

¹ Non-quasi-linear Agents ² in Quasi-linear Mechanisms

³ **Moshe Babaioff**

⁴ Microsoft Research

⁵ moshe@microsoft.com

⁶ **Richard Cole**

⁷ New York University (NYU)

⁸ cole@cs.nyu.edu

⁹ **Jason Hartline**

¹⁰ Northwestern University

¹¹ hartline@eecs.northwestern.edu

¹² **Nicole Immorlica**

¹³ Microsoft Research

¹⁴ nicimm@microsoft.com

¹⁵ **Brendan Lucier**

¹⁶ Microsoft Research

¹⁷ brlucier@microsoft.com

¹⁸ — Abstract —

¹⁹ Mechanisms with money are commonly designed under the assumption that agents are quasi-linear,
²⁰ meaning they have linear disutility for spending money. We study the implications when agents
²¹ with non-linear (specifically, convex) disutility for payments participate in mechanisms designed
²² for quasi-linear agents. We first show that any mechanism that is truthful for quasi-linear buyers
²³ has a simple best response function for buyers with non-linear disutility from payments, in which
²⁴ each bidder simply scales down her value for each potential outcome by a fixed factor, equal to her
²⁵ target return on investment (ROI). We call such a strategy ROI-optimal. We prove the existence
²⁶ of a Nash equilibrium in which agents use ROI-optimal strategies for a general class of allocation
²⁷ problems. Motivated by online marketplaces, we then focus on simultaneous second-price auctions
²⁸ for additive bidders and show that all ROI-optimal equilibria in this setting achieve constant-factor
²⁹ approximations to suitable welfare and revenue benchmarks.

³⁰ **2012 ACM Subject Classification** Theory of computation → Quality of equilibria

³¹ **Keywords and phrases** Return on investment, Non-quasi-linear agents, Transferable Welfare, Simul-
³² taneous Second-Price Auctions

³³ **Digital Object Identifier** 10.4230/LIPIcs.ITCS.2021.56

³⁴ **Category** Extended Abstract

³⁵ **Related Version** A full version of the paper is available on the arXiv.

³⁶ **Funding** *Richard Cole*: This work was supported in part by NSF Grant CCF-1909538.

³⁷ *Jason Hartline*: This work was supported in part by NSF Grant CCF-1618502.

© Moshe Babaioff, Richard Cole, Jason Hartline, Nicole Immorlica and Brendan Lucier;

licensed under Creative Commons License CC-BY

Innovations in Theoretical Computer Science (ITCS 2021).

Editor: James R. Lee; Article No. 56; pp. 56:1–56:1

Leibniz International Proceedings in Informatics

LIPIcs Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany