
1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2966069, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JUNE 2019 1

Secure Data Storage and Recovery in Industrial
Blockchain Network Environments

Wei Liang, Yongkai Fan, Kuan-Ching Li, Senior Member, IEEE, Dafang Zhang, and Jean-Luc
Gaudiot, Fellow, IEEE

Abstract—The massive redundant data storage and communi-
cation in network 4.0 environments have issues of low integrity,
high cost, and easy tampering. To address these issues, a
secure data storage and recovery scheme in the blockchain-based
network is proposed by improving the decentration, tampering-
proof, real-time monitoring and management of storage systems,
as such design supports the dynamic storage, fast repair, and
update of distributed data in the data storage system of industrial
nodes. A local regenerative code technology is used to repair and
store data between failed nodes while ensuring the privacy of
user data. That is, as the data stored are found to be damaged,
multiple local repair groups constructed by vector code can
simultaneously yet efficiently repair multiple distributed data
storage nodes. Based on the unique chain storage structure, such
as data consensus mechanism and smart contract, the storage
structure of blockchain distributed coding not only quickly repair
the nearby local regenerative codes in the blockchain but also
reduce the resource overhead in the data storage process of
industrial nodes. Experimental results show that the proposed
scheme improves the repair rate of multi-node data by 9% and
data storage rate increased by 8.6%, indicating to be promising
with good security and real-time performance.

Index Terms—Blockchain network, distributed storage, con-
sensus mechanism, local regeneration code, repair rate

I. INTRODUCTION

THE amount of data in our world is rapidly increasing
with accelerated pace, and it is known that most of

the mind-boggling amounts of digital data around the world
have been generated in the past years [1]. With the rapid
development of blockchain technology, an increasing number
of users have adopted blockchain-based cloud services to store
a massive amount of sensitive data [2][3]. Blockchain cloud
storage service has brought convenience to the users, with
the advantages of low cost and ease of management to data
storage, despite it also brings issues related to low security
and reliability.

This work was supported in part by the National Science Foundation of
China under Grants 61572188, 61976087, the Scientific Research Program
of the New Century Excellent Talents in Fujian Province University, Fujian
Provincial Natural Science Foundation of China under Grant 2018J01570, and
by the Hunan Provincial Natural Science Foundation under Grant 2016jj2058.

W. Liang is with College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China (e-mail:idlink@163.com)

Y. Fan is with Dept. of Computer Science and Technology, China University
of Petroleum, Beijing 100024, China (e-mail:fanyongkai@gmail.com)

K.-C. Li is with Department of Computer Science and Informa-
tion Engineering, Providence University, Taichung 43301, Taiwan (e-
mail:kuancli@pu.edu.tw)(Correspongding Author)

D. Zhang is with College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China (e-mail:dfzhang@hnu.edu.cn)

J-L. Gaudiot is with Department of Electrical Engineering and Computer
Science, University of California, Irvine, USA (e-mail: gaudiot@uci.edu)

In recent years, several disasters related to storage data
loss have occurred, such as the downtime event of Amazon
S3 in 2008 [4], the post-launch downtime event of Apple
MobileMe[5], and the Google’s Gmail incident in 2011. Statis-
tics provided by Baidu Company indicate that approximately
100-200 nodes fail in a single storage cluster every day, and as
of 2014, the failure rate is approximately 1-2% [6]. Still, with
the increasing scale of cloud storage in-vehicle network, the
probability of simultaneous failure on multiple storage nodes
also increases [7][8][9].

The failure of the data node and consequent loss of data
brings a considerable loss of data information to the entire
distributed cloud storage system in the blockchain. Therefore,
coding and repairing the cloud storage data will be essential
to ensuring the reliability of the entire system. Whenever a
blockchain system is harmed, researchers can use redundant
data to repair the failure of the data stored in the node.
As some nodes are invalid, the surviving storage nodes can
recover the original data. The data redundancy repair features
of blockchain cloud storage systems are: 1) as some of the
nodes fail, the original file can still be reconstructed using
the data present in the surviving nodes, and 2) the process
to create adequate redundant data so that the failed nodes
can be repaired. Despite the data can be reconstructed and
repaired, the performance index of redundancy strategies must
be measured, such as redundancy rate, repairing bandwidth
(i.e., the amount of data that must be retrieved from the
other surviving nodes to repair the data of failed nodes), and
input/output. From this, the storage system for blockchain
distributed data has become a popular topic in the data storage
technology of the blockchain network[10][11].

Industry4.0 Energy AI Medical treatment

Smart Contracts

Cellphone Traffic Human Computer Server

Decentralized network
–- Blockchain

Fig. 1. Application of industrial blockchain network

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 18,2020 at 22:24:18 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2966069, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JUNE 2019 2

Redundant data in the blockchain data storage scheme
are cooperatively owned by the network nodes and can be
managed and supervised online without being controlled or
modified by any single node. Considering the security issues
on the storage of distributed network data, Blockchain technol-
ogy is not a single technology, but a new technology scheme
that reliably stores and records data by combining several
technologies [12][13]. Besides, Blockchain is a distributed
database that cannot be arbitrarily tampered with. At this point,
the term ”distributed” represents the distribution not only of
data storage but also the data recording process. Generally
speaking, encrypting data file in a blockchain network ensures
privacy and security, though whether the encrypted file has
been maliciously modified, how to remain the file entirely
surviving, and how to control the adequate sharing time of
data are problems that must be solved urgently by using
existing security sharing methods. At present, several ongoing
researches in blockchain distributed storage systems are using
blockchain technology for coding and repairing network data
storage, as depicted in Fig. 1 applications of the Blockchain
industrial network. Traditional encoding technologies must
reconstruct the original data to produce new encoded data.
Thus, whenever a node fails, the Blockchain-based network
storage technology must download large amounts of data
and ensure the reliability of network data through coding
technology.

