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Abstract—Following the principle of to set one’s own spear
against one’s own shield, we study how to design adversar-
ial completely automated public turing test to tell computers
and humans apart (CAPTCHA) in this article. We first iden-
tify the similarity and difference between adversarial CAPTCHA
generation and existing hot adversarial example (image) gener-
ation research. Then, we propose a framework for text-based
and image-based adversarial CAPTCHA generation on top of
state-of-the-art adversarial image generation techniques. Finally,
we design and implement an adversarial CAPTCHA generation
and evaluation system, called aCAPTCHA, which integrates 12
image preprocessing techniques, nine CAPTCHA attacks, four
baseline adversarial CAPTCHA generation methods, and eight
new adversarial CAPTCHA generation methods. To examine
the performance of aCAPTCHA, extensive security and usabil-
ity evaluations are conducted. The results demonstrate that the
generated adversarial CAPTCHAs can significantly improve the
security of normal CAPTCHAs while maintaining similar usabil-
ity. To facilitate the CAPTCHA security research, we also open
source the aCAPTCHA system, including the source code, trained
models, datasets, and the usability evaluation interfaces.

Index Terms—Adversarial image, completely automated public
turing test to tell computers and humans apart (CAPTCHA),
deep learning, usable security.

I. INTRODUCTION

CAPTCHA is a type of challenge-response test in com-
puting which is used to distinguish between human

and automated programs (machines). The first generation of
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completely automated public turing test to tell computers and
humans apart (CAPTCHA) was invented in 1997, while the
term “CAPTCHA” was first coined in 2002 [1], [2]. Ever since
its invention, CAPTCHA has been widely used to improve the
security of websites and various online applications to prevent
the abuse of online services, such as preventing phishing, bots,
spam, and Sybil attacks.
Although there are many different proposals for CAPTCHA

design, for example, text-based CAPTCHA [22], [23]; image-
based CAPTCHA [25], [26]; audio-based CAPTCHA [29];
video-based CAPTCHA [8]; and other CAPTCHA
designs [40], [41], in this article, our study mainly focuses
on text- and image-based CAPTCHAs. The reason is evident:
they are the most accepted and widely used CAPTCHAs
up to now and in the foreseeable future. The study of their
security and usability has more potential implications for
practical applications.
Issues of CAPTCHAs and Motivation: Generally speak-

ing, CAPTCHA can be evaluated according to its security
performance, which refers to the strength and resilience
of CAPTCHAs against various attacks, and usability
performance, which refers to how user friendly the
CAPTCHAs are. From the security perspective, it is not news
to see reports that a CAPTCHA scheme is broken by some
attacks [20], [21], [27], [39]. The evolution of CAPTCHAs
always moves forward in a spiral, constantly accompanied
by emerging attacks. For text-based CAPTCHAs, the secu-
rity goal of its earliest version is to defend against optical
character recognition (OCR)-based attacks. Therefore, many
distortion techniques (e.g., varied fonts, varied font sizes, and
rotation) are applied. Over the last decade, machine learning
algorithms have become more powerful. Following the seminal
work which demonstrates that computers turn to outperform
humans in recognizing characters, even under severe distor-
tion, many successful attacks to text-based CAPTCHAs were
proposed, including both generic attacks which target multiple
text-based CAPTCHAs [6], [7], and specialized attacks which
targeted one kind of text-based CAPTCHAs [24]. Despite this,
it is possible to improve the security of text-based CAPTCHAs
by increasing the distortion and obfuscation levels, and their
usability will be significantly affected [6], [7].
The same dilemma exists for image-based CAPTCHAs.

With the prosperity of machine learning research, espe-
cially recent deep learning progress, deep neural networks
(DNNs) have achieved impressive success in image classi-
fication/recognization, matching, or even outperforming the
cognitive ability of humans in complex tasks with thou-
sands of classes [15]. Along with such progress, many
DNN-based attacks have been proposed recently to crack
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image-based CAPTCHAs with very high success probabil-
ity, as demonstrated by a large number of reports [28]. To
defend against existing attacks, the intuition is to rely on high-
level image semantics and develop more complex image-based
CAPTCHAs, for example, recognizing an image object by uti-
lizing its surrounding context [27]. Leaving the security gains
aside, such designs usually induce poor usability. To make
things worse, unlike text-based CAPTCHAs, it is difficult, if
not impossible, for designers to generate specific images with
required semantical meanings through certain rules. In other
words, it is too labor intensive to collect labeled images in a
large scale.
In summary, existing text- and image-based CAPTCHAs are

facing challenges from both the security and the usability per-
spectives. It is desirable to develop a new CAPTCHA scheme
that achieves high security while preserving proper usability,
that is, it seeks a better balance between security and usability.
Our Methodology and Contributions: To address the

dilemma of existing text- and image-based CAPTCHAs, we
start from analyzing state-of-the-art attacks. It is not surprising
that most, if not all, of the attacks to text- and image-based
CAPTCHAs are based on the machine learning techniques,
especially the latest and most powerful ones, which are mainly
based on deep learning, typically, CNNs. This is mainly
because the development of CAPTCHA attacks roots in the
progress of machine learning research, as we discussed before.
On the other hand, with the progress of machine learning

research, researchers found that many machine learning mod-
els, especially neural networks, are vulnerable to adversarial
examples, which are defined as elaborately (maliciously, from
the model’s perspective) crafted inputs that are imperceptible
to humans but that can fool the machine learning model into
producing undesirable behavior, for example, producing incor-
rect outputs [31]. Inspired by this fact, is that possible for us
to design a new kind of CAPTCHAs by proactively attacking
existing CAPTCHA attacks, that is, “to set one’s own spear
against one’s own shield?”
Following this inspiration, we study the method to gen-

erate text- and image-based CAPTCHAs based on adversar-
ial learning, that is, text-based adversarial CAPTCHAs and
image-based adversarial CAPTCHAs, that are resilient to
state-of-the-art CAPTCHA attacks and meanwhile preserve
high usability. Specifically, we have three main objectives
in the design: 1) security, which implies that the developed
CAPTCHAs can effectively defend against state-of-the-art
attacks, especially the powerful deep-learning-based attacks;
2) usability, which implies that the developed CAPTCHAs
should be usable in practice and maintain a high user experi-
ence; and 3) compatibility, which implies that the proposed
CAPTCHA generation scheme is compatible with existing
text- and image-based CAPTCHA deployment and applica-
tions.
With the above goals in mind, we study the method to

inject human-tolerable, preprocessing-resilient (i.e., cannot
be removed by CAPTCHA attacks) perturbations to tradi-
tional CAPTCHAs. Specifically, we design and implement a
novel system aCAPTCHA to generate and evaluate text- and
image-based adversarial CAPTCHAs.

Fig. 1. System overview of aCAPTCHA.

Our main contributions can be summarized as follows.
1) Following our design principle, we propose a frame-

work for generating adversarial CAPTCHAs on top of
existing adversarial example (image) generation tech-
niques. Specifically, we propose four text-based and four
image-based adversarial CAPTCHA generation (ICG)
methods. Then, we design and implement a comprehen-
sive adversarial CAPTCHA generation and evaluation
system, called aCAPTCHA, which integrates 12 image
preprocessing (IPP) techniques, nine CAPTCHA attacks,
four baseline adversarial CAPTCHA generation meth-
ods, and eight new adversarial CAPTCHA generation
methods. aCAPTCHA can be used for the generation,
security evaluation, and usability evaluation of both text-
and image-based adversarial CAPTCHAs.

2) To examine the performance of the adversarial
CAPTCHAs generated by aCAPTCHA, we conducted
extensive security and usability evaluations. The results
demonstrate that the generated adversarial CAPTCHAs
can significantly improve the security of normal
CAPTCHAs while maintaining similar usability.

3) We open source the aCAPTCHA system at [44], includ-
ing the source code, trained models, datasets, and
the interfaces for usability evaluation. It is expected
that aCAPTCHA can facilitate the CAPTCHA security
research and can shed light on designing more secure
and usable adversarial CAPTCHAs.

II. SYSTEM OVERVIEW

In this section, we present the system architecture of
aCAPTCHA, which is shown in Fig. 1. Basically, it consists
of seven modules.
IPP Module: In this module, we implement 12 widely

used standard IPP techniques for CAPTCHA security
analysis, including nine filters: 1) BLUR; 2) DETAIL;
3) EDGE ENHANCE; 4) SMOOTH; 5) SMOOTH MORE;
6) GaussianBlur; 7) MinFilter; 8) MedianFilter; and
9) ModeFilter, two morphological operations: 1) dilation
and 2) close, and one standard image binarization method.
Basically, all the preprocessing techniques can be used to
remove the noise in an image.
Text-Based CAPTCHA Attack (TCA) Module: In this mod-

ule, we implement five TCAs, including two traditional
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machine learning-based attacks (SVM, KNN) and three state-
of-the-art DNN-based attacks (LeNet [11], MaxoutNet [12],
and NetInNet [13]). In aCAPTCHA, TCA has two main func-
tions. First, it can provide necessary model information for
generating text-based adversarial CAPTCHAs, that is, for the
following text-based adversarial CAPTCHA generation (TCG)
module. Second, it can also be employed to evaluate the
resilience of text-based CAPTCHAs against actual attacks.
Image-Based CAPTCHA Attack (ICA) Module: Similar to

TCA, we implement four state-of-the-art ICAs in this module
(NetInNet [13], VGG [14], GoogleNet [16], and ResNet [17]).
It is used to provide necessary model information for generat-
ing image-based adversarial CAPTCHAs and for evaluating
the resilience of image-based CAPTCHAs against actual
attacks.
TCG Module: In this module, we first implement four state-

of-the-art adversarial example (image) generation algorithms
to serve as the baseline. Then, we analyze the limitations of
applying existing adversarial image generation techniques to
generate text-based adversarial CAPTCHAs. Finally, accord-
ing to our analysis, we propose four new text-based adversarial
CAPTCHA generation algorithms.
ICG Module: In this module, we first analyze the lim-

itations of existing adversarial image generation techniques
for generating image-based adversarial CAPTCHAs. Then,
we implement four ICG algorithms by improving existing
techniques.
CAPTCHA Security Evaluation (CSE) Module: Leveraging

TCA and ICA, this module is used to evaluate the resilience
and robustness of text- and image-based CAPTCHAs against
state-of-the-art attacks.
CAPTCHA Usability Evaluation (CUE) Module: This mod-

ule is mainly used for evaluating the usability of text- and
image-based CAPTCHAs.
aCAPTCHA takes a fully modular design, and is thus easily

extendable. We can freely add emerging attacks to TCA/ICA
and/or add new proposed adversarial CAPTCHA generation
algorithms to TCG/ICG.

III. TEXT-BASED ADVERSARIAL CAPTCHAS

With the design goals in mind and following our design
principle, we show the design of TCG step by step below.

A. Baselines

In fact, CAPTCHAs can be viewed as a special case
of images. Then, following the design principle and goals,
a straightforward idea is to generate text-based adversarial
CAPTCHAs using exiting adversarial image generation tech-
niques. Therefore, we implement four baseline adversarial
image generation algorithms in TCG. Before delving into the
details, we define some useful notations.
1) Notations: We first present necessary notations in the

context of generating adversarial images. To be consistent with
existing research, we use the same notation system as that
in [10]. We represent a neural network as a function F(x) = y,

where x ∈ R
n×n is the input image1 and y ∈ R

m is the cor-
responding output. Define F to be the full neural network,
including the softmax function and let Z(x) = z be the output
of all the layers except the softmax. According to y, F, which
can be viewed as a classifier, assigns x a class label C(x). Let
C∗(x) be the correct label of x.

As in [9] and [10], we use Lp norms to measure the similar-
ity of x, x′ ∈ R

n×n. Then, Lp = ‖x − x′‖p = (
∑n

i=1
∑n

j=1 |x −
x′|p)1/p. According to the definition, L2 distance measures the
Euclidean distance between x and x′; L0 distance measures the
number of coordinates i s.t. xi,j �= x′

i,j; and L∞ distance mea-
sures the maximum change to any of the coordinates, that is,
‖x − x′‖∞ = max{|x1,1 − x′

1,1|, . . . , |xn,n − x′
n,n|}.

2) Baseline Methods: Recently, to generate adversarial
examples (adversarial images in our context) against neu-
ral networks, many attacks have been proposed [30], [32].
For our purpose, those attacks can serve as our adversarial
CAPTCHA generation methods. In TCG, we implement four
state-of-the-art attacks as our baseline methods.
Jacobian-based Saliency Map Attack (JSMA):

Papernot et al. [9] proposed the JSMA to generate adversarial
images. JSMA is a greedy algorithm. Suppose l is the target
class of image x. Then, to obtain x′ such that x′ �= x and
C(x′) = l, JSMA follows the following steps: 1) x′ = x;
2) based on the gradient ∇Z(x′)l, compute a saliency map in
which each value indicates the impact of the corresponding
pixel on the resulting classification; 3) according to the
saliency map, select the most important pixel for modification
to increase the likelihood of class l; and 4) repeat the above
two steps until C(x′) = l or more than a set threshold of
pixels have been modified.
Note that, JSMA is also capable for generating untargeted

adversarial images. For that purpose, we only have to: 1) let
l = C(x) and change the goal as to find x′ such that x′ �= x
and C(x′) �= l; and 2) select the pixel to mostly decrease the
likelihood of class l for modification.
Carlini–Wagner Attacks: Aiming at generating high qual-

ity adversarial images, Carlini and Wagner [10] introduced
three powerful attacks tailored to L2, L0, and L∞, respec-
tively. Basically, all those three attacks are optimization based
and can be targeted or untargeted. Taking the untargeted L2
attack as an example, it can be formalized as the optimization
problem: minimize ‖δ‖+c ·F(x+δ), such that x+δ ∈ [0, 1]n,
that is, for image x, the attack seeks for a perturbation δ that
is small in length and can fool the classifier F meanwhile. In
the formalization, c is a hyperparameter that balances the two
parts in the objective function. The constraint implies that the
generated adversarial image should be valid.
Previous work [19] shows that untargeted attacks are more

transferable than targeted attacks in the black-box setting, the
adversarial CAPTCHAs generated by untargeted attacks can
achieve a better security performance than that by targeted
attacks. Therefore, we focus on untargeted setting to gener-
ate adversarial CAPTCHAs. Without additional mention, all

1Note that, x is not necessary to be a square image. The setting here is for
simplicity.
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TABLE I
PERFORMANCE OF BASELINE ALGORITHMS VERSUS LENET. THE ORIGINAL SAR OF LENET IS 95.87%

adversarial CAPTCHAs are generated by untargeted setting
in the remainder of this article.

B. Datasets

For the text-based evaluation scenario, we employ Modified
National Institute of Standards and Technology database
(MNIST). MNIST [3] is a large database of 70 000 handwrit-
ten digit images and is widely used by the research community
as a benchmark. We can generate text-based CAPTCHAs by
the following ways; 1) sample l, for example, 6, images from
MNIST randomly where each image contains a handwritten
digit and each image size is 28 ∗ 28 and 2) concatenate these
images to form a whole CAPTCHA where using o to control
the overlap between two images. In this article, the default
value for o is 0. The size of a whole CAPTCHA is 28 ∗ 168
for l = 6. Note that we have evaluated text-based CAPTCHAs
with different l. However, due to the space limitation, we only
present the results for text-based CAPTCHAs with l = 6.

C. Analysis of Baselines

As discussed before, intuitively, it seems like that exist-
ing adversarial image generation algorithms, for example,
JSMA and Carlini–Wagner attacks, can be applied to generate
adversarial CAPTCHAs directly. Following this intuition, we
conduct a preliminary evaluation as follows.
1) Leverage MNIST randomly generates 10 000

CAPTCHAs of length 6, that is, each CAPTCHA
is composed of six characters from MNIST. Denote
these CAPTCHAs by set C.

2) Suppose LeNet from TCA is the employed CAPTCHA
attack. Then, use LeNet (trained using 50 000
CAPTCHAs for 20 000 rounds and with batch
size 50) to attack the CAPTCHAs in C. The Success
Attack Rate (SAR), which is defined as the portion of
successfully recognized CAPTCHAs in C, is 95.87%;

3) In terms of LeNet, generate the adversarial versions of
the CAPTCHAs in C using JSMA, L2, L0, and L∞,
denoted by CJ , C2, C0, and C∞, respectively.

4) Use LeNet and possible preprocessing techniques from
the IPP module to attack CJ , C2, C0, and C∞. The corre-
sponding SARs are shown in Table I, where “−” implies
does not apply the corresponding preprocessing and B
denotes the image binarization processing.

It is worth noting that we do not consider using multiple filters
at the same time. This is because combining different image

filters may cause negative effects for CAPTCHA recognition.
In practice, when a filter removes the noise in the image, it
also damages the details of the image. Using multiple filters
would loss much of image details and even make the image
unrecognizable for the attack model.
From Table I, we observe that without applying IPP, the

adversarial CAPTCHAs generated by all the baseline algo-
rithms can significantly reduce the SAR of LeNet, for example,
L2 reduces the SAR of LeNet from 95.87% to 0%. This
implies that the idea of applying adversarial CAPTCHAs to
defend against modern attacks is promising.
However, unfortunately, without considering the usability,

the security of these adversarial CAPTCHAs can be signifi-
cantly affected by IPP either. For instance, when attacking C∞,
the SAR of LeNet is raised from 0% to 28.24% after apply-
ing the SMOOTH filter and to 94.15% after further applying
image binarization, which is similar to its performance on
normal CAPTCHAs. This implies that the perturbation in
the adversarial CAPTCHAs can be removed by IPP, that is,
the perturbations added by the baseline algorithms are not
resilient/robust to IPP.
We analyze the reasons from two aspects. From the pertur-

bation generation perspective, most, if not all, of the existing
adversarial image generation techniques, including the base-
line algorithms, are focusing on injecting perturbations to
images in the space domain. However, for CAPTCHA attacks,
various IPP methods are usually employed to remove irrelevant
information before actual recognition. Those preprocessing
methods are especially effective in removing the noise in
the spatial domain. Thus, existing adversarial image gen-
eration techniques frequently behave unstable when against
the CAPTCHA attacks along with IPP. From the CAPTCHA
application perspective, we are on the defensive side when
generating adversarial images (CAPTCHAs) instead of as
their original purpose for attacking neural network mod-
els. Therefore, as long as the adversarial CAPTCHAs are
usable, more perturbations can be injected to the CAPTCHAs,
which is totally different from the design principle of exist-
ing adversarial image generation techniques, that are working
hard for injecting human imperceptible or as less as possible
perturbations.

