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Pion and kaon distribution amplitudes in the continuum limit
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We present a lattice-QCD calculation of the pion, kaon, and 7, distribution amplitudes using large-
momentum effective theory. Our calculation is carried out using three ensembles with 2 + 1 + 1 flavors of
highly improved staggered quarks, generated by MILC Collaboration, at 310-MeV pion mass with 0.06,
0.09, and 0.12 fm lattice spacings. We use clover fermion action for the valence quarks and tune the quark
mass to match the lightest light and strange masses in the sea. The resulting lattice matrix elements are
nonperturbatively renormalized in regularization-independent momentum-subtraction scheme and extrapo-
lated to the continuum. We use two approaches to extract the x dependence of the meson distribution
amplitudes: (i) we fit the renormalized matrix elements in coordinate space to an assumed distribution form
through a one-loop matching kernel and (ii) we use a machine-learning algorithm trained on pseudo lattice-
QCD data to make predictions on the lattice data. We found the results are consistent between these
methods with the latter method giving a less smooth shape. Both approaches suggest that as the quark mass
increases, the distribution amplitude becomes narrower. Our pion distribution amplitude has broader
distribution than predicted by light-front constituent-quark model, and the moments of our pion

distributions agree with previous lattice-QCD results using the operator production expansion.
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I. INTRODUCTION

Meson distribution amplitudes (DAs) ¢,, hold the key to
understanding how light-quark hadron masses emerge from
QCD, an important topic of study at a future electron-ion
collider [1]. Meson DAs are also important inputs in many
hard exclusive processes at large momentum transfers
0% > AéCD [2,3]. In such processes, the cross section
can be factorized into a short-distance hard-scattering part
and long-distance universal quantities such as the light cone
DAs. Unlike the hard-scattering subprocess, which can be
calculated perturbatively, the light cone DAs need to be
determined from fits to experimental data or to be calcu-
lated nonperturbatively from lattice QCD.
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Such direct computations have become possible recently,
thanks to large-momentum effective theory (LaMET)
[4-6]. The LaMET method calculates equal-time spatial
correlators (whose Fourier transforms are called quasidis-
tributions) on the lattice and takes the infinite-momentum
limit to extract the true light cone distribution. For large
momenta feasible in lattice simulations, LaMET can be
used to relate Euclidean quasidistributions to physical ones
through a factorization theorem, which involves a matching
and power corrections that are suppressed by the hadron
momentum [5]. The proof of factorization was developed in
Refs. [7-9].

Since LaMET was proposed, a lot of progress has been
achieved with respect to both the theoretical understanding
of the formalism [6,8,10-70] and its application to lattice
calculations of nucleon and meson parton distribution
functions (PDFs) [24,30,31,33,71-83], as well as meson
distribution amplitudes [25,84,85]. Despite limited vol-
umes and relatively coarse lattice spacings, the state-of-the-
art nucleon isovector quark PDFs, determined from lattice
data at the physical point, have shown reasonable agree-
ment [74,75,78] with phenomenological results extracted
from the experimental data [86-90]. Of course, a careful
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study of theoretical uncertainties and lattice artifacts is still
needed to fully establish the reliability of the results.
Ongoing efforts include an analysis of finite-volume
systematics [82] and exploration of machine-learning
(ML) application [91] that have been carried out recently.

For meson DAs, the first lattice calculation of the
leading-twist pion DA using LaMET was performed in
Ref. [25]. The result favored a single-hump form for the
pion DA. The first calculation of the kaon DA was
performed in Ref. [84]. The expected skewness was seen
in the asymmetry of the kaon DA around the quark
momentum fraction x = 1/2. These results were improved
by a Wilson-line renormalization that removes power
divergences. Also, the momentum-smearing technique
proposed in Ref. [92] was implemented to increase the
overlap with the ground state of a moving hadron. Despite
these improvements, the DAs did not vanish in the
unphysical region outside x € [0, 1].

In this paper, we further improve the meson-DA calcu-
lation by implementing nonperturbative renormalization
(NPR) in regularization-independent momentum-subtrac-
tion (RI/MOM) scheme. Also, computations are performed
with three different lattice spacings and two different pion
masses, allowing the continuum extrapolation and chiral
extrapolation. Despite these improvements, the contribu-
tion in the unphysical region remains. This is largely due to
the omission of the long-range tail of the spatial correlator,
which is cut off by the finite size of the lattice. To fix this
problem, we would need larger hadron momentum instead
of a larger lattice volume, because the long-range corre-
lations of the matrix elements (MEs) increase the undesired
mixing with higher-twist operators. Alternatively, we
explore the possibility of constraining the DA without
the long-range correlation by fitting to a commonly used
DA parametrization. The model dependence of the para-
metrization can be later reduced by using a general set of
basis functions, using machine learning to determine the
functional form, or by combining with other lattice inputs.

The continuum extrapolation performed in this work is
relevant to several important questions regarding the
LaMET and related approaches. First, how does the
quasidistribution approach avoid the power-divergent mix-
ing of a twist-2 operator with a twist-2 operator of lower
dimension as seen in moment calculations? The answer is
that this power-divergent mixing is due to the breaking of
rotational symmetry on a lattice. When the continuum limit
is taken after the correlator is renormalized, rotational
symmetry can be recovered as an accidental symmetry.
This is because the nonlocal operators used for quasidis-
tributions are the lowest-dimension ones with the same
symmetry properties [32]. Hence, power-divergent mixing
among twist-2 operators should no longer exist.