In order to solve such technical problems, this investigation
proposes a secure data storage and recovery method based on
Blockchain technology. First, this method evaluates whether
the encrypted files in the storage system have been maliciously
modified. The entire system includes network data acqui-
sition, Blockchain storage, and security detection modules.
The network data acquisition module is used for capturing
network data packets and transfer them after signature to the
Blockchain storage module, in which checks the signatures of
the received network data packets, and the verified data packets
are stored on the Blockchain. The security detection module is
used to fetch data packets from the Blockchain storage module
for security monitoring and early warning processing.

The remaining of this paper is structured as follows. Section
II introduces the background of Blockchain storage technol-
ogy, and the current research status of Blockchain storage
technology is discussed in Section III. The mathematical
model and fault-tolerant distributed storage structure are pre-
sented in Section IV, the fault-tolerant distributed storage and
recovery algorithms are depicted in Section V, and the data
authentication scheme is proposed in Section VI. Experimental
comparison and comparative analysis are presented in Section
VII, and finally, concluding remarks and future work are
presented in Section VIII.

II. RELATED WORK

With the rapid development of cloud storage and mass
data processing technologies in Blockchain-based industrial
technology, researches of reliable data storage technology are
also under rapid advancement. To ensure the reliability and
availability of large amounts of redundant data storage in

the industrial Blockchain-based network, the storage system
of network node data adopts strategies of ”replication” and
”erasure code” to generate redundant data information. How-
ever, most of these ”replication” strategies must store large
amounts of duplicated data to ensure high system reliability
that leads to the problem of excessive-high storage cost. The
”erasure code” strategy during network node repair requires
the storage system to have a high network bandwidth, yet
the bandwidth overhead is excessively large. Given the limita-
tions of these redundancy strategies, regeneration, cooperative
regeneration, local repair, and local regeneration codes have
been successively proposed. Therefore, solving the problem of
high-capacity data storage yet rapidly and accurately repairing
industrial nodes in the network storage system of industrial
Blockchain are critical issues in this field.

In recent years, network storage coding and applications
have been extensively investigated in distributed data storage
systems based on industrial Blockchain. Kamath et al. and
Rawat et al. proposed the concept of local regenerative code
[14][15] that can effectively repair node failures in storage
systems, by significantly reducing disk I/O overhead during
repair as well as achieving the best compromise between
storage and bandwidth overhead.

Kamath et al. presented the upper bound of the minimum
distance of local regenerative codes [16] and constructed
MSR-LRC and MBR-LRC codes that can reach the upper
bound of the minimum distance. Rawat et al. proposed the
construction of the optimal local regeneration code based on
the two-layer coding structure of Gabidulin and MSR (or
MBR) codes. Though, the size of the finite field required for
the local regeneration code increases exponentially with the
number of nodes in the distributed storage system[17]. Silber-
stein et al. stated that MSR-LRC and MBR-LRC codes could
obtain low disk I/O and repair bandwidth overheads [18], and
particularly MSR-LRC codes can retrieve the local minimum
storage overhead. In 2017, Gligoroski et al. constructed a type
of local regeneration code based on HashTag code, namely,
local regeneration HashTag code [19]. Failed nodes can be
repaired through either local checking nodes or joint repair
of local and global checking nodes. Nevertheless, when the
local regenerative codes constructed above are used to repair
the faults of multiple nodes in the local codes individually, the
bandwidth performance cannot be improved [20].

Presently, the application of distributed storage technology
based on industrial blockchain has attracted considerable atten-
tion [21][22][23]. A distributed storage network for industrial
Blockchain is a reliable data security storage technology,
in which many industrial network nodes participate in the
recording and storing data. Various characteristics, such as
data storage decentralization, tamper-proof, and traceability,
can support people to solve problems of data security and
reliability in industrial environments. The user’s privacy in
plain text-stored data is easily accessed by cloud service
providers (CSPs), so industrial users aim to encrypt the
industrial production data and submit to CSPs in ciphertext
form. Yet, the use of cloud storage technology by industrial
users will not only reduce the control of industrial data but
also bring new challenges to data sharing. Therefore, secure

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 18,2020 at 22:24:18 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2966069, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JUNE 2019 3

file storage and sharing have become urgent problems in
industrial cloud storage technology. Industrial users aim to
achieve complete control of industrial data, including flexible
access control strategy and controllable data sharing scope, on
the premise to ensure the safety of industrial data. The user’s
privacy of industrial cloud-stored in plain text data will be
easily accessed by CSPs, which cannot effectively guarantee
data confidentiality, integrity, availability, and effective access
control for encrypted files. During the file sharing, implement-
ing a reasonable and effective control of the sharing population
and the productive sharing time of files are problems that must
be solved urgently on the existing methods of data security
sharing in the industrial storage environment.

III. CONCEPT AND MODEL OF DISTRIBUTED STORAGE &
RECOVERY

A. Mathematical Model

In a (n, k, d) regenerative code, the source file M is divided
into n data blocks and coded into n nodes, each of which con-
tains α blocks. The data receiver DC can recover the original
data entirely through any k nodes. For a failed node, the new
node can repair the node by connecting any d(d ≥ k) surviving
nodes and downloading β blocks from each node, which
processing is called node repair. The bandwidth consumed by
node repair is named as repair bandwidth and expressed by γ
and γ = dβ.

The maximum flow minimum cut theorem [24] in graph
theory shows that the maximum flow and the minimum cut
capacity of all separated source nodes and data receivers are
the same, so thus required to find the minimum cut. From the
analysis, the corresponding capacity of the minimum cut is:

k−1∑
i=0

min{α, (d− i)β} (1)

For the source file M , if the minimum cut between the
source node and the data receiver is greater than or equal to
the size of the file, then the data receiver can obtain all the
files successfully, so the parameters of the regeneration code
must satisfy the following conditions:

M ≤
k−1∑
i=0

min{(d− i)β, α} (2)

The lower bound of storage and repair bandwidth can be
obtained by minimizing α and β in the process of data
restoration, and thus, the following theorem holds.

Given the parameter (n, k, d), the minimum storage amin

and repair bandwidth of each node should satisfy the following
equation[25].

αmm =

{
M
k , γ ∈ [f(0),+∞)

M−g(i)γ
k−i , γ ∈ [f(i), f(i− 1))

(3)

in which

g(i) =
(2d− 2k + i+ 1)i

2d
(4)

f(i) =
2Md

(d− k + 1)2k + (2k − i− 1)i
(5)

Here,i = 1, 2, · · · , k. The code that obtains the minimum
storage is called MSR code, and the code that obtains the
minimum repair bandwidth called MBR code. Deriving from
above, we have the following:

(αMSR, γMSR) =

(
M

k
,
M

k

d

d− k + 1

)
(6)

(αMBR, γMBR) =

(
M

k

2d

2d− k + 1
,
M

k

2d

2d− k + 1

)
(7)

In the following process of constructing a regenerative
code, it is defined that each storage node contains three
blocks, i.e., α = 3. The first block of each node stores
the original data (data blocks), the second block stores the
redundant data (check blocks, for data repair and reliability
protection), and the third block stores the timestamp (for fast
find nodes). Assuming that M = n, since the regenerative
code constructed next is also a linear network coding, the
redundant data of its second block is a linear combination
of system codes. Therefore, this coding scheme successfully
reduces the additional network repair bandwidth caused by
data repair, so that the data downloaded from each connected
node is as small as possible.

The encoding and decoding operations of regenerative codes
usually refer to operations in finite fields GF (2m). Moreover,
the efficiency of encoding and decoding can be greatly im-
proved as the special properties of Cauchy matrix. Thus, a
definition of Cauchy matrix C [25] of order n×n is given as
the following:

Let F be a finite field, ai, bj ∈ F, ai 6= bj , i, j = 1, 2, · · · , n
and ai 6= aj , bi 6= bj(i 6= j), then

C = (cij)n×n =
(

1
ai−bj

)
n×n

=


1

a1−b1
1

a1−b2 · · · 1
a1−bn

1
a2−b1

1
a2−b2 · · · 1

a2−bn
...

...
. . .

...
1

an−b1
1

an−b2 · · · 1
an−bn

 (8)

The matrix C is called a Cauchy matrix of order n× n.
As seen, it is not difficult to find that every sub-matrix of

Cauchy matrix is a non-singular matrix, and there exists an
inverse matrix. In addition, the time complexity of Cauchy
matrix inversion o

(
n2
)

in finite field is much lower than that
of Vandermonde matrix o

(
n3
)
.

According to the properties of Cauchy matrix, the second
block of each data storage node in Blockchain checks block,
so it is constructed by linear transformation coding.

Let a matrix U = (uij)n×n of order n×n be a non-singular
matrix in a finite field, the row vectors of the matrix defined
as Ui = {ui1, ui2, · · · , uin} , i = 1, 2, · · · , n and let U ′ =(
U−1

)T
, where the row vectors of the matrix are defined as

U ′i = {u′i1, u′i2, · · · , u′in} , i = 1, 2, · · · , n.
(
U−1

)T
means the

transpose of the inverse matrix of U , and the matrices U and
U ′ satisfy

UiU
′T
j =

{
1, i = j
0, i 6= j

(9)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 18,2020 at 22:24:18 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2966069, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JUNE 2019 4

Particularly U can be taken as a unit matrix. A matrix is
defined as V = (vij)n×n that satisfies λV = U ′C, 1− λ2 �=
0, in which the row vectors of the matrix V are defined as
Vi = {vi1, vi2, · · · , vin} , i = 1, 2, · · · , n. And, E represents
a unit matrix of order n× n.

Let the source file M be partitioned into n data blocks
Xi = {xi1, xi2, · · · , xin} , i = 1, 2, · · · , n from which n
check blocks Yi = {yi1, yi2, · · · , yin} , i = 1, 2, · · · , n are
obtained as:

Yi = X1A11 +X2Ai2 + . . . XkAm, i = 1, 2, · · · , n (10)

in which

Aij = V T
i Uj + cijE, i, j = 1, 2, · · · , n (11)

Therefore, the encoding process of data storage can be
represented by the following matrix transformation.

(X1X2 · · ·Xn)




E 0 · · · 0 A11 A21 · · · An1

0 E · · · 0 A12 A22 · · · An2

...
...

. . .
...

...
...

. . .
...

0 0 · · · E A1n A2n · · · Ann


 = (X1X2 · · ·XnY1Y2 · · ·Yn) (12)

In this investigation, Bi = {Xi, Yi, Ti} , where1 ≤ i ≤ n
are represented as the coding vectors of node i. In a distributed
storage system with n nodes, a codeword can be represented
as B = {B1, B2, · · · , Bn} and the complete set of such
codewords turn into coding. At the same time, let G be the
encoding matrix of the regenerative code (n, k, d), and:

G =




E 0 · · · 0 A11 A21 · · · An1

0 E · · · 0 A12 A22 · · · An2

...
...

. . .
...

...
...

. . .
...

0 0
... E A1n A2n · · · Ann




(13)

From the construction of G, it can be seen that any sub-
matrix of order n×n of the matrix in Eq. 13 is a non-singular
matrix; that is, there exists an inverse matrix. Therefore, when
r(1 ≤ r ≤ k) nodes fail, it can be decoded by the data of
other nodes to repair the damaged data and recover the source
file M .

(1) When r = 1, i.e., if one node fails, it is advisable to
assume that node 1 fails. The source file can be recovered by
locating the other n − 1 nodes other than node 1 and down-
loading its first block {X2, X3, · · · , Xn} by the timestamp in
third block of storage node, and downloading next its second
block Yj from any surviving node j(j �= 1). The repair process
is shown in Eq. 14:




AT
j1 AT

j2 AT
j3 · · · AT

jn

0 E 0 · · · 0
0 0 E · · · 0
...

...
...

. . .
...

0 0 0 · · · E




−1 


Y T
j

XT
2

XT
3
...

XT
n




=




XT
1

XT
2

XT
3
...

XT
n




(14)

(2) When r = i
(
1 < i ≤

⌊
n
2

])
, i.e. i nodes fail, it is

assumed that node 1 to node i fails. The source file can be
restored by locating the other n− i nodes other than node 1 to
i node and downloading its first block {Xi+1, Xi+2, · · · , Xn}
by the timestamp in the third block of storage node, and then

downloading the second blocks Yj1 , Yj2 , · · ·Yji from any sur-
viving nodes j1, j2, · · · , ji (jl > k, l = 1, 2, · · · , i). The repair
process is shown in Eq. 15:




AT
j11

AT
j12

· · · AT
j1i+1 AT

j1i+2 · · · AT
j1n

...
...

...
...

...
...

...
AT

ji1
AT

ji2
· · · AT

jii+1 AT
jii+2 · · · AT

jin

0 0 · · · E 0 · · · 0
0 0 · · · 0 E · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · E







Y T
j1
...

Y T
ji

XT
i+1

XT
i+2
...

XT
n




=




XT
1

XT
2

XT
3
...

XT
n




(15)

B. Blockchain-based Fault-tolerant Distributed Storage Struc-
ture

Distributed storage fault-tolerant structure of industrial
Blockchain include namespace of a high fault-tolerant local
code block, index record and mapping from code block to
storage node. As shown in Fig. 2, the perception module is
used to perceive whether the storage node has lost data and
feedback the relevant information to the metadata information
management module. When the client reads the file, it first
retrieves the offset information of the file encoding block
from the storage server. Taking into consideration that the use
of system local codes to construct high fault-tolerant local
codes, the original terminal data can be read directly from the
Blockchain storage nodes.

Hybrid1

M1

Data1

Hybrid2

M2

Data2

Hybrid3

M3

Data3

Hybrid4

M4

Data4

Hybrid5

M5

Data5

Node1

Node2 Node3

Node4 Node5

Send
message

Network of Block Chain

1 0 1 1 0 0 1 1

Upload

Storage
Server

Download

Cloud network

Data1

Data2

Data3

Data4

Data1

Data2

Data3

Data4

Data
repairing

In problemRepairing

Fig. 2. Blockchain based fault-tolerantistributed storage structure

In order to improve the reliability and robustness of the
complete industrial Blockchain storage system, a cache server
is configured for each storage server. All high fault-tolerant
local code encoded data is sent to the storage server and
backed up in the cache server. Typically, the cache server
is only responsible for the file backup cache. As the storage
server is physically damaged, the cache server takes over the
storage server and starts to work. Whenever the storage server
fails, the cache server is used to reduce the delay overhead of
data file reconstruction by increasing the storage overhead.

IV. BLOCKCHAIN FOR FAULT-TOLERANT DISTRIBUTED
STORAGE AND RECOVERY ALGORITHM

A. Fault-tolerant Distributed Storage Algorithm

Multiple storage nodes are occasionally damaged due to
a large number of nodes in the Blockchain cloud storage
system, so local codes that can effectively repair the failed
nodes must be designed. This investigation selects appropriate
n and k based on the size of cloud storage system nodes
in the Blockchain to construct a local code with a locality

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 18,2020 at 22:24:18 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2966069, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JUNE 2019 5

of (n, k). The usage of vector codes for constructing one
local code with locality (n, k) is considered, so that the
vector codes contain n discrete repair groups, and multiple
failed nodes can be simultaneously repaired from k discrete
local repair groups. Among them, the number of local repair
groups determines the number of failed nodes that can be
simultaneously repaired, as the number of nodes involved in
the repair group determines the repair locality. On this basis,
a local code with a locality of (n, k) can be constructed using
Cauchy matrix and multidimensional linear vector codes.

First, the source file M is divided into n data blocks
{X1, X2, · · · , Xn} and stored in nodes in which each node
contains three blocks. The first block is a data block Xi,
the second block is a check block Yi = X1Ai1 + X2Ai2 +
· · ·XkAin, and the third block is a timestamp block Ti, com-
bined as a coding vector Bi = {Xi, Yi, Ti} , 1 ≤ i ≤ n, so that
fault-tolerant local regeneration code is constructed. Whenever
one node fails, it is assumed that node 1 fails, so the source file
M can be restored by Eq.14 that fastly locate the node other
than node 1 and download its first block {X2, X3, · · · , Xn},
and downloading next its second block Yj by any surviving
node j(j 6= 1). Whenever i

(
i ≤

⌊
n
2

])
nodes fail, the source

file M can be recovered by quickly locating the other n − i
nodes and download the first block

{
Xi1 , Xi2 , · · · , Xin−1

}
,

and then download the second block Yj1 , Yj2 , · · ·Yji from any
i surviving nodes j1, j2, · · · , ji (jl > i, l = 1, 2, · · · , i).

Xi
Yi

Ti

Hybridi

i 1 1 2 2i i n inY X A X A X A= + + +

Check block

T1 T2 T3 Tn

Time Stamp sequence

Datai

Fig. 3. Single fault-tolerant local regeneration code structure

Each regeneration code has three parts, namely, data domain
Xi, check domain Yi, and timestamp Ti, as shown in Fig.3.
As soon as some node fails, the source file can be recovered
by other surviving nodes, as depicted in algorithm 1 the
construction of distributed storage regeneration code.

Aiming at the structure of fault-tolerant local regenerative
codes in a Blockchain network, we design the corresponding
information flow graph for the Blockchain network, as de-
picted in Fig. 4, since adjacent local codes can recover any
fault local code in fault-tolerant local regeneration codes.

In industrial Blockchain networks, nodes upload data to the
Blockchain network. When the data in the nodes are damaged,
the data recovery process based on the blockchain network
can recover completely the data of nodes by downloading any
corresponding data Xi, Yi, Ti from the surviving nodes.

B. Efficient BlockChain based Recovery Algorithm

1) Data Recovery for Single Node Failure: When con-
structing the regenerative codes, data storage and node repair

Algorithm 1 Distributed storage regeneration code construc-
tion algorithm.
Input:

Source file M , non-singular matrix U, V ;
Output:

Coding matrix G;
1: Divide souce file M into n data blocks Xi =
xi1, xi2, ..., xin, i = 1, 2, ..., n;

2: for i ≤ i, j ≤ n do
3: Compute Aij = (Vi)

TUj + cijE;
4: end for
5: Compute Yi = X1Ai1 +X2Ai2 + ...+XkAin;
6: Record Ti to get coding vector Bi = Xi, Yi, Ti;
7: Generate code B = B1, B2, ..., Bn;
8: return Coding matrix G.

Fig. 4. Blockchain network corresponding to fault-tolerant local regeneration
codes

are usually separated yet disclosed. When repairing the data in
nodes, no encoding and decoding operation to download data,
as also precise repair of a single failed node in the system
by simple XOR operation. We identified that, by modifying
the existing simple regenerative codes, we could retrieve the
encoding form that can repair multiple failed nodes accurately
at the same time. The repair process and bandwidth are given
in detail. This new regenerative code coding method is simple,
and its storage capacity is close to the minimum theoretical
value of node storage. When specific parameters are satisfied,
several nodes in the connection system can quickly repair
multiple failed nodes, due to excellent local repairability and
reduced overhead of disk input/output, so it has high practical
application value.

When a new storage node is added to the blockchain
cloud storage system, it is considered to distribute the new
storage node evenly to each local code also to ensure that the
constructed high fault-tolerant local regenerative code keeps
the number of local codes unchanged with the increase of
the length of each local code. If l storage nodes are added
to the local code to reduce the bandwidth overhead on the
construction of high fault-tolerant local regenerative code and
the extended code, the information bits in the local code of the
system are kept unchanged and the check bits increased to l/2.
The extended code (nL + l/2, k, d′min + l/2) corresponding
to the local code (nL, k, d

′
min) of the system is constructed.

At this time, the minimum distance of the extended code in
the system is d′min + l/2. Furthermore, the extended code
of the system has a stronger ability to repair failed nodes.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 18,2020 at 22:24:18 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2966069, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JUNE 2019 6

Based on the system extended codes constructed above, the
extended codes (nL+ l/2, k, d′min+ l/2) of high fault-tolerant
local regenerative codes are constructed by network coding to
generate the distributed local check of local codes. At this
time, the distributed local check also adds l/2 bits, and the
local codes add l bits altogether.

Algorithm 2 Single node failure recovery algorithm.
Input:

Coding matrix G, failure node 1;
Output:

First block X1 stored in node 1 ;
1: Locate other n − 1 nodes other than node 1 by the third

block of storage nodes quickly;
2: Download its first block X2, X3, ..., Xn;
3: Select any surviving node j(j 6= 1) to download its second

block Yj ;
4: Use formula (14) to recover the first block X1 in node 1;
5: return First block X1 in node 1.

When one node is damaged, such as node 1 is damaged,
we will use the following method: finding the damaged node
1 through the blockchain network and undamaged nodes, then
using all data except node 1 in the network and generating
checking domain Yi(i 6= 2) of any other nodes, we can recover
the data of node 1. The pseudocode is depicted in algorithm
2.

2) Data Recovery for Multiple Nodes Failure: Aimed at
reducing the regeneration time and bandwidth overhead of
fault node repair, it is investigated the selection of repair
nodes for fault-tolerant local regeneration codes, that is, the
optimal selection of repair nodes from surviving nodes and
the transmission path from repair nodes to new nodes. Fig.
5 shows the repair process of multiple failure nodes, which
includes the following steps:

Step 1: We construct a mathematical model of repair node
selection in the heterogeneous cloud storage system, that is,
minimize

∑n
i=1 ciλi, in which ci is the download cost of

node i and {λ1, λ2,L, λn} is the download distribution of the
selected repair node. When the fault node is located in the
system local code part of each local code in the fault-tolerant
local regeneration code, multiple local repair groups may be
available for each fault node, and the repair group with the
lowest repair cost is considered.

Step 2: We consider all constraints that must be obeyed
in selecting repair nodes, that is, the repair and regeneration
time is not less than the data transmission time from any
repair node to the new node, the link bandwidth limits the
transmission rate from the repair node to the new node, and the
flow conservation on cloud storage nodes of the heterogeneous
network.

Step 3: We find the optimal value of the function Minimize∑n
i=1 ciλi. When the scale of the cloud storage system of

the industrial blockchain is small, the linear programming
method is used to optimize the selection of new nodes,
repair nodes, and data transmission paths to achieve the best
selection. If the scale of the cloud storage system of the
industrial blockchain expands, the computational complexity

of the linear programming method increases dramatically.
Moreover, heuristic selection algorithms, such as genetic,
simulated annealing, and ant colony algorithms, are considered
to obtain the approximate optimal new nodes, repair nodes,
and their transmission paths for reducing the regeneration time
and bandwidth overhead of fault node repair.

Xi+1

Yi+1 YnX1 Y1 T1

T2

Yi+1 Ti+1Xi+1

Ti

Yn TnXn

XnX2 Y2

Xi Yi

X1

Y1

Xi

Yi

X2

Y2

Yj Yj+i

Fig. 5. Repair process of multiple failure nodes

When i nodes are damaged in the n industrial nodes,
assuming that node 1 to node i fails is advisable. We can
use the first blocks Xi+1, Xi+2, · · · , Xn of n− i nodes other
than node 1 to node i and the second blocks Yj1 , Yj2 , · · ·Yji
of any surviving nodes j1, j2, · · · , ji (jl > k, l = 1, 2, · · · , i)
to repair node 1 to node i. The pseudocode is depicted as
algorithm 3.

Algorithm 3 Multiple nodes failure recovery algorithm.
Input:

Coding matrix G, failure nodes 1− i;
Output:

First block X1, X2, ..., Xi stored in node 1 to node i ;
1: Locate other n − 1 nodes other than node 1 by the third

block of storage nodes;
2: Download its first block Xi+1, Xi+2, ..., Xn;
3: Select any surviving nodes j1, j2, ..., ji(jl > k, l =

1, 2, ..., i) to download its second blocks Yj1 , Yj2 , ..., Yji ;
4: Use formula (15) to recover the first blocks X1, X2, ..., Xi

in node 1 to node i;
5: return First blocks X1, X2, ..., Xi in node 1 to node i.

V. DATA INTEGRITY VERIFICATION SCHEME

This section uses elliptic bilinear mapping to propose an
integrity authentication scheme based on a third-party auditor
(TPA). This scheme includes three entities: the users, CSPs,
and TPA. The interaction process is as follows. The user stores
the encrypted file M and digital tags into the CSP, and then
the processed authentication metadata are sent to the TPA.
Thus, the integrity challenges generated by the TPA are sent
to the CSP, which then sends the integrity response to the TPA.
Therefore, the TPA will send the comparative results between
the integrity challenges and respond to the users. Finally, the
CSP provides feedback to the user to judge whether data are
complete or not.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 18,2020 at 22:24:18 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2966069, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JUNE 2019 7

The data integrity proof for blockchain is shown in Fig.6
and the detailed process is illustrated as follows:

1) Setup phase: (1) Generate a public-private key pair
KeyGen

(
1k
)
→ (pk, sk): Let G and G′ be the multiplicative

cyclic group of a prime p, g be a generator of G and a bilinear
mapping f : G × G → G′.Let ϕ : {0, 1}∗ → G be a
hash function, which maps strings to G, and ψ : G → Zp
be another hash function, indicating that the elements of G
will be mapped uniformly to Zp. In addition, in order to a
generate random challenge index Sj and the corresponding
coefficient vsj , pseudo-random functions fkey{0, 1}∗ ×K →
Zp and pseudo-random permutations πkey : {0, 1}∗ × K →
{0, 1}log2 n are defined, which key belong to the key space K.
For any x ∈ Zp, u ∈ G, and v = gx ∈ G, the user generates a
pair of random signature key (SK,PK), and then the private
key is sk = (x, SK),the public key is pk = (u, v, g, PK).

(2) Generate digital tag TagBlock (pk, sk,m) → Tm.
Initialize the data information file M , and divide it into blocks
X1, X2, . . . , Xn. Users randomly select an element id on Zp
for the file M = {X1, X2, . . . , Xn} and calculate its file tag
T = id‖Sigsk(id). Then for each file block Xi ∈ Zp, users
generate a signature as follows:

σi =
(
ϕ(i)uXi

)x ∈ G, 1 ≤ i ≤ n (16)

Finally, the user will send {M,φ, T} to CSP, and send
{φ, T} to TPA as the authentication metadata, where φ =
{σ1, σ2, . . . , σn}.

2) Challenge phase: Generate challenge information Gen-
Chal (c, k, k′) → chal: TPA receives the audit request from
users and executes corresponding policies according to the data
protection component of the request. The audit scheme man-
agement component will choose the appropriate audit scheme.
When tasks are assigned to a specific TPA, the GCM module in
TPA generates challenge information, (c, k, k′)→ chal where
c(1 ≤ c ≤ n) is the number of data blocks and k ∈ Zp and
k′ ∈ Zp are the random replacement keys generated for each
TPM audit. Finally, it will be sent to CSP.

3) Data integrity verification phase: (1) Generating ev-
idence GenProof(pk,M, chal) → V : CSP receives the
challenge chal from TPA. After CSP confirms that is the
challenge information, it is necessary to determine the subset
I = {sj} , 1 ≤ j ≤ c of the challenge to be carried out in [1, n]
at first, and then calculate Sj = πk(j), vsj = fk′(j)(1 ≤ j ≤
c) by pseudo-random permutation πkey and pseudo-random
function fkey . For any i ∈ I , CSP calculates the formula as
follows:

µ′ =

sc∑
i=s1

viXi, σ =

sc∏
i=s1

σvii (17)

then the evidence P = {µ′, σ} is sent to TPA.
When TPA receives the evidence sent by CSP, firstly, it

protects its privacy in the data protection component, and
randomly selects an element r ∈ Zp, and uses the same
random function r = fk∗(chal), in which the random function
key k∗ generated for each audit by TPM . Also, calculate:

R = uγ ∈ G,µ = µ′ + rψ(R) ∈ Zp (18)

Finally, the evidence (µ, σ,R) is sent to TPA.
(2) Testing Evidence Check Proof (sk, V) → result. Ac-

cording to the generated challenge chal and the authentication
metadata base, make the integrity verification, that is, use the
evidence (µ, σ,R) to calculate sj = πk(j) and vsj = fk′(j),
1 ≤ j ≤ c. Finally, the module is verified as follows.

f(σ, g) = f

 sc∏
j=si

(
ϕ(i)viuµ−rψ(R)

)
, v

 (19)

If the Eq.19 holds, the integrity of the data is proved.

M T

Authentication metadata

TP

A

+

User

encrypt

(SK,PK)

Tm(Mà)
Information file M

{M, , }Tf

CSP

(), ,pk M chal V®

Integrity challenge

(), , mpk sk m T®

(), ,c k k chal¢ ®{ , }P m s¢=
Integrity element

Verify

CheckProof (),sk V result®

Fig. 6. The data integrity proof for blockchain

VI. NUMERICAL RESULTS

In the experiments, a Linux server with 8G memory and
2.4GHz CPU is utilized to implement the simulation in the
industry 4.0 environment. The 51% attack method is used to
simulate attacks on data storage in an industrial network. The
simulated attack strength is set within the range of 10% to
70%. It is assumed that the industrial blockchain nodes are
randomly distributed in an area of 100 × 100m2. The nodes
in this area include surviving, routing, and newly generated
nodes. The blockchain can realize distributed accounting and
decentration. This work uses blockchain technology to store
the detailed record of each transaction in the industrial net-
work. Network data can be added into the ledger in chronolog-
ical order and stored as a series of blocks. Each block is linked
to the front one as a chain. When the industrial nodes store data
in the blockchain, the data integrity should be firstly verified.
The ledger is distributed into multiple nodes. Each node
stores a complete data copy. The blockchain automatically
synchronizes and verifies the transactions of all nodes. The
ledger is transparent to all members. A central institute or third
party does not have to provide verification service. This section
mainly compares and analyzes the performance in terms of
security and the overhead of storage and recovery.