D. Adversarial CAPTCHA Generation

In the previous section, we analyzed the limitations of exist-
ing techniques for generating adversarial CAPTCHAs. Aiming
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at generating more robust and usable text-based adversarial
CAPTCHAs, we, in this section, proposed four new methods
based on existing techniques.
Our design mainly follows two guidelines. First, accord-

ing to our analysis, the perturbations added in the space
domain are frail to IPP. Therefore, we consider to add per-
turbations in the frequency domain. This is because space
domain perturbation can be considered as local change of
images while frequency domain perturbation is a kind of
global change to images, which is more difficult to remove,
that is, frequency domain perturbation is intuitively more
resilient to IPP. Certainly, when conducting frequency domain
perturbation, we should be aware of the possible impact on the
usability. Second, when generating adversarial CAPTCHAs,
instead of trying to add human-imperceptible perturbations,
we focus on adding human-tolerable perturbations. This will
give us more freedom to design more secure and fast adver-
sarial CAPTCHA generation methods. Specifically, based on
JSMA, L2, L0, and L∞, we propose four text-based adversar-
ial CAPTCHA generation algorithms, denoted by JSMAf , Lf2,
Lf0, and Lf∞, respectively.
JSMAf: We show the design of JSMAf in Algorithm 1.

Basically, JSMAf follows a similar procedure as the untargeted
JSMA. We remark the differences as follows. First, in steps
3 and 4, we transform a CAPTCHA to the frequency domain
by fast Fourier transform (FFT) and then compute a saliency
map. This enables us to elaborately inject perturbations to a
CAPTCHA in the frequency domain as expected.
Second, after transforming a CAPTCHA into the frequency

domain, its high-frequency part usually corresponds to the
margins of characters and other nonvital information, while
the low-frequency part usually corresponds to the fundamen-
tal shape information of characters. Therefore, to decrease
possible impacts on the usability of a CAPTCHA, we intro-
duce a mask matrix ϕ in Algorithm 1, which has the same
size with x. ϕ has values of 1 in the high-frequency part
while 0 in the low-frequency part. Then, as shown in steps 5
and 6, we preserve the pixels in the low-frequency part while
only considering to change the pixels in the high-frequency
part.
Third, after selecting the candidate modified pixel, instead

of modifying one pixel each time as in JSMA, we modify
the candidate pixel and its neighbors as shown in step 7.
This design is mainly based on the fact that close pixels
in the frequency domain exhibit the partial similarity [42],
that is, neighboring pixels in the frequency domain have very
similar property and features. Therefore, modifying the can-
didate pixel and its neighbors would significantly accelerate
the adversarial CAPTCHA generation process while not harm-
fully affect its quality (recall that, we are targeting to use user
tolerable instead of as little as possible perturbations).
Finally, we make an inverse FFT (IFFT) for the CAPTCHA

in the frequency domain and transform it back to the space
domain as shown in step 8.
Lf2, L

f
0, and Lf∞: Basically, Lf2, L

f
0, and Lf∞ follow the sim-

ilar procedures as that in L2, L0, and L∞ respectively, except
that all the designs are finished in the frequency domain. The
differences are the same as that between JSMAf and JSMA.

Algorithm 1: JSMAf

Input: x original CAPTCHAs; C∗(x) the label of x; F
a classifier; ϕ mask.

Output: x′ adversarial CAPTCHAs
1 x′ ← x, l ← C∗(x);
2 while F(x′) == l do
3 x′f ← FFT(x′);
4 compute a saliency map S based on the gradient

∇Z(x′f )l;
5 S ← S × ϕ;
6 based on S, select the pixel, denoted by x′f [i][j], that

mostly decreases the likelihood of l;
7 modify x′f [i][j] and its neighbors to decrease the

likelihood of l;
8 x′ ← IFFT(x′f );

Therefore, we omit their algorithm descriptions here while
implementing them in TCG.

E. Evaluation

Now, we evaluate the security performance of JSMAf , Lf2,
Lf0, and Lf∞ and leave their usability evaluation in Section VI.
Generally, the evaluation procedure is the same as that in
Section III-C. In all the evaluations of this section, we employ
MNIST to randomly generate CAPTCHAs of length 6. For
each attack in TCA, we use 50 000 normal CAPTCHAs
for training. Specifically, for the DNN-based attacks LeNet,
MaxOut, and NetInNet, the batch size is 50 and each model
is trained for 20 000 rounds. For each scenario, we use
1000 CAPTCHAs for testing. When generating an adversarial
CAPTCHA, we set the inner 8× 8 area as the high-frequency
part while the rest as the low-frequency part for mask ϕ. Each
evaluation is repeated three times and their average is reported
as the final result.
First, we evaluate the performance of JSMAf , Lf2, L

f
0, and

Lf∞ without any IPP. To conduct this group of evaluations, we
1) leverage JSMAf , Lf2, L

f
0, and Lf∞ to generate adversarial

CAPTCHAs in terms of LeNet, MaxoutNet, and NetInNet,
respectively and 2) leverage the attacks in the TCA module to
attack these adversarial CAPTCHAs, respectively. The results
are shown in Table II, where Normal indicates the SAR of each
attack on the normal CAPTCHAs (nonadversarial versions).
From Table II, we have the following observations.
1) All the attacks in TCA are very powerful when attack-

ing normal CAPTCHAs. However, when they attack the
adversarial CAPTCHAs generated by JSMAf , Lf2, L

f
0, or

Lf∞, none of them can break any adversarial CAPTCHA.
This result is as expected and further demonstrates
the advantage of applying adversarial CAPTCHAs to
improve the security.

