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Synopsis   Many biological systems across scales of size and complexity exhibit a time-varying 
complex network structure that emerges and self-organizes as a result of interactions with the 
environment. Network interactions optimize some intrinsic cost functions that are unknown and 
involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks 
exist in biology, from gene regulatory networks important for organismal development, protein 
interaction networks that govern physiology and metabolism, and neural networks that store and 
convey information to networks of microbes that form microbiomes within hosts, animal contact 
networks that underlie social systems, and networks of populations on the landscape connected 
by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify 
biological networks. Similarly, theoretical methods that describe network structure and dynamics 
are being developed. Beyond static networks representing snapshots of biological systems, 
collections of longitudinal data series can help either at defining and characterizing network 
dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, 
due to interactions with the environment and other biological systems, a biological network may 
not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for 
the biological system to cope with for example invaders or new information flows. The confluence 
of these developments renders tractable the question of how the structure of biological networks 
predicts and controls network dynamics. In particular, there may be structural features that result 
in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which 
maintain stability over time through robustness and/or resilience to perturbation. Alternative, 
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plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. 
Here, we explore the opportunity for discovering universal laws connecting the structure of 
biological networks with their function, positioning them on the spectrum of time-evolving network 
structure, i.e. dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If 
such general laws exist, they could transform our ability to predict the response of biological 
systems to perturbations – an increasingly urgent priority in the face of anthropogenic changes to 
the environment that affect life across the gamut of organizational scales.

Introduction

Nature presents us with an overwhelming plenitude of structures, the functions of which are so 
diverse as to suggest descriptive rules pertaining to structural-functional relationships are highly 
specialized. Exclusive to one or another specific domain of biological science, structure manifests 
in genes and development, neural circuits and integration, metabolic pathways and trophic 
interactions, to mention just a few. Here we attempt to address an overarching question: whether 
multifarious descriptions of interactions within defined biological domains find precision and 
unification using a language that identifies commonality of organization across all biological 
domains and scales. In terms of its overall structure and dynamics might each domain present an 
underlying organization that suggests a universal principle of interactive connectivity across its 
components such that, for example, structural and dynamic interactions of elements within a 
defined ecology can be described using the same mathematical rules as those that describe 
structural and dynamic interactions of, for example, a defined part of the brain, or the genomic 
organization of tissue differentiation.

Biological systems can be decomposed into parts – components that combine with other 
components to make up a whole (Simon 1962). When parts interact with other parts of the system 
their interactions are constrained by space, time, information flows (including processing, transfer, 
and storage), and/or function, all of which are influenced by the external environment. Interactions 
are usually modeled with graphs, mathematical constructs that connect points known as vertices 
with lines (Barabasi and Oltvai 2004). Figure 1A describes the anatomy of a network. Vertices 
represent parts of a system and lines represent pairwise interactions between them. For example, 
a graph describing the combination of structural domains in multidomain proteins will connect 
vertices describing structural domains with lines describing the presence of domains in proteins 
(Aziz and Caetano-Anollés 2021). When connections of vertices are undirected, lines fail to point 
in any direction; each connection involves an unordered pair of (end) vertices. These lines are 
called edges. When connections are directed, lines point in one direction; each connection 
involves an ordered pair of vertices (an initial vertex and a terminal vertex). These lines are called 
arcs. Graphs become networks whenever value functions (properties or weights) are mapped 
onto the vertices and lines of the graphs. For consistency, we will call the vertices of the network 
nodes and the lines that connect the vertices the links of the networks.

Some network properties help visualize and study network structure and makeup (Wasserman 
and Faust 1994; Newman 2003). A network can be represented with an adjacency matrix, a 
square matrix used to describe a finite graph, a property that is useful for spectral graph theoretical 
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applications (Figure 1B). The matrix becomes asymmetric when links are directed. Networks can 
be studied with measures of network centrality, by detecting community structure, or by dissecting 
their makeup. Measures of network centrality estimate how a node or link influences the 
connectivity or information flow of the network (Figure 1C). Detecting community structure 
allows to establish groups of nodes that are more connected with themselves than with the rest. 
We will refer to these communities as ‘modules’. A number of hierarchical clustering algorithms 
can efficiently detect these network modules, including the popular Girvan-Newman algorithm 
(Girvan and Newman 2002). Other useful algorithms include those that maximize modularity 
functions, extract information through random walks (e.g. infomap algorithm), use recursive 
percolation methods, or analyze fractal geometric (Xue and Bogdan 2017) and differential 
geometric (Sia et al. 2019) characteristics of complex networks. Finally, compositional patterns 
such as network motifs or network cliques can highlight elemental units of network makeup, which 
can become useful when studying the evolution of function in network structure. However, given 
the intrinsic stochasticity, nonergodicity and continuous interaction with the environment, the 
network motifs can vary over space and time scales, yet they can explain how biological systems 
self-program and self-optimize to achieve the collective goal (e.g., adaptation for maximizing 
survival, energy efficiency, and persistence).

As expected from complex systems, network abstractions in biology are often difficult to 
understand: (i) Complexity: Networks can be structurally complex when their wiring diagrams 
become tangles (e.g. multiple rules govern network responses to environmental perturbations); 
(ii) Connectivity: Links between nodes can have different weights, directions and signs and can 
describe different kinds of interactions (e.g. link communities describing different classes of 
biological functions); (iii) Diversity: Nodes and links can be diverse (e.g. biochemical networks 
that control cell division consist of a variety of substrates and enzymes); (iv) Evolution: The 
structure and dynamics of networks change when they grow and their wiring diagrams unfold in 
time (e.g. effects of canalization on network dynamics); (v) Dynamics: Nodes and links can 
themselves portray non-linear and long-range memory/multifractal dynamic behaviors. The state 
of each node or link can vary in time in complicated ways in order to ensure a common collective 
goal unfolds in a decentralized way.

While complex, diverse and evolving networks can effectively describe how parts are connected 
to each other in natural systems, the correct definition of a biological part becomes central to the 
network modeling exercise. For example, structural domains are considered ‘units’ of protein 
structure that are useful for the taxonomical classification of the world of proteins (Caetano-
Anollés et al. 2009). Domains represent arrangements of elements of secondary structure that 
fold into well-packed and compact structural units of the polypeptide chain. Domains are also 
functional modules. They fold and function largely independently, contribute to overall protein 
stability by establishing a multiplicity of intramolecular interactions, and generally host specific 
molecular functions. More importantly, domains are also evolutionary units. They have been 
shown to be evolutionarily conserved and present in different molecular and functional contexts 
throughout the protein world. However, defining domains in proteins in not a trivial endeavor. 
Advanced machine learning methodologies of structural recognition, such as hidden Markov 
models (HMMs) (Eddy 2004), have been effectively used to catalog domains with automatic and 
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manual curation approaches. However, not all domains fold into discrete structural entities within 
the space of possible folds (Harrison et al. 2002). Some popular domains overlap within a 
continuum. This ‘gregariousness’ makes it difficult to classify the folds of certain domain 
structures, demanding instead the use of super-secondary structural motifs (e.g. -hairpins) as 
lower-level classification tools. These kinds of difficulties make constructing networks difficult 
when ‘units’ cannot be consistently defined or when they ‘skip’ levels of structural organization. 
Luckily, artificial intelligence (AI) algorithms are becoming more powerful and are facilitating the 
classification task. AI systems learn from data and can enhance themselves by learning new 
heuristics or re-write supporting algorithms. These emerging strategies include ensemble learning 
methods such as Bayesian network approaches (e.g. model averaging, optimal classifiers), 
bagging classifiers (e.g. random decision forests), and stacked generalization methods that build 
predictive models by iterative integration (Rokach 2011). The challenge however is to bring an 
evolutionary rationale to computational advances, especially because units must be evolutionary 
for them to make sense in biology. In addition, there is real ‘fuzziness’ in natural systems, which 
goes beyond the experimenter definition of nodes and links. This difficulty needs to be 
appropriately addressed and represents a significant barrier to integrating structure and function 
at different scales. Finally, fuzziness in node definitions may be inherent to the biological scale of 
observation and perhaps can be perturbed and measured. This could bring a measure of 
rationality to the ‘biological parts as units’ problem of constructing networks.       