A. Overhead Evaluation

The resource overhead of data storage in Industry 4.0 can
be used to determine whether the data storage and repairing
function runs normally and stably. To ensure the repair quality
of the regeneration code, three similar methods in this area are
selected to evaluate the validity of the proposed method.

To balance the relationship between data storage and re-
pair overhead in the industrial blockchain network, the node

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 18,2020 at 22:24:18 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2966069, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JUNE 2019 8

storage can be transformed into the storage method of hierar-
chical network coding. A fault-tolerant data storage and repair
method is proposed based on the blockchain technology. The
overhead performance is compared in Table 1. The data repair
overhead is reduced to n/2 of the original, which illustrates
the superiority in data storage and repair overhead. The
blockchain-based data repair method can significantly reduce
the repair overhead by comparing it with other methods.

Furthermore, the computation complexity, storage overhead,
and application condition are compared. Results show that the
proposed method is suitable for the energy-limited network.
The performance in data storage and repair of multiple nodes
is less than that of other methods [26][27][28].

TABLE I
THE COMPARISON OF OVERHEAD PERFORMANCE FOR SEVERAL METHODS

The repair Time Repair Storage Application
method complexity overhead overhead condition

Ours o(1) n/2 n ∀n, k
Literature [26] o(n) n n ∀n, k
Literature [27] o(k2) n n k

n
≥ 1

2
Literature [28] o(1) n < 3n

2
∀n, k

B. Data Recovery Performance Evaluation

In Industrial Network 4.0, the application of the data
storage algorithm is greatly related to the environment. Any
blockchain-based industrial network has a high requirement
for data security. The secure data storage in [26][27][28]is
realized at the cost of computation resource. The identity of
the industrial nodes should be initially authenticated. Then, the
rate of secure data storage and data repair can be evaluated
and compared, as shown in Fig. 7.

With the decrease in data storage rate and increase in
data repair rate, the proposed method has improved real-
time performance and security in data storage and repair.
This finding proves the superiority in data storage and repair
compared with that of [26][27][28]. Specifically, when the
repaired file exceeds 2000 Mbit, secure data storage and repair
rates are increased by 9% and 8.6%, respectively.

This section conducts experiments to evaluate the data in-
tegrity of nodes in Industrial Network 4.0, and Fig. 8 presents
the results. Fig. 8(a) shows the integrity ratio of various data
amounts and the distributed allocation. Fig. 8(b) displays that
the data integrity ratio is affected when the distributed data
storage system is illegally attacked. However, the integrity of
the proposed scheme is better than the similar schemes due
to the use of the decentralized storage structure. The decline
of integrity ratio in the proposed scheme is slower than that
in other comparative schemes. Hence, the damage of illegal
attacks to the proposed scheme is less, thereby proving the
enhanced security.

C. Ability against 51% of Attacks

In this section, we evaluate the ability against 51% of
attacks. It is implemented by simplifying the complex storage

(a)

(b)

Fig. 7. The comparison of data repair rate and storage rate

400 600 800 1000 1200 1400 1600 1800 2000
0.70

0.75

0.80

0.85

0.90

0.95

1.00

In
te

gr
ity

 R
at

io
(%

)

Bit number (MB)

 Literatue[25]
 Literatue[26]
 Literatue[27]
 Ours

(a)

400 600 800 1000 1200 1400 1600 1800 2000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
te

gr
ity

 R
at

io
(%

)

Bit number (MB)

 Literatue[25]
 Literatue[26]
 Literatue[27]
 Ours

(b)

Fig. 8. The comparison of data integrity for industrial nodes

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 18,2020 at 22:24:18 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2966069, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JUNE 2019 9

proof procedure in the Blockchain system, which primarily
includes the proof of work (POW), timestamp, etc. As shown
in Fig. 9, the storage node is set as α = 3. With the increase
of stored data, the proposed algorithm achieves a higher
false alarm rate than that of [21]. It is due to the use of a
data storage and secure repair model. The high fault-tolerant
regenerative coding is simple with good local repairability.
With the increase of stored data, the algorithm can realize the
parallel restoration of multiple data storage nodes when the
data is damaged. Therefore, the proposed algorithm has good
ability against 51% attacks.

Fig. 9. Evaluation of the false alarm rate

VII. CONCLUSIONS

With the widespread and advances in Industrial Network
4.0, several emerging technologies will fundamentally impact
how industrial data storage stores and connect with increased
rates yet secure, as each technology represents a substan-
tial opportunity to improve some aspect of the proposed
research. Due to the particularity of blockchain-based indus-
trial network, the data storage management faces enormous
challenges. This work focuses on data security issues in the
industrial network and designs a storage and repair scheme
for fault-tolerant data coding. This scheme realizes a regener-
ation code with high precision and repairability in Industrial
Network 4.0. The regeneration code has simple coding and
excellent capability of local repair. When the stored data in
a blockchain-based network are impaired, multiple nodes of
data storage can be repaired with high efficiency. Also, the
unique linked storage structure involving data consensus and
the intelligent contract can be used to realize the fast local
code storage of neighboring stored data in the blockchain-
based network.Experiments show that the proposed scheme
can reduce the repair overhead of local code in data storage
and has good security and integrity.

REFERENCES

[1] ScienceDaily. (2013) Big data, for better or worse:
90generated over last two years. [Online]. Available:
https://www.sciencedaily.com/releases/2013/05/130522085217.htm

[2] Y. Xu et al., “A blockchain-based non-repudiation network computing
service scheme for industrial iot,” IEEE Transactions on Industrial
Informatics, vol. 00, pp. 1–1, 2019.