2) The generated CAPTCHAs by JSMAf , Lf2, L
f
0, and Lf∞

have very good transferability, that is, the adversarial
CAPTCHAs generated in terms of one neural network
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TABLE II
PERFORMANCE OF JSMAf , Lf2, L

f
0, AND Lf∞ (NO IPP)

TABLE III
PERFORMANCE OF JSMAf , Lf2, L

f
0, AND Lf∞ (FILTER + B)

model are transferable to another neural network or tra-
ditional machine learning models. This demonstrates
the good robustness of the adversarial CAPTCHAs
generated by JSMAf , Lf2, L

f
0, and Lf∞.

Now, we discuss the reasons that we can achieve an excel-
lent result even in the black-box setting. First, as stated
in Section III-D, when generating adversarial CAPTCHAs,
instead of trying to add human-imperceptible perturbations,
we focus on adding human-tolerable perturbations. Our meth-
ods can inject a sufficient amount of adversarial perturbations
into CAPTCHAs. A large amount of perturbations can provide
a strong defense capability and fool different attack models
even in the black-box setting. Second, despite five models
in our experiments have different architectures, they are all
trained by the same dataset (MNIST). This setting may limit
the model difference among five models and somehow makes
the generated adversarial CAPTCHAs easily transferable.
Now, on top of the above evaluation, we evaluate the

resilience of the adversarial CAPTCHAs generated by JSMAf ,
Lf2, L

f
0, and Lf∞ against image filtering and image binarization.

The evaluation procedure is the same as before except we use
the filters in IPP to preprocess the adversarial CAPTCHAs
before attack. The results are shown in Table III. From
Table III, we have the following observations.

1) For different attacks, for example, SVM and LeNet, they
become more powerful along with image filtering and
binarization and can break adversarial CAPTCHAs to
some extent in several scenarios.

2) The SARs of the attack model by using morpho-
logical operations increase largely than using image
filters. It indicates that compared to 9 image filters, 2
morphological operations can remove more adversar-
ial perturbations in CAPTCHAs. However, adversarial
CAPTCHAs are obviously more secure than normal
ones when considering the SAR rates of these attacks.
Further, comparing the results in Table III with that
in Table I, the adversarial CAPTCHAs generated by
JSMAf , Lf2, L

f
0, and Lf∞ are also much more secure than

the ones generated by JSMA, L2, L0, and L∞.
3) Similar as the previous evaluations, the adversarial

CAPTCHAs maintain adequate transferability, which
implies adversarial CAPTCHAs have stable robustness.

Finally, we further explore the security of text-based
CAPTCHAs with different character numbers. We 1) lever-
aging JSMAf to generate adversarial CAPTCHAs in terms of
LeNet; 2) using SMOOTH filter and image binarization to pre-
process adversarial CAPTCHAs; and 3) leveraging the Lenet
model to attack these adversarial CAPTCHAs. In this setting,
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Fig. 2. Relationship between character number and SAR of the attack model.

the attack model can achieve a high SAR from Table III.
The experimental results are shown in Fig. 2. From Fig. 2,
we can observe that as the character number increases, the
SARs of adversarial CAPTCHAs drop faster than that of
normal CAPTCHAs. Because the attack model cannot rec-
ognize a single character in an adversarial CAPTCHA with a
high accuracy, the SAR of a whole CAPTCHA will decrease
exponentially with the increase of character number.

IV. IMAGE-BASED ADVERSARIAL CAPTCHAS

A. ICG Design

For ICG, we actually follow the same design principles
as that for the text-based scenario. Furthermore, similar to
the situation that existing adversarial image generation tech-
niques are not suitable for generating text-based adversarial
CAPTCHAs, they are not suitable for image-based adver-
sarial CAPTCHAs due to similar reasons. Existing adver-
sarial image generation techniques are mainly targeting to
attack neural network models by adding as less as possible
(human-imperceptible) perturbations to an image. However,
we are standing on the defensive side to generate adversar-
ial CAPTCHAs to improve the security. This implies that we
might inject as much as possible perturbations to an image-
based adversarial CAPTCHA as long as it is user tolerable
(user recognizable). In addition, the adversarial example gen-
eration speed may not be a concern for existing techniques.
Although it is not the main constraint for CAPTCHA gener-
ation neither, since we can generate the CAPTCHAs offline,
we still expect to generate many CAPTCHAs in a fast way
(since we may need to update our CAPTCHAs periodically to
improve the system security). Therefore, we take efficiency as
a consideration in adversarial CAPTCHA generation.
Image-based CAPTCHAs contain rich and important

information which plays a key role in image classifica-
tion. Thus, attackers cannot use radical IPP, such as image
binarization, for image-based CAPTCHAs. When generating
image-based adversarial CAPTCHAs, we can easily inject
adversarial perturbations into any area of the CAPTCHA in
the space domain. Therefore, we do not have to transform an
image-based CAPTCHA to the frequency domain. Here, simi-
lar to the text-based scenario, we implement four ICG methods
based on JSMA, L2, L0, and L∞, denoted by JSMAi, Li2, L

i
0,

and Li∞, respectively.

Algorithm 2: JSMAi

Input: x original CAPTCHAs; C∗(x) the label of x; F
a classifier; K noise level.

Output: x′ adversarial CAPTCHAs
1 x′ ← x, l ← C∗(x);
2 while F(x′) == l or K > 0 do
3 compute a saliency map S based on the gradient

∇Z(x′)l;
4 based on S, select the pixel, denoted by x′[i][j], that

mostly decreases the likelihood of l;
5 modify x′[i][j] and its neighbors to decrease the

likelihood of l;
6 K − −;

JSMAi: We show the design of JSMAi in Algorithm 2,
which basically follows the same procedure as JSMA.
Following our design principle, we make two changes. First,
we introduce an integer parameter K to control the least per-
turbation that should be made. This implies that in our design,
we try to inject as much as possible perturbations as long as
the CAPTCHA is user tolerable (certainly, K is an empirical
value that can be decided based on some preliminary usability
testing). Second, like to the text-based scenario, we modify
multiple pixels simultaneously to accelerate the generation
process.
Li2, L

i
0, and L

i∞: For the designs of Li2, L
i
0, and L

i∞, their pro-
cedures are the same as L2, L0, and L∞ except that we choose
a small step and less iterations to accelerate the CAPTCHA
generation process. This also implies that our perturbation
injection scheme may not be optimal compared with the orig-
inal L2, L0, and L∞. As we explained before, we are not
targeting to add as less perturbation as possible like the orig-
inal algorithms. Toward another direction, we try to inject
more perturbations in a fast way when the CAPTCHA is user
tolerable.