Network dynamics is also difficult to explore. Network dynamics is made explicit when matter, 
energy, information and time flow through the network structure. These flows can be expressed 
in different ways, including cost, Shannon entropy, time directionality, and higher-order network 
statistics (Xue and Bogdan 2017). These ‘flow networks’ pose important conceptual and 
computational challenges. For example, directed networks, which induce directed connections 
(arcs), also induce input and output connectivity and the formation of internally connected 
subnetworks (cycles) that bias hierarchical structure. Moreover, the directed flows in these 
networks are not only time varying, but also possess multifractal characteristics. For example, the 
dynamics between sets of genes and linked transcription factors in gene regulatory networks 
exhibit fractal and long-range cross-correlated characteristics (Ghorbani et al. 2018). This implies 
that when a biological network is analyzed at two different time scales, its corresponding directed 
flow network can dramatically differ because the system is trying to concurrently process 
information and achieve multiple (rich) functionalities with a potentially reduced/compressed set 
or rules. These cross-correlation exponents characterizing for example the interaction between a 
gene (or more genes) and a transcription factor (or more transcription factors) in gene regulatory 
networks are not unique and could explain the functionality achieved by a network motif or 
subnetwork. Also, the distribution of the cross-correlation exponents of gene regulatory networks 
for several types of cells can be interpreted as a measure of the complexity of their functional 
behavior. Consequently, one can wonder how information processing, transfer and storage 
triggers the emergence of rules that govern the evolution of a time varying network by addition, 
rewiring, and deletion of nodes and links. Within this network dynamics paradigm, when aiming 
to understand and explain biological systems, one also requires mathematical tools to reconstruct 
the network structure while overcoming partial observability and ‘perturbation’ influences from 
other biological systems and environments. Since the interplay of network structure and levels of 
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organization in biology is a crucial endeavor, studying these flow networks can uncover important 
regularities and principles for designing self-programming and self-optimizing synthetic biological 
systems.

Grand challenge

Time varying complex network abstractions provide a comprehensive graph theoretical 
framework with which to describe biological systems across spatiotemporal scales and levels of 
organization (Caetano-Anollés et al. 2019, 2021). One important goal is to develop and rely on 
mathematical models and rigorous algorithmic tools to decipher time varying complex networks 
from heterogeneous biological measurements while overcoming challenges related to partial 
observability and ‘perturbation’ influences (Bogdan 2019; Gupta et al. 2019). Another important 
goal is to mine the spatiotemporal geometry and the higher-order network statistics of time varying 
complex networks in order to find patterns, rules, processes and models of computation (i.e., 
specific concurrent interplay among rules and processes) embedded in the network structure and 
dynamics that would help identify common organizing principles (Mahmoodi et al. 2017; 
Koorehdavoudi and Bogdan 2016; Balaban et al. 2018; Kim et al. 2019). Experimental and 
retrodictive exploration can then test theoretical frameworks and predictions. Advances in 
comparative and evolutionary genomics, physiology, and systems and synthetic biology can help 
address a number of important questions and provide potential solutions to the pluralistic and 
multiscale complexity of biological systems. For example, phylogenomic analyses can help 
uncover how evolution tailors the structure and function of biological networks during billions of 
years of natural history (Aziz et al. 2016; Mughal and Caetano-Anollés 2019; Caetano-Anollés et 
al. 2019; Aziz and Caetano-Anollés 2021).

Objectives

The following objectives illustrate the broad scope of inquiry of our framework:

Finding commonalities in network structure across levels of organization: Simulated and 
real networks at different levels of organization could be compared in search for commonalities in 
their structural makeup and dynamics that could uncover organizing principles. As one example, 
directed networks such as the World Wide Web (WWW) and metabolism show a bow-tie structure, 
in which inputs into a highly connected component result in a number of outputs (Figure 2). 
Depending on the networks, there will be also shunts of connectivity and disconnected 
components that add complexity to the makeup of these networks. Are these properties 
universal? Can they be studied at different levels of organization?

Quantifying characteristics of dynamics on the networks to find commonalities or 
diversities across different types or scale of networks: To find organizing principles governing 
different types of networks across different scales, commonalities in structural and dynamic 
characteristics of the networks should be studied. One of the most distinct dynamical 
characteristics of biological systems is criticality. When a system is perturbed by external inputs, 
the perturbation may be amplified and percolated to the entire system or can have local influence, 
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may manifest over some specific scales, or may vanish after some time. A system for the former 
and the latter is considered in chaotic and stable regime, respectively. Many biological systems 
lie between these two regimes, i.e. near critical point (Daniels et al 2018). In other words, local 
perturbation or signal in the biological networks is preserved in the networks. Is it possible that 
the dynamics of evolving networks may share commonalities or can be characterized into different 
classes?    

Integrating the network system with external information: Systems are not isolated but 
depend on a superseding environment and other systems. This external integration needs to be 
resolved and analyzed. One way to assess integration space is to bind networks with external 
information such as physical or functional constraints and ask how hierarchy, modularity and other 
structural or dynamic properties unfold under those conditions. One interesting line of exploration 
that highlights integration space is the study of Rentian scaling of networks (Bassett et al. 2010; 
Ho and Nvlakha 2018). In the 1960s, IBM scientist E.F. Rent discovered a peculiar scaling 
relationship between the number of logic gates (internal components acting as network nodes) in 
a logical block of a computer circuit (a piece of circuit resembling a network module) and the 
number of circuit connections between circuit blocks (Landman and Russo 1971). This empirical 
relationship followed a power law with an exponent that generally ranged 0.5 < p < 0.8, the Rent’s 
exponent. Circuits with larger logical capacity have higher exponents. Rentian scaling 
relationships are robust for very large-scale integrated circuits and a number of biological 
networks, including neural networks. Are these scaling relationships present in networks that are 
spatially bound to lower degrees such as metabolism or protein-protein interactions networks? 
Since biological systems are not isolated, are we to expect that the effects of integration space 
be pervasive? This poses the additional challenge of analyzing the structure and dynamics of the 
integration space that wires network systems to each other.

Modes of network structure and dynamics: Morphospaces can help dissect network structure 
and dynamics. Morphospaces are phenotypic spaces defined by a limited number of properties 
that account for the most salient features of a system (Niklas et al 1994; Shoval et al. 2012). 
However, there is likely a multidimensional space of significant drivers of network structure and 
dynamics that must be uncovered. Novel deep-learning classification tools should be used to find 
relevant summary descriptors that are meaningful across systems. Networks do exhibit different 
densities, connectivity patterns, modularity levels, hierarchical organization, and granularity, all of 
which could provide characteristics that may be unique to individual levels of organization in 
biology.