Second, the operator product expansion of the equal-
time correlators gives rise to twist-2, twist-4, and higher-
twist contributions. Reference [46] argued that the matrix

element of the twist-4 operator is set by the scale a;
hence, its suppression factor compared with twist-2 is
O(1/(P.a)?) instead of O(Agcp/P?) with the hadron
momentum P,. However, the twist-4 contribution that
needs to be subtracted from the quasidistribution operator
can be written as equal-time correlators with two more
mass dimensions than the original quasidistribution oper-
ator [24]. Hence, they do not cause power-divergent
mixings that need to be subtracted before applying RI/
MOM renormalization.

Proving the above statements requires a careful analysis
of the mixing matrix, which is beyond the scope of this
paper. In this work, we check whether the continuum
extrapolation of the RI/MOM-renormalized matrix ele-
ments is consistent with the absence of power-divergent
terms, which, by itself, is a necessary (but not sufficient)
condition for the above statements to be true. If there were
mixing with lower-dimension operators, the matrix element
could still be renormalized, but one might get the undesired
lower-dimension operator in the continuum limit instead of
the one of interest. However, as discussed above, power-
divergent mixing in quasidistributions was not found in the
studies of Refs. [24,32].

The paper is organized in the following way. In Sec. II, we
present the lattice setup of this calculation, and the strategies
used to extract the bare matrix elements from lattice DA
correlators. Section III shows the NPR procedure and the
continuum and chiral extrapolation of the renormalized
matrix elements. The x dependence of DAs is obtained
from two approaches: the fit to a functional form and the
prediction with a machine learning algorithm. Finally, we
summarize the results and future prospects in Sec. IV.

II. LATTICE SETUP

In this work, we extend our previous work on the
kaon distribution amplitude from a single al2m310 lattice
[84] to three lattice ensembles with different lattice spac-
ings and extrapolate the results to continuum. The three
ensembles have lattice spacings a = 0.0582(4) fm,
a = 0.0888(8) fm, and a = 0.1207(11) fm with N, =
241+ 1 flavors of highly improved staggered quarks
(HISQ) [93] generated by MILC Collaboration [94]. One-
step hypercubic smearing of the gauge links is applied to
improve the discretization effects. We use clover action for
the valence quarks with the clover parameters tuned to
recover the lowest pion mass of the staggered quarks in the
sea [95-97]: M, = 319.3(5), 312.7(6), and 305.3(4) MeV
on the three ensembles, respectively. On each lattice
configuration, we use multiple sources uniformly distrib-
uted in the time direction and randomly distributed in the
spatial directions to reach high statistics. We have 24
sources in total for the a06m310 and a09m310 ensembles
and 32 sources for al2m310, corresponding to 2280, 5544,
and 2912 measurements in total, respectively.
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FIG. 1. The n (left column), K (middle column), and 7, (right column) effective-mass plots at z =0, P, = 422 on ensembles

L

al12m310, a09m310, and a06m310, respectively, from top to bottom. The bands are reconstructed from the fitted parameters of real part
of HS correlators and the imaginary part of DA correlators, which are represented by blue triangles and red squares, respectively. The
momentum P, = 4— is the largest momentum we used, and it is the noisiest data set.

The hadron spectrum (HS) and DA two-point correlators
are calculated for different mesons,

Cyp (P.1) < ‘ / ByePIg (3, 1)yswa (3, 1)
< 12(0.0)750 <o,o>'o>, )
Chi*(z. P.1) < ‘ / ByePig (5, 0)y.rsU G5 + 22)

< s (5 + 22 072(0. 0)y sy (0 o>\0>, @

where M represents different mesons (z, K, 7,), {w, w, } are
{u,u} for z, {u, s} for K and {s, s} for 5, (only connected
diagrams are computed in this work), U(Y¥,y + zZ) =

LU (y + x%,¢) is the Wilson line connecting lattice
51te y to V + 7%, as defined in Refs. [25,84]. The light-quark u
and strange-quark s mass parameters used here are
from Ref. [98].

The DA ME and ground-state energies of the mesons can
be extracted from the HS and DA two-point correlators by a
two-state fit to the form

Cip* (P 1) = Al (P)eFuolP)
+ AAH/[S,I (P)e—EM.l(P)f + ...

; 3)

_|_ADA(P Z) ~Ema(P)t .. (4)

where Ay, o(P) and E,; o(P) are the amplitude and energy,
respectively, of ground state of a boosted meson with
momentum P, = P while A, ;(P) and E,;;(P) are for the
first excited state. Ej;o(P = 0) is the mass of the meson.

We consider the energies to be the same for HS and DA.
Therefore, we fit both the HS and DA correlators simulta-
neously to get the ground-state energy E,; o(P) and first
excited-state energy E,; ;(P) of the various momenta P,.
The fit range [¢yin, fmax) 1S determined by scanning different
t to get the smallest y?/d.o.f (degrees of freedom) for all the
Wilson-line lengths z and at different P,. When y?/d.o.f for
different fit ranges are close to each other, we prefer the
smaller-¢ region where the data are less noisy. Selected
effective masses at the largest meson momentum P, = n, %
with n, = 4 are shown in Fig. 1 for HS and DA correlators.
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FIG. 2. The ground-state amplitudes A, , for the pion (left column), kaon (middle column), and 7 (right column) at z = 7 with boost
momentum P, =4 2L—” on the a06m310 ensemble. Two strategies of two-state fits are used here: fixed E (red band) and fixed E and E;
(blue band) obtained from the local correlators; both fits are consistent with each other within uncertainties. The fits with fixed E and E,

are more stable in the large-f region; therefore, we use this fitted strategy for the rest of the analysis.

The bands reconstructed from the fitted parameters
agree with the data well. We check the dispersion
relation, Eyo(P)? = Epo(P = 0)? 4+ ¢?P?, where ¢ is
the dispersion coefficient (often called “the speed of light™).
The dispersion relations for all three mesons on the three
ensembles are shown in Fig. 14 of Appendix C. On the two
coarser lattices, ¢ is closer to 1 for lighter mesons, and it
becomes closer to 1 for finer lattices. On the a06m310
lattice, the ¢ values for all three mesons are consistent with 1.

