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We present a lattice-QCD calculation of the pion, kaon, and ηs distribution amplitudes using large-

momentum effective theory. Our calculation is carried out using three ensembles with 2þ 1þ 1 flavors of

highly improved staggered quarks, generated by MILC Collaboration, at 310-MeV pion mass with 0.06,

0.09, and 0.12 fm lattice spacings. We use clover fermion action for the valence quarks and tune the quark

mass to match the lightest light and strange masses in the sea. The resulting lattice matrix elements are

nonperturbatively renormalized in regularization-independent momentum-subtraction scheme and extrapo-

lated to the continuum. We use two approaches to extract the x dependence of the meson distribution

amplitudes: (i) we fit the renormalized matrix elements in coordinate space to an assumed distribution form

through a one-loop matching kernel and (ii) we use a machine-learning algorithm trained on pseudo lattice-

QCD data to make predictions on the lattice data. We found the results are consistent between these

methods with the latter method giving a less smooth shape. Both approaches suggest that as the quark mass

increases, the distribution amplitude becomes narrower. Our pion distribution amplitude has broader

distribution than predicted by light-front constituent-quark model, and the moments of our pion

distributions agree with previous lattice-QCD results using the operator production expansion.

DOI: 10.1103/PhysRevD.102.094519

I. INTRODUCTION

Meson distribution amplitudes (DAs) ϕM hold the key to

understanding how light-quark hadron masses emerge from

QCD, an important topic of study at a future electron-ion

collider [1]. Meson DAs are also important inputs in many

hard exclusive processes at large momentum transfers

Q2 ≫ Λ
2

QCD [2,3]. In such processes, the cross section

can be factorized into a short-distance hard-scattering part

and long-distance universal quantities such as the light cone

DAs. Unlike the hard-scattering subprocess, which can be

calculated perturbatively, the light cone DAs need to be

determined from fits to experimental data or to be calcu-

lated nonperturbatively from lattice QCD.

Such direct computations have become possible recently,

thanks to large-momentum effective theory (LaMET)

[4–6]. The LaMET method calculates equal-time spatial

correlators (whose Fourier transforms are called quasidis-

tributions) on the lattice and takes the infinite-momentum

limit to extract the true light cone distribution. For large

momenta feasible in lattice simulations, LaMET can be

used to relate Euclidean quasidistributions to physical ones

through a factorization theorem, which involves a matching

and power corrections that are suppressed by the hadron

momentum [5]. The proof of factorization was developed in

Refs. [7–9].

Since LaMET was proposed, a lot of progress has been

achieved with respect to both the theoretical understanding

of the formalism [6,8,10–70] and its application to lattice

calculations of nucleon and meson parton distribution

functions (PDFs) [24,30,31,33,71–83], as well as meson

distribution amplitudes [25,84,85]. Despite limited vol-

umes and relatively coarse lattice spacings, the state-of-the-

art nucleon isovector quark PDFs, determined from lattice

data at the physical point, have shown reasonable agree-

ment [74,75,78] with phenomenological results extracted

from the experimental data [86–90]. Of course, a careful
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study of theoretical uncertainties and lattice artifacts is still

needed to fully establish the reliability of the results.

Ongoing efforts include an analysis of finite-volume

systematics [82] and exploration of machine-learning

(ML) application [91] that have been carried out recently.

For meson DAs, the first lattice calculation of the

leading-twist pion DA using LaMET was performed in

Ref. [25]. The result favored a single-hump form for the

pion DA. The first calculation of the kaon DA was

performed in Ref. [84]. The expected skewness was seen

in the asymmetry of the kaon DA around the quark

momentum fraction x ¼ 1=2. These results were improved

by a Wilson-line renormalization that removes power

divergences. Also, the momentum-smearing technique

proposed in Ref. [92] was implemented to increase the

overlap with the ground state of a moving hadron. Despite

these improvements, the DAs did not vanish in the

unphysical region outside x ∈ ½0; 1�.
In this paper, we further improve the meson-DA calcu-

lation by implementing nonperturbative renormalization

(NPR) in regularization-independent momentum-subtrac-

tion (RI/MOM) scheme. Also, computations are performed

with three different lattice spacings and two different pion

masses, allowing the continuum extrapolation and chiral

extrapolation. Despite these improvements, the contribu-

tion in the unphysical region remains. This is largely due to

the omission of the long-range tail of the spatial correlator,

which is cut off by the finite size of the lattice. To fix this

problem, we would need larger hadron momentum instead

of a larger lattice volume, because the long-range corre-

lations of the matrix elements (MEs) increase the undesired

mixing with higher-twist operators. Alternatively, we

explore the possibility of constraining the DA without

the long-range correlation by fitting to a commonly used

DA parametrization. The model dependence of the para-

metrization can be later reduced by using a general set of

basis functions, using machine learning to determine the

functional form, or by combining with other lattice inputs.

The continuum extrapolation performed in this work is

relevant to several important questions regarding the

LaMET and related approaches. First, how does the

quasidistribution approach avoid the power-divergent mix-

ing of a twist-2 operator with a twist-2 operator of lower

dimension as seen in moment calculations? The answer is

that this power-divergent mixing is due to the breaking of

rotational symmetry on a lattice. When the continuum limit

is taken after the correlator is renormalized, rotational

symmetry can be recovered as an accidental symmetry.

This is because the nonlocal operators used for quasidis-

tributions are the lowest-dimension ones with the same

symmetry properties [32]. Hence, power-divergent mixing

among twist-2 operators should no longer exist.

Second, the operator product expansion of the equal-

time correlators gives rise to twist-2, twist-4, and higher-

twist contributions. Reference [46] argued that the matrix

element of the twist-4 operator is set by the scale a;
hence, its suppression factor compared with twist-2 is

Oð1=ðPzaÞ
2Þ instead of OðΛ2

QCD=P
2
zÞ with the hadron

momentum Pz. However, the twist-4 contribution that

needs to be subtracted from the quasidistribution operator

can be written as equal-time correlators with two more

mass dimensions than the original quasidistribution oper-

ator [24]. Hence, they do not cause power-divergent

mixings that need to be subtracted before applying RI/

MOM renormalization.

