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Synopsis Many biological systems across scales of size and complexity exhibit a time-varying
complex network structure that emerges and self-organizes as a result of interactions with the
environment. Network interactions optimize some intrinsic cost functions that are unknown and
involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks
exist in biology, from gene regulatory networks important for organismal development, protein
interaction networks that govern physiology and metabolism, and neural networks that store and
convey information to networks of microbes that form microbiomes within hosts, animal contact
networks that underlie social systems, and networks of populations on the landscape connected
by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify
biological networks. Similarly, theoretical methods that describe network structure and dynamics
are being developed. Beyond static networks representing snapshots of biological systems,
collections of longitudinal data series can help either at defining and characterizing network
dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover,
due to interactions with the environment and other biological systems, a biological network may
not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for
the biological system to cope with for example invaders or new information flows. The confluence
of these developments renders tractable the question of how the structure of biological networks
predicts and controls network dynamics. In particular, there may be structural features that result
in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which
maintain stability over time through robustness and/or resilience to perturbation. Alternative,
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plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure.
Here, we explore the opportunity for discovering universal laws connecting the structure of
biological networks with their function, positioning them on the spectrum of time-evolving network
structure, i.e. dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If
such general laws exist, they could transform our ability to predict the response of biological
systems to perturbations — an increasingly urgent priority in the face of anthropogenic changes to
the environment that affect life across the gamut of organizational scales.

Introduction

Nature presents us with an overwhelming plenitude of structures, the functions of which are so
diverse as to suggest descriptive rules pertaining to structural-functional relationships are highly
specialized. Exclusive to one or another specific domain of biological science, structure manifests
in genes and development, neural circuits and integration, metabolic pathways and trophic
interactions, to mention just a few. Here we attempt to address an overarching question: whether
multifarious descriptions of interactions within defined biological domains find precision and
unification using a language that identifies commonality of organization across all biological
domains and scales. In terms of its overall structure and dynamics might each domain present an
underlying organization that suggests a universal principle of interactive connectivity across its
components such that, for example, structural and dynamic interactions of elements within a
defined ecology can be described using the same mathematical rules as those that describe
structural and dynamic interactions of, for example, a defined part of the brain, or the genomic
organization of tissue differentiation.

Biological systems can be decomposed into parts — components that combine with other
components to make up a whole (Simon 1962). When parts interact with other parts of the system
their interactions are constrained by space, time, information flows (including processing, transfer,
and storage), and/or function, all of which are influenced by the external environment. Interactions
are usually modeled with graphs, mathematical constructs that connect points known as vertices
with lines (Barabasi and Oltvai 2004). Figure 1A describes the anatomy of a network. Vertices
represent parts of a system and lines represent pairwise interactions between them. For example,
a graph describing the combination of structural domains in multidomain proteins will connect
vertices describing structural domains with lines describing the presence of domains in proteins
(Aziz and Caetano-Anollés 2021). When connections of vertices are undirected, lines fail to point
in any direction; each connection involves an unordered pair of (end) vertices. These lines are
called edges. When connections are directed, lines point in one direction; each connection
involves an ordered pair of vertices (an initial vertex and a terminal vertex). These lines are called
arcs. Graphs become networks whenever value functions (properties or weights) are mapped
onto the vertices and lines of the graphs. For consistency, we will call the vertices of the network
nodes and the lines that connect the vertices the links of the networks.

Some network properties help visualize and study network structure and makeup (Wasserman
and Faust 1994; Newman 2003). A network can be represented with an adjacency matrix, a
square matrix used to describe a finite graph, a property that is useful for spectral graph theoretical
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applications (Figure 1B). The matrix becomes asymmetric when links are directed. Networks can
be studied with measures of network centrality, by detecting community structure, or by dissecting
their makeup. Measures of network centrality estimate how a node or link influences the
connectivity or information flow of the network (Figure 1C). Detecting community structure
allows to establish groups of nodes that are more connected with themselves than with the rest.
We will refer to these communities as ‘modules’. A number of hierarchical clustering algorithms
can efficiently detect these network modules, including the popular Girvan-Newman algorithm
(Girvan and Newman 2002). Other useful algorithms include those that maximize modularity
functions, extract information through random walks (e.g. infomap algorithm), use recursive
percolation methods, or analyze fractal geometric (Xue and Bogdan 2017) and differential
geometric (Sia et al. 2019) characteristics of complex networks. Finally, compositional patterns
such as network motifs or network cliques can highlight elemental units of network makeup, which
can become useful when studying the evolution of function in network structure. However, given
the intrinsic stochasticity, nonergodicity and continuous interaction with the environment, the
network motifs can vary over space and time scales, yet they can explain how biological systems
self-program and self-optimize to achieve the collective goal (e.g., adaptation for maximizing
survival, energy efficiency, and persistence).

As expected from complex systems, network abstractions in biology are often difficult to
understand: (i) Complexity: Networks can be structurally complex when their wiring diagrams
become tangles (e.g. multiple rules govern network responses to environmental perturbations);
(i) Connectivity: Links between nodes can have different weights, directions and signs and can
describe different kinds of interactions (e.g. link communities describing different classes of
biological functions); (iii) Diversity: Nodes and links can be diverse (e.g. biochemical networks
that control cell division consist of a variety of substrates and enzymes); (iv) Evolution: The
structure and dynamics of networks change when they grow and their wiring diagrams unfold in
time (e.g. effects of canalization on network dynamics); (v) Dynamics: Nodes and links can
themselves portray non-linear and long-range memory/multifractal dynamic behaviors. The state
of each node or link can vary in time in complicated ways in order to ensure a common collective
goal unfolds in a decentralized way.

While complex, diverse and evolving networks can effectively describe how parts are connected
to each other in natural systems, the correct definition of a biological part becomes central to the
network modeling exercise. For example, structural domains are considered ‘units’ of protein
structure that are useful for the taxonomical classification of the world of proteins (Caetano-
Anollés et al. 2009). Domains represent arrangements of elements of secondary structure that
fold into well-packed and compact structural units of the polypeptide chain. Domains are also
functional modules. They fold and function largely independently, contribute to overall protein
stability by establishing a multiplicity of intramolecular interactions, and generally host specific
molecular functions. More importantly, domains are also evolutionary units. They have been
shown to be evolutionarily conserved and present in different molecular and functional contexts
throughout the protein world. However, defining domains in proteins in not a trivial endeavor.
Advanced machine learning methodologies of structural recognition, such as hidden Markov
models (HMMs) (Eddy 2004), have been effectively used to catalog domains with automatic and
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manual curation approaches. However, not all domains fold into discrete structural entities within
the space of possible folds (Harrison et al. 2002). Some popular domains overlap within a
continuum. This ‘gregariousness’ makes it difficult to classify the folds of certain domain
structures, demanding instead the use of super-secondary structural motifs (e.g. B-hairpins) as
lower-level classification tools. These kinds of difficulties make constructing networks difficult
when ‘units’ cannot be consistently defined or when they ‘skip’ levels of structural organization.
Luckily, artificial intelligence (Al) algorithms are becoming more powerful and are facilitating the
classification task. Al systems learn from data and can enhance themselves by learning new
heuristics or re-write supporting algorithms. These emerging strategies include ensemble learning
methods such as Bayesian network approaches (e.g. model averaging, optimal classifiers),
bagging classifiers (e.g. random decision forests), and stacked generalization methods that build
predictive models by iterative integration (Rokach 2011). The challenge however is to bring an
evolutionary rationale to computational advances, especially because units must be evolutionary
for them to make sense in biology. In addition, there is real ‘fuzziness’ in natural systems, which
goes beyond the experimenter definition of nodes and links. This difficulty needs to be
appropriately addressed and represents a significant barrier to integrating structure and function
at different scales. Finally, fuzziness in node definitions may be inherent to the biological scale of
observation and perhaps can be perturbed and measured. This could bring a measure of
rationality to the ‘biological parts as units’ problem of constructing networks.

Network dynamics is also difficult to explore. Network dynamics is made explicit when matter,
energy, information and time flow through the network structure. These flows can be expressed
in different ways, including cost, Shannon entropy, time directionality, and higher-order network
statistics (Xue and Bogdan 2017). These ‘flow networks’ pose important conceptual and
computational challenges. For example, directed networks, which induce directed connections
(arcs), also induce input and output connectivity and the formation of internally connected
subnetworks (cycles) that bias hierarchical structure. Moreover, the directed flows in these
networks are not only time varying, but also possess multifractal characteristics. For example, the
dynamics between sets of genes and linked transcription factors in gene regulatory networks
exhibit fractal and long-range cross-correlated characteristics (Ghorbani et al. 2018). This implies
that when a biological network is analyzed at two different time scales, its corresponding directed
flow network can dramatically differ because the system is trying to concurrently process
information and achieve multiple (rich) functionalities with a potentially reduced/compressed set
or rules. These cross-correlation exponents characterizing for example the interaction between a
gene (or more genes) and a transcription factor (or more transcription factors) in gene regulatory
networks are not unique and could explain the functionality achieved by a network motif or
subnetwork. Also, the distribution of the cross-correlation exponents of gene regulatory networks
for several types of cells can be interpreted as a measure of the complexity of their functional
behavior. Consequently, one can wonder how information processing, transfer and storage
triggers the emergence of rules that govern the evolution of a time varying network by addition,
rewiring, and deletion of nodes and links. Within this network dynamics paradigm, when aiming
to understand and explain biological systems, one also requires mathematical tools to reconstruct
the network structure while overcoming partial observability and ‘perturbation’ influences from
other biological systems and environments. Since the interplay of network structure and levels of
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organization in biology is a crucial endeavor, studying these flow networks can uncover important
regularities and principles for designing self-programming and self-optimizing synthetic biological
systems.

Grand challenge

Time varying complex network abstractions provide a comprehensive graph theoretical
framework with which to describe biological systems across spatiotemporal scales and levels of
organization (Caetano-Anollés et al. 2019, 2021). One important goal is to develop and rely on
mathematical models and rigorous algorithmic tools to decipher time varying complex networks
from heterogeneous biological measurements while overcoming challenges related to partial
observability and ‘perturbation’ influences (Bogdan 2019; Gupta et al. 2019). Another important
goal is to mine the spatiotemporal geometry and the higher-order network statistics of time varying
complex networks in order to find patterns, rules, processes and models of computation (i.e.,
specific concurrent interplay among rules and processes) embedded in the network structure and
dynamics that would help identify common organizing principles (Mahmoodi et al. 2017;
Koorehdavoudi and Bogdan 2016; Balaban et al. 2018; Kim et al. 2019). Experimental and
retrodictive exploration can then test theoretical frameworks and predictions. Advances in
comparative and evolutionary genomics, physiology, and systems and synthetic biology can help
address a number of important questions and provide potential solutions to the pluralistic and
multiscale complexity of biological systems. For example, phylogenomic analyses can help
uncover how evolution tailors the structure and function of biological networks during billions of
years of natural history (Aziz et al. 2016; Mughal and Caetano-Anollés 2019; Caetano-Anollés et
al. 2019; Aziz and Caetano-Anollés 2021).

Objectives
The following objectives illustrate the broad scope of inquiry of our framework:

Finding commonalities in network structure across levels of organization: Simulated and
real networks at different levels of organization could be compared in search for commonalities in
their structural makeup and dynamics that could uncover organizing principles. As one example,
directed networks such as the World Wide Web (WWW) and metabolism show a bow-tie structure,
in which inputs into a highly connected component result in a number of outputs (Figure 2).
Depending on the networks, there will be also shunts of connectivity and disconnected
components that add complexity to the makeup of these networks. Are these properties
universal? Can they be studied at different levels of organization?

Quantifying characteristics of dynamics on the networks to find commonalities or
diversities across different types or scale of networks: To find organizing principles governing
different types of networks across different scales, commonalities in structural and dynamic
characteristics of the networks should be studied. One of the most distinct dynamical
characteristics of biological systems is criticality. When a system is perturbed by external inputs,
the perturbation may be amplified and percolated to the entire system or can have local influence,
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may manifest over some specific scales, or may vanish after some time. A system for the former
and the latter is considered in chaotic and stable regime, respectively. Many biological systems
lie between these two regimes, i.e. near critical point (Daniels et al 2018). In other words, local
perturbation or signal in the biological networks is preserved in the networks. Is it possible that
the dynamics of evolving networks may share commonalities or can be characterized into different
classes?

Integrating the network system with external information: Systems are not isolated but
depend on a superseding environment and other systems. This external integration needs to be
resolved and analyzed. One way to assess integration space is to bind networks with external
information such as physical or functional constraints and ask how hierarchy, modularity and other
structural or dynamic properties unfold under those conditions. One interesting line of exploration
that highlights integration space is the study of Rentian scaling of networks (Bassett et al. 2010;
Ho and Nvlakha 2018). In the 1960s, IBM scientist E.F. Rent discovered a peculiar scaling
relationship between the number of logic gates (internal components acting as network nodes) in
a logical block of a computer circuit (a piece of circuit resembling a network module) and the
number of circuit connections between circuit blocks (Landman and Russo 1971). This empirical
relationship followed a power law with an exponent that generally ranged 0.5 < p < 0.8, the Rent’s
exponent. Circuits with larger logical capacity have higher exponents. Rentian scaling
relationships are robust for very large-scale integrated circuits and a number of biological
networks, including neural networks. Are these scaling relationships present in networks that are
spatially bound to lower degrees such as metabolism or protein-protein interactions networks?
Since biological systems are not isolated, are we to expect that the effects of integration space
be pervasive? This poses the additional challenge of analyzing the structure and dynamics of the
integration space that wires network systems to each other.

Modes of network structure and dynamics: Morphospaces can help dissect network structure
and dynamics. Morphospaces are phenotypic spaces defined by a limited number of properties
that account for the most salient features of a system (Niklas et al 1994; Shoval et al. 2012).
However, there is likely a multidimensional space of significant drivers of network structure and
dynamics that must be uncovered. Novel deep-learning classification tools should be used to find
relevant summary descriptors that are meaningful across systems. Networks do exhibit different
densities, connectivity patterns, modularity levels, hierarchical organization, and granularity, all of
which could provide characteristics that may be unique to individual levels of organization in
biology.

Deciphering and unfolding networks in time: Changes of network structure and dynamics can
be studied along different timeframes and biological scales in a number of fundamental steps.
The first step concerns the definition of entities (nodes) and connectivities (links), as well as
rigorous computational and mathematical techniques for identifying them for each biological
system while considering technological and physics-based limitations (e.g. causal influence
detection, measuring signaling and Heisenberg uncertainty principle). Once nodes and links are
defined, the second step consists of carefully analyzing the scarce biological sampling in order to
construct a history (trajectory) of various interdependent biological networks (e.g., involving the
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development, physiology, metabolite dynamics, structural dynamics) that unfold over multiple
time scales (i.e., including manageable timeframes from years to minutes to nanoseconds). For
example, such time varying networks include those that describe gene expression patterns,
signaling networks, developmental networks, the photosynthetic light harvesting complexes, food
webs and neural networks. Moving at higher scales of the hierarchical organization, we need to
rigorously sample the niches and populations in order to define and predict the history of
ecological networks, as well as study and control their dynamics. Consequently, we need to
develop new mathematical and algorithmic techniques capable to using and mining phylogenetic,
phylogenomic or stratigraphic information in order to reconstruct the history of biological networks
that describe evolving molecular machinery (e.g., proteome, metabolome, functionomes,
signaling networks, protein-protein interactions, domain organization) or genes that encode this
machinery. Most of these networks hold very deep evolutionary history and could provide new
models of computation that biology could have discovered through evolution and inspire new
trends in Al computations. A crucial step towards understanding the intelligence and the nature
of optimization taking place in biology requires the investigation of the structure of evolving
networks, elucidating the sources, means and goals of specific network properties (including
scale-freeness, randomicity, modularity, hierarchy, centralities, generalized fractal dimension,
multifractal connectivities, and network curvature). Within this effort, the modeling of network
growth and dynamics must be done according to different criteria. For example, one can use a
‘morphospace’ of networks where modularity, hierarchy and dynamics are made explicit (see
below) to study simulated and real networks. Moreover, in order to overcome the inherent
variability and stochasticity of biological systems, one can rely on characterizing the multifractal
properties for establishing rigorous connections between various time varying network motifs and
specific rules of life. Another important step towards characterizing the phase transitions of
biological systems and predicting their future interdependent dynamics requires an accurate
tracing of their dynamics along evolving networks by defining (biologically relevant) events along
a timeline or mapping dynamic behavior directly on the evolving networks. For example, an
evolving metabolic network that unfolds enzymatic activities on a timescale of billions of years
was studied using a database that traces evolutionary information onto metabolic network
structures (https://manet.illinois.edu) and bipartite network approaches that connect different
levels of molecular organization (Mughal and Caetano-Anollés 2019). To illustrate, the enzymes
of metabolic pathways can be grouped into ‘subnetworks’ and ‘mesonetworks’ following levels of
the KEGG database classification (Kanehisa et al. 2004). Subnetworks encompass functionally
related enzymatic pathways, while mesonetworks pool subnetworks with similar functional
capabilities. For example, enzymatic pathways of nucleotide interconversion, biosynthesis,
catabolism and salvage of the subnetworks of ‘purine metabolism’ and ‘pyrimidine metabolism’
are grouped into the ‘purine metabolism’ mesonetwork. Figure 3 shows a time series of networks
describing how enzymes are shared by ‘mesonetworks’. These evolving networks can be used to
study the recruitment of enzymatic activities in metabolic pathways. Similarly, an evolving network
that links protein domains to functional loops and defines an ‘elementary functionome’ of protein
structure was unfolded on a timescale of billions of years (Aziz et al. 2016). This allowed tracking
the emergence of function in protein domain organization. At completely different timescales,
physiological processes that are triggered by stress can also be dissected with networks. For
example, metabolomic networks that describe the connectivity of metabolites on a timescale of
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hours reveal patterns of bacterial metabolic rewiring (Aziz et al. 2012). In all of these examples,
hierarchical modularity, multifractal and network curvature appear as emergent properties of
biological network structures. Why? Is hierarchy, multifractal characteristics and specific network
curvatures a necessary consequence of the rise of modules in biology and how are those related
to the functionality and rules of life? Is hierarchy associated with the rise of levels of organization?

Unknown unknowns: Tracing networks in time is not a trivial task since in reality not all biological
variables can be measured. Due to emerging evolutionary behavior, not all biological variables
are known from the beginning (but rather discovered as the biological evolution unfolds) or the
environmental perturbations grow in number, magnitude and complexity (e.g., as a function of
disappearance of biological species, variations in temperature, humidity, pressure) - these are
called ‘unknown unknowns’ governing the observed biological dynamics. Consequently, to
decipher and characterize biological networks over time, we need new mathematical and
algorithmic tools that would reconstruct networks from partial observations, from various types of
biological data sources and overcoming interventions. Examples include the use of time series
data analysis on average sensitivity values of the networks, spike/event time sequences of
biological activity (excitatory or inhibitory), and time sequences of partially observable
subnetworks of an unknown time evolving biological network (Xue and Bogdan 2019). Moreover,
specific critical nodes (e.g., neurons, cells, bacteria) may exhibit long-range memory and multi-
fractal dynamic characteristics in order to cope with external perturbation and enforce a cue or
rule towards a collective goal. From a mathematical perspective, we require not only more
accurate causal inference techniques to identify the multiscale interactions across biological
components, but also algorithms capable of estimating the number of unknown unknowns and
determining which variables exhibit either a non-Markovian dynamics (i.e., which can be modeled
through a combination of fractional order derivatives) or a Markovian one (i.e., which can be
encoded through integer order derivatives) (Bogdan 2019; Gupta et al. 2019).

Developing the framework
We propose a series of activities to develop our framework:

1. Define entities (nodes) and connecitivities (links, arcs) that are appropriate to each biological
system (see case studies below), while carefully considering drawbacks from the ‘units in
biology’ problem we discussed above.

2. Use biological sampling to define the history of biological networks (e.g. development,
physiology, metabolite dynamics, structural dynamics) that unfold at manageable timeframes
(years to minutes to nanoseconds). Example networks include networks that describe gene
expression patterns, signaling networks, developmental networks, food webs and neural
networks.

3. Sample niches and populations to define the history of ecological networks and study their
dynamics.

4. Use phylogenomic or stratigraphic information to reconstruct the history of biological
networks that describe evolving molecular machinery (e.g. proteome, metabolism,
functionomes, signaling networks, protein-protein interactions, domain organization) or
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genes that encode this machinery. Most of these networks hold very deep evolutionary
history.

5. Study the structure of evolving networks (scale-freeness, randomicity, modularity, hierarchy,
centralities, generalized fractal dimension, multifractal connectivities, network curvature).

6. Model network growth and dynamics according to different criteria. For example, use a
‘morphospace’ of networks where modularity, hierarchy and dynamics are made explicit (see
below) to study simulated and real networks.

7. Trace dynamics along evolving networks by defining events along a timeline or mapping
dynamic behavior directly on the evolving networks.

8. Study the mathematical characteristics of the evolving networks (e.g., using time series data
analysis on average sensitivity values of the networks, spike / event time sequences of
biological activity (excitatory or inhibitory), time sequences of partially observable
subnetworks of an unknown time evolving biological network (Xue and Bogdan 2019). For
instance, specific critical nodes may exhibit long-range memory and multi-fractal dynamic
characteristics to cope with external perturbation and enforce a cue or rule towards a
collective goal.

9. Explore how networks integrate across levels of biological integration. Determine what
information is lost or gained as networks incorporate information from molecular, cellular,
organ, organism, population, community, ecosystem levels of biological organization.

How can hierarchy and other forms of network complexity be linked to functionality and the rules
of life? A useful approach is to define a morphospace of network structure and a morphospace of
network hierarchy (Figure 4) and compare how model networks generated by simulation
(satisfying specific properties in terms of multifractality and curvature/hyperbolicity) and real
networks distribute in structural space. Corominas-Murtra et al. (2013) for example have shown
that networks across scales exhibit a bow-tie structure that is typical of that found when studying
the WWW (Broder et al. 2000) or metabolic networks (Ma and Zeng 2003; Kim et al. 2019). Is this
indeed a generic structure that manifests across scales? To determine when a hierarchical
network was accurately identified and characterized, we require mathematical and algorithmic
techniques to investigate the nonconvex free energy landscape associated with the morphospace
of network hierarchy and determine the model networks that minimize the network free-energy
candidates. Furthermore, being able to estimate or investigate the scale-dependent free-energy
landscape from biological data could also help us determine how generic structures and the rules
by which are generated manifest across spatiotemporal scales. From this perspective, the
deciphering and understanding of biological systems contributes to the birth of a new branch of
mathematics at the intersection of multifractal network geometry, statistical physics and
optimization and potentially lead to new data science, machine learning and Al algorithms.

Drivers of network structure and dynamics at different levels of organization

A multidimensional landscape of drivers or causal relationships are likely responsible for the
structure and dynamics of biological networks. These drivers can be of different types and most
likely themselves form a wire diagram of causality. Major categories of drivers include: (a)
Evolutionary (e.g. life history, adaptation, canalization, recruitment); (b) Matter-Energy (e.g.

http://mc.manuscriptcentral.com/icbiol

120z A 9 uo Jasn Aleldi IOHM T9IN A9 £201829/6900€91/G01/E60 "0 L/10P/2|01E-90UBAPE/GOl/W0D dNO"dIWBPEO.//:SARY WOl) POPEOIUMOQ



oNOYTULT D WN =

Manuscripts submitted to Integrative and Comparative Biology

dissipation, budget); (c) Information (e.g. entropic flow, modes); (d) Structural (e.g. energy
potentials, binding sites); (e) Spatiotemporal (e.g. molecular and structural spaces, temporal flow);
(f) Trade-off solutions (e.g. economy, flexibility, robustness, plasticity); (g) Perturbation (stress) -
homeostasis (some networks just developed to evaluate stress only); (h) Ontogeny; (i) Growth
and development; (j) Ecology; (k) Levels of biological organization; (I) Behavior; and (m) Ontology
(e.g. the Gene Ontology directed acyclic graph).

The following are examples of systems, from lower to higher levels of organization. They illustrate
major drivers of network structure and dynamics (in parentheses). These networks are familiar to
one or more of the authors and involve biological domains immediately suited for analysis using
the approaches discussed above.

(i) Protein-protein interaction networks (structural drivers). Protein-protein interaction
networks (PPINs), with individual proteins as nodes and physical interaction as links, are
classic subjects of systems biology. PPINs have been identified for protein families, whole
proteomes, and even inter-species relationships. Historically, this has been enabled by high-
throughput technologies for data collection for both nodes (transcriptomics and proteomics to
rapidly define all protein nodes) and links (affinity pulldown - mass spectrometry, yeast two-
hybrid, and other heterologous screens for measuring interaction strength). Modularity
emerging from PPINs often correspond with specific functions, including transcription,
nucleosome assembly and hormone signal transduction (Arabidopsis Interactome Mapping
Consortium 2011). Within functional modules, certain nodes form hubs with high degrees of
connectivity. In addition, articulation points that connect across modules were apparent. For
example, in a recently measured cell surface Interactome for plant leucine-rich repeat
ectodomains, high degree and articulation nodes are apparent and correspond with known
co-receptors shared in many different immune receptor complexes (Smakowska-Luzan et al.
2018). Functional validation of these nodes using genetic knockouts has demonstrated that
hubs and articulation points have widespread immune phenotypes that affect multiple
pathways (Figure 5A), in contrast to peripheral nodes only required for specific recognition
functions. For example, well-studied Somatic Embryogenesis Receptor Kinase (SERK) co-
receptors have been shown to form the highest connectivity in the PPIN of extracellular
leucine-rich repeat receptors. Inter-species PPINs with factors required for pathogen virulence
feature links that predominantly connect to host hubs (Muhktar et al. 2011).

(ii) Cell cycle network (transition-development drivers). The yeast cell cycle represents a well-
studied and important biological system. The network of protein factors that allow the cell to
progress from one phase to the next is particularly important (Dorsey et al. 2018). The data
used to make the network are the physical properties of the protein factors. Parameters of
localization, concentration, dynamics, and interactions are a function of cell size. Nodes are
cell cycle phases (G1, S, G2, M, cytokinesis) and the links are the events that allow transitions
from one phase to the next. Each node encompasses a sub-network. Figure 5B describes the
subnetwork composing the G1-phase node. The changes in this subnetwork with time allow
for progression from G1 to S phase. Note that: (a) The links are the transitions from one phase
to the next. Their thickness changes from 0 to 100% probability over time as the interactions
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within the module change. Once the transition occurs they revert back to zero. Reverse
transitions are not allowed. (b) The stochastic interactions within each module and the
changes in protein factor copy number with time determine the dynamics of the network. There
is biological noise due to the stochasticity of the interactions. (c) The outputs are the cell size
at which each of the transitions occurs. (d) Changes in environment or mutations perturb the
network. Extension to mammalian cells and cancer demand developing tools for making
required measurements in less genetically modifiable systems than yeast.

(iii) Organ-level network (perturbation drivers). A perturbation network (stressor — beyond
homeostasis) describes pathways that converge to steatosis-lipogenesis, and fatty acid
uptake, efflux and oxidation (Angrish et al 2016; Knapen et al 2018; Villeneuve et al 2018).
The hepatic steatosis adverse outcome pathway (AOP) network represents a network that
spans scales, and includes molecular, cellular, organ-level and organismal level responses
(Figure 5C). The output of the network is to predict hepatic steatosis. The network is
structured to represent the receptors within the liver and how activation of these receptors
intersects and direct processes that when off balance could induce fatty liver disease. The
modularity of the network is represented by what can be measured in terms of physiological
parameters (e.g. binding to receptors, and measurements of lipids). The nodes in the network
are called key events and are largely physiologically derived. The links are downstream effects
after activation or relationships between key events (metabolome). The strength of
association of each node is estimated through Bayesian network analyses and this is a feed
forward network. If sufficient perturbation of this network occurs within a specified amount of
time, hepatic steatosis will occur. The network exhibits plasticity to a point of departure (at
each key event), and then proceeds to the next outcome. There will be individual variability
(each person is different), that could be explained by population identifiers. The network is
intended to accurately represent and predict how a system will respond to perturbation, even
if that involves some degree of abstraction, simplification, or implicit embedding of more
detailed underlying systems understanding (Villeneuve et al 2018).

(iv) Developmental networks (growth and developmental drivers). Gonadal growth of male
rainbow darter during periods designated as developing, pre-spawning, spawning, post-
spawning and recrudescence, and the transcriptional network that corresponds with each
stage, changes and is dependent on structure and function (Figure 5D). These data suggest
that there are distinct transcriptomic fingerprints for testis stages, and this study provides novel
mechanistic insight into molecular signaling cascades underlying sperm maturation in fish
(Bahamonde et al 2016). A gene expression network based on microarray data describing
how the gonad develops demonstrates how the network changes as structure and function
changes. This particular network is based on one level of organization (the transcriptome) but
is classified according to the organ level changes. The genes cluster differently at each stage
of gonadal development. Since this is microarray data, and not RNA-seq data, some aspects
of the network could be missed (Bahamonde et al 2016; Basili et al 2018).

(v) Microbiome networks (perturbation drivers). A microbiome is a community of microbes
(which can include bacterial, protozoal and viral taxa - “virome”) that inhabit a particular
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organ/tissue of a host (typically an animal or plant) (Berg et al. 2020). Gut microbiomes for
example are well studied in humans and some animal species, usually focusing on bacterial
taxa. Next generation sequencing (NGS) technologies enable quantitative descriptions of
such communities in great detail, including phylogenetic distinctions below the species level
(in any case, the species concept is rather fraught for microbes), delivering relative
abundances of thousands of operational taxonomic units (OTUs). These microbial
communities influence host health and behavior profoundly. This influence takes advantage
of a range of different mechanisms, which are only beginning to be understood, the ontogeny
of microbiomes within their hosts, and their dynamics throughout the host’s lifetime. The
responses of microbiome communities to perturbations, such as antimicrobial agents,
infections, or changes in host diet are of particular relevance to understanding their impact to
host health, and harnessing this knowledge for therapeutic use. Microbiome communities are
well represented as networks of species, characterized by co-occurrence, though typically
interactions of OTUs are not explicitly measured. Nonetheless, exploring associations
between microbiome structure and for example robustness vs plasticity over time and under
different regimes of disturbance/perturbation could be a powerful approach to understand
patterns of health and disease, across different host species and disease phenotypes, as
driven by variation in microbiomes.

(vi) Networks of populations (ecology drivers): Natural populations often occur as fragmented
metapopulations - networks of populations linked by dispersal and migration. Fragmented
population structure may occur naturally, due to patchy distribution of suitable habitat, such
as mountaintops, ponds, or in the case of humans and their animals, cities and farms. In
addition, anthropogenic transformation can alter the structure of population networks,
increasing or decreasing the movement of organisms among patches (connectivity). For
example, human traffic can connect populations by translocating organisms, while habitat loss
can isolate populations in protected areas or climatic refugia. Understanding how changes in
population network topology affect the resilience / robustness of the component populations
to environmental change (also: disease spread) is an increasingly urgent priority, as we
continue to launch inadvertent experiments manipulating landscape connectivity.

Desert bighorn (DBH) sheep present a compelling model system (Buchalski et al. 2016). DBH
inhabit mountain ranges where higher precipitation and lower temperatures provide higher
forage quality, and where steep, open terrain allows them to visually locate and avoid
predators. DBH are thus segregated into relatively independent populations by the naturally
fragmented distribution of mountainous terrain, creating a metapopulation-like structure in
which local population sizes range from tens to a few hundred individuals and genetic drift is
strong but variable. Population extinction and recolonization have been observed, and
extinction varies with elevation, precipitation, and access to water.

Desert bighorn networks defined by observed levels of gene flow (Nm) vary in topology, and
populations within networks vary in centrality (Figure 5E). The Mojave (MOJA) and Death
Valley (DEVA) networks are similar in size, but populations in the Mojave are more connected
than in Death Valley. Centrality in the DEVA system is far more polarized, with just two very
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strongly connected populations contrasting 11 fairly isolated ranges; whereas in the Mojave,
the gradient in population centrality is much smoother. The Peninsular Range (PENI) network
is smaller, and has an intermediate number of strongly connected populations compared to
the MOJA and DEVA networks, with slightly weaker connectivity overall compared to the other
two networks. Which networks are more resilient to environmental perturbations of different
types — from climatic variation to invasion of infectious agents?

(vii) Saltmarsh (ecology and perturbation drivers). Ecosystems are complex networks of
interacting species with various environmental inputs of varying importance and with
stabilizing feedbacks. For example, salt marsh ecosystems have existed for millennia more
or less in equilibrium with sea level, and this has been possible because of negative feedback
between the higher plants and flooding (Morris et al. 2002). However, the feedback can be
positive and destabilizing if the rate of sea-level rise is too rapid. Focusing on the negative
feedback, we know that the plants respond positively with greater net primary production
(NPP) when sea level rises, provided the relative elevation of the marsh is high. When NPP
rises, biogenic soil volume and sediment trapping increase, which raises the elevation of the
marsh, maintaining equilibrium. The result of these feedbacks is a stable (within bounds)
system that has been remarkably resilient in the face of rising sea level.

(viii) Networks of the brain (behavior drivers). Simple hierarchical systems of neurons provide
various levels of network complexity. It is no accident that artificial computational networks
are referred to as “neural nets.” They resemble connections of nerve cells. However, few
neuronal connectivities have been reverse-engineered to predictive computational networks.
An exception is Donald Hebb’s introduction of associative learning networks based on
synaptic (nodal) strengthening (Herz et al. 1988), which was derived from a simplistic but
relevant view (in 1949) of hippocampal organization. Hebb postulated that a neuron’s
propensity to relay information (efficacy) depends on its persistent stimulation by a presynaptic
drive: when two neurons converge on the neuron and provide coincident inputs these can be
sufficient to permanently change the efficacy of the postsynaptic cell’'s synapse. In other
words, synaptic strength results from presynaptic association. Hebb’s work immediately
attracted researchers working on the cortex and hippocampus, both mediating in short and
long-term memory (e.g. Frolov and Muravév 1993).

We know from descriptions of chordate and invertebrate brains that every functional domain
is defined by its characteristic network arrangement—patterned synaptic connections amongst
its constituent neurons, and its connections from and to other domains. Some functional
domains show close genetic, structural, pathological and functional similarities, which taken
together imply genealogical correspondence: hence phenotypic and genotypic homology
implying an origin in deep time before the divergence of lineages leading to vertebrates and
invertebrates. Currently, the most interesting “real” neural networks are in the most anterior
region of the brain: the vertebrate basal ganglia and hippocampus; in panarthropods the
“central complex” and mushroom bodies (Wolff and Strausfeld 2016). Basal ganglia and
central complexes in common (Strausfeld and Hirth 2013) coordinate motor actions by editing
outputs by orchestrating systems of inhibitory connections that selectively gate outputs
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relevant to a required behavior permitting information to reach circuits controlling motor
neurons to muscle. Genetic deletions, or interventions of dopaminergic modulators in the
network lead to Parkinson’s-like pathologies in both mouse and fruit fly. Insect mushroom
bodies and vertebrate hippocampus form long term associations relating to the memory of
place, experience and sentience.

The “central complex” comprises discrete computational modules supplied by high-level
sensory inputs (Figure 5F). Modules assess the bilateral weighting of sensory percepts to
provide appropriate signals to controllers - the inhibitor neurons that gate motor actions.
Precision of connections across the modules reflects dexterity: invariant precision of a praying
mantis, but noisy connectivity in a species with moderate dexterity, such as a cockroach. In
Drosophila, optogenetics and electrophysiology documenting the central body’s role in
working memory and motor control (Seelig and Jayaraman,2013; Wolff and Rubin, 2018)
demonstrate that this center is a paradigmatic neural network ready for deeper study using
mathematical network analysis. Prediction of network activity under precise parameters can
be compared with experimental data.

Barriers and challenges

The “networks across scales” grand challenge attempts to find common network structures and/or
common network dynamic behaviors that unify biological systems across levels of organization.
But how can we find organizing principles that are common across biology when systems range
from interactions of genes or metabolites to descriptions of entire ecosystems? Such a grand
objective of finding common organizing principles that span molecular makeup to planetary
macrostructure is limited by a multitude of barriers that must be overcome. For example, network
diversity, structure, complexity, metacomplexity, causality, completeness and universality
complicate knowledge integration.

Diversity: An important barrier is the actual diversity of the nodes and links of networks. This
diversity must be defined when studying, comparing and/or integrating systems. For example, the
PPINs of Figure 5A have protein nodes connected by links describing the existence of interactions
between cell surface proteins. The network of protein factors of the cell cycle of Figure 5B describe
the interaction of transcription factors and a cycle dependent kinase with promoters of crucial
genes of the G1 binding and phosphorylation modules. The networks of desert bighorn sheep
populations of Figure 5E describe how population nodes are connected in different landscapes.
Connecting interactions of cell surface proteins, cell cycle regulation and spread of genes in sheep
populations showcase the complexity of trying to integrate three distinct biological systems. These
interactions could be visualized with a tripartite graph, which is a special case of k-partite graphs.
This general class of graphs has nodes that can be divided (partitioned or colored) into k disjoint
sets (partitions or colors) and connections (links) that always connect nodes belonging to different
sets. Closed k-partite graphs do not impose restrictions of the k-partite structure of connected
nodes (all sets can connect to each other). Open k-partite graphs do not allow a tightly connected
structure (circular in the case of tripartite graphs). The use of k-partite structures in network
biology has been limited. For example, Kog et al. (2018) devised a tripartite network of gene-

http://mc.manuscriptcentral.com/icbiol

Page 14 of 33

120z A 9 uo Jasn Aleldi IOHM T9IN A9 £201829/6900€91/G01/E60 "0 L/10P/2|01E-90UBAPE/GOl/W0D dNO"dIWBPEO.//:SARY WOl) POPEOIUMOQ



Page 15 of 33

oNOYTULT D WN =

Manuscripts submitted to Integrative and Comparative Biology

metabolite-pathway connectivity that linked transcriptomes to metabolism using a metabolite-
centric reporter pathway analysis. However, one benefit of k-partite structures is that they can be
decomposed into simple graphs; open tripartite graphs can be decomposed into one-mode and
two-mode (bipartite) graph projections to improve visualization.

Structure: Biological systems are structured. The behavior, interactions and goals of subsets of
parts may differ from the rest of the system. One kind of structure that is common is the ‘module’.
Modules are sets of integrated parts that cooperate to perform a task and interact more
extensively with each other than with other parts or modules of the system (Hartwell et al. 1999).
Modules are generally defined within structural, functional, and historic contexts. Since many
networks study how modules organize into systems, the contextual definition of a module poses
a problem for constructing biological networks. Modules are also at the heart of our understanding
of robustness, the capacity of a biological entity to persist under the uncertainties of change. Can
we generate a general theoretical framework for biological modules across spatial, functional and
temporal scales? Since modularity appears linked to hierarchy in biological systems (reviewed in
Caetano-Anollés et al. 2019, 2021), what are the evolutionary drivers of hierarchical modularity in
network structure?

One example at the molecular structure level is the structural domain module of a multi-domain
protein. The organization of domain modules in proteins, which massively unfolded in a ‘big bang’
of domain combination during the rise of multicellularity and the eukaryotic superkingdom, has
been modeled with a time series of evolving networks (Aziz and Caetano-Anollés 2021). These
networks unfold both hierarchy and modularity in evolution. They show significant network
structure.

Structural modules also exist in cellular organization. Together with the “central complex” of the
brain (Figure 5F), the ‘paired mushroom’ bodies are examples of networks comprising discrete
modules and interactive nodes. Homologues across phyla represent divergences from an “ground
pattern” network, originating about 600 million years ago according to “trace” fossils that recorded
behaviors of the earliest bilateral animals. Mushroom bodies, like the hippocampus, comprise
orthogonal arrangements of intersecting neurons that comprise a Hebbian-like network. Work on
learning and memory in the fruitfly Drosophila (Heisenberg, 1993) provides the most accessible
system for investigating whether Hebbian-type associations apply to real-world biological learning
networks. Structural studies show the mushroom body’s neurons consisting of orthogonal
arrangements of local interneurons intersected by converging inputs encoding various types of
unimodal sensory data organized as would be a massive Hebbian network. Output neurons that
encode multisensory associations allow the experimenter to “read” functional properties of the
biological network.

Figure 6 schematizes such multisensory associations. Different modalities [e.g. visual from the
visual centers (ME, LO) or olfactory from the antennal center (AL)] encode high level sensory data
that can contribute to sensory associations mediated by Hebbian type circuits (panel B) provided
by thousands of parallel fibers (panel C) that intersect these sensory inputs (Huerta et al. 2014).
Short term synaptic plasticity is achieved by converging sensory inputs inducing a strengthening
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(positive - GO) or weakening (negative - NOGO) modification of synaptic sites that signal to output
neurons. Permanent reinforcement (long term memory) may be established by repetitive
convergent inputs to the networks leading to suppression or facilitation of circuits contributing to
the release or suppression of downstream motor actions. A mushroom body comprise hundreds
of such networks, many of which are clustered together in discrete domains, suggesting hub-like
organizations of learning modules. While much is known about the physiology of discrete subsets
of neurons in these centers, what is not known are the rules underlying how these subsets interact
such that memories interact, achieve contextual valences, and form post hoc memory
modifications: all functions expected in sentient organisms that obtain an understanding of
dynamic ecologies. What is recognized from behavioral studies across species is that memories
are infinitely plastic, even manipulable. Current studies on mushroom bodies are focused on
‘connectomics’: the total reconstruction of neural network using serial section reconstruction of
every one of the approximately 2,000 parallel fibers and all their synaptic interactions with
incoming and outgoing neurons (Eichler et al., 2017). The many terabytes of data representing
hypercomplex network organization present interesting challenges in interpretation and
understanding these memory systems in terms of reconstructing functional “real world”
representations that can explain and indeed imitate sensory associations and memory acquisition.

Complexity: Since systems are structured into highly integrated subsystems (Simon 1962), there
will be need to integrate networks both across and within scales. For that purpose, we can take
advantage of Simon’s ‘near-decomposibility’ of systems (Simon 1997), which allows for “long-
term behavior to be studied on an aggregative basis without concern for internal details of the
parts, and allows the short-term behavior of each part to be studied independently of the behavior
of the other parts.” In some cases, it may be straightforward to dissect complexity scales because
each part of the nearly-decomposable system will have strong internal links among its subparts
(see Figure 5B). In other cases, there could be significant difficulties because hierarchy and
modularity could be loosely linked in the systems.

Barriers to describing very complex networks (e.g. ecosystems) can be overcome by analyzing
the properties of random networks generated in silico and using what we learn to understand real
networks. Flgure 7A shows an example of a feasible food web generated by populating a transfer
matrix with transfer coefficients and solving for the equilibrium solution. A network is feasible if
the solutions are all positive. The methodology is illustrated in Figure 7B. After the matrix
dimensions are set, the random inputs (f) and transfer coefficients (A) are generated, and the
solution to dx/dt=0 is determined. The foodweb is a feasible one if the solution (x’s) are positive.
We can ask questions about connectivity and total system throughput (TST), stability, ascendency
(Ulanowicz 1980), fractal dimension, and size. We posit that we can arrive at generalities about
real networks by analyzing the properties of artificial networks.

The hope is that we can arrive at generalities about real networks by analyzing the properties of
artificial networks. From a universe of >5,000 random food webs composed of as many as 2,200
taxa, it was demonstrated that the probability of generating a feasible network declined rapidly as
the number of taxa exceeded 400. Flow diversity increased asymptotically, i.e., flows became
more uniform (Morris et al. 2005). Ulanowicz (2002) used an information-theoretic homolog of the
May—Wigner stability criterion to hypothesize a maximal connection per taxon of about 3. From
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the computer-generated networks, the average number of major flows per taxon (flows greater
than 5% of the total input flows) was 2.1, similar to those of real food webs and not so different
from that predicted by the May-Wigner criterion. The explanation may be the limit imposed by
gross primary production on energy flow, like the limits that resource space places on the
distribution of species (MacArthur 1957). These examples suggest there are fundamental
relationships between network structure and function.

Meta-complexity: Another barrier is the meta-complexity of the systems that must be modeled.
For example, nodes can represent a variety of entities: objects, agents, relationships, scaffolding,
events, dynamics, and aggregations. To illustrate, proteins in PPINs can be considered objects
but also agents. Molecular functions in the direct acyclic graphs of Gene Ontology can be
considered events. Similarly, links can become structured, revealing complexity in biological
networks (Ahn et al. 2010). Link communities thus express additional meta-complexity. Can all
these entities be scale invariant? Would it be possible to develop a common vernacular? If so,
would there be a way to classify specific node or link identifiers? It is here where epistemology
and ontology must interface.

Meta-complexity also manifests in the diversity of the functions (e.g. differential equations) that
are mapped onto nodes and links. Mapping functions to links often define the non-linear dynamic
behaviors of matter-energy and/or information travelling between nodes through a vector of state
variables. A diversity of dynamics can therefore unfold in link communities. For example, link
communities of metabolism could define reversible and irreversible metabolic reactions and
transport processes. These processes can be dissected with sets of non-linear equations, which
cannot be solved analytically but can be visualized in an abstract n-dimensional state space with
a ‘velocity’ vector field. The challenge is therefore to mine steady states of the multidimensional
space (e.g. fixed-point attractors, chaotic aperiodic motions, close loop attractors) to understand
the landscape of dynamic behaviors of biological systems. Boolean networks.

Causality: Because life requires explaining continuous change and a multitude of overlapping
processes, a framework of causal explanations has the potential to uncover life’s multilayered
complexity. We could call these processes ‘activities’ and the temporal ordering of dependencies
between complexity layers ‘causation.” Within this philosophical framework, nodes can represent
the structure and dynamics of immanent entities (events) that span the spatiotemporal confine or
transcendent entities that are abstract in nature. We can call these nodes “causal relata” and the
directed links that connect them “causal relations”. Beginning with David Lewis, causal networks
have been modeled by incorporating probabilistic or Bayesian network approaches and causal
and counterfactual inference (Pearl 2000). These kinds of approaches are powerful. They are
currently impacting the emerging Al field. However, effective integration approaches must be
sought, perhaps using experiments, predictive computational methods, theoretical and
mathematical approaches, and the exploration of functions and constraints with philosophical
approaches. One example is modeling causal interdependent non-linear dynamics with
multivariate discrete dynamical systems (automata networks). In particular, Boolean networks are
canonical models that have been applied to a number of complex systems very successfully. To
capture redundancies in system dynamics of biochemical regulatory and signaling interactions, a

http://mc.manuscriptcentral.com/icbiol

120z A 9 uo Jasn Aleldi IOHM T9IN A9 £201829/6900€91/G01/E60 "0 L/10P/2|01E-90UBAPE/GOl/W0D dNO"dIWBPEO.//:SARY WOl) POPEOIUMOQ



oNOYTULT D WN =

Manuscripts submitted to Integrative and Comparative Biology

mathematical framework called the ‘effective graph’ for example was capable of synthesizing both
network structure and dynamics in a weighted graph representation of discrete multivariate
systems (Gates et al. 2021).

Completeness: The development of case studies that explore and look for common threads in
the structure and dynamics of networks could be promising. Commonalities that are predictive for
example along economy, robustness, flexibility or plasticity axes or within morphospaces could
be identified and then extended to the study of a broader range of systems. However, the
methodological problem of ‘gappy’ or incomplete data sets and the issue of ‘snapshots’
complicate any endeavor. Following the genomic revolution, biology has been able to define entire
repertoires of biological entities (e.g. genes, metabolites, fold structures, molecular functions).
While certain explorations have been comprehensive many others are lagging behind. For
example, the universe of proteins can be described with a finite set of folds and fold superfamilies
summarizing the overall 3-dimensional atomic design of structural domains. The SCOP (Murzin
etal. 1995) and CATH (Orengo et al. 1997) databases, the gold standards of protein classification,
show that protein folds group into 2,705 SCOP (http://scop.mrc-Imb.cam.ac.uk) and 5,481 CATH
(https://www.cathdb.info) well-curated superfamilies (as of April 29, 2021). These numbers are
reaching a plateau, strongly suggesting that most structural designs have been sampled through
structural genomic efforts. In sharp contrast, the world of species and our understanding of the
Tree of Life is far from complete (Hug et al. 2016). Considerable ‘dark matter’ exists at both the
level of cellular organisms and viruses. These uncertainties raise a number of important
questions. Are networks biased by the experimental knowledge or focus on individual components
and are there situations where key nodes are not represented because nobody has really studied
them? Are there methods that can identify gaps or normalize over emphasized nodes? Another
methodological problem is the issue of ‘snapshots’. Numerous experimental approaches provide
single measures within a continuum of change. For example, the crystallographic acquisition of
3-dimensional atomic structures has been stored in the RCSB Protein Data Bank (PDB) repository
(https://www.rcsb.org). Currently, there are 177,219 biological macromolecular structures
available in the database, which has been growing at a significant pace (>10,000 PDB entries per
year). Despite these significant accomplishments, PDB entries represent conformational
‘snapshots’ that give little justice to the conformational molecular landscape of proteins and
nucleic acids. There is now hope that cryogenic electron microscopy (Cryo-EM) may pave the
way to wide-encompassing conformational views. This example highlights the problems of
acquisition of longitudinal data that can describe the dynamics of humerous biological processes
at different timescales. Consequently, there will be a need for analytical tools that can manage
‘big data’, including longitudinal datasets, and can make use of different data flows in a unified
methodological framework.

Universality: Finally, there is the problem that not all data types can be modeled with networks.
This difficulty challenges the concept of networks across biological scales. Simplification must
occur if information from multiple levels of biological integration are incorporated into a network
(e.g. hepatic steatosis), or if the network changes over time because of development or evolution,
and a rigorous evaluation of the assumptions and rules underlying network simplification is
required.
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Broader Impacts

Studying biological networks across scales is by definition broad impact in terms of the immediate
knowledge that it generates from a large-scale study. The practicalities of constraining this to a
tractable approach include developing new algorithmic techniques to link information, determining
the influence of different levels of noise on the knowledge produced from that information, and
evaluating the reliability of that knowledge. While leading to a set of rules, it allows those rules to
be defined in their applicability and rigor. The approach uses Nature as the data set to define how
a system works. Where theoretical modeling does not agree with experiment, it helps find signal
in noise and defines areas where new knowledge is awaiting discovery.

Nature has had a long time to conduct its own system experiments. By studying the nature of how
those systems develop and interact across different scales, our approach allows a more concrete
understanding of the impact of perturbations on those systems, whether it be a large-scale shift
in environment, (e.g. ocean pH, average temperature shifts), advance of an invasive species, or
small scale such as the extinction of a rare species, or the mutation of an amino acid. This in turn
sets guidelines to prioritize the response to these changes so that resources can be devoted to
mitigate influences that cause the maximum impact.

The nature of the study extends beyond biology. Nature can be seen as the ultimate laboratory
setting to test network and systems performance with the experiment having the ultimate metric
of success - life or extinction. The results and rules established can be extended to non-biological
systems, e.g. redundancy in automation, self-organization for transport within a city, response to
perturbation in a system, transient approaches that activate. It is not too strong to say that this
could lead to a totally new approach to network and systems science in both the physical world,
but also in the computational arena.

Reintegrating biology

To effectively study a network across scales, a network of experts in each of those scales (and
individual research areas) needs to be created. A common language is needed to link those
experts and a backbone organization established to ensure that the effort is focused on the
questions and not the administration. This mirrors the concept of collective impact where a
common agenda, shared measurement systems, mutually reinforcing activities, continuous
communication, and a backbone organization, maximize limited resources to produce maximal
output (Kania and Kramer 2011). By design, formulation around a collective impact model
reintegrates separate disciplines and expertise into a common goal.

The common agenda is to establish collaboratives that provide:
 Longitudinal empirical network data across a broad range of biological systems and scales,
ideally including observational, experimental, computational, and theoretical approaches.
o Analytical expertise to analyze these datasets asking common questions and using common
tools.
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* Modeling expertise to construct parallel sets of general network dynamic models, putting
into context and providing generality to the set of empirical studies.

e Space-time for empirical and theoretical project leaders to come together to synthesize
findings, identifying commonalities and differences across systems.

o Measurable outcomes to test, improve, and verify the approach.

A shared measurement system necessarily requires a shared language across different
disciplines. There are ontology approaches to this that help understanding of the results but
guiding the experimental and analysis approach is more difficult. As a scientific endeavor we are
more used to constructing hypotheses and testing those hypotheses - the scientific method. We
must ask ourselves which aspects of information need to be retained to link biological scales. For
example, if we are trying to understand the dynamics of a microbiome community, and/or its
outputs that affect the host: Is it taxonomic composition that is the most informative, or is it
transcript or protein products of the microbial community? This could potentially be addressed by
constructing competing hypotheses (or different networks) that essentially represent the same
community but using different data flows, and then asking which of the networks presents
predictable dynamics or best predicts outputs.

Mutually reinforcing activities are critical. With multiple disciplines involved in a common goal
those disciplines must communicate to interact. This requires physical interaction (scientific
meetings), educational interaction (common training), and knowledge interaction (summaries of
the knowledge produced as it is produced). The resources of the effort must be understandable
by all, at least at the most basic level of being able to know what they are, how to use them, and
what to look for in the output.

Continuous communication is linked to mutually reinforcing activities. For maximum efficiency in
understanding a network of disparate information across scales and times, communication is
critical. That includes the free flow of information, the establishment of mutual respect and trust
between different research thrusts, and transparent output that the interested public can follow to
understand progress that is being made.

Finally, the most important part is backbone support. This includes a strategic leadership that sets
the goals and guides the direction, monitoring of progress in meeting goals, provision of resources
that can help achieve goals, and maintaining the common direction, language, communication,
and legacy involved in producing and preserving the knowledge produced. Reintegrating biology
is a necessity to study biological networks across scales.

Acknowledgments
The ideas elaborated in this ‘vision’ paper originated in the NSF Reintegrating Biology Jumpstart
meeting that was organized by the National Science Foundation and took place in San Diego,

California, December 4-6, 2019.

Funding

http://mc.manuscriptcentral.com/icbiol

Page 20 of 33

120z A 9 uo Jasn Aleldi IOHM T9IN A9 £201829/6900€91/G01/E60 "0 L/10P/2|01E-90UBAPE/GOl/W0D dNO"dIWBPEO.//:SARY WOl) POPEOIUMOQ



Page 21 of 33

oNOYTULT D WN =

Manuscripts submitted to Integrative and Comparative Biology

This work was supported by the National Science Foundation [Career Award CPS/CNS-1453860,
CCF-1837131, MCB-1936775, and CNS-1932620 to P.B; MCB-0343126, MCB-074983607,
OISE-1172791, and DBI-1041233 to G.C.A; DEB-1911994 to A.J.; PHY-1505048 to H.K.; DEB-
1654853 to J.M.; PHY-1806638 to C.A.R.; DBI-1231306 to E.H.S.; and 10S-1754798 to N.J.S.],
Defense Advanced Research Projects Agency [Young Faculty Award & DARPA Director Award,
N66001-17-1-4044 to P.B.], National Institute of Food and Agriculture [ILLU-802-909 and ILLU-
483-625 to G.C.A.; 1014468 to C.A.M.], Northrop Grumman [grant to P.B.], and National Center
for Supercomputing Applications [allocations to G.C.A.]. The views, opinions, and/or findings
contained in this article are those of the authors and should not be interpreted as representing
the official views or policies, either expressed or implied by the funding agencies.

References

Ahn YY, Bagrow JP, Lehmann S. 2010. Link communities reveal multiscale complexity in networks. Nature
466:761-765.

Angrish MM, Kaiser JP, McQueen CA, Chorley BN. 2016. Tipping the balance: hepatotoxicity and the 4
apical key events of hepatic steatosis. Toxicol Sci 150(2):261-268.

Arabidopsis Interactome Mapping Consortium. 2011. Evidence for network evolution in an Arabidopsis
interactome map. Science 333:601-607.

Aziz MF, Chan P, Osorio JS, Minhas BF, Parekatt V, Caetano-Anollés G. 2012. Stress induces biphasic-
rewiring and modularization patterns in metabolomics networks of Escherichia coli. IEEE Intl Conf Bioinf
Biomed 2012:593-597.

Aziz MF, Caetano-Anollés K, Caetano-Anollés G. 2016. The early history and emergence of molecular
functions and modular scale-free network behavior. Sci Rep. 6:25058.

Aziz MF, Caetano-Anollés G. 2021. Evolution of networks of protein domain organization. Sci Rep,
submitted. Research Square doi:10.21203/rs.3.rs-119891/v1.

Bahamonde PA, McMaster ME, Servos MR, Martyniuk CJ, Munkittrick KR. 2016. Characterizing
transcriptional networks in male rainbow darter (Etheostoma caeruleum) that regulate testis
development over a complete reproductive cycle. PLoS One 11(11):e0164722.

Balaban V, Lim S, Gupta G, Boedicker J, Bogdan P. 2018. Quantifying emergence and self-organisation of
Enterobacter cloacae microbial communities. Sci Rep 8: 12416.

Barabasi A-L, Oltvai ZN. 2004. Network biology: understanding the cell's functional organization. Nature
Reviews 5:101-113.