Two fit strategies are used to extract the ground-state
amplitude A, for z # 0 using the ground-state energy
Ey and excited-state energy E), ; from the simultaneous
fit of the HS and DA correlators at z = 0. One way of doing
this is to fix E;  at fixed P by simultaneously fitting the
HS and z = 0 DA correlators and obtain fitting parameters
of A/, and AP/ for the real and imaginary corrector and
with a common E; ;. Another way is to fix both E),; , and
Ej; 1 from z = 0 correlator fit of the same boosted momen-
tum, while fitting the imaginary and real parts of DA
correlators simultaneously. To help visualize the resulting
ground-state amplitude A, o from different fit strategies, we
multiply the DA two-point correlators by e£mo,

Aurolz. P.1) = CBAz, P r)ebut

= APy + ADH e~ Eni=Ewo)t ... (5)
which should go to Ay, when ¢ — oco. The reconstructed
bands of this quantity are shown in Fig. 2 from different fit
strategies for the real part and the imaginary part of Ay, at
z =17, for the largest momentum P, = 4 27” on the a06m310

ensemble. The fit with fixed E), o, represented by the blue
bands, and the fit with fixed Ey; o and E,, |, represented by
the red bands, are consistent with each other within
uncertainties. However, the bands with fixed E,;, and
E); 1 are more stable in the large- region. Thus, the fit with
fixed Ey o and E,; ; is used in further calculations.

We consider the effects of t,;, dependence on the
extracted ground-state amplitude A, , for the three mesons
and three ensembles. The ground-state amplitudes A, as
functions of z are shown in Fig. 15 of Appendix C with
multiple ¢, choices on ensembles a06m310, a09m310,
and a12m310. The fitted ground-state amplitudes A, , with
smaller 7.;, tend to have smaller errors. However, the
x*/d.o.f becomes larger when too small a 7y, is chosen,
because a two-state fit cannot describe the first few points
of t well. Therefore, #,,;, = {4,4,5} are chosen for the
a06m310z, K and 7, fits, #,,;, = {5,4, 5} are chosen for the
a09m310z, K and 7, fits, and 7., = {2,2,3} are chosen
for the al2m310z, K and 7, fits.

III. RESULTS AND DISCUSSIONS

A. Nonperturbative renormalization

The Wilson line [[¢Z) U.(i2) introduces a divergence
into the quasi-PDF operator, so the bare MEs cannot be
matched directly to physical observables and need to be
renormalized. In contrast to the previous work [84] where
an effective mass counterterm is used to renormalize the
matrix elements, we now follow a standard NPR in RI/
MOM scheme [99]. The NPR factors Z(z, u®, pX, a) are
calculated by implementing the condition that
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We calculate the NPR factors at u® = 3.8 GeV, p& = 0 for
all three ensembles.

Figure 3 shows the inverse renormalization factors for
the DA on all three lattice ensembles. The relative errors of
these factors are at the percent level and are not visible on
the plot.

The renormalized matrix elements are then obtained by

iy (z, p¥, uR) = hiy(z. a)Z(z, u®, p¥. a), (6)

where the bare matrix elements obtained from the
ground-state meson amplitude A, o fit in the previous
section via

. Azll)fo(z» a)

h8(z,a) = .
M A%O(O’ a)

(7)

Figure 4 shows the n, = 4 renormalized matrix elements on
the three ensembles, along with the quasi-DA matrix
elements matched from two light cone DA function forms,
d(x)=x*(1-x)*/ [4 dxx*(1—x)* witha =1 and a = 0.5,
respectively. The former (¢ = 1) is the asymptotic form
of the pion light cone DA [100,101], and the Ilatter
(¢ = 0.5) has a second moment close to previous lattice
computations of the pion DA moments [102-106]. We
impose the symmetries to symmetrize the real parts and
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FIG. 3. NPR factors for three ensembles in RI/MOM scheme at
uR =3.8 GeV, pR =0. The red triangles, blue squares, and
green inverted triangles are calculated for a€{0.06,0.09,
0.12} fm, respectively. The errors are small and are not visible
on the plot.
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antisymmetrize the imaginary parts of the matrix elements,
and enforce the normalization [ dx¢(x) =1 so that the
central value i(z = 0) = 1. The matrix elements for lighter
mesons are noisier. We see that the renormalized matrix
elements at different lattice spacings are consistent with
each other, suggesting that the higher-order discretization
effects are small. We also note that when «a increases, the
peaks in /(z) shift toward larger z, and the magnitude of the
first peak increases while the magnitude of the second peak
decreases. In our data, the pion result is closer to the form
with a = 0.5.

In Eq. (6), the operator that appears in h%,(h, a) might
mix with other operators. If it mixes with lower-dimension
operators, then subtractions of the lower-dimension oper-
ators should be performed first; otherwise, the Z factor in
Eq. (6) will just renormalize the most singular (lowest-
dimension) operator in the a — 0 limit rather than the
desired operator. However, Ref. [32] suggests that it is not
the case. The nonlocal operators used for quasi-DAS in this
work are the lowest-dimension ones with the same sym-
metry properties. This ensures that continuum limit can be
taken for Eq. (6). Then, by going to the continuum limit,
rotational symmetry is restored, so mixing among twist-2
operators of different mass dimensions will not happen.
Also, power-divergent mixing among twist-2 and twist-4
operators was suggested in Ref. [46]. However, the study in
Ref. [24] shows that the twist-4 contribution is higher
dimension. It can be written as equal-time correlators with
two more mass dimensions than the original quasidistri-
bution operator. Hence, the twist-4 contribution does not
cause power-divergent mixing.