Proving the above statements requires a careful analysis

of the mixing matrix, which is beyond the scope of this

paper. In this work, we check whether the continuum

extrapolation of the RI/MOM-renormalized matrix ele-

ments is consistent with the absence of power-divergent

terms, which, by itself, is a necessary (but not sufficient)

condition for the above statements to be true. If there were

mixing with lower-dimension operators, the matrix element

could still be renormalized, but one might get the undesired

lower-dimension operator in the continuum limit instead of

the one of interest. However, as discussed above, power-

divergent mixing in quasidistributions was not found in the

studies of Refs. [24,32].

The paper is organized in the followingway. In Sec. II, we

present the lattice setup of this calculation, and the strategies

used to extract the bare matrix elements from lattice DA

correlators. Section III shows the NPR procedure and the

continuum and chiral extrapolation of the renormalized

matrix elements. The x dependence of DAs is obtained

from two approaches: the fit to a functional form and the

prediction with a machine learning algorithm. Finally, we

summarize the results and future prospects in Sec. IV.

II. LATTICE SETUP

In this work, we extend our previous work on the

kaon distribution amplitude from a single a12m310 lattice

[84] to three lattice ensembles with different lattice spac-

ings and extrapolate the results to continuum. The three

ensembles have lattice spacings a ¼ 0.0582ð4Þ fm,

a ¼ 0.0888ð8Þ fm, and a ¼ 0.1207ð11Þ fm with Nf ¼
2þ 1þ 1 flavors of highly improved staggered quarks

(HISQ) [93] generated by MILC Collaboration [94]. One-

step hypercubic smearing of the gauge links is applied to

improve the discretization effects. We use clover action for

the valence quarks with the clover parameters tuned to

recover the lowest pion mass of the staggered quarks in the

sea [95–97]: Mπ ¼ 319.3ð5Þ, 312.7(6), and 305.3(4) MeV

on the three ensembles, respectively. On each lattice

configuration, we use multiple sources uniformly distrib-

uted in the time direction and randomly distributed in the

spatial directions to reach high statistics. We have 24

sources in total for the a06m310 and a09m310 ensembles

and 32 sources for a12m310, corresponding to 2280, 5544,

and 2912 measurements in total, respectively.
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The hadron spectrum (HS) and DA two-point correlators

are calculated for different mesons,

CHS
M ðP; tÞ ¼

�

0

�

�

�

�

Z

d3yeiP⃗·y⃗ψ̄1ðy⃗; tÞγ5ψ2ðy⃗; tÞ

× ψ̄2ð0; 0Þγ5ψ1ð0; 0Þ

�

�

�

�

0

�

; ð1Þ

CDA
M ðz; P; tÞ ¼

�

0

�

�

�

�

Z

d3yeiP⃗·y⃗ψ̄1ðy⃗; tÞγzγ5Uðy⃗; y⃗þ zẑÞ

× ψ2ðy⃗þ zẑ; tÞψ̄2ð0; 0Þγ5ψ1ð0; 0Þ

�

�

�

�

0

�

; ð2Þ

whereM represents differentmesons (π,K, ηs), fψ1;ψ2g are
fu; ug for π, fu; sg for K and fs; sg for ηs (only connected

diagrams are computed in this work), Uðy⃗; y⃗þ zẑÞ ¼
Q

z−1
x¼0

Uzðyþ xẑ; tÞ is the Wilson line connecting lattice

site y⃗ to y⃗þ zẑ, as defined inRefs. [25,84]. The light-quarku
and strange-quark s mass parameters used here are

from Ref. [98].

The DAME and ground-state energies of the mesons can

be extracted from the HS and DA two-point correlators by a

two-state fit to the form

CHS
M ðP; tÞ ¼ AHS

M;0ðPÞe
−EM;0ðPÞt

þ AHS
M;1ðPÞe

−EM;1ðPÞt þ � � � ; ð3Þ

CDA
M ðz; P; tÞ ¼ ADA

M;0ðP; zÞe
−EM;0ðPÞt

þ ADA
M;1ðP; zÞe

−EM;1ðPÞt þ � � � ; ð4Þ

where AM;0ðPÞ and EM;0ðPÞ are the amplitude and energy,

respectively, of ground state of a boosted meson with

momentum Pz ¼ P while AM;1ðPÞ and EM;1ðPÞ are for the
first excited state. EM;0ðP ¼ 0Þ is the mass of the meson.

We consider the energies to be the same for HS and DA.

Therefore, we fit both the HS and DA correlators simulta-

neously to get the ground-state energy EM;0ðPÞ and first

excited-state energy EM;1ðPÞ of the various momenta Pz.

The fit range ½tmin; tmax� is determined by scanning different

t to get the smallest χ2=d:o:f (degrees of freedom) for all the

Wilson-line lengths z and at different Pz. When χ2=d:o:f for
different fit ranges are close to each other, we prefer the

smaller-t region where the data are less noisy. Selected

effective masses at the largest meson momentum Pz ≡ nz
2π
L

with nz ¼ 4 are shown in Fig. 1 for HS and DA correlators.

FIG. 1. The π (left column), K (middle column), and ηs (right column) effective-mass plots at z ¼ 0, Pz ¼ 4
2π
L

on ensembles

a12m310, a09m310, and a06m310, respectively, from top to bottom. The bands are reconstructed from the fitted parameters of real part

of HS correlators and the imaginary part of DA correlators, which are represented by blue triangles and red squares, respectively. The

momentum Pz ¼ 4
2π
L
is the largest momentum we used, and it is the noisiest data set.
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The bands reconstructed from the fitted parameters

agree with the data well. We check the dispersion

relation, EM;0ðPÞ
2 ¼ EM;0ðP ¼ 0Þ2 þ c2P2, where c is

the dispersion coefficient (often called “the speed of light”).

The dispersion relations for all three mesons on the three

ensembles are shown in Fig. 14 of Appendix C. On the two

coarser lattices, c is closer to 1 for lighter mesons, and it

becomes closer to 1 for finer lattices. On the a06m310

lattice, the cvalues for all threemesons are consistentwith 1.

Two fit strategies are used to extract the ground-state

amplitude AM;0 for z ≠ 0 using the ground-state energy

EM;0 and excited-state energy EM;1 from the simultaneous

fit of the HS and DA correlators at z ¼ 0. One way of doing

this is to fix EM;0 at fixed P by simultaneously fitting the

HS and z ¼ 0 DA correlators and obtain fitting parameters

of ADA
M;0 and ADA

M;1 for the real and imaginary corrector and

with a common EM;1. Another way is to fix both EM;0 and

EM;1 from z ¼ 0 correlator fit of the same boosted momen-

tum, while fitting the imaginary and real parts of DA

correlators simultaneously. To help visualize the resulting

ground-state amplitude AM;0 from different fit strategies, we

multiply the DA two-point correlators by eEM;0t,

ÃM;0ðz; P; tÞ ¼ CDA
M ðz; P; tÞeEM;0t

¼ ADA
M;0 þ ADA

M;1e
−ðEM;1−EM;0Þt þ � � � ; ð5Þ

which should go to AM;0 when t → ∞. The reconstructed

bands of this quantity are shown in Fig. 2 from different fit

strategies for the real part and the imaginary part of AM;0 at

z ¼ 7, for the largest momentum Pz ¼ 4
2π
L
on the a06m310

ensemble. The fit with fixed EM;0, represented by the blue

bands, and the fit with fixed EM;0 and EM;1, represented by

the red bands, are consistent with each other within

uncertainties. However, the bands with fixed EM;0 and

EM;1 are more stable in the large-t region. Thus, the fit with

fixed EM;0 and EM;1 is used in further calculations.

We consider the effects of tmin dependence on the

extracted ground-state amplitude AM;0 for the three mesons

and three ensembles. The ground-state amplitudes AM;0 as

functions of z are shown in Fig. 15 of Appendix C with

multiple tmin choices on ensembles a06m310, a09m310,

and a12m310. The fitted ground-state amplitudes AM;0 with

smaller tmin tend to have smaller errors. However, the

χ2=d:o:f becomes larger when too small a tmin is chosen,

because a two-state fit cannot describe the first few points

of t well. Therefore, tmin ¼ f4; 4; 5g are chosen for the

a06m310π, K and ηs fits, tmin ¼ f5; 4; 5g are chosen for the
a09m310π, K and ηs fits, and tmin ¼ f2; 2; 3g are chosen

for the a12m310π, K and ηs fits.

III. RESULTS AND DISCUSSIONS

A. Nonperturbative renormalization

The Wilson line
Q

z−1
i¼0

UzðiẑÞ introduces a divergence

into the quasi-PDF operator, so the bare MEs cannot be

matched directly to physical observables and need to be

renormalized. In contrast to the previous work [84] where

an effective mass counterterm is used to renormalize the

matrix elements, we now follow a standard NPR in RI/

MOM scheme [99]. The NPR factors Zðz; μR; pR
z ; aÞ are

calculated by implementing the condition that

Fix E0&E1
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FIG. 2. The ground-state amplitudes AM;0 for the pion (left column), kaon (middle column), and ηs (right column) at z ¼ 7 with boost

momentum Pz ¼ 4
2π
L
on the a06m310 ensemble. Two strategies of two-state fits are used here: fixed E0 (red band) and fixed E0 and E1

(blue band) obtained from the local correlators; both fits are consistent with each other within uncertainties. The fits with fixed E0 and E1

are more stable in the large-t region; therefore, we use this fitted strategy for the rest of the analysis.
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Zðz; μR; pR
z ; aÞ

�

SðpjzÞẑÞγzγ5

�

Y

n
UzðnẑÞ

�

Sðpj0Þ

�

p2¼−μ2
R
;

pz¼pRz

¼

�

X

w
SðpjzÞγzγ5

�

Y

n
UzðnẑÞ

�

Sðpj0Þ

�

tree

¼ e−izpzhSðpÞγzγ5SðpÞipz¼pR
z
;

Z−1ðz; μR; pR
z ; aÞ ¼

eizpz

12
Tr

�

hSðpÞi−1 ×

�

SðpjzÞγzγ5

�

Y

n
UzðnẑÞ

�

Sðpj0Þ

�

hSðpÞi−1γzγ5

�

p2¼−μ2
R
;

pz¼pRz

:

We calculate the NPR factors at μR ¼ 3.8 GeV, pR
z ¼ 0 for

all three ensembles.

Figure 3 shows the inverse renormalization factors for

the DA on all three lattice ensembles. The relative errors of

these factors are at the percent level and are not visible on

the plot.

The renormalized matrix elements are then obtained by

hRMðz; p
R
z ; μ

RÞ ¼ hBMðz; aÞZðz; μ
R; pR

z ; aÞ; ð6Þ

where the bare matrix elements obtained from the

ground-state meson amplitude AM;0 fit in the previous

section via

hBMðz; aÞ ¼
ADA
M;0ðz; aÞ

ADA
M;0ð0; aÞ

: ð7Þ

Figure 4 shows the nz ¼ 4 renormalized matrix elements on

the three ensembles, along with the quasi-DA matrix

elements matched from two light cone DA function forms,

ϕðxÞ¼xαð1−xÞα=
R

1

0
dxxαð1−xÞα with α ¼ 1 and α ¼ 0.5,

respectively. The former (α ¼ 1) is the asymptotic form

of the pion light cone DA [100,101], and the latter

(α ¼ 0.5) has a second moment close to previous lattice

computations of the pion DA moments [102–106]. We

impose the symmetries to symmetrize the real parts and

antisymmetrize the imaginary parts of the matrix elements,

and enforce the normalization
R

1

0
dxϕðxÞ ¼ 1 so that the

central value hðz ¼ 0Þ ¼ 1. The matrix elements for lighter

mesons are noisier. We see that the renormalized matrix

elements at different lattice spacings are consistent with

each other, suggesting that the higher-order discretization

effects are small. We also note that when α increases, the

peaks in hðzÞ shift toward larger z, and the magnitude of the

first peak increases while the magnitude of the second peak

decreases. In our data, the pion result is closer to the form

with α ¼ 0.5.

In Eq. (6), the operator that appears in hBMðh; aÞ might

mix with other operators. If it mixes with lower-dimension

operators, then subtractions of the lower-dimension oper-

ators should be performed first; otherwise, the Z factor in

Eq. (6) will just renormalize the most singular (lowest-

dimension) operator in the a → 0 limit rather than the

desired operator. However, Ref. [32] suggests that it is not

the case. The nonlocal operators used for quasi-DAs in this

work are the lowest-dimension ones with the same sym-

metry properties. This ensures that continuum limit can be

taken for Eq. (6). Then, by going to the continuum limit,

rotational symmetry is restored, so mixing among twist-2

operators of different mass dimensions will not happen.

Also, power-divergent mixing among twist-2 and twist-4

operators was suggested in Ref. [46]. However, the study in

Ref. [24] shows that the twist-4 contribution is higher

dimension. It can be written as equal-time correlators with

two more mass dimensions than the original quasidistri-

bution operator. Hence, the twist-4 contribution does not

cause power-divergent mixing.

B. Continuum extrapolation

Now, we remove the remaining lattice discretization

effects by extrapolating the renormalized matrix elements

to the continuum by taking the continuum limit a → 0.

Because the matrix elements with three different lattice

spacings do not have data from the same physical z’s, we
first need to interpolate the points as functions of z for each
lattice spacing, then do the extrapolations pointwise on

these curves.

Although we argue in the previous subsection that the

equal-time operator is free from power-divergent mixing

and so is the hadronic state, we can check again whether it

is also the case for the matrix element. Therefore, we add

a06

a09

a12

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

z(fm)

Z
R

I/
M

O
M

–1
(z

)

FIG. 3. NPR factors for three ensembles in RI/MOM scheme at

μR ¼ 3.8 GeV, pR
z ¼ 0. The red triangles, blue squares, and

green inverted triangles are calculated for a∈f0.06;0.09;
0.12g fm, respectively. The errors are small and are not visible

on the plot.
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the 1=a2 term
1
from the possible leading power-divergent

mixing to the continuum extrapolation formula

hRMðz; aÞ ¼ hRi ðzÞ þ cM;iðzÞa
i þ

dMðzÞ

a2
; ð8Þ

where we use i ¼ 1 for linear and 2 for quadratic lattice-

spacing dependence. We find that the coefficient dM is

consistent with zero within errors, except for kaon and ηs at

smallest momentum Pz ¼ 0.86 GeV and large z (see

Fig. 19 in Appendix B). Since power divergence should

be a short-distance property of the Wilson coefficient, the

dependence on the long-distance properties of Pz and

meson flavor suggests that the lowest Pz result at large z
is not trustworthy and hence is discarded in our analysis.

Therefore, we focus on Pz ¼ 1.73 GeV results from now

on and set dM ¼ 0.

Bootstrap resampling is applied to the three data sets to

estimate the error of the continuum extrapolation, since the

number of measurements on three ensembles are different.

The fitted functional forms are consistent with the data

points and have average χ2=d:o:f ≈ 1.2 for nz ¼ 4. We

observe that for the pion the slopes cπ;1 and cπ;2 are

consistent with zero for zPz < 8. Figure 5 shows the

extrapolated renormalized matrix elements for all mesons

at nz ¼ 4. We find that at small link lengths z < 0.5 fm, the

lattice-spacing dependence of the matrix elements is con-

sistent with zero, so the extrapolated results are consistent

with the data on all ensembles. At moderate link lengths,

0.5 fm < z < 1 fm, near the peaks, the dependence is the

most significant and we see jcM;1j ≈ 2 fm−1 for K and ηs.

At large link lengths z > 1 fm, the lattice-spacing depend-

ence is obscured by the large error, and the extrapolations

are mainly constrained by the two cleaner data sets on a ≈

0.09 fm and a ≈ 0.12 fm, where fewer Wilson links are

needed at a given physical length of z.
To take into account the systematics of using

different fitting functions, we used the Akaike information

criterion (AIC) technique [107] to combine the linear and

quadratic fits,

hRMðzÞ ¼
hRM;1ðzÞe

−ð2k1þχ2
1
Þ=2 þ hRM;2ðzÞe

−ð2k2þχ2
2
Þ=2

e−ð2k1þχ2
1
Þ=2 þ e−ð2k2þχ2

2
Þ=2

; ð9Þ

where k1 and k2 are the number of free parameters, are both

1 in this case. The quadratic dependence on lattice spacing

does not well describe the data; thus, the χ2 is large in the

quadratic extrapolation, and the combined extrapolation is

dominated by the linear extrapolation. Overall, the extrap-

olations using the two functional forms are close to each

other, so the combined extrapolation is consistent with both

results, as shown in Fig. 5. Future study using ensembles

with different lattice spacing can help resolve any quadratic

dependence.

The extrapolation formula obtained from one-loop chiral

perturbation theory [108] is

hRMðMπ; a ¼ 0Þ ¼ sMM
2
π þ hð0Þ; ð10Þ

where the chiral logarithm has been proved to be absent for

the DAs of pseudo-Goldstone bosons [108]. The chiral-

extrapolated results are shown in Fig. 6, and they are very
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FIG. 4. Real (top row) and imaginary (bottom row) renormalized matrix elements at Pz ¼ 4
2π
L

in RI/MOM scheme with

μR ¼ 3.8 GeV, pR
z ¼ 0 for π (left column), K (middle column), and ηs (right column). The dashed lines and dotted lines are the

quasi-DA matrix elements matched from the light cone DA function form ϕðxÞ ¼ 8

π
x0.5ð1 − xÞ0.5 and ϕðxÞ ¼ 6xð1 − xÞ, respectively.