Basili D, Zhang JL, Herbert J, Hebert J, Kroll K, Denslow ND, MartyniukCJ, Falciani F, Antczak P. 2018. In
silico computational transcriptomics reveals novel endocrine disruptors in largemouth bass (Micropterus
salmoides). Environ Sci Tech 52(13):7553-7565.

Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR, Moore SW, Bullmore ET. 2010. Efficient
physical embedding of topologically complex information processing networks in brains and computer
circuits. PLoS Comput Biol 6(4):e1000748.

Berg G., Rybakova D, Fischer D, et al. 2020. Microbiome definition re-visited: old concepts and new
challenges. Microbiome 8:103.

Bogdan P. 2019. Taming the unknown unknowns in Complex Systems: Challenges and opportunities for
modeling, analysis and control of complex (biological) collectives. Front Physiol 10:1452.

Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J. 2000. Graph
structure in the Web. Comp Networks 33:309-320.

http://mc.manuscriptcentral.com/icbiol

120z Ae 9z uo Jasn Ateiqi JOHM 19N A9 +.201.829/6909€21/901/£60 L0 ./10p/8[olie-8oueAPE/qDI/WOod dno-olwaepese//:sdpy wolj papeojumo(q



oNOYTULT D WN =

Manuscripts submitted to Integrative and Comparative Biology

Buchalski MR, Sacks BN, Gille DA, Penedo MCT, Enest HB, Morrison SA, Boyce WM. 2016.
Phylogeographic and population genetic structure of bighorn sheep (Ovis canadiensis) in North
American deserts. J Mammol 97(3):823-838.

Caetano-Anolles G, Wang M, Caetano-Anolles D, Mittenthal JE. 2009. The origin, evolution and structure
of the protein world. Biochem J 417:621-637.

Caetano-Anolles G, Aziz MF, Mughal F, Grater F, Kog¢ |, Caetano-Anollés K, Caetano-Anollés D. 2019.
Emergence of hierarchical modularity in evolving networks uncovered by phylogenomic analysis. Evol
Bioinformatics 15:1176934319872980.

Caetano-Anolles G, Mughal F, Aziz MF, Kog |, Caetano-Anollés K, Caetano-Anollés D, Mittenthal JE. 2021.
A double tale of module creation in evolving networks. In: Caetano-Anollés G, editor. Untangling
Molecular Biodiversity. Singapore: World Scientific. p. 91-168.

Cope AJ, Vasilaki E, Minors D, Sabo C, Marshall JAR, Barron AB. 2018. Abstract concept learning in a
simple neural network inspired by the insect brain. PLoS Comput Biol 14(9):e1006435.
https://doi.org/10.1371/journal.pcbi.100643

Corominas-Murtra B, Goii J, Solé RV, Rodriguez-Caso C. (2013. On the origins of hierarchy in complex
networks. Proc Natl Acad Sci USA 110:13316-13321.

Daniels BC, Kim H, Moore D, Zhou S, Smith HB, Karas B, Kauffman SA, Walker Sl. 2018. Criticality
distinguishes the ensemble of biological regulatory networks. Phys Rev Lett 121(13):138102.

Dorsey S, Tollis S, Cheng J, Black L, Notley S, Tyers M, Royer CA. 2018. G1/S transcription factor copy
number is a growth determinant of cell cycle commitment in yeast. Cell Systems 6:539-554.

Eddy SR. 2004. What is a hidden Markov model? Nature Biotechnol 22(10):1315-1316.

Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade |, Schneider-Mizell CM, Saumweber T, Huser A, Eschbach
C, Gerber B, Fetter RD, Truman JW, Priebe CE, Abbott LF, Thum AS, Zlatic M, Cardona A. 2017. The
complete connectome of a learning and memory centre in an insect brain. Nature 548:175-182.

Frolov AA, Muravév IP. 1993. Informational characteristics of neural networks capable of associative
learning based on Hebbian plasticity. Network 4:495-536.

Gates AJ, Correia RB, Wang X, Rocha LM. 2021. The effective graph reveals redundancy, canalization
and control pathways in biochemical regulation and signaling. Proc Natl Acad Sci USA
118(12):€2022598118.

Ghorbani M, Jonckheere E, Bogdan P. 2018. Gene expression is not random: Scaling, long-range cross-
dependence, and fractal characteristics of gene regulatory networks. Front Physiol 9:1446.

Girvan M, Newman MEJ. 2002. Community structure in social and biological networks. Proc Natl Acad Sci
USA 99:7821-7826.

Gupta G, Pequito S, Bogdan P. 2019. Learning latent fractional dynamics with unknown unknowns,
American Control Conference.

Harrison A, Pearl F, Mot R, Thornton J, Orengo C. 2002. Quantifying the similarities within fold space. J
Mol Biol 323:909-926.

Hartwell LH, Hopfield JJ, Leibler S, Murray AW. 1999. From molecular to modular cell biology. Nature
401:¢c47-c52.

Hebb DO. 1949. The organization of behaviour. New York, NY: Wiley.

Heisenberg M. 2003. Mushroom body memoirs: from maps to models. Nature Neurosci Rev 4:266-275.

Herz A., Sulzer B, Kiihn R, van Hemmen JL. 1988. The Hebb Rule: Storing static and dynamic objects in
an associative neural network. EPL 7 663

Ho JJ, Navlakha S. 2018. Evidence of Rentian scaling of functional modules in diverse biological networks.
Neural Comput 30(8):2210-2244.

Howarth, RW, Teal JM. 1979. Sulfate reduction in a New England salt marsh. Limnology and Oceanography
24:999-1013.

Huerta R, Nowotny T, Garcia-Sanchez M, Abarbanel HDI, Rabinovich MI. 2004. Learning classification in
the olfactory system of Insects. Neural Computation 16:1601-1640.

http://mc.manuscriptcentral.com/icbiol

Page 22 of 33

120z Ae 9z uo Jasn Ateiqi JOHM 19N A9 +.201.829/6909€21/901/£60 L0 ./10p/8[olie-8oueAPE/qDI/WOod dno-olwaepese//:sdpy wolj papeojumo(q



Page 23 of 33

oNOYTULT D WN =

Manuscripts submitted to Integrative and Comparative Biology

Hug LA, Baker BJ, Anantharaman K, Anantharam K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN,
Hernsdorf AW, Amano VY, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas
BC, Banfield JF. 2016. A new view of the tree of life. Nat Microbiol 1:16048.

Ito M, Masuda N, Shinomiya K, Endo K, Ito K. 2013. Systematic analysis of neural projections reveals clonal
composition of the Drosophila brain. Curr Biol 23 (8):644-655.

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the
genome. Nucleic Acids Res 32:D277-D280.

Kania J, Kramer M. 2011. Collective Impact. Stanford Social Innovation Review 36-41.

Kim H, Smith HB, Mathis C, Raymond J, Walker SI. 2019. Universal scaling across biochemical networks
on Earth. Sci Adv 5(1):eaau0149.

Kog¢ I, Yuksel I, Caetano-Anollees G. 2018. Metabolite-centric reporter pathway and tripartite network
analysis of Arabidopsis under cold stress. Front Bioeng Biotechnol 6:121.

Koorehdavoudi H, Bogdan P. 2016. A statistical physics characterization of the complex systems dynamics:
Quantifying complexity from spatio-temporal interactions. Sci Rep 6:27602.

Knapen D, Angrish MM, Fortin MC, Katsiadaki |, Leonard M, Margiotta-Casaluci L, Munn S, O’Brien JM,
Polesch N, Smith LC, Zhang X, Villeneuve DL. 2018. Adverse outcome pathway networks I:
development and applications. Environ Toxicol Chem 37(6):1723-1733.

Landman BS, Russo RL. 1971. On a pin versus block relationship for partitions of logic graphs. IEEE
Transactions on Computers C-20(12):1469-1479.

Ma H-W, Zeng A-P. 2003. The connectivity structure, giant strong component and centrality of metabolic
networks. Bioinformatics 19(11):1423-1430.

MacArthur RH. 1957. On the relative abundance of bird species. Proc Natl Acad Sci USA 43:293-295.

Mahmoodi K, West BJ, Grigolini P. 2017. Self-organizing complex networks: individual versus global rules.
Front Physiol 8: 478.

Morris JT, Christian RR, Ulanowicz RE. 2005. Analysis of size and complexity of randomly constructed food
webs by information theoretic metrics. In: Belgrano A, Scharler UM, Dunne J, Ulanowicz RE, editors.
Aquatic food webs: An ecosystem approach. Oxford: Oxford University Press. p. 73-85.

Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. 2002. Responses of coastal wetlands to
rising sea level. Ecology 83:2869-2877.

Mughal F, Caetano-Anollés G. 2019. MANET 3.0: Hierarchy and modularity in evolving metabolic networks.
PLoS One 14(10):e0224201.

Mukhtar MS, Carvunis A-R, Dreze M, Epple P, et al. 2011. Independently evolved virulence effectors
converge onto hubs in a plant immune system network. Science 333:596-601.

Murzin A, Brenner SE, Hubbard T, Clothia C. 1995. SCOP: a structural classification of proteins for the
investigation of sequences and structures. J Mol Biol 247:536-540.

Newman MEJ. 2003. The structure and function of complex networks. SIAM Rev 45:167-256.

Niklas KJ, Wright S, Simpson GG. 1994. Morphological evolution through complex domains of fitness. Proc
Natl Acad Sci USA 91:6772-6779.

Orengo C, Michie A, Jones S, Jones D, Swindells M, Thornton JM. 1997. CATH — a hierarchic classification
of protein domain structures. Structure 5:1093-1109.

Pearl J. 2000. Causality. Cambridge: Cambridge University Press.

Rokash L. 2011. Ensemble-based classifiers. Artificial Intelligenece Rev 33:1-39.

Seelig JD, Jayaraman V. 2013. Feature detection and orientation tuning in the Drosophila central complex.
Nature 503:262-266.

Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh K, Along U. 2012.
Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 336:1157-
1160.

Sia J, Jonckheere E, Bogdan P. 2019. Ollivier-Ricci curvature-based method to community detection in
complex networks, Sci Rep 9:9800.

http://mc.manuscriptcentral.com/icbiol

120z Ae 9z uo Jasn Ateiqi JOHM 19N A9 +.201.829/6909€21/901/£60 L0 ./10p/8[olie-8oueAPE/qDI/WOod dno-olwaepese//:sdpy wolj papeojumo(q



oNOYTULT D WN =

Manuscripts submitted to Integrative and Comparative Biology

Simon HA. 1962. The architecture of complexity. Proc Am Phil Soc 106:467—-482.

Simon HA. 1997. Models of bounded rationality: empirically grounded economic reason. Vol. 3. Cambridge,
MA: MIT Press.

Smakowska-Luzan E, Mott AG, Parys K, Stegmann M, Howton TC, Layeghifard M, et al. (2018) An
extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553:342-346.

Solé RV, Valverde S. 2004. Information theory of complex networks: on evolution and architectural
constraints. Lect Notes Phys. 650:189-207.

Strausfeld NJ, Hirth F. 2013. Deep homology of arthropod central complex and vertebrate basal ganglia.
Science 340:157-161.

Teal J. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:639-649.

Ulanowicz RE. 1980. An hypothesis on the development of natural communities. J Theor Biol 85:223-245.

Ulanowicz RE. 2002. The balance between adaptability and adaptation. BioSystems 64:13—22.

Villeneuve DL, Angrish MM, Fortin MC, Katsiadaki |, Leonard M, Margiotta-Casaluci L, Munn S, O’'Brien
JM, Pollesch NL, Smith LC, Zhang X, Knapen D. 2018. Adverse outcome pathway networks IlI: network
analytics. Environ Toxicol Chem 37(6):1734-1748.

Wang M, Jiang Y-Y, Kim KM, Qu G, Ji H-F, Mittenthal JE, Zhang H-Y, Caetano-Anollés G. 2011. A universal
molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and
planet oxygenation. Mol Biol Evol 28: 567—-82

Wasserman S, Faust K. 1994. Social network analysis: Methods and applications. New York: Cambridge
University Press,

Wolff GH, Strausfeld NJ. 2016. Genealogical correspondence of a forebrain centre implies an executive
brain in the protostome—deuterostome bilaterian ancestor. Phil Trans R Soc B 371:20150055.

Wolff T, Rubin G. 2018. Neuroarchitecture of the Drosophila central complex: A catalog of nodulus and
asymmetrical body neurons and a revision of the protocerebral bridge catalog. J Comp Neurology
526:2585-2611.

Xue Y, Bogdan P. 2017. Reliable multi-fractal characterization of weighted complex networks: Algorithms
and implications. Sci Rep 7:7487.

Xue Y, Bogdan P. 2019. Reconstructing missing complex networks against adversarial interventions.
Nature Communications 10:1738.

http://mc.manuscriptcentral.com/icbiol

Page 24 of 33

120z Ae 9z uo Jasn Ateiqi JOHM 19N A9 +.201.829/6909€21/901/£60 L0 ./10p/8[olie-8oueAPE/qDI/WOod dno-olwaepese//:sdpy wolj papeojumo(q



Page 25 of 33

oNOYTULT D WN =

Manuscripts submitted to Integrative and Comparative Biology

Figure legends

Figure 1. A network view of biological systems. A. An anatomical analysis shows that a network N is a
combination of four sets, a set V of vertices (nodes), a set L of lines (links), and sets of vertex and line value
functions that are mapped onto the V and L sets, respectively. Each line is associated with a pair of vertices
(lines are 2-element subsets of V) representing edges or arcs if lines are undirected or directed,
respectively. Loops are lines with identical endpoints. The illustrated network is a ‘mixed network’ because
it contains both arcs and edges. B. A network can be represented with an adjacency matrix. The example
network is undirected (it does not contain arcs). Consequently, its adjacency matrix is symmetric. C.
Network centralities offer different views of the influence of nodes in a network. Degree centrality estimates
how well a node is connected to other nodes. The degree of a node (its connections) provides a local view
of network connectivity. Closeness centrality estimates how easy is for a node to reach other nodes. Finally,
betweenness centrality estimates how important is a node in terms of its capacity to connect to other nodes.
It offers a global view of connectivity. Other centralities (not shown) offer views of prestige, how important
is a node in terms of the importance of its neighbors. Diagram modified from Caetano-Anollés et al. (2020)

Figure 2. The bow-tie hierarchical structure of directed networks. These networks have a giant strongly
connected component (G;), giant ‘in” component (G;,), giant ‘out’ component (Go), tendrils and tubes (T)
and disconnected components (D). The number of nodes that are present in these subgraphs are listed (in
blue) as millions of web resources for the WWW (Broder et al. 2000) and as connected enzymes in the
metabolic networks of Escherichia coli (Ma and Zeng 2003). Note that metabolism lacks tendrils and tubes.

Figure 3. The sharing of enzymes among mesonetworks at different stages of metabolic evolution. Nodes
represent mesonetworks: AAC, amino acid metabolism; SEC, biosynthesis of other secondary metabolites;
CAR, carbohydrate metabolism; NRG, energy metabolism; GLY, glycan biosynthesis and metabolism; LIP,
lipid metabolism; COF, metabolism of cofactors and vitamins; POL, metabolism of terpenoids and
polyketides; NUC, nucleotide metabolism; AA2, Metabolism of other amino acids; XEN, xenobiotics
biodegradation and metabolism. Links represent sharing of enzymes, with weights proportional to their
numbers. Time of networks is given in billions of years ago (Gya) and was inferred from a molecular clock
of protein folds (Wang et al. 2011). Note how all mesonetworks (except GLY) are already sharing enzymes
3.3 Gya, especially AAC. Redrawn from Mughal and Caetano-Anollés (2019).

Figure 4. Morphospaces of network structure (A) and hierarchy (B) showing the placement of toy examples
of typical graphs describing archetypes of the phenotypic landscapes and real networks (metabolic,
neuronal, and food web networks highlighted with colors). In one morphospace (A), Erdés-Rényi (ER)
random graphs transform into regular graphs by decreasing randomness or into modular ER graphs by
increasing modularity. Hierarchical modular structure requires both increasing modularity and heterogeneity
and decreasing randomness. In another morphospace (B), treeness defines the unification or diversification
of hierarchical signal in the network, whereas orderability defines the centrality of cycles in network
structure. Figures redrawn from Solé and Valverde (2004) and Corominas-Murtra et al. (2013).

Figure 5. Example systems visualized with network representations. A. A highly connected protein-protein
interaction network showing significant interactions between plant leucine-rich repeat receptor ectodomains
(Smakowska-Luzan et al. 2018). Subnetworks and nodes with strong and varied connectivity are apparent
from network analysis. Edges indicate significant interaction between two ectodomains. Edges are thick
and red colored in proportion to reported interaction strength. Extracted, yellow-colored nodes highlight
highly connected SERK proteins known to be genetically required for many plant environmental responses.
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B. A subnetwork describing the G1-phase node. The transcription factors, SBF and MBF, which control the
G1/S cell cycle transition in yeast, increase in copy number throughout G1, eventually saturating the G1/S
target promoters. A feedback phosphorylation loop inactivates Whi5, a repressor if SBF via a cyclin
dependent kinase ensures a sharp transition (plot in the right). From Dorsey et al. (2018). C. Network
representation of metabolic disorders mediated by hepatic steatosis. The network was built to predict events
that lead to hepatic steatosis from high throughput assays. The network topology converged into 4 key
events (i.e., lipogenesis, and fatty acid uptake, efflux, and oxidation) that were viewed as critical paths
leading to steatosis. Assays measuring these points of convergence integrate the complex interplay of
upstream events and translate them into measures that are more directly related to the adverse outcome.
FA=fatty acid; TAG =triacylglycerol; PI3K =phosphatidylinositol-3-kinase; AKT =protein kinase B;
PPAR = peroxisome proliferator-activated receptor; LXR = liver X receptor; CAR = constitutive androstane
receptor; PXR =pregnane X receptor; FXR =farnesoid X receptor; RXR =retinoid X receptor. From
Knapen et al. (2018). D. Gene transcriptional networks change as rainbow darter testis undergoes
development to maturation (Bahamonde et al 2016). E. The Mojave (MOKA), Death Valley (DEVA) and
Peninsular (PENI) networks vary in network metrics. Nodes in the network represent populations: node size
and color are proportional to eigenvector centrality. Edge weight is proportional to levels of gene flow (Nm).
F. The entire sensory surround of the organism is represented in the brain’s “central complex” diagrammed
here. Projections of columnar neurons originating from the (upper modules W, X, Y and Z provide sub-
modules to the left (L, L8—L1) and right (R, R1-R8) of the midline that provides connections to successive
computational layers EB. Computations within the PB, FB and EB are relayed to decussating axons
extending into the lateral centers (LAL), where they gate the activity of premotor neurons (DN). The
proposition here is that one module represents 1/16th of the sensory envelope.

Figure 6. Models of the mushroom bodies. A. Neuroanatomy: MB Mushroom Bodies; AL Antennal Lobe
glomeruli (circles); ME & LO visual neuropils. Relevant neural pathways are shown and labelled for
comparison with the model. B. Reduced model; neuron classes indicated at right and side of sub-figure. C.
Full model. For explanation see text from Cope et al. (2018).

Figure 7. Generating artificial food webs by in silico modeling. A. Foodweb generated by populating a

transfer matrix with transfer coefficients and solving for the equilibrium solution. B. Methodology used to
generate modeled food webs (described in the text).
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