B. Continuum extrapolation

Now, we remove the remaining lattice discretization
effects by extrapolating the renormalized matrix elements
to the continuum by taking the continuum limit a — 0.
Because the matrix elements with three different lattice
spacings do not have data from the same physical z’s, we
first need to interpolate the points as functions of z for each
lattice spacing, then do the extrapolations pointwise on
these curves.

Although we argue in the previous subsection that the
equal-time operator is free from power-divergent mixing
and so is the hadronic state, we can check again whether it
is also the case for the matrix element. Therefore, we add
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FIG. 4. Real (top row) and imaginary (bottom row) renormalized matrix elements at P, = 4%” in RI/MOM scheme with
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quasi-DA matrix elements matched from the light cone DA function form ¢ (x) = x%3(1 — x)%3 and ¢(x) = 6x(1 — x), respectively.

the 1/a* term' from the possible leading power-divergent
mixing to the continuum extrapolation formula

dy(z)

3
Cl2

hy(z, @) = hi(2) + epi(2)a’ + (®)
where we use i = 1 for linear and 2 for quadratic lattice-
spacing dependence. We find that the coefficient d, is
consistent with zero within errors, except for kaon and 7, at
smallest momentum P, = 0.86 GeV and large z (see
Fig. 19 in Appendix B). Since power divergence should
be a short-distance property of the Wilson coefficient, the
dependence on the long-distance properties of P, and
meson flavor suggests that the lowest P, result at large z
is not trustworthy and hence is discarded in our analysis.
Therefore, we focus on P, = 1.73 GeV results from now
on and set dy; = 0.

Bootstrap resampling is applied to the three data sets to
estimate the error of the continuum extrapolation, since the
number of measurements on three ensembles are different.
The fitted functional forms are consistent with the data
points and have average y?/d.o.f~ 1.2 for n, =4. We
observe that for the pion the slopes c,; and c¢,, are
consistent with zero for zP, < 8. Figure 5 shows the
extrapolated renormalized matrix elements for all mesons
at n, = 4. We find that at small link lengths z < 0.5 fm, the
lattice-spacing dependence of the matrix elements is con-
sistent with zero, so the extrapolated results are consistent
with the data on all ensembles. At moderate link lengths,
0.5 fm < z < 1 fm, near the peaks, the dependence is the

'We replace this by the 1/a term from the Wilson-line
renormalization as well; the conclusion is qualitatively the same.

most significant and we see |cy; | & 2 fm~! for K and 7.
At large link lengths z > 1 fm, the lattice-spacing depend-
ence is obscured by the large error, and the extrapolations
are mainly constrained by the two cleaner data sets on a ~
0.09 fm and a ~0.12 fm, where fewer Wilson links are
needed at a given physical length of z.

To take into account the systematics of using
different fitting functions, we used the Akaike information
criterion (AIC) technique [107] to combine the linear and
quadratic fits,

h[RWJ (Z>e—<zkl+ﬁ)/z + h[l&’z(z)e—(Zkfrxi)/z

e~ ht21)/2 | o= (2kat23)/2 ’

hiy(2) = ©)

where k; and k, are the number of free parameters, are both
1 in this case. The quadratic dependence on lattice spacing
does not well describe the data; thus, the y? is large in the
quadratic extrapolation, and the combined extrapolation is
dominated by the linear extrapolation. Overall, the extrap-
olations using the two functional forms are close to each
other, so the combined extrapolation is consistent with both
results, as shown in Fig. 5. Future study using ensembles
with different lattice spacing can help resolve any quadratic
dependence.
The extrapolation formula obtained from one-loop chiral
perturbation theory [108] is
R (M,,a=0)=s,M2+ h(0), (10)
where the chiral logarithm has been proved to be absent for
the DAs of pseudo-Goldstone bosons [108]. The chiral-
extrapolated results are shown in Fig. 6, and they are very
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FIG. 5. Continuum extrapolation of the real (top row) and imaginary (bottom row) renormalized matrix elements at x* = 3.8 GeV,
pF = 0 to the continuum from two functional forms and their AIC combination for 7 (left column), K (middle column), and 7, (right
column). Different extrapolations are consistent with each other.

close to the ones from calculations at lighter pion mass but  the physical one. So the difference between extrapolated
with slightly larger error bars due to the extrapolation. Note  results and 310-MeV pion results is expected to be sup-
that the pion mass difference AM2 = 0.38 GeV? between  pressed by a factor of 1/5 and becomes small. To test
the light and strange quarks is 5 times larger than the  whether the higher-loop corrections are significant for
difference AM?2 = 0.078 GeV? between our light massand M, = 690 MeV, data at another value of M, are needed.
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FIG. 6. Chiral extrapolation of the z (top) and K (bottom) renormalized matrix elements in the continuum to physical pion mass from
the #/K and 7 results for P, = n, x %" with n, = 4. The extrapolated results are close to the M, = 310 MeV results.
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FIG. 7. The pion quasi-DA obtained from Fourier transforma-
tion of the RI/MOM renormalized matrix elements at P, = n, 2L”
with n, = 4, uR = 3.8 GeV, p® = 0. The shape of the peak is
sensitive to the z,,,, used in the Fourier transformation, and the
distribution unphysically oscillates in the large positive and

negative x regions.

In this work, we will use valance pion mass, M},
Eq. (10) for a naive chiral extrapolation to estimate what the
DA may look like at physical pion mass point. Future work
should include ensembles at lighter pion mass to improve
the reliability of the chiral extrapolation and reduce the
uncertainty due to such extrapolation.