B. Datasets

For the image-based evaluation scenario, we employ another
image benchmark dataset ImageNet ILSVRC-2012 (refers to
the dataset used for the 2012 ImageNet large-scale visual
recognition challenge) [4]. The employed ImageNet ILSVRC-
2012 contains 50 000 handlabeled photographs from 1000
categories with 50 photographs from each category.2

C. Evaluation

Now, we evaluate the security performance of JSMAi, Li2,
Li0, and Li∞ while leaving their usability evaluation in the next
section. In the evaluation, we employ ImageNet ILSVRC-2012
to generate all the needed CAPTCHAs. Meanwhile, we use
the pretrained models (all trained using the data in ImageNet
ILSVRC-2012) of the attacks in ICA to examine the secu-
rity performance of the generated adversarial CAPTCHAs,

2The used dataset here is actually a subset of ImageNet ILSVRC-2012,
which is sufficient for our purpose.
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TABLE IV
SECURITY OF IMAGE-BASED ADVERSARIAL CAPTCHAS

TABLE V
SECURITY OF IMAGE-BASED ADVERSARIAL CAPTCHAS VERSUS FILTERS

that is, using the attacks in ICA to recognize the generated
CAPTCHAs. These pretrained models have state-of-the-art
performance and are available at Caffe Model Zoo [5]. For
each evaluation scenario, we use 1000 CAPTCHAs for test-
ing. Each evaluation is repeated three times and their average
is reported as the final result.
We first evaluate the security of the adversarial CAPTCHAs

generated by JSMAi, Li2, Li0, and Li∞ in the scenario of
not considering any IPP. The results are shown in Table IV.
Normal implies the SAR of each attack when against normal
CAPTCHAs, and in the rest of the evaluation scenarios, we
first generate adversarial CAPTCHAs in terms of the neural
network model of an attack, for example, VGG, and then using
different attacks to attack them. Further, the default setting is
K = 50 for JSMAi, and K = 100 for Li2, L

i
0, and Li∞ (note

that, in the original L2, L0, and L∞, there is also a parameter
to control the noise level. We denote it by K for consistence
in Li2, L

i
0, and Li∞).

From Table IV, we have the following observations. First,
for image-based CAPTCHAs, adversarial learning techniques
can significantly improve their security. This further confirms
our design principle: to set one’s own spear against one’s
own shield. Second, the generated adversarial CAPTCHAs
demonstrate adequate transferability, that is, the adversarial
CAPTCHAs generated in terms of one neural network model
also exhibits good resilience to other attacks. Thus, they are
robust.
Under the same settings with Table IV, we examine the

security performance of JSMAi, Li2, L
i
0, and Li∞ against the

attacks in ICA plus IPP. Note that, since all the CAPTCHAs

are color images, we do not consider image binarization here.
We show the results in Table V. Basically, same conclusions
can be drawn from Table V as that from Table IV. In addition,
we can find that image filtering has little impact on the security
of the adversarial CAPTCHAs generated by JSMAi, Li2, L

i
0,

or Li∞, that is, they are very robust.
Now, we consider the impact of different perturbation

(noise) levels on the security of the generated adversarial
CAPTCHAs. Taking JSMAi as an example, we show partial
results in Table VI, from which we make the following obser-
vations. First, in most of the scenarios, when adding more
noise, better security can be achieved, which is consistent with
our intuition. However, according to the results, such security
improvement is slight in most of the cases. Second, as before,
the generated adversarial CAPTCHAs are resilient and robust
to various attacks.

V. ADAPTIVE SECURITY ANALYSIS

In this section, we analyze in depth the adaptive methods
that could be applied against aCAPTCHA.

A. Statement

In practical scenario, we assume the threat follows all of
the following models.
Knowledge of Adversarial Example Generation and

Defense: The attacker has full knowledge of adversarial
example generation and defense schemes. They can get that
information from the research community and other means.
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TABLE VI
SECURITY OF IMAGE-BASED ADVERSARIAL CAPTCHAS VERSUS NOISE LEVEL

No Knowledge of CAPTCHA Generation: The attacker can
realize that the CAPTCHAs were updated by adding adver-
sarial noise, while they do not know the specific model and
method used to generate the adversarial CAPTCHAs.
No Access to the Source Images: The attacker can only

access to all generated adversarial CAPTCHAs but not to their
source. They has no knowledge about the particular image
used for generating the adversarial CAPTCHAs.

B. Adaptive Attack

When attackers are aware of the existence of the possi-
ble defense, they will try other methods against adversarial
CAPTCHAs. Now, there are three types of state-of-the-
art techniques against adversarial examples: 1) adversarial
training; 2) gradient masking; and 3) input transformation.
Attackers can adopt these techniques to improve their attacks.
We introduce one representative method for each type of
techniques respectively below.
Ensemble Adversarial Training [36]: This method augments

a model’s training data with adversarial examples crafted on
other static pretrained models. As a result, minimizing the
training loss implies increased the robustness to black-box
attacks from some set of models.
Defense Distillation [35]: This method is a type of gradient

masking-based defense technique. Defensive distillation mod-
ifies the softmax function to include a temperature constant T

softmax(x,T)i = exi/T
∑

j e
xi/T

. (1)

First, training a teacher model on the training set, using soft-
max at temperature T . Then using the teacher model to label
each instance in the training set with soft labels (the output
vector from the teacher model), using softmax at temperature
T . Finally, training the distilled model on the soft labels from
the teacher model, again using softmax at temperature T .
Thermometer Encoding [37]: The purpose of thermometer

encoding is to break the linear manner of the neural networks.

TABLE VII
PERFORMANCE OF ADVERSARIAL CAPTCHAS

AGAINST ADAPTIVE ATTACK

Given an image x, for each pixel color x(i,j,c), the l-level
thermometer encoding τ(x(i,j,c)) is a l-dimensional vector

τ
(
x(i,j,c)

) =
{
1, if x(i,j,c) > k/l
0, otherwise.