Deciphering and unfolding networks in time: Changes of network structure and dynamics can 
be studied along different timeframes and biological scales in a number of fundamental steps. 
The first step concerns the definition of entities (nodes) and connectivities (links), as well as 
rigorous computational and mathematical techniques for identifying them for each biological 
system while considering technological and physics-based limitations (e.g. causal influence 
detection, measuring signaling and Heisenberg uncertainty principle). Once nodes and links are 
defined, the second step consists of carefully analyzing the scarce biological sampling in order to 
construct a history (trajectory) of various interdependent biological networks (e.g., involving the 
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development, physiology, metabolite dynamics, structural dynamics) that unfold over multiple 
time scales (i.e., including manageable timeframes from years to minutes to nanoseconds). For 
example, such time varying networks include those that describe gene expression patterns, 
signaling networks, developmental networks, the photosynthetic light harvesting complexes, food 
webs and neural networks. Moving at higher scales of the hierarchical organization, we need to 
rigorously sample the niches and populations in order to define and predict the history of 
ecological networks, as well as study and control their dynamics. Consequently, we need to 
develop new mathematical and algorithmic techniques capable to using and mining phylogenetic, 
phylogenomic or stratigraphic information in order to reconstruct the history of biological networks 
that describe evolving molecular machinery (e.g., proteome, metabolome, functionomes, 
signaling networks, protein-protein interactions, domain organization) or genes that encode this 
machinery. Most of these networks hold very deep evolutionary history and could provide new 
models of computation that biology could have discovered through evolution and inspire new 
trends in AI computations. A crucial step towards understanding the intelligence and the nature 
of optimization taking place in biology requires the investigation of the structure of evolving 
networks, elucidating the sources, means and goals of specific network properties (including 
scale-freeness, randomicity, modularity, hierarchy, centralities, generalized fractal dimension, 
multifractal connectivities, and network curvature). Within this effort, the modeling of network 
growth and dynamics must be done according to different criteria. For example, one can use a 
‘morphospace’ of networks where modularity, hierarchy and dynamics are made explicit (see 
below) to study simulated and real networks. Moreover, in order to overcome the inherent 
variability and stochasticity of biological systems, one can rely on characterizing the multifractal 
properties for establishing rigorous connections between various time varying network motifs and 
specific rules of life. Another important step towards characterizing the phase transitions of 
biological systems and predicting their future interdependent dynamics requires an accurate 
tracing of their dynamics along evolving networks by defining (biologically relevant) events along 
a timeline or mapping dynamic behavior directly on the evolving networks.  For example, an 
evolving metabolic network that unfolds enzymatic activities on a timescale of billions of years 
was studied using a database that traces evolutionary information onto metabolic network 
structures (https://manet.illinois.edu) and bipartite network approaches that connect different 
levels of molecular organization (Mughal and Caetano-Anollés 2019). To illustrate, the enzymes 
of metabolic pathways can be grouped into ‘subnetworks’ and ‘mesonetworks’ following levels of 
the KEGG database classification (Kanehisa et al. 2004). Subnetworks encompass functionally 
related enzymatic pathways, while mesonetworks pool subnetworks with similar functional 
capabilities. For example, enzymatic pathways of nucleotide interconversion, biosynthesis, 
catabolism and salvage of the subnetworks of ‘purine metabolism’ and ‘pyrimidine metabolism’ 
are grouped into the ‘purine metabolism’ mesonetwork. Figure 3 shows a time series of networks 
describing how enzymes are shared by ‘mesonetworks’. These evolving networks can be used to 
study the recruitment of enzymatic activities in metabolic pathways. Similarly, an evolving network 
that links protein domains to functional loops and defines an ‘elementary functionome’ of protein 
structure was unfolded on a timescale of billions of years (Aziz et al. 2016). This allowed tracking 
the emergence of function in protein domain organization. At completely different timescales, 
physiological processes that are triggered by stress can also be dissected with networks. For 
example, metabolomic networks that describe the connectivity of metabolites on a timescale of 
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hours reveal patterns of bacterial metabolic rewiring (Aziz et al. 2012). In all of these examples, 
hierarchical modularity, multifractal and network curvature appear as emergent properties of 
biological network structures. Why? Is hierarchy, multifractal characteristics and specific network 
curvatures a necessary consequence of the rise of modules in biology and how are those related 
to the functionality and rules of life? Is hierarchy associated with the rise of levels of organization?

Unknown unknowns: Tracing networks in time is not a trivial task since in reality not all biological 
variables can be measured. Due to emerging evolutionary behavior, not all biological variables 
are known from the beginning (but rather discovered as the biological evolution unfolds) or the 
environmental perturbations grow in number, magnitude and complexity (e.g., as a function of 
disappearance of biological species, variations in temperature, humidity, pressure) - these are 
called ‘unknown unknowns’ governing the observed biological dynamics. Consequently, to 
decipher and characterize biological networks over time, we need new mathematical and 
algorithmic tools that would reconstruct networks from partial observations, from various types of 
biological data sources and overcoming interventions. Examples include the use of time series 
data analysis on average sensitivity values of the networks, spike/event time sequences of 
biological activity (excitatory or inhibitory), and time sequences of partially observable 
subnetworks of an unknown time evolving biological network (Xue and Bogdan 2019). Moreover, 
specific critical nodes (e.g., neurons, cells, bacteria) may exhibit long-range memory and multi-
fractal dynamic characteristics in order to cope with external perturbation and enforce a cue or 
rule towards a collective goal. From a mathematical perspective, we require not only more 
accurate causal inference techniques to identify the multiscale interactions across biological 
components, but also algorithms capable of estimating the number of unknown unknowns and 
determining which variables exhibit either a non-Markovian dynamics (i.e., which can be modeled 
through a combination of fractional order derivatives) or a Markovian one (i.e., which can be 
encoded through integer order derivatives) (Bogdan 2019; Gupta et al. 2019). 

Developing the framework

We propose a series of activities to develop our framework:

1. Define entities (nodes) and connectivities (links, arcs) that are appropriate to each biological 
system (see case studies below), while carefully considering drawbacks from the ‘units in 
biology’ problem we discussed above. 

2. Use biological sampling to define the history of biological networks (e.g. development, 
physiology, metabolite dynamics, structural dynamics) that unfold at manageable timeframes 
(years to minutes to nanoseconds). Example networks include networks that describe gene 
expression patterns, signaling networks, developmental networks, food webs and neural 
networks.

3. Sample niches and populations to define the history of ecological networks and study their 
dynamics.

4. Use phylogenomic or stratigraphic information to reconstruct the history of biological 
networks that describe evolving molecular machinery (e.g. proteome, metabolism, 
functionomes, signaling networks, protein-protein interactions, domain organization) or 
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9

genes that encode this machinery. Most of these networks hold very deep evolutionary 
history.

5. Study the structure of evolving networks (scale-freeness, randomicity, modularity, hierarchy, 
centralities, generalized fractal dimension, multifractal connectivities, network curvature).

6. Model network growth and dynamics according to different criteria. For example, use a 
‘morphospace’ of networks where modularity, hierarchy and dynamics are made explicit (see 
below) to study simulated and real networks.

7. Trace dynamics along evolving networks by defining events along a timeline or mapping 
dynamic behavior directly on the evolving networks.

8. Study the mathematical characteristics of the evolving networks (e.g., using time series data 
analysis on average sensitivity values of the networks, spike / event time sequences of 
biological activity (excitatory or inhibitory), time sequences of partially observable 
subnetworks of an unknown time evolving biological network (Xue and Bogdan 2019). For 
instance, specific critical nodes may exhibit long-range memory and multi-fractal dynamic 
characteristics to cope with external perturbation and enforce a cue or rule towards a 
collective goal. 

9. Explore how networks integrate across levels of biological integration. Determine what 
information is lost or gained as networks incorporate information from molecular, cellular, 
organ, organism, population, community, ecosystem levels of biological organization.

How can hierarchy and other forms of network complexity be linked to functionality and the rules 
of life? A useful approach is to define a morphospace of network structure and a morphospace of 
network hierarchy (Figure 4) and compare how model networks generated by simulation 
(satisfying specific properties in terms of multifractality and curvature/hyperbolicity) and real 
networks distribute in structural space. Corominas-Murtra et al. (2013) for example have shown 
that networks across scales exhibit a bow-tie structure that is typical of that found when studying 
the WWW (Broder et al. 2000) or metabolic networks (Ma and Zeng 2003; Kim et al. 2019). Is this 
indeed a generic structure that manifests across scales? To determine when a hierarchical 
network was accurately identified and characterized, we require mathematical and algorithmic 
techniques to investigate the nonconvex free energy landscape associated with the morphospace 
of network hierarchy and determine the model networks that minimize the network free-energy 
candidates. Furthermore, being able to estimate or investigate the scale-dependent free-energy 
landscape from biological data could also help us determine how generic structures and the rules 
by which are generated manifest across spatiotemporal scales. From this perspective, the 
deciphering and understanding of biological systems contributes to the birth of a new branch of 
mathematics at the intersection of multifractal network geometry, statistical physics and 
optimization and potentially lead to new data science, machine learning and AI algorithms.

Drivers of network structure and dynamics at different levels of organization

A multidimensional landscape of drivers or causal relationships are likely responsible for the 
structure and dynamics of biological networks. These drivers can be of different types and most 
likely themselves form a wire diagram of causality. Major categories of drivers include: (a) 
Evolutionary (e.g. life history, adaptation, canalization, recruitment); (b) Matter-Energy (e.g. 
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10

dissipation, budget); (c) Information (e.g. entropic flow, modes); (d) Structural (e.g. energy 
potentials, binding sites); (e) Spatiotemporal (e.g. molecular and structural spaces, temporal flow); 
(f) Trade-off solutions (e.g. economy, flexibility, robustness, plasticity); (g) Perturbation (stress) - 
homeostasis (some networks just developed to evaluate stress only); (h) Ontogeny; (i) Growth 
and development; (j) Ecology; (k) Levels of biological organization; (l) Behavior; and (m) Ontology 
(e.g. the Gene Ontology directed acyclic graph).

The following are examples of systems, from lower to higher levels of organization. They illustrate 
major drivers of network structure and dynamics (in parentheses). These networks are familiar to 
one or more of the authors and involve biological domains immediately suited for analysis using 
the approaches discussed above. 

(i) Protein-protein interaction networks (structural drivers). Protein-protein interaction 
networks (PPINs), with individual proteins as nodes and physical interaction as links, are 
classic subjects of systems biology.  PPINs have been identified for protein families, whole 
proteomes, and even inter-species relationships. Historically, this has been enabled by high-
throughput technologies for data collection for both nodes (transcriptomics and proteomics to 
rapidly define all protein nodes) and links (affinity pulldown - mass spectrometry, yeast two-
hybrid, and other heterologous screens for measuring interaction strength). Modularity 
emerging from PPINs often correspond with specific functions, including transcription, 
nucleosome assembly and hormone signal transduction (Arabidopsis Interactome Mapping 
Consortium 2011). Within functional modules, certain nodes form hubs with high degrees of 
connectivity.  In addition, articulation points that connect across modules were apparent. For 
example, in a recently measured cell surface Interactome for plant leucine-rich repeat 
ectodomains, high degree and articulation nodes are apparent and correspond with known 
co-receptors shared in many different immune receptor complexes (Smakowska-Luzan et al. 
2018). Functional validation of these nodes using genetic knockouts has demonstrated that 
hubs and articulation points have widespread immune phenotypes that affect multiple 
pathways (Figure 5A), in contrast to peripheral nodes only required for specific recognition 
functions. For example, well-studied Somatic Embryogenesis Receptor Kinase (SERK) co-
receptors have been shown to form the highest connectivity in the PPIN of extracellular 
leucine-rich repeat receptors. Inter-species PPINs with factors required for pathogen virulence 
feature links that predominantly connect to host hubs (Muhktar et al. 2011). 

(ii) Cell cycle network (transition-development drivers). The yeast cell cycle represents a well-
studied and important biological system. The network of protein factors that allow the cell to 
progress from one phase to the next is particularly important (Dorsey et al. 2018). The data 
used to make the network are the physical properties of the protein factors. Parameters of 
localization, concentration, dynamics, and interactions are a function of cell size. Nodes are 
cell cycle phases (G1, S, G2, M, cytokinesis) and the links are the events that allow transitions 
from one phase to the next. Each node encompasses a sub-network. Figure 5B describes the 
subnetwork composing the G1-phase node. The changes in this subnetwork with time allow 
for progression from G1 to S phase. Note that: (a) The links are the transitions from one phase 
to the next. Their thickness changes from 0 to 100% probability over time as the interactions 
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11

within the module change. Once the transition occurs they revert back to zero. Reverse 
transitions are not allowed. (b) The stochastic interactions within each module and the 
changes in protein factor copy number with time determine the dynamics of the network. There 
is biological noise due to the stochasticity of the interactions. (c) The outputs are the cell size 
at which each of the transitions occurs. (d) Changes in environment or mutations perturb the 
network. Extension to mammalian cells and cancer demand developing tools for making 
required measurements in less genetically modifiable systems than yeast.

(iii) Organ-level network (perturbation drivers). A perturbation network (stressor – beyond 
homeostasis) describes pathways that converge to steatosis-lipogenesis, and fatty acid 
uptake, efflux and oxidation (Angrish et al 2016; Knapen et al 2018; Villeneuve et al 2018). 
The hepatic steatosis adverse outcome pathway (AOP) network represents a network that 
spans scales, and includes molecular, cellular, organ-level and organismal level responses 
(Figure 5C).  The output of the network is to predict hepatic steatosis. The network is 
structured to represent the receptors within the liver and how activation of these receptors 
intersects and direct processes that when off balance could induce fatty liver disease. The 
modularity of the network is represented by what can be measured in terms of physiological 
parameters (e.g. binding to receptors, and measurements of lipids). The nodes in the network 
are called key events and are largely physiologically derived. The links are downstream effects 
after activation or relationships between key events (metabolome). The strength of 
association of each node is estimated through Bayesian network analyses and this is a feed 
forward network. If sufficient perturbation of this network occurs within a specified amount of 
time, hepatic steatosis will occur. The network exhibits plasticity to a point of departure (at 
each key event), and then proceeds to the next outcome. There will be individual variability 
(each person is different), that could be explained by population identifiers. The network is 
intended to accurately represent and predict how a system will respond to perturbation, even 
if that involves some degree of abstraction, simplification, or implicit embedding of more 
detailed underlying systems understanding (Villeneuve et al 2018).

(iv) Developmental networks (growth and developmental drivers). Gonadal growth of male 
rainbow darter during periods designated as developing, pre-spawning, spawning, post-
spawning and recrudescence, and the transcriptional network that corresponds with each 
stage, changes and is dependent on structure and function (Figure 5D). These data suggest 
that there are distinct transcriptomic fingerprints for testis stages, and this study provides novel 
mechanistic insight into molecular signaling cascades underlying sperm maturation in fish 
(Bahamonde et al 2016). A gene expression network based on microarray data describing 
how the gonad develops demonstrates how the network changes as structure and function 
changes. This particular network is based on one level of organization (the transcriptome) but 
is classified according to the organ level changes. The genes cluster differently at each stage 
of gonadal development.  Since this is microarray data, and not RNA-seq data, some aspects 
of the network could be missed (Bahamonde et al 2016; Basili et al 2018).

(v) Microbiome networks (perturbation drivers). A microbiome is a community of microbes 
(which can include bacterial, protozoal and viral taxa - “virome”) that inhabit a particular 
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organ/tissue of a host (typically an animal or plant) (Berg et al. 2020). Gut microbiomes for 
example are well studied in humans and some animal species, usually focusing on bacterial 
taxa. Next generation sequencing (NGS) technologies enable quantitative descriptions of 
such communities in great detail, including phylogenetic distinctions below the species level 
(in any case, the species concept is rather fraught for microbes), delivering relative 
abundances of thousands of operational taxonomic units (OTUs). These microbial 
communities influence host health and behavior profoundly. This influence takes advantage 
of a range of different mechanisms, which are only beginning to be understood, the ontogeny 
of microbiomes within their hosts, and their dynamics throughout the host’s lifetime. The 
responses of microbiome communities to perturbations, such as antimicrobial agents, 
infections, or changes in host diet are of particular relevance to understanding their impact to 
host health, and harnessing this knowledge for therapeutic use. Microbiome communities are 
well represented as networks of species, characterized by co-occurrence, though typically 
interactions of OTUs are not explicitly measured. Nonetheless, exploring associations 
between microbiome structure and for example robustness vs plasticity over time and under 
different regimes of disturbance/perturbation could be a powerful approach to understand 
patterns of health and disease, across different host species and disease phenotypes, as 
driven by variation in microbiomes.

(vi) Networks of populations (ecology drivers): Natural populations often occur as fragmented 
metapopulations - networks of populations linked by dispersal and migration. Fragmented 
population structure may occur naturally, due to patchy distribution of suitable habitat, such 
as mountaintops, ponds, or in the case of humans and their animals, cities and farms. In 
addition, anthropogenic transformation can alter the structure of population networks, 
increasing or decreasing the movement of organisms among patches (connectivity). For 
example, human traffic can connect populations by translocating organisms, while habitat loss 
can isolate populations in protected areas or climatic refugia. Understanding how changes in 
population network topology affect the resilience / robustness of the component populations 
to environmental change (also: disease spread) is an increasingly urgent priority, as we 
continue to launch inadvertent experiments manipulating landscape connectivity.

Desert bighorn (DBH) sheep present a compelling model system (Buchalski et al. 2016). DBH 
inhabit mountain ranges where higher precipitation and lower temperatures provide higher 
forage quality, and where steep, open terrain allows them to visually locate and avoid 
predators. DBH are thus segregated into relatively independent populations by the naturally 
fragmented distribution of mountainous terrain, creating a metapopulation-like structure in 
which local population sizes range from tens to a few hundred individuals and genetic drift is 
strong but variable. Population extinction and recolonization have been observed, and 
extinction varies with elevation, precipitation, and access to water. 

Desert bighorn networks defined by observed levels of gene flow (Nm) vary in topology, and 
populations within networks vary in centrality (Figure 5E). The Mojave (MOJA) and Death 
Valley (DEVA) networks are similar in size, but populations in the Mojave are more connected 
than in Death Valley. Centrality in the DEVA system is far more polarized, with just two very 
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strongly connected populations contrasting 11 fairly isolated ranges; whereas in the Mojave, 
the gradient in population centrality is much smoother. The Peninsular Range (PENI) network 
is smaller, and has an intermediate number of strongly connected populations compared to 
the MOJA and DEVA networks, with slightly weaker connectivity overall compared to the other 
two networks. Which networks are more resilient to environmental perturbations of different 
types – from climatic variation to invasion of infectious agents?

(vii) Saltmarsh (ecology and perturbation drivers). Ecosystems are complex networks of 
interacting species with various environmental inputs of varying importance and with 
stabilizing feedbacks.  For example, salt marsh ecosystems have existed for millennia more 
or less in equilibrium with sea level, and this has been possible because of negative feedback 
between the higher plants and flooding (Morris et al. 2002). However, the feedback can be 
positive and destabilizing if the rate of sea-level rise is too rapid. Focusing on the negative 
feedback, we know that the plants respond positively with greater net primary production 
(NPP) when sea level rises, provided the relative elevation of the marsh is high.  When NPP 
rises, biogenic soil volume and sediment trapping increase, which raises the elevation of the 
marsh, maintaining equilibrium. The result of these feedbacks is a stable (within bounds) 
system that has been remarkably resilient in the face of rising sea level.

(viii) Networks of the brain (behavior drivers). Simple hierarchical systems of neurons provide 
various levels of network complexity. It is no accident that artificial computational networks 
are referred to as “neural nets.” They resemble connections of nerve cells. However, few 
neuronal connectivities have been reverse-engineered to predictive computational networks. 
An exception is Donald Hebb’s introduction of associative learning networks based on 
synaptic (nodal) strengthening (Herz et al. 1988), which was derived from a simplistic but 
relevant view (in 1949) of hippocampal organization. Hebb postulated that a neuron’s 
propensity to relay information (efficacy) depends on its persistent stimulation by a presynaptic 
drive: when two neurons converge on the neuron and provide coincident inputs these can be 
sufficient to permanently change the efficacy of the postsynaptic cell’s synapse. In other 
words, synaptic strength results from presynaptic association. Hebb’s work immediately 
attracted researchers working on the cortex and hippocampus, both mediating in short and 
long-term memory (e.g. Frolov and Muravév 1993).

We know from descriptions of chordate and invertebrate brains that every functional domain 
is defined by its characteristic network arrangement–patterned synaptic connections amongst 
its constituent neurons, and its connections from and to other domains. Some functional 
domains show close genetic, structural, pathological and functional similarities, which taken 
together imply genealogical correspondence: hence phenotypic and genotypic homology 
implying an origin in deep time before the divergence of lineages leading to vertebrates and 
invertebrates. Currently, the most interesting “real” neural networks are in the most anterior 
region of the brain: the vertebrate basal ganglia and hippocampus; in panarthropods the 
“central complex” and mushroom bodies (Wolff and Strausfeld 2016). Basal ganglia and 
central complexes in common (Strausfeld and Hirth 2013) coordinate motor actions by editing 
outputs by orchestrating systems of inhibitory connections that selectively gate outputs 
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relevant to a required behavior permitting information to reach circuits controlling motor 
neurons to muscle. Genetic deletions, or interventions of dopaminergic modulators in the 
network lead to Parkinson’s-like pathologies in both mouse and fruit fly. Insect mushroom 
bodies and vertebrate hippocampus form long term associations relating to the memory of 
place, experience and sentience.

The “central complex” comprises discrete computational modules supplied by high-level 
sensory inputs (Figure 5F). Modules assess the bilateral weighting of sensory percepts to 
provide appropriate signals to controllers - the inhibitor neurons that gate motor actions. 
Precision of connections across the modules reflects dexterity: invariant precision of a praying 
mantis, but noisy connectivity in a species with moderate dexterity, such as a cockroach. In 
Drosophila, optogenetics and electrophysiology documenting the central body’s role in 
working memory and motor control (Seelig and Jayaraman,2013; Wolff and Rubin, 2018) 
demonstrate that this center is a paradigmatic neural network ready for deeper study using 
mathematical network analysis. Prediction of network activity under precise parameters can 
be compared with experimental data.

Barriers and challenges

The “networks across scales” grand challenge attempts to find common network structures and/or 
common network dynamic behaviors that unify biological systems across levels of organization. 
But how can we find organizing principles that are common across biology when systems range 
from interactions of genes or metabolites to descriptions of entire ecosystems? Such a grand 
objective of finding common organizing principles that span molecular makeup to planetary 
macrostructure is limited by a multitude of barriers that must be overcome. For example, network 
diversity, structure, complexity, metacomplexity, causality, completeness and universality 
complicate knowledge integration.

Diversity: An important barrier is the actual diversity of the nodes and links of networks. This 
diversity must be defined when studying, comparing and/or integrating systems. For example, the 
PPINs of Figure 5A have protein nodes connected by links describing the existence of interactions 
between cell surface proteins. The network of protein factors of the cell cycle of Figure 5B describe 
the interaction of transcription factors and a cycle dependent kinase with promoters of crucial 
genes of the G1 binding and phosphorylation modules. The networks of desert bighorn sheep 
populations of Figure 5E describe how population nodes are connected in different landscapes. 
Connecting interactions of cell surface proteins, cell cycle regulation and spread of genes in sheep 
populations showcase the complexity of trying to integrate three distinct biological systems. These 
interactions could be visualized with a tripartite graph, which is a special case of k-partite graphs. 
This general class of graphs has nodes that can be divided (partitioned or colored) into k disjoint 
sets (partitions or colors) and connections (links) that always connect nodes belonging to different 
sets. Closed k-partite graphs do not impose restrictions of the k-partite structure of connected 
nodes (all sets can connect to each other). Open k-partite graphs do not allow a tightly connected 
structure (circular in the case of tripartite graphs). The use of k-partite structures in network 
biology has been limited. For example, Koç et al. (2018) devised a tripartite network of gene-
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metabolite-pathway connectivity that linked transcriptomes to metabolism using a metabolite-
centric reporter pathway analysis. However, one benefit of k-partite structures is that they can be 
decomposed into simple graphs; open tripartite graphs can be decomposed into one-mode and 
two-mode (bipartite) graph projections to improve visualization. 

Structure: Biological systems are structured. The behavior, interactions and goals of subsets of 
parts may differ from the rest of the system. One kind of structure that is common is the ‘module’. 
Modules are sets of integrated parts that cooperate to perform a task and interact more 
extensively with each other than with other parts or modules of the system (Hartwell et al. 1999). 
Modules are generally defined within structural, functional, and historic contexts. Since many 
networks study how modules organize into systems, the contextual definition of a module poses 
a problem for constructing biological networks. Modules are also at the heart of our understanding 
of robustness, the capacity of a biological entity to persist under the uncertainties of change. Can 
we generate a general theoretical framework for biological modules across spatial, functional and 
temporal scales? Since modularity appears linked to hierarchy in biological systems (reviewed in 
Caetano-Anollés et al. 2019, 2021), what are the evolutionary drivers of hierarchical modularity in 
network structure?

One example at the molecular structure level is the structural domain module of a multi-domain 
protein. The organization of domain modules in proteins, which massively unfolded in a ‘big bang’ 
of domain combination during the rise of multicellularity and the eukaryotic superkingdom, has 
been modeled with a time series of evolving networks (Aziz and Caetano-Anollés 2021). These 
networks unfold both hierarchy and modularity in evolution. They show significant network 
structure.

Structural modules also exist in cellular organization. Together with the “central complex” of the 
brain (Figure 5F), the ‘paired mushroom’ bodies are examples of networks comprising discrete 
modules and interactive nodes. Homologues across phyla represent divergences from an “ground 
pattern” network, originating about 600 million years ago according to “trace” fossils that recorded 
behaviors of the earliest bilateral animals. Mushroom bodies, like the hippocampus, comprise 
orthogonal arrangements of intersecting neurons that comprise a Hebbian-like network. Work on 
learning and memory in the fruitfly Drosophila (Heisenberg, 1993) provides the most accessible 
system for investigating whether Hebbian-type associations apply to real-world biological learning 
networks. Structural studies show the mushroom body’s neurons consisting of orthogonal 
arrangements of local interneurons intersected by converging inputs encoding various types of 
unimodal sensory data organized as would be a massive Hebbian network. Output neurons that 
encode multisensory associations allow the experimenter to “read” functional properties of the 
biological network.
 
Figure 6 schematizes such multisensory associations. Different modalities [e.g. visual from the 
visual centers (ME, LO) or olfactory from the antennal center (AL)] encode high level sensory data 
that can contribute to sensory associations mediated by Hebbian type circuits (panel B) provided 
by thousands of parallel fibers (panel C) that intersect these sensory inputs (Huerta et al.  2014). 
Short term synaptic plasticity is achieved by converging sensory inputs inducing a strengthening 
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(positive - GO) or weakening (negative - NOGO) modification of synaptic sites that signal to output 
neurons. Permanent reinforcement (long term memory) may be established by repetitive 
convergent inputs to the networks leading to suppression or facilitation of circuits contributing to 
the release or suppression of downstream motor actions. A mushroom body comprise hundreds 
of such networks, many of which are clustered together in discrete domains, suggesting hub-like 
organizations of learning modules. While much is known about the physiology of discrete subsets 
of neurons in these centers, what is not known are the rules underlying how these subsets interact 
such that memories interact, achieve contextual valences, and form post hoc memory 
modifications: all functions expected in sentient organisms that obtain an understanding of 
dynamic ecologies. What is recognized from behavioral studies across species is that memories 
are infinitely plastic, even manipulable. Current studies on mushroom bodies are focused on 
‘connectomics’: the total reconstruction of neural network using serial section reconstruction of 
every one of the approximately 2,000 parallel fibers and all their synaptic interactions with 
incoming and outgoing neurons (Eichler et al., 2017). The many terabytes of data representing 
hypercomplex network organization present interesting challenges in interpretation and 
understanding these memory systems in terms of reconstructing functional “real world” 
representations that can explain and indeed imitate sensory associations and memory acquisition.

Complexity: Since systems are structured into highly integrated subsystems (Simon 1962), there 
will be need to integrate networks both across and within scales. For that purpose, we can take 
advantage of Simon’s ‘near-decomposibility’ of systems (Simon 1997), which allows for “long-
term behavior to be studied on an aggregative basis without concern for internal details of the 
parts, and allows the short-term behavior of each part to be studied independently of the behavior 
of the other parts.” In some cases, it may be straightforward to dissect complexity scales because 
each part of the nearly-decomposable system will have strong internal links among its subparts 
(see Figure 5B). In other cases, there could be significant difficulties because hierarchy and 
modularity could be loosely linked in the systems.   

Barriers to describing very complex networks (e.g. ecosystems) can be overcome by analyzing 
the properties of random networks generated in silico and using what we learn to understand real 
networks. FIgure 7A shows an example of a feasible food web generated by populating a transfer 
matrix with transfer coefficients and solving for the equilibrium solution. A network is feasible if 
the solutions are all positive. The methodology is illustrated in Figure 7B.  After the matrix 
dimensions are set, the random inputs (f) and transfer coefficients (A) are generated, and the 
solution to dx/dt=0 is determined. The foodweb is a feasible one if the solution (x’s) are positive. 
We can ask questions about connectivity and total system throughput (TST), stability, ascendency 
(Ulanowicz 1980), fractal dimension, and size. We posit that we can arrive at generalities about 
real networks by analyzing the properties of artificial networks. 

The hope is that we can arrive at generalities about real networks by analyzing the properties of 
artificial networks. From a universe of >5,000 random food webs composed of as many as 2,200 
taxa, it was demonstrated that the probability of generating a feasible network declined rapidly as 
the number of taxa exceeded 400.  Flow diversity increased asymptotically, i.e., flows became 
more uniform (Morris et al. 2005). Ulanowicz (2002) used an information-theoretic homolog of the 
May–Wigner stability criterion to hypothesize a maximal connection per taxon of about 3. From 
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the computer-generated networks, the average number of major flows per taxon (flows greater 
than 5% of the total input flows) was 2.1, similar to those of real food webs and not so different 
from that predicted by the May-Wigner criterion.  The explanation may be the limit imposed by 
gross primary production on energy flow, like the limits that resource space places on the 
distribution of species (MacArthur 1957). These examples suggest there are fundamental 
relationships between network structure and function.

Meta-complexity: Another barrier is the meta-complexity of the systems that must be modeled. 
For example, nodes can represent a variety of entities: objects, agents, relationships, scaffolding, 
events, dynamics, and aggregations. To illustrate, proteins in PPINs can be considered objects 
but also agents. Molecular functions in the direct acyclic graphs of Gene Ontology can be 
considered events. Similarly, links can become structured, revealing complexity in biological 
networks (Ahn et al. 2010). Link communities thus express additional meta-complexity. Can all 
these entities be scale invariant? Would it be possible to develop a common vernacular? If so, 
would there be a way to classify specific node or link identifiers? It is here where epistemology 
and ontology must interface.

Meta-complexity also manifests in the diversity of the functions (e.g. differential equations) that 
are mapped onto nodes and links. Mapping functions to links often define the non-linear dynamic 
behaviors of matter-energy and/or information travelling between nodes through a vector of state 
variables. A diversity of dynamics can therefore unfold in link communities. For example, link 
communities of metabolism could define reversible and irreversible metabolic reactions and 
transport processes. These processes can be dissected with sets of non-linear equations, which 
cannot be solved analytically but can be visualized in an abstract n-dimensional state space with 
a ‘velocity’ vector field. The challenge is therefore to mine steady states of the multidimensional 
space (e.g. fixed-point attractors, chaotic aperiodic motions, close loop attractors) to understand 
the landscape of dynamic behaviors of biological systems.  Boolean networks.     

Causality: Because life requires explaining continuous change and a multitude of overlapping 
processes, a framework of causal explanations has the potential to uncover life’s multilayered 
complexity. We could call these processes ‘activities’ and the temporal ordering of dependencies 
between complexity layers ‘causation.’ Within this philosophical framework, nodes can represent 
the structure and dynamics of immanent entities (events) that span the spatiotemporal confine or 
transcendent entities that are abstract in nature. We can call these nodes “causal relata” and the 
directed links that connect them “causal relations”. Beginning with David Lewis, causal networks 
have been modeled by incorporating probabilistic or Bayesian network approaches and causal 
and counterfactual inference (Pearl 2000). These kinds of approaches are powerful. They are 
currently impacting the emerging AI field. However, effective integration approaches must be 
sought, perhaps using experiments, predictive computational methods, theoretical and 
mathematical approaches, and the exploration of functions and constraints with philosophical 
approaches. One example is modeling causal interdependent non-linear dynamics with 
multivariate discrete dynamical systems (automata networks). In particular, Boolean networks are 
canonical models that have been applied to a number of complex systems very successfully. To 
capture redundancies in system dynamics of biochemical regulatory and signaling interactions, a 
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mathematical framework called the ‘effective graph’ for example was capable of synthesizing both 
network structure and dynamics in a weighted graph representation of discrete multivariate 
systems (Gates et al. 2021).

Completeness: The development of case studies that explore and look for common threads in 
the structure and dynamics of networks could be promising. Commonalities that are predictive for 
example along economy, robustness, flexibility or plasticity axes or within morphospaces could 
be identified and then extended to the study of a broader range of systems. However, the 
methodological problem of ‘gappy’ or incomplete data sets and the issue of ‘snapshots’ 
complicate any endeavor. Following the genomic revolution, biology has been able to define entire 
repertoires of biological entities (e.g. genes, metabolites, fold structures, molecular functions). 
While certain explorations have been comprehensive many others are lagging behind. For 
example, the universe of proteins can be described with a finite set of folds and fold superfamilies 
summarizing the overall 3-dimensional atomic design of structural domains. The SCOP (Murzin 
et al. 1995) and CATH (Orengo et al. 1997) databases, the gold standards of protein classification, 
show that protein folds group into 2,705 SCOP (http://scop.mrc-lmb.cam.ac.uk) and 5,481 CATH 
(https://www.cathdb.info) well-curated superfamilies (as of April 29, 2021). These numbers are 
reaching a plateau, strongly suggesting that most structural designs have been sampled through 
structural genomic efforts. In sharp contrast, the world of species and our understanding of the 
Tree of Life is far from complete (Hug et al. 2016).  Considerable ‘dark matter’ exists at both the 
level of cellular organisms and viruses. These uncertainties raise a number of important 
questions. Are networks biased by the experimental knowledge or focus on individual components 
and are there situations where key nodes are not represented because nobody has really studied 
them? Are there methods that can identify gaps or normalize over emphasized nodes? Another 
methodological problem is the issue of ‘snapshots’. Numerous experimental approaches provide 
single measures within a continuum of change. For example, the crystallographic acquisition of 
3-dimensional atomic structures has been stored in the RCSB Protein Data Bank (PDB) repository 
(https://www.rcsb.org). Currently, there are 177,219 biological macromolecular structures 
available in the database, which has been growing at a significant pace (>10,000 PDB entries per 
year). Despite these significant accomplishments, PDB entries represent conformational 
‘snapshots’ that give little justice to the conformational molecular landscape of proteins and 
nucleic acids. There is now hope that cryogenic electron microscopy (Cryo-EM) may pave the 
way to wide-encompassing conformational views. This example highlights the problems of 
acquisition of longitudinal data that can describe the dynamics of numerous biological processes 
at different timescales. Consequently, there will be a need for analytical tools that can manage 
‘big data’, including longitudinal datasets, and can make use of different data flows in a unified 
methodological framework.

Universality: Finally, there is the problem that not all data types can be modeled with networks. 
This difficulty challenges the concept of networks across biological scales. Simplification must 
occur if information from multiple levels of biological integration are incorporated into a network 
(e.g. hepatic steatosis), or if the network changes over time because of development or evolution, 
and a rigorous evaluation of the assumptions and rules underlying network simplification is 
required. 
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Broader Impacts

Studying biological networks across scales is by definition broad impact in terms of the immediate 
knowledge that it generates from a large-scale study. The practicalities of constraining this to a 
tractable approach include developing new algorithmic techniques to link information, determining 
the influence of different levels of noise on the knowledge produced from that information, and 
evaluating the reliability of that knowledge. While leading to a set of rules, it allows those rules to 
be defined in their applicability and rigor. The approach uses Nature as the data set to define how 
a system works. Where theoretical modeling does not agree with experiment, it helps find signal 
in noise and defines areas where new knowledge is awaiting discovery.

Nature has had a long time to conduct its own system experiments. By studying the nature of how 
those systems develop and interact across different scales, our approach allows a more concrete 
understanding of the impact of perturbations on those systems, whether it be a large-scale shift 
in environment, (e.g. ocean pH, average temperature shifts), advance of an invasive species, or 
small scale such as the extinction of a rare species, or the mutation of an amino acid. This in turn 
sets guidelines to prioritize the response to these changes so that resources can be devoted to 
mitigate influences that cause the maximum impact.

The nature of the study extends beyond biology. Nature can be seen as the ultimate laboratory 
setting to test network and systems performance with the experiment having the ultimate metric 
of success - life or extinction. The results and rules established can be extended to non-biological 
systems, e.g. redundancy in automation, self-organization for transport within a city, response to 
perturbation in a system, transient approaches that activate. It is not too strong to say that this 
could lead to a totally new approach to network and systems science in both the physical world, 
but also in the computational arena. 

Reintegrating biology

To effectively study a network across scales, a network of experts in each of those scales (and 
individual research areas) needs to be created. A common language is needed to link those 
experts and a backbone organization established to ensure that the effort is focused on the 
questions and not the administration. This mirrors the concept of collective impact where a 
common agenda, shared measurement systems, mutually reinforcing activities, continuous 
communication, and a backbone organization, maximize limited resources to produce maximal 
output (Kania and Kramer 2011). By design, formulation around a collective impact model 
reintegrates separate disciplines and expertise into a common goal. 

The common agenda is to establish collaboratives that provide:
 Longitudinal empirical network data across a broad range of biological systems and scales, 

ideally including observational, experimental, computational, and theoretical approaches.
 Analytical expertise to analyze these datasets asking common questions and using common 

tools.
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 Modeling expertise to construct parallel sets of general network dynamic models, putting 
into context and providing generality to the set of empirical studies.

 Space-time for empirical and theoretical project leaders to come together to synthesize 
findings, identifying commonalities and differences across systems.

 Measurable outcomes to test, improve, and verify the approach.

A shared measurement system necessarily requires a shared language across different 
disciplines. There are ontology approaches to this that help understanding of the results but 
guiding the experimental and analysis approach is more difficult. As a scientific endeavor we are 
more used to constructing hypotheses and testing those hypotheses - the scientific method. We 
must ask ourselves which aspects of information need to be retained to link biological scales. For 
example, if we are trying to understand the dynamics of a microbiome community, and/or its 
outputs that affect the host: Is it taxonomic composition that is the most informative, or is it 
transcript or protein products of the microbial community? This could potentially be addressed by 
constructing competing hypotheses (or different networks) that essentially represent the same 
community but using different data flows, and then asking which of the networks presents 
predictable dynamics or best predicts outputs. 

Mutually reinforcing activities are critical. With multiple disciplines involved in a common goal 
those disciplines must communicate to interact. This requires physical interaction (scientific 
meetings), educational interaction (common training), and knowledge interaction (summaries of 
the knowledge produced as it is produced). The resources of the effort must be understandable 
by all, at least at the most basic level of being able to know what they are, how to use them, and 
what to look for in the output. 

Continuous communication is linked to mutually reinforcing activities. For maximum efficiency in 
understanding a network of disparate information across scales and times, communication is 
critical. That includes the free flow of information, the establishment of mutual respect and trust 
between different research thrusts, and transparent output that the interested public can follow to 
understand progress that is being made.