C. Quasi-DA matrix elements to light cone DA

The standard procedure to obtain the light cone DA via
quasi-DA is to first Fourier transform the chiral and
continuum extrapolated matrix elements from the coordi-
nate space to the momentum space (i.e., x space), then to
apply the inverse matching kernel to obtain the light cone
DA. The quasi-DA is obtained through

dZ —i(l—x
TP (2P ). (1)

¢M(x’/"R’p§va> =
Because our matrix elements in coordinate space are
discretized and bounded in the range |z| < 1.44 fm, we
can only do a truncated Fourier transformation with |z| <
Zmax < 1.44 fm after interpolating the data. This truncation
will introduce a step function into the Fourier transforma-
tion and lead to oscillations in the quasi-DA in momentum
space. This was first observed in the nucleon PDF studies
[19,30], and multiple solutions have been proposed to help
resolve or minimize the issue [33,109,110]. A similar
problem is also observed in our meson-DA study; an
example from the pion quasi-DA is shown in Fig. 7.
Not only does the pion distribution have similar oscilla-
tions, but it is worse than those observed in the nucleon
PDF distribution in Refs. [19,30]. In addition, the shape of
the peak at x = % is sensitive to the choice of z,,,, used in
the Fourier transformation, causing large uncertainty in the
DA determination.

To better constrain the DAs such that they vanish outside
the physical region, x =[0,1], we adopt the fitting
approach by parametrizing the distribution amplitude using
the commonly used meson PDF global-fitting form

1

Fmn(¥) = B(m+1,n+1)

x"(1=x)", (12)

I
B(m+1,n+l)—/ dxx™(1 —x)", (13)
0

where B(m + 1,n + 1) is the beta function, which normal-
izes the light cone DA such that the area under the curve is
unity. We then obtain the parameters m and n for the meson
light cone DAs by fitting to the renormalized lattice matrix
elements AR,

h® (Z/" pz7
R
/ dx/ dyC<xy < R> vP_ PZ)fmn( ) i(1=x)zP;
Pz H D
Aiep M
QCcD
+O< o P2> (14)

where C is the matching kernel for the DA [111] with y =
2 GeV (the MS renormalization scale), u® = 3.8 GeV, and
pR =0. The (M/P.)*" power corrections can be removed
to all orders [24,25,84], but the effect is negligible for the
meson masses and P, values that we use here, so we neglect
them. The higher-twist Agcp/P; power correction is
parametrically the same size as the mass correction. We
discuss why there is no extra 1/x*> enhancement in
Appendix C based on the discussion of Ref. [85]. By a
rough estimation with upper bound Agcp = 500 MeV,
for the largest meson momentum we have yields
Adep/ P2~ 8%, which we use as the relative systematic
error from higher-twist effects in our final results in later
sections.

Figure 8 shows the light cone distribution and recon-
structed matrix elements from Egs. (12) and (14) using the
fitted parameters, m and n, for pion and kaon at P, =
1.73 GeV. Results using different values of zmdx, ranging
from 0.72 to 1.44 fm, as input data h® (z, u®, pX, P,) are also
shown. The y?/d.o.f = 1.02(58) is small for the fit of full-
range pion data z,,,, = 1.44 fm, and it reproduces the peak
locations. However, we can see from the plot that the fitted
function cannot reproduce the large amplitude of the
secondary peaks. This indicates that more complicated
forms need to be used. The fit results for z;,,, > 0.96 fm
are consistent with each other, because the range already
covers the secondary peaks, and the fit is trying to recover
the large amplitude there. When we truncate the data at the
smallest z,,,x = 0.72 fm, the fit is completely ignoring the
information in the second peaks, trying to recover the large
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FIG.8. The light cone pion (upper row) and kaon (lower row) distribution amplitude (left column) of P, = 42%, and the corresponding
fits using Eq. (12) to real (middle column) and imaginary (right column) renormalized matrix elements with multiple inputs of z,,,.. We
note that the distribution amplitudes from z,,,, > 0.96 fm are consistent with each other while the distribution amplitudes with smaller

Zmax Such as 0.72 fm suffer a significant cutoff effects.

amplitude at the first peaks. For the remaining
part of the paper, considering that the fit results for the
larger z,,.x are consistent with each other, we only show the
less zn.c-dependent fit results for the full-range data
with 7.« = 1.44 fm.

We first study the pion-mass dependence of the pion
distribution amplitude in the continuum limit. Figure 9
shows pion DA results using pion masses of 690, 310 and
extrapolated to 135 MeV. We remind the reader that our
chiral extrapolation is dominated by 310-MeV results.
Nevertheless, the DAs for the heavier mesons, at strange
point, have a narrower distribution, showing a similar trend
as suggested in Ref. [112]. Mapping out how the DA
shapes change as a function of quark masses helps us
understand the origin of mass [1], which is a priority

1.5} ‘/,,.,.--' -~...\~‘ ]
_ 1.0 ]
z
S
o5l o # —— M,~135 MeV N W
A A M,=~310 MeV A\
A e M, ~690 MeV
0.0H
0.0 0.2 0.4 0.6 038 1.0
X

FIG.9. Pion distribution amplitude dependence on pion mass at
P, =1.73 GeV as a function of Bjorken-x. The lighter mesons
have a broader distribution.