1
We replace this by the 1=a term from the Wilson-line

renormalization as well; the conclusion is qualitatively the same.
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close to the ones from calculations at lighter pion mass but

with slightly larger error bars due to the extrapolation. Note

that the pion mass difference ΔM2
π ¼ 0.38 GeV2 between

the light and strange quarks is 5 times larger than the

difference ΔM2
π ¼ 0.078 GeV2 between our light mass and

the physical one. So the difference between extrapolated

results and 310-MeV pion results is expected to be sup-

pressed by a factor of 1=5 and becomes small. To test

whether the higher-loop corrections are significant for

Mπ ¼ 690 MeV, data at another value of Mπ are needed.
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FIG. 5. Continuum extrapolation of the real (top row) and imaginary (bottom row) renormalized matrix elements at μR ¼ 3.8 GeV,

pR
z ¼ 0 to the continuum from two functional forms and their AIC combination for π (left column), K (middle column), and ηs (right

column). Different extrapolations are consistent with each other.
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FIG. 6. Chiral extrapolation of the π (top) and K (bottom) renormalized matrix elements in the continuum to physical pion mass from

the π=K and η results for Pz ¼ nz ×
2π
L
with nz ¼ 4. The extrapolated results are close to the Mπ ¼ 310 MeV results.
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In this work, we will use valance pion mass, Mval
π , in

Eq. (10) for a naive chiral extrapolation to estimate what the

DA may look like at physical pion mass point. Future work

should include ensembles at lighter pion mass to improve

the reliability of the chiral extrapolation and reduce the

uncertainty due to such extrapolation.

C. Quasi-DA matrix elements to light cone DA

The standard procedure to obtain the light cone DA via

quasi-DA is to first Fourier transform the chiral and

continuum extrapolated matrix elements from the coordi-

nate space to the momentum space (i.e., x space), then to

apply the inverse matching kernel to obtain the light cone

DA. The quasi-DA is obtained through

ϕ̃Mðx;μ
R;pR

z ;PzÞ¼

Z

dz

2π
e−ið1−xÞzPzhRMðzPz;p

R
z ;μ

RÞ: ð11Þ

Because our matrix elements in coordinate space are

discretized and bounded in the range jzj < 1.44 fm, we

can only do a truncated Fourier transformation with jzj ≤
zmax ≤ 1.44 fm after interpolating the data. This truncation

will introduce a step function into the Fourier transforma-

tion and lead to oscillations in the quasi-DA in momentum

space. This was first observed in the nucleon PDF studies

[19,30], and multiple solutions have been proposed to help

resolve or minimize the issue [33,109,110]. A similar

problem is also observed in our meson-DA study; an

example from the pion quasi-DA is shown in Fig. 7.

Not only does the pion distribution have similar oscilla-

tions, but it is worse than those observed in the nucleon

PDF distribution in Refs. [19,30]. In addition, the shape of

the peak at x ¼ 1

2
is sensitive to the choice of zmax used in

the Fourier transformation, causing large uncertainty in the

DA determination.

To better constrain the DAs such that they vanish outside

the physical region, x ¼ ½0; 1�, we adopt the fitting

approach by parametrizing the distribution amplitude using

the commonly used meson PDF global-fitting form

fm;nðxÞ ¼
1

Bðmþ 1; nþ 1Þ
xmð1 − xÞn; ð12Þ

Bðmþ 1; nþ 1Þ ¼

Z

1

0

dxxmð1 − xÞn; ð13Þ

where Bðmþ 1; nþ 1Þ is the beta function, which normal-

izes the light cone DA such that the area under the curve is

unity. We then obtain the parametersm and n for the meson

light cone DAs by fitting to the renormalized lattice matrix

elements hR,

hRðz;μR;pR
z ;PzÞ

¼

Z

∞

−∞

dx

Z

1

0

dyC

�

x;y;

�

μR

pR
z

�

2

;
Pz

μ
;
Pz

pR
z

�

fm;nðyÞe
ið1−xÞzPz

þO

�

Λ
2

QCD

P2
z

;
M2

P2
z

�

; ð14Þ

where C is the matching kernel for the DA [111] with μ ¼

2 GeV (the MS renormalization scale), μR ¼ 3.8 GeV, and

pR
z ¼ 0. The ðM=PzÞ

2n power corrections can be removed

to all orders [24,25,84], but the effect is negligible for the

meson masses and Pz values that we use here, so we neglect

them. The higher-twist Λ
2

QCD=P
2
z power correction is

parametrically the same size as the mass correction. We

discuss why there is no extra 1=x2 enhancement in

Appendix C based on the discussion of Ref. [85]. By a

rough estimation with upper bound ΛQCD ¼ 500 MeV,

for the largest meson momentum we have yields

Λ
2

QCD=P
2
z ≈ 8%, which we use as the relative systematic

error from higher-twist effects in our final results in later

sections.

Figure 8 shows the light cone distribution and recon-

structed matrix elements from Eqs. (12) and (14) using the

fitted parameters, m and n, for pion and kaon at Pz ¼
1.73 GeV. Results using different values of zmax, ranging

from 0.72 to 1.44 fm, as input data hRðz; μR; pR
z ; PzÞ are also

shown. The χ2=d:o:f ¼ 1.02ð58Þ is small for the fit of full-

range pion data zmax ¼ 1.44 fm, and it reproduces the peak

locations. However, we can see from the plot that the fitted

function cannot reproduce the large amplitude of the

secondary peaks. This indicates that more complicated

forms need to be used. The fit results for zmax ≥ 0.96 fm

are consistent with each other, because the range already

covers the secondary peaks, and the fit is trying to recover

the large amplitude there. When we truncate the data at the

smallest zmax ¼ 0.72 fm, the fit is completely ignoring the

information in the second peaks, trying to recover the large

FIG. 7. The pion quasi-DA obtained from Fourier transforma-

tion of the RI/MOM renormalized matrix elements at Pz ¼ nz
2π
L

with nz ¼ 4, μR ¼ 3.8 GeV, pR
z ¼ 0. The shape of the peak is

sensitive to the zmax used in the Fourier transformation, and the

distribution unphysically oscillates in the large positive and

negative x regions.
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amplitude at the first peaks. For the remaining

part of the paper, considering that the fit results for the

larger zmax are consistent with each other, we only show the

less zmax-dependent fit results for the full-range data

with zmax ¼ 1.44 fm.

We first study the pion-mass dependence of the pion

distribution amplitude in the continuum limit. Figure 9

shows pion DA results using pion masses of 690, 310 and

extrapolated to 135 MeV. We remind the reader that our

chiral extrapolation is dominated by 310-MeV results.

Nevertheless, the DAs for the heavier mesons, at strange

point, have a narrower distribution, showing a similar trend

as suggested in Ref. [112]. Mapping out how the DA

shapes change as a function of quark masses helps us

understand the origin of mass [1], which is a priority

research direction for a future electron-ion collider (EIC)

and other facilities. We will leave a more complete study of

the quark-mass dependence of the DAs to the future.

Our pion distribution amplitude extrapolated to the

physical pion mass is shown on the left-hand side of

Fig. 10 with the fitted parameters m ¼ 0.57ð27Þ and

n ¼ 0.60ð26Þ. Two error bands are shown, the green

inner band represents only the statistical error, and the

yellow outer band includes both statistical error and the

8% relative systematic error from higher-twist effect from

our previous estimation. We also show results from the

Dyson-Schwinger equation (DSE) prediction (DSE’13) with

the form ϕπðxÞ¼1.81½xð1−xÞ�0.31½1−0.12C0.81
2

ð2x−1Þ�
[113], the data from Belle experiments [114], the prediction

of the light-front constituent-quark model (LFCQM’15)

[115], and the fit to the form Eq. (12), of the second moment

[106] (labeled as “RQCD’19”). Our pion result is consistent

with the DSE and RQCD’19 moment reconstructed results,

showing a broader distribution than the LFCQM result. Our

pion amplitude obtained through the parametrization is

constrained to physical region 0 < x < 1 by definition,

and, therefore, has a higher peak compared with the results

in our previous work [84]. RQCD also calculated the x-
dependent pion distribution amplitude using multiple

Euclidean correlation functions [85] on a Nf ¼ 2 295-

MeV pion mass, a ≈ 0.071 fm lattice-spacing ensemble.

They found a much broader distribution than our results.

Using the parameters m ¼ 1.04ð20Þ and n ¼ 1.05ð20Þ
obtained from fitting the kaon matrix elements, we obtain

the kaon light cone DA, as shown on the right-hand side of

Fig. 10. We compare the kaon result with DSE predictions

[116] (labeled as “DSE’14-1” and “DSE’14-2”), the
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FIG. 8. The light cone pion (upper row) and kaon (lower row) distribution amplitude (left column) of Pz ¼ 4
2π
L
, and the corresponding

fits using Eq. (12) to real (middle column) and imaginary (right column) renormalized matrix elements with multiple inputs of zmax. We

note that the distribution amplitudes from zmax ≥ 0.96 fm are consistent with each other while the distribution amplitudes with smaller

zmax such as 0.72 fm suffer a significant cutoff effects.
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FIG. 9. Pion distribution amplitude dependence on pion mass at

Pz ¼ 1.73 GeV as a function of Bjorken-x. The lighter mesons

have a broader distribution.
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LFCQM result (labeled as LFCQM’15) [115], and the fit to

the form Eq. (12) of the first and second moments [106]

(labeled as RQCD’19). Again, the kaon DA has higher peak

compared with the one in our previous work [84], but no

observed asymmetric around x ¼ 1=2. Our kaon distribution
is narrower than the DSE and RQCDmoment-reconstructed

results.

With the fitted DA, we can calculate their ith moments

by integration

hξiMi ¼

Z

1

0

dxϕMðxÞð2x − 1Þi: ð15Þ

A comparison with previous moment calculations on

lattice is shown in Table I. However, our kaon first moment

at extrapolated physical pion mass, hξKi ¼ 0.009ð18Þð0Þ,
due to symmetric distribution, are consistent with zero.

We obtain hξ2πi ¼ 0.244ð30Þð20Þ for pion and hξ2Ki ¼
0.198ð16Þð16Þ for kaon. In these quantities, the first

(second) error represents the statistical (estimated higher-

twist systematical) error. The pion moments calculated

from our x-dependent distributions suffer from larger error

due to the usage of larger momentum in the hadron states,

while the traditional moment calculations rely on hadrons

at rest to obtain better signal. Our pion results are generally

consistent with earlier lattice determinations using the

moment approach, and the second moment of kaon is

about 20% smaller. The kaon distribution is narrower than

pion one; therefore, we have a smaller kaon moment.

D. Machine learning predictions for light cone DAs

Another approach to obtain light cone DAs from the

spatial matrix elements is to apply machine learning. The

idea here is to train a supervised machine-learning model

with randomly generated pseudo data which have similar

properties to the DAs and are constrained by the same

physical requirements. The model is then applied to real

lattice matrix elements in coordinate space to predict the

light cone DAs. A similar application to PDFs was studied

in Ref. [110], where instead of real lattice data, a set of

pseudo data generated from global-fitting results was used

to test the method. Note that Ref. [110] attempted to

reconstruct nucleon PDFs using pseudo lattice data but did

not finish by using actual lattice data to obtain PDFs.

In this work, we use the multilayer perceptron (MLP)

regressor [117–119], a machine-learning algorithm imple-

mented in the PYTHON scikit-learn package [120]. Since

this is a first attempt to use purely lattice data to reconstruct

the distribution functions, we use the same parametrization

formula as shown in Eq. (12), and their linear combinations

with 100,000 randomly generated m, n pairs in Eq. (12),

evaluated at 99 points x ∈ ð0; 1Þ as outputs of the model.

Random relative noise at each point is added to these

samples. Then, we apply Eq. (14) at renormalization scale

μR ¼ 3.8 GeV, pR
z ¼ 0 to obtain the corresponding matrix

elements at z ∈ ½0; 24� × 0.06 fm in coordinate space as

inputs of the model. We train and test the MLP regressor on

these labeled pseudo data. The model optimizes the

squared-loss L ¼
P

iðy
pred
i − yiÞ

2, where a large relative

deviation near the boundary x ∈ f0; 1g will not contribute

much to the loss because of its small amplitude. We tune

the hyperparameters of the model, i.e., the geometry

of the hidden layer and the activation function, with

GridSearchCV in scikit-learn. The optimized model is a

MLP regressor of three hidden layers with 100 perceptrons

and the activation function fðxÞ ¼ maxð0; xÞ on each layer.
To make sure that the above procedure works, we test our

procedure on a simpler formula. We generate a test set of

data with the same constraints but from different form,

fðxÞ ¼ N sinβðπxÞ, to check the stability of the model

when extrapolating to unknown functions. We generate the

test data for β ∈ f0.5; 1; 1.5; 2g. After transforming to

coordinate space, we generate 1000 samples for each β,

following a Gaussian distribution Nðμ; σ2Þ with μ ¼ hðzÞ,
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FIG. 10. Fit of the Pz ¼ 4
2π
L
pion (left) and kaon (right) data to the analytical form in Bjorken-x space, compared with previous

calculations (with only central values shown). Two error bands for our results are shown: the green inner band represents statistical error;

the yellow outer band includes both statistical error and estimated systematic error from higher-twist effects. Although we do not impose

the symmetric condition m ¼ n, both results for the pion and kaon are symmetric around x ¼ 1=2 within error.
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σ ¼ hðzÞ × 0.1 exp½0.1z� to simulate the noise from data on

lattice. We test the model on these sets of noisy data. It turns

out that the model works fairly well, as shown in Fig. 11,

indicating that even if the lattice results do not follow the

functional form we used to train the data, the model is able

to give close predictions.