(2)

For example, for a 10-level thermometer encoding, we had
τ(0.57) = 1111100000. Then we use thermometer encoding
to train a model.

C. Evaluation

Generally, the evaluation procedure is the same as that in
Section III-E. In all the evaluations of this section, we employ
MNIST to randomly generate CAPTCHAs of length 6. For
each scenario, we use 1000 CAPTCHAs for testing. When
generating an adversarial CAPTCHA, we set the inner 8 ×
8 area as the low-frequency part while the rest as the high-
frequency part for mask ϕ. Each evaluation is repeated three
times and their average is reported as the final result.
Specifically, we use MaxoutNet to generate adversar-

ial CAPTCHAs. For ensemble adversarial training, we use
MaxoutNet, NetInNet and LeNet to generate adversarial exam-
ples by JSMAf , Lf2, L

f
0 and Lf∞, respectively, and use these

examples to train a LeNet model. In Table VII, EnAdv.
Training means we do not use adversarial examples crafted
on MaxoutNet, while EnAdv. Training+ do. For defense dis-
tillation, we set T as 100 which is the strong defense setting.
For Thermometer Encoding, we set l as 16 which is the same
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Fig. 3. Examples of aCAPTCHA. Text-based CAPTCHA is generated by
JSMAf and image-based one is generated by JSMAi using K = 50. (a) Text-
based adversarial CAPTCHAs. (b) Image-based adversarial CAPTCHAs.

as the original paper. In addition, image binarization is used
in all of the tests.
The results are shown in Table VII, from which we make

the following observations. First, defense distillation which is
based on gradient masking cannot break adversarial captchas.
The result is consistent with previous work [38] that gradient
masking is not an effective solution against black-box adver-
sarial examples. Second, thermometer encoding shows limited
value to recognize adversarial examples. This may be due to
the large perturbation we injected. Third, ensemble adversarial
training largely improves the SAR, especially in the EnAdv.
Training+ setting. However, considering the SAR of LeNet
(95.87%) for normal CAPTCHAs, adversarial CAPTCHAs
are still more secure than normal ones. Moreover, in prac-
tice, attackers are hard to know what methods and models
are employed in adversarial CAPTCHA generation. Attackers
need to train an attack model by their own data, and then
use their own methods to generate adversarial CAPTCHAs.
As a result, the adversarial CAPTCHAs generated by attack-
ers might be far different from our adversarial CAPTCHAs,
which further restricts the practical performance of adversar-
ial training. Overall, the generated adversarial CAPTCHAs are
resilient to state-of-the-art defense methods.

VI. USABILITY EVALUATION

We have examined the security performance of aCAPTCHA
from multiple perspectives in Sections III–V, respectively. In
this section, we conduct experiments to evaluate the usability
performance of aCAPTCHA. As in the security evaluation,
we employ MNIST and ImageNet ILSVRC-2012 to generate
normal and adversarial CAPTCHAs for the text- and image-
based scenarios, respectively.

TABLE VIII
USER STATISTICS

A. Settings and Methodology

To evaluate the usability of aCAPTCHA, we set the baseline
as the usability of normal text- and image-based CAPTCHAs.
Methodology: To conduct our evaluation, we construct a

real-world website, on which the evaluation webpage is self-
adapted to both PC and mobile clients, to deploy normal and
adversarial CAPTCHAs and collect the evaluation data. The
visualization of adversarial CAPTCHAs used in test are shown
in Fig. 3. Then, we recruit volunteer users from the campus of
our university to do the evaluation. Due to the space limitation,
we have omitted specific evaluation steps.

B. Results and Analysis

After moving the usability evaluation website online, we
finally recruit 125 volunteer users as shown in Table VIII.
Specifically, the users include 43 females and 82 males, and
most of them have ages ranging from 16 to 30. Furthermore,
almost all the users’ education levels are high school or higher.
This is mainly because we conduct experiments in the campus.
Following the evaluation procedure, all the 125 users success-
fully finished the evaluation (∼ 90% users finish the evaluation
through smart phones). We then collect all the results to our
server.
Based on the collected data, we show the main results

in Table IX, where ι denotes the length of a text-based
CAPTCHA, K indicates the noise (difficulty) level of an
image-based adversarial CAPTCHA, and success rate, aver-
age time, and median time measure the average successful
probability, the average time consumption, and the median
time consumption of all the users to finish the correspond-
ing task, respectively. From Table IX, we have the following
observations.
For text-based CAPTCHAs, although the adversarial ver-

sions can significantly improve the security performance as
shown in Section III, their success rate of recognition also
maintains a high level, which is only slightly lower than
that of the normal versions. Meanwhile, it takes similar time
for users to recognize normal and adversarial CAPTCHAs.
These results suggest that text-based adversarial and normal
CAPTCHAs have similar usability. In addition, given that long
CAPTCHAs usually have better security than short ones [6],
we also find that long text-based CAPTCHAs cost more time
for recognition and have a lower success rate than that of the
short ones (consistent with our intuition). This implies that
there is a tradeoff between security and usability.
For image-based CAPTCHAs, the advantage of adversarial

versions is more evident. Adversarial CAPTCHAs have simi-
lar or even better success rates as the normal ones in all the
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TABLE IX
USABILITY OF ACAPTCHA

Fig. 4. Success rate versus statistical category. (a) Success rate versus gender.
(b) Success rate versus age. (c) Success rate versus education.

cases. The success rates of adversarial CAPTCHAs with dif-
ferent noise (difficulty) levels are also similar. This suggests
that image-based CAPTCHAs are more robust to adver-
sarial perturbations. Given the obvious security advantage
shown in Section IV, image-based adversarial CAPTCHAs are
more promising compared to normal ones. Another interesting
observation is that adversarial CAPTCHAs cost less time for
recognition than the normal versions, which is a little bit out
of our expectation. We conjecture the reasons as follows: 1)
deliberately adversarial perturbation has little impact on the
quality of images with respect to human recognition and 2) as
the evaluation goes on, users become more and more familiar
with the tasks. Thus, they can finish the tasks faster.
Now, we give a close look at the success rate of differ-

ent users based on their statistical categories. The results are
shown in Fig. 4. From Fig. 4, we can see that, in most

of the scenarios, users from different statistical categories
exhibit similar success rate over both adversarial and nor-
mal CAPTCHAs. This further demonstrates the generality of
aCAPTCHA.
In summary, according to our evaluation, the CAPTCHAs

generated by aCAPTCHA, especially the image-based adver-
sarial CAPTCHAs, have similar usability as the normal
versions. Recall the security evaluation of aCAPTCHA
in Sections III and IV, they together demonstrate that
aCAPTCHA is promising in addressing the dilemma of exist-
ing text- and image-based CAPTCHAs.