research direction for a future electron-ion collider (EIC)
and other facilities. We will leave a more complete study of
the quark-mass dependence of the DAs to the future.
Our pion distribution amplitude extrapolated to the
physical pion mass is shown on the left-hand side of
Fig. 10 with the fitted parameters m = 0.57(27) and
n =0.60(26). Two error bands are shown, the green
inner band represents only the statistical error, and the
yellow outer band includes both statistical error and the
8% relative systematic error from higher-twist effect from
our previous estimation. We also show results from the
Dyson-Schwinger equation (DSE) prediction (DSE’13) with
the form ¢, (x)=1.81[x(1-x)]>*[1-0.12C93! (2x—1)]
[113], the data from Belle experiments [114], the prediction
of the light-front constituent-quark model (LFCQM’15)
[115], and the fit to the form Eq. (12), of the second moment
[106] (labeled as “RQCD’19”). Our pion result is consistent
with the DSE and RQCD’ 19 moment reconstructed results,
showing a broader distribution than the LFCQM result. Our
pion amplitude obtained through the parametrization is
constrained to physical region 0 < x < 1 by definition,
and, therefore, has a higher peak compared with the results
in our previous work [84]. RQCD also calculated the x-
dependent pion distribution amplitude using multiple
Euclidean correlation functions [85] on a Ny =2 295-
MeV pion mass, a =~ 0.071 fm lattice-spacing ensemble.
They found a much broader distribution than our results.
Using the parameters m = 1.04(20) and n = 1.05(20)
obtained from fitting the kaon matrix elements, we obtain
the kaon light cone DA, as shown on the right-hand side of
Fig. 10. We compare the kaon result with DSE predictions
[116] (labeled as “DSE’14-1” and “DSE’14-2”), the
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FIG. 10. Fit of the P, = 42L—” pion (left) and kaon (right) data to the analytical form in Bjorken-x space, compared with previous
calculations (with only central values shown). Two error bands for our results are shown: the green inner band represents statistical error;
the yellow outer band includes both statistical error and estimated systematic error from higher-twist effects. Although we do not impose
the symmetric condition m = n, both results for the pion and kaon are symmetric around x = 1/2 within error.

LFCQM result (Iabeled as LFCQM’15) [115], and the fit to
the form Eq. (12) of the first and second moments [106]
(labeled as RQCD’19). Again, the kaon DA has higher peak
compared with the one in our previous work [84], but no
observed asymmetric around x = 1/2. Our kaon distribution
is narrower than the DSE and RQCD moment-reconstructed
results.

With the fitted DA, we can calculate their ith moments
by integration

) = [ a1y (15)

A comparison with previous moment calculations on
lattice is shown in Table I. However, our kaon first moment
at extrapolated physical pion mass, (£x) = 0.009(18)(0),
due to symmetric distribution, are consistent with zero.
We obtain (£2) = 0.244(30)(20) for pion and (&%) =
0.198(16)(16) for kaon. In these quantities, the first
(second) error represents the statistical (estimated higher-
twist systematical) error. The pion moments calculated
from our x-dependent distributions suffer from larger error
due to the usage of larger momentum in the hadron states,
while the traditional moment calculations rely on hadrons
at rest to obtain better signal. Our pion results are generally
consistent with earlier lattice determinations using the
moment approach, and the second moment of kaon is
about 20% smaller. The kaon distribution is narrower than
pion one; therefore, we have a smaller kaon moment.

D. Machine learning predictions for light cone DAs

Another approach to obtain light cone DAs from the
spatial matrix elements is to apply machine learning. The
idea here is to train a supervised machine-learning model
with randomly generated pseudo data which have similar
properties to the DAs and are constrained by the same
physical requirements. The model is then applied to real

lattice matrix elements in coordinate space to predict the
light cone DAs. A similar application to PDFs was studied
in Ref. [110], where instead of real lattice data, a set of
pseudo data generated from global-fitting results was used
to test the method. Note that Ref. [110] attempted to
reconstruct nucleon PDFs using pseudo lattice data but did
not finish by using actual lattice data to obtain PDFs.

In this work, we use the multilayer perceptron (MLP)
regressor [117-119], a machine-learning algorithm imple-
mented in the PYTHON scikit-learn package [120]. Since
this is a first attempt to use purely lattice data to reconstruct
the distribution functions, we use the same parametrization
formula as shown in Eq. (12), and their linear combinations
with 100,000 randomly generated m, n pairs in Eq. (12),
evaluated at 99 points x € (0, 1) as outputs of the model.
Random relative noise at each point is added to these
samples. Then, we apply Eq. (14) at renormalization scale
uR = 3.8 GeV, pf = 0 to obtain the corresponding matrix
elements at z € [0,24] x 0.06 fm in coordinate space as
inputs of the model. We train and test the MLP regressor on

these labeled pseudo data. The model optimizes the

squared-loss L = 5°,(y"™

Pre® — y;)?, where a large relative
deviation near the boundary x € {0, 1} will not contribute
much to the loss because of its small amplitude. We tune
the hyperparameters of the model, i.e., the geometry
of the hidden layer and the activation function, with
GridSearchCV in scikit-learn. The optimized model is a
MLP regressor of three hidden layers with 100 perceptrons
and the activation function f(x) = max(0, x) on each layer.

To make sure that the above procedure works, we test our
procedure on a simpler formula. We generate a test set of
data with the same constraints but from different form,
f(x) = Nsinf(zx), to check the stability of the model
when extrapolating to unknown functions. We generate the
test data for g€ {0.5,1,1.5,2}. After transforming to
coordinate space, we generate 1000 samples for each f,