With the success of the simple sine-function tests, we

apply our procedure to the chiral-continuum extrapolated

pion, kaon and ηs lattice data. However, simply applying

our procedure to real lattice data gives a very noisy

distribution. This is mainly due to the fact that the trained

network knows nothing about the physics, especially

around x ¼ 0 and 1, which sometimes causes unstable

distributions. To solve the problem, we divide the target

light cone DA pseudo data by a factor of xdð1 − xÞd to

increase the weight near the boundary, which stabilizes the

prediction while keeping these points finite. We found d ¼
0.3 gives the most stable results, as shown in the leftmost

column of Fig. 12. For the less noisy data sets from ηs and

K mesons, the output distributions are more stable and have

smaller uncertainty. However, for the noisier pion data, the

prediction becomes much worse. This is not a surprise, as

most ML training networks require high-statistics data to

work well. We also show a comparison with the fit method

described in the previous subsection for both DAs and how

the ML reproduces the coordinate-space matrix elements

(the left two columns of Fig. 12). Note that in this study, the

machine-learning results are very close to the fit ones. This

is likely due to the fact that we set up the training data with

the same form as the fitting approach. In future work with

higher-statistics data, more function forms should be

included in the training process to remove the parametri-

zation dependence.

IV. SUMMARY AND OUTLOOK

In this work, we presented an updated lattice calculation

of the pion, kaon, and ηs distribution amplitudes using the

LaMET/quasidistribution approach. We not only improved

our previous single–lattice-spacing calculations [84] with

smaller statistical errors for all mesons, but also extended

the calculations to two smaller lattice spacings, 0.09 and

0.06 fm. This allowed us to perform a continuum extrapo-

lation using the lattice data and address issues relating to

power-divergent mixing among twist-2 operators and

among twist-4 operators [46]. Our analysis confirmed that

the coefficient of the leading 1=a2 power divergence is

consistent with zero within errors for Pz ¼ 1.29 and

1.72 GeV. This power divergence is not seen in our

extrapolation (keeping Pz constant while taking a→ 0),

together with the absence of mixing to lower dimensional

nonlocal operators [24,32], suggests the power divergent

mixing problem does not happen.

We attempted a naive chiral extrapolation to the physical

pion mass Mπ ¼ 135 MeV using 690- and 310-MeV

renormalized matrix elements. We used two strategies toT
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extract the light cone DAs. First, we fit the continuum-

chiral–extrapolated matrix elements in coordinate space

using Eq. (14) with the distribution form used by global fit,

Eq. (12). Our results in MS at 2 GeV show a pion

distribution symmetric around x ¼ 1=2 and having broader
distribution than the asymptotic prediction, consistent with

prior DSE results. The second moment, taking the integral

of our pion DA, gives 0.244(30)(20), which is consistent

with past direct lattice-QCD moment calculations. Our

kaon DA has a narrower distribution than the pion one, but

we do not observe asymmetric behavior after the con-

tinuum-chiral extrapolation. This is likely due to the fact

that our light-quark mass is not far enough away from the

strange-quark mass, and thus the milder asymmetric dis-

tribution that washed out in the increase uncertainties of

continuum-chiral extrapolation. As a result, our second

moment of the kaon DA, 0.198(16)(16), is about

20% smaller than the previous direct calculation. Future
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FIG. 11. The ML predictions test on a toy-model distribution with the form fðxÞ ¼ N sinβðπxÞ using noisy input pseudo data

generated from β ¼ 0.5 (left), 1 (middle), 2 (right). The blue band indicates the uncertainty calculated using bootstrap sampling, and the

black curve is the exact function we use to generate those inputs. The consistency with the true value indicates that extrapolation to

unknown form is promising.

FIG. 12. The machine-learning predictions on meson distribution amplitudes (leftmost column) of π (top row), K (middle row), and ηs
(bottom row) at Pz ¼ 4. The right two columns show the ML reconstructed of matrix elements as a function of zPz along with the input

lattice data (shown in pink).
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calculations with improved statistics and lighter quark mass

will be crucial to resolve this question.

Our second strategy used a machine-learning algorithm

to make predictions of the meson DAs. Our procedure has

been tested with a simpler sine function that mimics the

lattice data statistical distribution, modified for stable

outputs. The same setup is trained using pseudo lattice

data with Eq. (12), before being applied to the continuum-

chiral–extrapolated lattice data to predict the meson DAs.

Further tuning is needed to obtain a stable output from the

network. We found that the ML can give stable predictions

on the more precise data set in the cases of K and ηs with

the predicted result to similar the fitting one. This is likely

due to the fact that pseudo data generated to train the model

is limited to Eq. (12) so far, but getting nonzero results is

quite exciting for a first result. Future work with even

higher precision data would allow us to explore wider range

of the training models, remove the model dependence, and

see the impacts on the real lattice data.
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APPENDIX A: KAON ASYMMETRY

We note that the kaon DA we obtain in this approach is

symmetric around x ¼ 1

2
, as shown in the first moment hξiK

calculated from the fit result in Table I, inconsistent with

the kaon asymmetry found in the previous work [84]. We

note that the matching kernel preserves the symmetry in

quasi-DA. Because of the unsolved issues in the Fourier

transformation and matching procedure, we check the

asymmetry directly in the coordinate space of quasi-DA.

