

eŒ!.j 2 � j /�
ˇ

ˇ

ˇ

2i

D
n�1
X

mD1

m
X

j;kD1

EŒeŒ!.j 2 � j � k2 C k/��

D
n�1
X

mD1

m D n.n � 1/
2

:

This proves Lemma 5.2. �

The proof of Lemma 5.3 uses the following result from [25]. We define the
purely quadratic Weyl sum

Wm.!/ WD
m

X

j D1

eŒ!j 2�:

We write f .m/ � g.m/, for limm!1
f .m/
g.m/

D 1.

Theorem 5.4 ([25], Theorem 4). There exists a constant CJVH > 0, such that, as

m ! 1,

EŒjWmj� � CJVHm
1=2: (5.4)
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We point out that [25] use a different convention for the quadratic Weyl sums,
where the first terms are halved (though this does not influence the asymptotics)
and ! ranges only over Œ0; 1=2�. The statement (5.4) follows from their Theorem
4 by Z-periodicity of eŒ�� and the reflection symmetry jWm.!/j D jWm.�!/j. We
have CJVH WD

R 1
0 ˆ.x/dx > 0 with ˆ the limiting distribution function from

Theorem 3 in [25].
We are now ready to give the

Proof of Lemma 5.3. By Cauchy–Schwarz, we have

Zn D

v

u

u

t

n�1
X

mD1

jSmj2 � 1p
n � 1

n�1
X

mD1

jSmj: (5.5)

We will bound the right-hand side from below via Theorem 5.4. The difference
between our Weyl sums Sm and the purely quadratic ones treated by [25] is
the linear term �j! in the exponential. The key observation is that we may
nonetheless reduce the computation to the case of Wm by parity arguments. We
decompose

Wm D W e
m CW o

m;

where the e (o) terms are given by restricting j to the set of even (odd) integers,
respectively.

We have

jSm.!/j D j
m

X

j D1

eŒ!.j 2 � j /�j D
ˇ

ˇ

ˇ

m
X

j D1

e
h!

4
.2j � 1/2

iˇ

ˇ

ˇ
D

ˇ

ˇ

ˇ
W o

2m�1

�!

4

�ˇ

ˇ

ˇ
:

By the Z-periodicity of eŒ��, we have Sm.!/ D Sm.! C 1/, and therefore, by a
change of variable,

EŒjSmj� D EŒjSm.4�/j� D EŒjW o
2m�1j�:

By the triangle inequality and a change of summation index, we obtain the lower
bound

EŒjW o
2m�1j� �EŒjW2m�1j� � EŒjW e

2m�2j�
DEŒjW2m�1j� � EŒjWm�1.4�/j�
DEŒjW2m�1j� � EŒjWm�1j�:

In the last step, we used the periodicity Wm�1.!/ D Wm�1.! C 1/. Now we can
apply Theorem 5.4 to conclude that

lim inf
m!1

EŒjSmj�p
m

� CJVH lim inf
m!1

p
2m� 1�

p
m � 1p

m
D .

p
2 � 1/CJVH:
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Let us fix � 2 .0; 1/. We now apply this estimate to (5.5) and obtain

lim inf
n!1

EŒZn�

n
� lim inf

n!1
1

n
p
n � 1

n�1
X

mD�n

EŒjSm.!/j�

�.
p
2 � 1/CJVH lim inf

n!1
n�3=2

n
X

mD�n

p
m

�
p
2 � 1
2

CJVH:

The last estimate holds for sufficiently small �. This proves Lemma 5.3 (with

C1 WD
p

2�1
2
CJVH) and hence finishes the proof of Theorem 2.7. �

5.3. Proof of Corollary 2.9. Recall (5.3) from above. We need to ensure that
the event that �nk

occurs infinitely often has positive probability. Formally, this
event is defined as

� WD lim sup
k!1

�nk
WD

1
\

KD1

1
[

kDK

�nk
:

The claim of the corollary can then be compactly written as

P.�/ � ı > 0: (5.6)

By Theorem 2.7, we have that lim infn!1 P.�n/ � ı > 0. Recall that any
probability measure is continuous on monotone sequences of events. Hence

P.�/ D P
�

1
\

KD1

1
[

kDK

�nk

�

D lim
K!1

P
�

1
[

kDK

�nk

�

� lim inf
K!1

P.�nK
/ � ı:

This proves (5.6) and hence Corollary 2.9. �

6. Proof of the almost-sure lower bound (Theorem 2.11)

6.1. Preliminaries. The following results were proved in [16]. Let p and q be
integers and let

F.y/ WD 1p
i

y
Z

0

e�it2

dt

be the Fresnel integral.
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Theorem 6.1. [16, Theorem 5] Let � be a real number,m be a positive integer and

0 < " � 1=2. Choose A such that pqC 2A is an even integer and that � D AC a

holds with jaj � 1=2. Then, for real � ¤ 0 with jm� C aj � 1 � ", we have

Sm.p; q; �; �/ WD
m

X

nD1

exp
�

�i
�

n2p C �

q
C n

2�

q

��

D Tm CO".
p
q.1C j�jq//;

(6.1)

where

Tm D h
p

�
exp

�

� �i a
2

q�

�h

F
�m� C a

p

q�

�

� F
� a

p

q�

�i

;

in which h is a complex number with jhj D 1.

Corollary 6.2 ([16, Corollary of Theorem 5]). Let 0 < j�j�1=.4m/, 0<q�4m,

a0 D a sign �, ja0j � 1=2, .m2j�j C 2ma0/=q D 2k C 
 for some integer k and

j
 j � 1. Then, for some absolute constants c1; c2 > 0, we have

Tm �c1;c2

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

m
p
q Cm

p

j�j
if �mj�j �

p

qj�j � a0 �
p

qj�j;

p
q
� mj�j
a0.mj�j C a0/

C j
 j
p

a0.mj�j C a0/

�

otherwise.

(6.2)

where X �c1;c2
Y means c1Y � X � c2Y .

We will also use the following lemma, which is a variant of Khinchin’s theo-
rem.

Lemma 6.3. Let . .n//1nD1 be a non-increasing sequence of positive numbers

such that
P1

nD1  .n/ diverges. Then for Lebesgue almost-every ! 2 R, the

inequality

jq! � pj <  .q/
has infinitely many solutions p; q with 2jp and .p; q/ D 1.

We postpone the proof of this lemma to the end of this section.

6.2. Proof of Theorem 2.11. We let C > 0 be an absolute constant which is
chosen at the end of the proof; see (6.11). Lemma 6.3 with  .n/ D .Cn/�1

implies that for Lebesgue almost-every ! 2 R , there are infinitely many solutions
p; q with 2jp and .p; q/ D 1, and

jq.2!/ � pj < 1

Cq
: (6.3)
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We fix such an ! 2 Œ0; 1�. Let us label the corresponding sequence of solutions by
pk; qk with qk in increasing order. We set

�k WD 2qk! � pk ;

i.e.,

2! D pk C �k

qk

;

and

�k WD �qk! D �pk

2
� �k

2
:

With these choices, we have

Sm.!/ D Sm.pk; qk; �k; qk/:

We check the conditions of Theorem 6.1. By (6.3), we have

j�k j < 1

Cqk

� 1

16qk

; (6.4)

provided C � 16. Since pk is an even number, we can take

Ak D �pk

2
; and ak D ��k

2
: (6.5)

We define the (!-dependent) subsequenceNk by

Nk WD b
p
Cqkc;

and we let m be an integer with Nk

2
� m � Nk . We check that

mj�k j � Nk j�k j � 1p
C

� 1

4
: (6.6)

and hence in view of (6.4)

jm�k C akj � 1

4
C

ˇ

ˇ

ˇ

ˇ

�k

2

ˇ

ˇ

ˇ

ˇ

<
1

2
:

Thus Theorem 6.1 implies that, for some absolute constant c3 > 0,

jSm.!/j D jSm.pk; qk; �k; �k/j � Tm � c3
p
qk; (6.7)

where we used (6.4) to simplify the error term.
Next, we use the first estimate in Corollary 6.2 to estimate Tm. In view of (6.5)

and (6.6), it remains to compute that

qk � 2b
p
Cqkc D 2Nk � 4m;
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and

�mj�k j �
p

qkj�k j � j�k j
2

�
p

qkj�k j:

Hence Corollary 6.2 implies that there exists an absolute constant c1 > 0 such that

Tm � c1

m
p
qk Cm

p

j�k j
� c1

2

m
p
qk

; (6.8)

where we used (6.4) in the last inequality. Combining (6.8) with (6.7), we have

jSm.!/j � c1

2

m
p
qk

� c3
p
qk � c1

4

m
p
qk

� c1

p
C

4
p
2

p
m; (6.9)

where we used

m �
p
C

2
qk � 4c1

c3

qk ; or C �
�8c1

c3

�2

:

Squaring and summing (6.9) over m from Nk=2 to Nk , we obtain

Nk
X

mD1

jSm.!/j2 � 3c2
1C

256
N 2

k > 2N
2
k ; (6.10)

provided that

C � 512

3c2
1

:

Finally it suffices to take

C D max
�

16;
�8c1

c3

�2

;
512

3c2
1

�

: (6.11)

This proves Theorem 2.11. �

6.3. Proof of Lemma 6.3. An analogous lemma with the condition 2jq instead
of 2jp can be found in [16]. Here we need 2jp. Let us note that it suffices to show

Lemma 6.4. Under the same condition as Lemma 6.3, we have that for Lebesgue

almost-every ! 2 R, the inequality

jq! � pj <  .q/

has infinitely many solutions p; q with odd q and .p; q/ D 1.
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First let us show how Lemma 6.4 implies Lemma 6.3. Indeed, Lemma 6.4 with
Q .n/ D  .n/=2 implies that, for Lebesgue almost-every !, there are infinitely
many solutions .p; q/ to the inequality

ˇ

ˇ

ˇ
q
!

2
� p

ˇ

ˇ

ˇ
<
 .q/

2
; (6.12)

with odd q and .p; q/ D 1. Multiplying (6.12) by 2, we obtain

jq! � 2pj <  .q/;

where .q; 2p/ D .q; p/ D 1. This proves Lemma 6.3.

Lemma 6.4 is a special case of the following theorem in [21].

Theorem 6.5 ([21, Theorem 4.2]). Suppose that  .n/ is a non-increasing se-

quence with 0 <  .n/ � 1=2 and suppose that

1
X

nD1

 .n/ D 1:

Let A be an infinite set of positive integers. We write S.A; !; N / for the number

of solutions to

kn!kT <  .n/; n � N; n 2 A;

where kxkT WD dist.x;Z/. Then, for Lebesgue almost-every ! 2 R,

S.A; !; N / D 2‰.N;A/CO.‰.N/1=2.log‰.N//2C"/;

for every " > 0. Here

‰.N/ D
N

X

nD1

 .n/ and ‰.N;A/ D
N

X

nD1
n2A

 .n/:

We can now give the

Proof of Lemma 6.4. Let us take A D ¹2k � 1; k 2 Nº be the set of positive odd
numbers. Since  .n/ is a non-increasing sequence, we easily see that

2‰.2N;A/ � ‰.2N/ �! 1:

Thus Theorem 6.5 implies

S.A; !; 2N/ �! 1:

This proves Lemma 6.4. �
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Appendices

A. The perturbation series in the almost-Mathieu case

In this section only, we set Qvj D 2 cos.2�.!j C �//. We use analogous notation
as in the skew-shift case, occasionally using Q for emphasis. By adapting the
calculation in the proof of Proposition 2.2, we find that the polynomial

zPn.�; 0/ WD TrŒ zM�
n

zMn� D
n

X

kD0

Q̨2k�
2k ;

now has coefficients given by Q̨0 D 2 and

Q̨2k D
X

0�k1;k2�n

k1Ck2D2k

.�1/
k1�k2

2

X

1�j1<:::<jk1
�n

1�l1<:::<lk2
�n

1|.
N
j;

N
l/

X

N
a2¹˙1ºk

N
a?

N
1

e
h

!
�

k1
X

sD1

asjs C
k1Ck2
X

sDk1C1

asls�k1

�i

(A.1)

for k � 1.
Here we only consider the lowest non-trivial coefficient Q̨2.

Proposition A.1. We have

Q̨2 D
ˇ

ˇ1� e
��

! C 1
2

�

n
�ˇ

ˇ

2

2 cos2.�!/
� 2

cos2.�!/
: (A.2)

We emphasize that the upper bound is independent of n. This is in stark
contrast with the skew-shift model, for which ˛2 D 2nwas proved in Theorem 2.4.
This serves as an important indication that we have not lost the critical features of
the models when applying Jensen’s inequality to move from Conjecture 1.1 to 2.1.

Proof of Proposition A.1. This is a calculation. By definition, we have

Q̨2 D � 4Re
X

1�j1<j2�n

.1.e;o/ C 1.o;e//.j1; j2/eŒ!.j1 � j2/�

C 2Re
X

1�j1;l1�n

.1.e;e/ C 1.o;o//.j1; l1/eŒ!.j1 � l1/�

D2Re
X

1�j1;l1�n

.�1/j1Cl1eŒ!.j1 � l1/�

D2Re
ˇ

ˇ

ˇ

n
X

j D1

.�1/j eŒ!j �
ˇ

ˇ

ˇ

2

D
ˇ

ˇ1 � e
��

! C 1
2

�

n
�ˇ

ˇ

2

2 cos2.�!/
;

as claimed. �
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B. The analysis of Weyl sums via homogeneous dynamics

In recent years, Weyl-sum asymptotics have been established using techniques
from homogeneous dynamics [11, 12, 29]. In fact, it is possible to study the entire
path traced out by the Weyl sum in the complex plane as a stochastic process
in Wiener space (the space of continuous functions with sup-norm). Notice that
control on the entire path directly addresses the technical problem (ii) mentioned
in Section 2.5.

In particular, Cellarosi and Marklof recently established that Weyl sums
satisfy an “invariance principle”: if the frequency ! 2 Œ0; 1� is chosen at random,
and c1 2 R is irrational, then the path of the normalized Weyl sum

m�1=2

m
X

j D1

eŒ!.j 2 C c1j /� 2 C

converges to a non-trivial random variable in Wiener space; see Theorem 1.3
in [12]. The limit shares some properties with two-dimensional Brownian motion,
but is distinct from it; see Theorem 1.4 in [12]. The fact that the parameter
c1 is irrational guarantees the validity of the key equidistribution theorems for
horocycles in an appropriate hyperbolic space. Note that, for us, c1 D �1 is
rational and so their theorems do not apply in our context. (In fact, we might expect
that, instead of equidistribution in the whole space, one now has equidistribution
along a certain geodesic.)

Nonetheless, in this appendix, we observe here that the tightness part of their
proof extends to our situation. We recall that Sm D

Pm
j D1 eŒ!.j

2 �j /� and define
the function XN W Œ0; 1� ! C by

Xn.t / WDn�1=2.Sbtnc C .tn� btnc/.Sdtne � Sbtnc//: (B.1)

In other words, we take Xn.t / WD n�1=2Stn whenever t 2
®

0; 1
n
; 2

n
; : : : ; 1

¯

, and we
interpolate linearly between these points. We now sample the frequency! 2 Œ0; 1�
at random, according to a fixed measure � that is absolutely continuous with
respect to Lebesgue measure. The random choice of! induces a stochastic process
XN in the Wiener space C, defined as the Banach space C.Œ0; 1�IC/ equipped with
the supremum norm.

The following tightness result is implicit in [12].

Theorem B.1. The sequence of stochastic processes .Xn/n�1 is pre-compact

under weak convergence in Wiener space C.



Weyl sums and the Lyapunov exponent 31

Proof. To see this, it suffices to observe that the proof of Proposition 4.10 of [12]
extends verbatim to sums over eŒ!.j 2 � j /�. In particular, the tail bounds in
Proposition 3.17 of [12] hold uniformly in the vector � and do not require the
irrationality assumption stated in Theorem 1.3 there. �

We can use Theorem B.1 to obtain a limiting continuous random process

X0 W Œ0; 1� ! C such that we have weak convergence in Wiener space, Xn
d! X0,

along a subsequence. We emphasize that the limit X0 can be different from the
limiting process X found in [12] under an additional irrationality assumption.
Nonetheless, the two limiting processes are likely related. See also Remark 1.1
in [12].
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