following a Gaussian distribution N (u, 6%) with u = h(z),
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= S T xrxAQ . .
é E X TT9T199 o = h(z) x 0.1 exp[0.1z] to simulate the noise from data on
S S| 3vead a3 lattice. We test the model on these sets of noisy data. It turns
2= out that the model works fairly well, as shown in Fig. 11,
E g % S gggerR indicating that even if the lattice results do not follow the
g g =172 79% :| functional form we used to train the data, the model is able
E & < E « 8 § % § % to give close predictions.
=S With the success of the simple sine-function tests, we
g Z Nag o wn apply our procedure to the chiral-continuum extrapolated
5 E- 2 S 3 =RCR= 8 pion, kaon and 7, lattice data. However, simply applying
22 €13Z4 § NGl our procedure to real lattice data gives a very noisy
S “le28 P 2 distribution. This is mainly due to the fact that the trained
% g < network knows nothing about the physics, especially
2 5 s s sss S s around x = 0 and 1, which sometimes causes unstable
= % x|0O % % % c o distributions. To solve the problem, we divide the target
E % AR = light cone DA pseudo data by a factor of x?(1 —x)“ to
o Lo I I U . . . .y
&g MM O MA increase the weight near the boundary, which stabilizes the
< & prediction while keeping these points finite. We found d =
<Qc' _«2 cLe e a~ 0.3 gives the most stable results, as shown in the leftmost
g 8 XoT T << g, column of Fig. 12. For the less noisy data sets from 7, and
g :6 v g g 5 ZZ :\é S K mesons, the output distributions are more stable and have
g B —— s smaller uncertainty. However, for the noisier pion data, the
£ g °< prediction becomes much worse. This is not a surprise, as
g 4 —_— e most ML training networks require high-statistics data to
£ o % % % oz work well. We also show a comparison with the fit method
£ 5 /M; ST <ZC S5 described in the previous subsection for both DAs and how
’% =2 l1gg g 8 g the ML reproduces the coordinate-space matrix elements
22 SSZ = (the left two columns of Fig. 12). Note that in this study, the
a 3 machine-learning results are very close to the fit ones. This
z _&; g § ca%as is likely due to the fact that we set up the training data with
=H | SaCe TR the same form as the fitting approach. In future work with
= g —~ . .. .
2 s L SIS §§ higher-statistics data, more function forms should be
== N VES ES K IR . . .. .
S8 AdgssSsso S included in the training process to remove the parametri-
g ; c< zation dependence.
=
St ¥}
== E
IV. SUMMARY AND OUTLOOK
33 8l1leeeoer 8 In this work, we presented an updated lattice calculation
22 ||2|55535%R3 > Work, we b can up ) :
E | R of the pion, kaon, and 7, distribution amplitudes using the
= § > LaMET/quasidistribution approach. We not only improved
25 oo our previous single—lattice-spacing calculations [84] with
-% @ ne § ?g - smaller statistical errors for all mesons, but also extended
E _é’ . E E 22 % E g the calculations to two smaller lattice spacings, 0.09 and
GRS f‘g :_ Te=TET 0.06 fm. This allowed us to perform a continuum extrapo-
58 Sl——+4+&84+8& lation using the lattice data and address issues relating to
g ) ancg ;L] : e o power-divergent mixing among twist-2 operators and
g among twist-4 operators [46]. Our analysis confirmed that
; < % % the coefficient of the leading 1/a’> power divergence is
= i == consistent with zero within errors for P, =1.29 and
E A . RAR 5 1.72 GeV. This power divergence is not seen in our
3 8 g W CI? = extrapolation (keeping P, constant while taking a — 0),
g 55 SSTET = 8 together with the absence of mixing to lower dimensional
& aé’ =-=2c29 8 = nonlocal operators [24,32], suggests the power divergent
. § ol 8 § § =0 (3 S mixing problem does not happen.
- ; “l 5|l 33r2005% We attempted a naive chiral extrapolation to the physical
mel|ls|220000A pion mass M, = 135 MeV using 690- and 310-MeV
20| s|l22855dKR0 : . .
FaSllel=22rgexxed renormalized matrix elements. We used two strategies to
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The ML predictions test on a toy-model distribution with the form f(x) = N sin?(zx) using noisy input pseudo data

generated from £ = 0.5 (left), 1 (middle), 2 (right). The blue band indicates the uncertainty calculated using bootstrap sampling, and the
black curve is the exact function we use to generate those inputs. The consistency with the true value indicates that extrapolation to

unknown form is promising.

extract the light cone DAs. First, we fit the continuum-
chiral-extrapolated matrix elements in coordinate space
using Eq. (14) with the distribution form used by global fit,
Eq. (12). Our results in MS at 2 GeV show a pion
distribution symmetric around x = 1/2 and having broader
distribution than the asymptotic prediction, consistent with
prior DSE results. The second moment, taking the integral
of our pion DA, gives 0.244(30)(20), which is consistent
with past direct lattice-QCD moment calculations. Our

kaon DA has a narrower distribution than the pion one, but
we do not observe asymmetric behavior after the con-
tinuum-chiral extrapolation. This is likely due to the fact
that our light-quark mass is not far enough away from the
strange-quark mass, and thus the milder asymmetric dis-
tribution that washed out in the increase uncertainties of
continuum-chiral extrapolation. As a result, our second
moment of the kaon DA, 0.198(16)(16), is about
20% smaller than the previous direct calculation. Future

0.5

Re[hn(zP)]

Im[hn(zP,)]

Re[hk(zP,)]

Im[hk(zP2)]

0.5

Re[hy,(zP,)]

0.0

-0.5
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FIG. 12. The machine-learning predictions on meson distribution amplitudes (leftmost column) of 7 (top row), K (middle row), and 7,
(bottom row) at P, = 4. The right two columns show the ML reconstructed of matrix elements as a function of zP, along with the input

lattice data (shown in pink).
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calculations with improved statistics and lighter quark mass  the Cottrell Scholar Award. The work of J.-W. C. was partly
will be crucial to resolve this question. supported by the Ministry of Science and Technology,
Our second strategy used a machine-learning algorithm  Taiwan, under Grant No. 108-2112-M-002-003-MY3 and
to make predictions of the meson DAs. Our procedure has  the Kenda Foundation.
been tested with a simpler sine function that mimics the
lattice data statistical distribution, modified for stable APPENDIX A: KAON ASYMMETRY
outputs. The same setup is trained using pseudo lattice
data with Eq. (12), before being applied to the continuum-
chiral-extrapolated lattice data to predict the meson DAs.
Further tuning is needed to obtain a stable output from the
network. We found that the ML can give stable predictions
on the more precise data set in the cases of K and 7, with
the predicted result to similar the fitting one. This is likely
due to the fact that pseudo data generated to train the model
is limited to Eq. (12) so far, but getting nonzero results is
quite exciting for a first result. Future work with even
higher precision data would allow us to explore wider range
of the training models, remove the model dependence, and
see the impacts on the real lattice data.

We note that the kaon DA we obtain in this approach is
symmetric around x = 1, as shown in the first moment (£)
calculated from the fit result in Table I, inconsistent with
the kaon asymmetry found in the previous work [84]. We
note that the matching kernel preserves the symmetry in
quasi-DA. Because of the unsolved issues in the Fourier
transformation and matching procedure, we check the
asymmetry directly in the coordinate space of quasi-DA.
As described in Ref. [84], the asymmetry comes from the
nonzero imaginary part after a phase rotation of the quasi-
DA matrix elements,

HE (2P, pf.pR) = e PR (2P, pfLpf). (Al)
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FIG. 13. Imaginary part of rotated matrix elements for K at P, = n, %" with n, = 2/3/4. From the a = 0.12 fm data, we see that there
is an asymmetry in K. However, this asymmetry becomes consistent with zero when extrapolated to the continuum.
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FIG. 14. The 7 (left), K (middle), and 7, (right) dispersion relations of the meson energy from the two-state fits for al2m310,

a09m310, a06m310 ensembles, respectively. The speed of light gets closer to one at finer lattices.

H can then be expanded in powers of 12z2, whose A%z?
term, SH, is the twist-4 contribution. We can write

Y S )
8H = /dxe’“/z_x)’lzpzqﬁt_zt(x),

; (B2)

where ¢,_4(x) is a “twist-4 quasidistribution” (i.e., the twist-
4 contribution as the Fourier transform of an equal-time
correlator, as was done in Ref. [24]) of mass dimension two.
The supportof ¢,_4(x) is beyond x = [0, 1] before matching.
For a pion, ¢, ,_4(x) = ¢, ,_4(1 — x); hence, only the real
part of 5H is nonvanishing. Inserting 6H into H of Eq. (B1),
the twist-4 contribution in ¢, is

1 &

5, o PLo [Pri—a(x) + Pria(1=x)].  (B3)

If the second derivative of ¢, ,_4(x) exists for all ranges of x,
then the power correction of Eq. (B3) is better characterized

asan O(1/P?) correction than an O(1/x2P?) correction. We
expect the former scenario is closer to meson DA’s, while the
latter one is closer to hadron PDF’s where the second
derivatives of the twist-4 quasi-PDF might not exist at
x = 0, similar to the singular behavior of the hadron twist-2
PDF at x = 0.

APPENDIX C: ADDITIONAL FIGURES

The dispersion relation for three particles on three
lattices is in Fig. 14. We can see that the speed of light
gets closer to one at finer lattice. On coarser lattices, heavier
mesons show a larger deviation.

By varying the fit range for the two-point correlators, we
obtain different sets of ground-state coefficients. These fit
results on three lattices are shown in Figs. 15-17. Fit results
from different ranges are generally consistent with each
other. Taking both fit stability and fit qualities on all
operators into account, we choose t,,;, = {4,4,5} for ,
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FIG. 15.

The real (top row) and imaginary (bottom row) ground-state amplitude A, , as a function of z at P, = 4 ZL—” from two-state fits

with different fit ranges [, 13] for z (left column), K (middle column), and 7 (right column) on the a06m310 ensemble. The ground-
state amplitude extracted from different 7,;, is consistent with each other within error, while larger ¢, results in larger uncertainties. For

7, K, and 5, ti = {4,4,5} is used in the final analysis.
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FIG. 16. The real (top row) and imaginary (bottom row) ground-state amplitude A, as a function of z at P, = 4 ZL—” from two-state fits
with different fit ranges [, 13] for z (left column), K (middle column), and 7 (right column) on the a09m310 ensemble. The ground-
state amplitude extracted from different 7,;, is consistent with each other within error, while larger ¢, results in larger uncertainties. For
7, K, and 5, tin = {5,4,5} is used in the final analysis.

K, and n, on a06m310 lattice, 7,;, = {5,4,5} on a09m310

lattice, and #,,;, = {2,2,3} on a06m310 lattice.

We show a comparison of our new data and the data from
the previous work [84] in Fig. 18. We see that they are
consistent at most points; however, these slight deviations
can result in very different asymmetry behavior, because

magnitude.

the asymmetry is only a few percent of the overall

The continuum extrapolation for smaller momenta P, =
0.86 GeVand P, = 1.29 GeV areshowninFig. 19. Thereisa
large discretization effectat P, = 0.86 GeV, which may come
from higher-twist effects and the # power divergent pole.
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FIG. 17. The real (top row) and imaginary (bottom row) ground-state amplitude A, o as a function of z at P, = 4 ZL—” from two-state fits

with different fit ranges [, 10] for z (left column), K (middle column), and 7 (right column) on the al2m310 ensemble. The ground-
state amplitude extracted from different 7,;, is consistent with each other within error, while larger ¢, results in larger uncertainties. For

z, K,

and 7y, Inip =

{2,2,3} is used in the final analysis for this ensemble.
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FIG. 18. Comparison of the kaon ME (blue points) with previous results [84] (green points) on the a ~ 0.12 fm ensemble with n, = 4.
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FIG. 19. Extrapolation of the kaon renormalized matrix elements at P, = n, x 2 with n, = 2 (left) and n, = 3 (right), u¥ = 3.8 GeV,
pR = 0to the continuum limit from two functional forms and their AIC combination. We observe larger discretization effect for small P,
due to the non-negligible higher-twist effects.
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