VII. DISCUSSION

Remarks on aCAPTCHA: Different from traditional
CAPTCHA designs, which are mainly focusing on defending
against attacks in a passive manner, we design aCAPTCHA
following a more proactive principle: to set one’s own spear
against one’s own shield. Then, in terms of the model of state-
of-the-art CAPTCHA attacks, we designed and implemented
text- and image-based adversarial CAPTCHAs.
When implementing adversarial CAPTCHAs, we also fol-

low a different methodology from that of existing adversarial
image generation techniques. The main reason, as we dis-
cussed before, is because we stand on a different position.
Existing adversarial image generation techniques focus on
attacks in a hidden manner. For instance, some method may
focus on generating an adversarial image which is only differ-
ent from the original image in one pixel [18] (it is impossible
for humans to identify such difference). In contrast, we follow
the rule to inject as much perturbation as possible when the
adversarial CAPTCHAs remain human tolerable. In this way,
we would find a better balance between CAPTCHA security
and usability, which can be demonstrated by our evaluation
results.
One thing deserves further emphasis is that: aCAPTCHA

is not designed as a replacement while is designed as an
enhancement of existing CAPTCHA systems. According to
our design, aCAPTCHA can be seamlessly combined with
the deployed text- and image-based CAPTCHA systems. The
only change is to update the normal CAPTCHAs with their
adversarial versions. Therefore, we believe aCAPTCHA has
a great applicability. Actually, we have contacted with sev-
eral Internet companies to introduce aCAPTCHA. They are
all very interested with aCAPTCHA and two of them have
shown the intension to integrate aCAPTCHA to their systems.
In the design of aCAPTCHA, we only integrate the popular

attacks to text- and image-based CAPTCHAs. Also, follow-
ing our design principle, we propose and implement four
text-based and four ICG methods, respectively. Note that,
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all these designs and implementations are for demonstrat-
ing the advantages of adversarial CAPTCHAs. Furthermore,
aCAPTCHA employs a modular design style, which is easy
for new technique integration. Hence, we will add more attacks
as well as more adversarial CAPTCHA generation methods to
aCAPTCHA, especially the emerging techniques. We believe
the open source nature will facilitate the improvement process
of aCAPTCHA.

VIII. RELATED WORK

Zhang et al. [34] studied the effect of adversarial exam-
ples on CAPTCHA robustness (including text- and image-
based CAPTCHAs). They directly used the existing adver-
sarial example generation techniques to generate adversar-
ial CAPTCHAs. Their experimental results demonstrate that
adversarial examples have a positive effect on the robust-
ness of CAPTCHAs. However, they did not consider the
image preprocess operations which may used by attackers.
In this article, we consider many widely used IPP opera-
tions for CAPTCHAs. Our study shows that for text-based
CAPTCHAs, the perturbations injected by the existing adver-
sarial example generation techniques can be easily removed by
IPP operations. Therefore, aiming at generating more robust
and usable text-based adversarial CAPTCHAs, we propose
four new methods based on existing techniques. The exper-
imental results show that our methods can keep the balance
between usability and security for text-based CAPTCHAs.
Osadchy et al. [43] introduced a new image-based

CAPTCHA scheme which is designed to resist machine
learning attacks. It adds immutable adversarial noise (IAN)
to the correctly classified images that deceive deep learn-
ing tools and cannot be removed using image filtering.
However, DeepCAPTCHA is different from our approach.
In general, DeepCAPTCHA is a new type of image-based
CAPTCHA scheme which could provide high security. While
our aCAPTCHA system is designed to enhance the exist-
ing CAPTHCA schemes. Furthermore, the proposed IAN,
which is resistance to filtering attack, cannot be used in text-
based CAPTCHA generation. In this work, we consider more
state-of-the-art adversarial example defense strategies and pro-
pose several new methods to generate text- or image-based
adversarial CAPTCHAs.
Ye et al. [33] proposed a GAN-based approach to break text-

based CAPTCHAs. In particular, they first generated synthetic
CAPTCHAs to learn a base solver and then fine-tuned the base
solver on a small set of real CAPTCHAs by leveraging trans-
fer learning. From the evaluation, their method can achieve
good recognition performance with a significantly smaller set
of real captchas, as compared to previous methods. Despite
this method can reduce the cost of attack in term of label-
ing data, it cannot effectively break adversarial CAPTCHAs.
This is because the solver used in [33] is a CNN model which
is still vulnerable to adversarial CAPTCHAs. Our study show
that adversarial CAPTCHAs can effectively defend against the
attack models which are completely trained by a real dataset,
let alone the model trained by a synthetic dataset. For the fine-
tune process, it is similar to the process of adversarial training

in Section V: using the generated adversarial CAPTCHAs to
retain the original attack model. However, the results from
Table VII in this article show that the adversarial CAPTCHAs
are resilient to adversarial training.

IX. CONCLUSION

In this article, we study the generation of adversarial
CAPTCHAs. First, we propose a framework for generat-
ing text- and image-based adversarial CAPTCHAs. Then,
we design and implement aCAPTCHA, a comprehensive
adversarial CAPTCHA generation and evaluation system,
which integrates 12 IPP techniques, nine CAPTCHA attacks,
four baseline adversarial CAPTCHA generation methods,
and eight new adversarial CAPTCHA generation methods,
and can be used for the generation, security evaluation,
and usability evaluation of adversarial CAPTCHAs. To eval-
uate the performance of aCAPTCHA, we conduct exten-
sive experiments. The results demonstrate that the adversar-
ial CAPTCHAs generated by aCAPTCHA can significantly
improve the security of normal CAPTCHAs while maintain-
ing similar usability. Finally, we open source aCAPTCHA to
facilitate the CAPTCHA security research.
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