Finally, the most important part is backbone support. This includes a strategic leadership that sets 
the goals and guides the direction, monitoring of progress in meeting goals, provision of resources 
that can help achieve goals, and maintaining the common direction, language, communication, 
and legacy involved in producing and preserving the knowledge produced. Reintegrating biology 
is a necessity to study biological networks across scales.
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Figure legends

Figure 1. A network view of biological systems. A. An anatomical analysis shows that a network N is a 
combination of four sets, a set V of vertices (nodes), a set L of lines (links), and sets of vertex and line value 
functions that are mapped onto the V and L sets, respectively. Each line is associated with a pair of vertices 
(lines are 2-element subsets of V) representing edges or arcs if lines are undirected or directed, 
respectively. Loops are lines with identical endpoints. The illustrated network is a ‘mixed network’ because 
it contains both arcs and edges. B. A network can be represented with an adjacency matrix. The example 
network is undirected (it does not contain arcs). Consequently, its adjacency matrix is symmetric. C. 
Network centralities offer different views of the influence of nodes in a network. Degree centrality estimates 
how well a node is connected to other nodes. The degree of a node (its connections) provides a local view 
of network connectivity. Closeness centrality estimates how easy is for a node to reach other nodes. Finally, 
betweenness centrality estimates how important is a node in terms of its capacity to connect to other nodes. 
It offers a global view of connectivity. Other centralities (not shown) offer views of prestige, how important 
is a node in terms of the importance of its neighbors. Diagram modified from Caetano-Anollés et al. (2020)

Figure 2. The bow-tie hierarchical structure of directed networks. These networks have a giant strongly 
connected component (Gs), giant ‘in’ component (Gin), giant ‘out’ component (Gout), tendrils and tubes (T) 
and disconnected components (D). The number of nodes that are present in these subgraphs are listed (in 
blue) as millions of web resources for the WWW (Broder et al. 2000) and as connected enzymes in the 
metabolic networks of Escherichia coli (Ma and Zeng 2003). Note that metabolism lacks tendrils and tubes.

Figure 3. The sharing of enzymes among mesonetworks at different stages of metabolic evolution. Nodes 
represent mesonetworks: AAC, amino acid metabolism; SEC, biosynthesis of other secondary metabolites; 
CAR, carbohydrate metabolism; NRG, energy metabolism; GLY, glycan biosynthesis and metabolism; LIP, 
lipid metabolism; COF, metabolism of cofactors and vitamins; POL, metabolism of terpenoids and 
polyketides; NUC, nucleotide metabolism; AA2, Metabolism of other amino acids; XEN, xenobiotics 
biodegradation and metabolism. Links represent sharing of enzymes, with weights proportional to their 
numbers. Time of networks is given in billions of years ago (Gya) and was inferred from a molecular clock 
of protein folds (Wang et al. 2011). Note how all mesonetworks (except GLY) are already sharing enzymes 
3.3 Gya, especially AAC. Redrawn from Mughal and Caetano-Anollés (2019).
 
Figure 4. Morphospaces of network structure (A) and hierarchy (B) showing the placement of toy examples 
of typical graphs describing archetypes of the phenotypic landscapes and real networks (metabolic, 
neuronal, and food web networks highlighted with colors). In one morphospace (A), Erdös-Rényi (ER) 
random graphs transform into regular graphs by decreasing randomness or into modular ER graphs by 
increasing modularity. Hierarchical modular structure requires both increasing modularity and heterogeneity 
and decreasing randomness. In another morphospace (B), treeness defines the unification or diversification 
of hierarchical signal in the network, whereas orderability defines the centrality of cycles in network 
structure. Figures redrawn from Solé and Valverde (2004) and Corominas-Murtra et al. (2013).

Figure 5. Example systems visualized with network representations. A. A highly connected protein-protein 
interaction network showing significant interactions between plant leucine-rich repeat receptor ectodomains 
(Smakowska-Luzan et al. 2018).  Subnetworks and nodes with strong and varied connectivity are apparent 
from network analysis. Edges indicate significant interaction between two ectodomains.  Edges are thick 
and red colored in proportion to reported interaction strength. Extracted, yellow-colored nodes highlight 
highly connected SERK proteins known to be genetically required for many plant environmental responses. 
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B. A subnetwork describing the G1-phase node. The transcription factors, SBF and MBF, which control the 
G1/S cell cycle transition in yeast, increase in copy number throughout G1, eventually saturating the G1/S 
target promoters. A feedback phosphorylation loop inactivates Whi5, a repressor if SBF via a cyclin 
dependent kinase ensures a sharp transition (plot in the right). From Dorsey et al. (2018). C. Network 
representation of metabolic disorders mediated by hepatic steatosis. The network was built to predict events 
that lead to hepatic steatosis from high throughput assays. The network topology converged into 4 key 
events (i.e., lipogenesis, and fatty acid uptake, efflux, and oxidation) that were viewed as critical paths 
leading to steatosis. Assays measuring these points of convergence integrate the complex interplay of 
upstream events and translate them into measures that are more directly related to the adverse outcome. 
FA = fatty acid; TAG = triacylglycerol; PI3K = phosphatidylinositol‐3‐kinase; AKT = protein kinase B; 
PPAR = peroxisome proliferator‐activated receptor; LXR = liver X receptor; CAR = constitutive androstane 
receptor; PXR = pregnane X receptor; FXR = farnesoid X receptor; RXR = retinoid X receptor.  From 
Knapen et al. (2018). D. Gene transcriptional networks change as rainbow darter testis undergoes 
development to maturation (Bahamonde et al 2016). E. The Mojave (MOKA), Death Valley (DEVA) and 
Peninsular (PENI) networks vary in network metrics. Nodes in the network represent populations: node size 
and color are proportional to eigenvector centrality. Edge weight is proportional to levels of gene flow (Nm). 
F. The entire sensory surround of the organism is represented in the brain’s “central complex” diagrammed 
here. Projections of columnar neurons originating from the (upper modules W, X, Y and Z provide sub-
modules to the left (L, L8–L1) and right (R, R1–R8) of the midline that provides connections to successive 
computational layers EB. Computations within the PB, FB and EB are relayed to decussating axons 
extending into the lateral centers (LAL), where they gate the activity of premotor neurons (DN). The 
proposition here is that one module represents 1/16th of the sensory envelope.

Figure 6. Models of the mushroom bodies. A. Neuroanatomy: MB Mushroom Bodies; AL Antennal Lobe 
glomeruli (circles); ME & LO visual neuropils. Relevant neural pathways are shown and labelled for 
comparison with the model. B. Reduced model; neuron classes indicated at right and side of sub-figure. C. 
Full model. For explanation see text from Cope et al. (2018).

Figure 7. Generating artificial food webs by in silico modeling. A. Foodweb generated by populating a 
transfer matrix with transfer coefficients and solving for the equilibrium solution. B. Methodology used to 
generate modeled food webs (described in the text).

Page 26 of 33

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article/doi/10.1093/icb/icab069/6281074 by M

BL W
H

O
I Library user on 26 M

ay 2021



 

Figure 1 

Page 27 of 33

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article/doi/10.1093/icb/icab069/6281074 by M

BL W
H

O
I Library user on 26 M

ay 2021



 

Figure 2 

Page 28 of 33

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article/doi/10.1093/icb/icab069/6281074 by M

BL W
H

O
I Library user on 26 M

ay 2021



 

Figure 3 

Page 29 of 33

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article/doi/10.1093/icb/icab069/6281074 by M

BL W
H

O
I Library user on 26 M

ay 2021



 

Figure 4 

Page 30 of 33

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article/doi/10.1093/icb/icab069/6281074 by M

BL W
H

O
I Library user on 26 M

ay 2021



 

Figure 5 

Page 31 of 33

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article/doi/10.1093/icb/icab069/6281074 by M

BL W
H

O
I Library user on 26 M

ay 2021



 

Figure 6 

Page 32 of 33

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article/doi/10.1093/icb/icab069/6281074 by M

BL W
H

O
I Library user on 26 M

ay 2021



 

Figure 7 

Page 33 of 33

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article/doi/10.1093/icb/icab069/6281074 by M

BL W
H

O
I Library user on 26 M

ay 2021