As described in Ref. [84], the asymmetry comes from the

nonzero imaginary part after a phase rotation of the quasi-

DA matrix elements,

H̃RðzPz; p
R
z ; μ

RÞ ¼ e−izPz=2hRðzPz; p
R
z ; μ

RÞ; ðA1Þ

then the Fourier transformation formula Eq. (11) will

become

ϕ̃ðx;μR;pR
z ;PzÞ¼

Z

dze−ið1=2−xÞzPzH̃RðzPz;p
R
z ;μ

RÞ: ðA2Þ

We can see from Eq. (A2) that if H̃R is real, ϕ̃ðxÞ ¼

ϕ̃ð1 − xÞ will hold. The phase-rotated matrix elements for

K at nz ¼ 2=3=4 are shown in Fig. 13. From the data on

a ≈ 0.12 fm lattice, we see a clear nonzero imaginary part

for the kaon. Yet, when we extrapolate to the continuum,

the imaginary part of nz ¼ 4 becomes consistent with zero.

Thus, our kaon result in continuum at nz ¼ 4 is close to a

symmetric distribution.

APPENDIX B: POWER CORRECTION FROM

THE TWIST-4 CONTRIBUTION

Equation (13) of Ref. [85] is similar to our Eq. (A2),

which can be written, in notation similar to Eq. (A2), as

ϕ̃ðxÞ ∝

Z

dλe−ið1=2−xÞλzPzH̃ðλzPz; λ
2z2Þ: ðB1Þ
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FIG. 13. Imaginary part of rotated matrix elements for K at Pz ¼ nz
2π
L
with nz ¼ 2=3=4. From the a ≈ 0.12 fm data, we see that there

is an asymmetry in K. However, this asymmetry becomes consistent with zero when extrapolated to the continuum.
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H̃ can then be expanded in powers of λ2z2, whose λ2z2

term, δH̃, is the twist-4 contribution. We can write

δH̃ ¼
λ2z2

4

Z

dxeið1=2−xÞλzPzϕt−4ðxÞ; ðB2Þ

whereϕt−4ðxÞ is a “twist-4 quasidistribution” (i.e., the twist-
4 contribution as the Fourier transform of an equal-time

correlator, as was done in Ref. [24]) of mass dimension two.

The support ofϕt−4ðxÞ is beyond x ¼ ½0; 1� beforematching.

For a pion, ϕπ;t−4ðxÞ ¼ ϕπ;t−4ð1 − xÞ; hence, only the real

part of δH̃ is nonvanishing. Inserting δH̃ into H̃ of Eq. (B1),

the twist-4 contribution in ϕ̃π is

δϕ̃π ∝
1

P2
z

∂2

∂x2
½ϕπ;t−4ðxÞ þ ϕπ;t−4ð1 − xÞ�: ðB3Þ

If the second derivative ofϕπ;t−4ðxÞ exists for all ranges of x,
then the power correction of Eq. (B3) is better characterized

as anOð1=P2
zÞ correction than anOð1=x

2P2
zÞ correction.We

expect the former scenario is closer tomesonDA’s, while the

latter one is closer to hadron PDF’s where the second

derivatives of the twist-4 quasi-PDF might not exist at

x ¼ 0, similar to the singular behavior of the hadron twist-2

PDF at x ¼ 0.

APPENDIX C: ADDITIONAL FIGURES

The dispersion relation for three particles on three

lattices is in Fig. 14. We can see that the speed of light

gets closer to one at finer lattice. On coarser lattices, heavier

mesons show a larger deviation.

By varying the fit range for the two-point correlators, we

obtain different sets of ground-state coefficients. These fit

results on three lattices are shown in Figs. 15–17. Fit results

from different ranges are generally consistent with each

other. Taking both fit stability and fit qualities on all

operators into account, we choose tmin ¼ f4; 4; 5g for π,
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FIG. 14. The π (left), K (middle), and ηs (right) dispersion relations of the meson energy from the two-state fits for a12m310,

a09m310, a06m310 ensembles, respectively. The speed of light gets closer to one at finer lattices.
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FIG. 15. The real (top row) and imaginary (bottom row) ground-state amplitude AM;0 as a function of z at Pz ¼ 4
2π
L
from two-state fits

with different fit ranges ½tmin; 13� for π (left column), K (middle column), and ηs (right column) on the a06m310 ensemble. The ground-

state amplitude extracted from different tmin is consistent with each other within error, while larger tmin results in larger uncertainties. For

π, K, and ηs, tmin ¼ f4; 4; 5g is used in the final analysis.
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K, and ηs on a06m310 lattice, tmin ¼ f5; 4; 5g on a09m310

lattice, and tmin ¼ f2; 2; 3g on a06m310 lattice.

We show a comparison of our new data and the data from

the previous work [84] in Fig. 18. We see that they are

consistent at most points; however, these slight deviations

can result in very different asymmetry behavior, because

the asymmetry is only a few percent of the overall

magnitude.

The continuum extrapolation for smaller momenta Pz ¼
0.86 GeVandPz ¼ 1.29 GeVare shown inFig. 19.There is a

large discretization effect atPz ¼ 0.86 GeV,whichmaycome

from higher-twist effects and the 1

a2
power divergent pole.
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FIG. 16. The real (top row) and imaginary (bottom row) ground-state amplitude AM;0 as a function of z at Pz ¼ 4
2π
L
from two-state fits

with different fit ranges ½tmin; 13� for π (left column), K (middle column), and ηs (right column) on the a09m310 ensemble. The ground-

state amplitude extracted from different tmin is consistent with each other within error, while larger tmin results in larger uncertainties. For

π, K, and ηs, tmin ¼ f5; 4; 5g is used in the final analysis.
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FIG. 17. The real (top row) and imaginary (bottom row) ground-state amplitude AM;0 as a function of z at Pz ¼ 4
2π
L
from two-state fits

with different fit ranges ½tmin; 10� for π (left column), K (middle column), and ηs (right column) on the a12m310 ensemble. The ground-

state amplitude extracted from different tmin is consistent with each other within error, while larger tmin results in larger uncertainties. For

π, K, and ηs, tmin ¼ f2; 2; 3g is used in the final analysis for this ensemble.
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