[3] C. Yang, X. Chen, and Y. Xiang, “Blockchain-based publicly verifiable
data deletion scheme for cloud storage,” Journal of Network and
Computer Applications, vol. 13, pp. 185–193, 2018.

[4] The Amazon S3 Team. (2008) Amazon s3 availability event. [Online].
Available: http: //status.aws.amazon.com/ s3-20080720.html

[5] M. Krigsman. (2013) Apple’s mobileme experiences post-launch pain.
[Online]. Available: http://www.zdnet.com/blog/projectfailures/apples-
mobileme-experiences-post-launch-pain/908

[6] Y. Yu, Y. Li, and J. Tian, “Blockchain-based solutions to security and
privacy issues in the internet of things,” IEEE Wireless Communications,
vol. 25, no. 6, pp. 12–18, 2018.

[7] D. Ford et al., “Availability in globally distributed storage systems,” in
9th USENIX conference on Operating Systems Design and Implementa-
tion (OSDI), Vancouver, BC, Canada, 2010, pp. 61–74.

[8] K. Hwang, J. Dongarra, and C. F. Geoffrey, Distributed and Cloud Com-
puting: From Parallel Processing to the Internet of Things, Y. Cheng,
Ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012.

[9] W. Liang and M. Tang, “A secure fabric blockchain-based data trans-
mission technique for industrial internet-of-things,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 6, pp. 3582–3592, 2019.

[10] L. Jiang et al., “Blockchain empowered wireless power transfer for green
and secure internet of things,” IEEE Network Magazine, 2019.

[11] H. Dai, Z. Zhen, and Y. Zhang, “Blockchain for internet of things: A
survey,” IEEE Internet of Things, 2019.

[12] K. Gai et al., “Permissioned blockchain and edge computing empow-
ered privacy-preserving smart grid networks,” IEEE Internet of Things
Journal, 2019.

[13] W. Liang et al., “Tbrs: A trust based recommendation scheme for
vehicular cps network,” FGCS, vol. 92, no. 0, pp. 383–398, 2019.

[14] G. M. Kamath et al., “Codes with local regeneration and erasure
correction,” IEEE Transactions on Information Theory, vol. 60, no. 8,
pp. 4637–4660, 2014.

[15] A. S. Rawat et al., “Codes with local regeneration and erasure cor-
rection,” Optimal locally repairable and secure codes for distributed
storage systems, vol. 60, no. 1, pp. 212–236, 2014.

[16] G. M. Kamath et al., “Codes with local regeneration,” in IEEE Interna-
tional Symposium on Information Theory Proceedings (ISIT), Istanbul,
2013, pp. 1606–1610.

[17] A. S. Rawat et al., “Optimal locally repairable codes with local minimum
storage regeneration via rank-metric codes,” in Information Theory and
Applications Workshop (ITA), San Diego, CA, 2013, pp. 10–15.

[18] N. Silberstein, A. S. Rawat, and S. Vishwanath, “Error-correcting
regenerating and locally repairable codes via rank-metric codes,” IEEE
Transactions on Information Theory, vol. 61, no. 11, pp. 5765–5778,
2015.

[19] D. Gligoroski et al., “Repair duality with locally repairable and locally
regenerating codes,” in The 3rd IEEE International Conference on Big
Data Intelligence and Computing (IEEE DataCom 2017), Orlando,
Florida, USA, 2017, p. 6.

[20] J. L. X. Li, J. Niu and W. Liang, “Cryptanalysis of a dynamic identity
based remote user authentication scheme with verifiable password up-
date,” International Journal of Communication Systems, vol. 28(2), pp.
374–382, 2015.

[21] W. Liang et al., “An industrial network intrusion detection algorithm
based on multi-feature data clustering optimization model,” IEEE Trans-
actions on Industrial Informatics, vol. 1, no. 1, 2019.

[22] L. Zhou et al., “Beekeeper: A blockchain-based iot system with secure
storage and homomorphic computation,” IEEE Access, vol. 6, pp.
43 472–43 488, 2018.

[23] A. Reyna et al., “On blockchain and its integration with iot. challenges
and opportunities,” Future Generation Computer Systems, vol. 88, pp.
173–190, 2018.

[24] D. Chen et al., “An interactive image segmentation method in hand
gesture recognition,” Sensors, vol. 17, no. 2, pp. 539–550, 2017.

[25] X. Xie et al., “A multi-node exact repair method in cloud storage based
on interference alignment,” Acta Electronica Sinica, vol. 42, no. 10, pp.
1873–1881, 2014.

[26] Y. Ren et al., “Blockchain-based trusted electronic records preservation
in cloud storage,” Computers, Materials & Continua, vol. 58, no. 1, pp.
135–151, 2019.

[27] J. T. et al., “Date hierarchical storage strategy for data disaster recovery,”
IEEE Access, pp. 1–1, 2018.

[28] Y. K. et al., “Efficient local secret sharing for distributed blockchain
systems,” IEEE Communications Letters, vol. 23, no. 2, pp. 282–285,
2019.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 18,2020 at 22:24:18 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2966069, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JUNE 2019 10

Wei Liang is currently an Associate Professor at
the College of Computer Science and Electronic
Engineering, Hunan University, China. He received
his Ph.D. degree at Hunan University in 2013 and
was a postdoctoral scholar at Lehigh University,
USA, during 2014-2016. He served as Application
Track Chair of IEEE Trustcom 2015, a Workshop
Chair of IEEE Trustcom WSN 2015 and IEEE
Trustcom WSN 2016. He has published more than
110 journal/conference papers such as IEEE Trans-
actions on Industrial Informatics, IEEE Transactions

on Emerging Topics in Computing, IEEE Transactions on Computational
Biology and Bioinformatics, and IEEE Internet of Things Journal. His
research interests include Blockchain security technology, Networks Security
Protection, embedded system and Hardware IP protection, Fog computing,
and Security management in WSN. He is a Member of the IEEE.

Yongkai Fan received the Bachelor, Master and
Ph.D. degrees from Jilin University, Changchun,
China, in 2001, 2003, 2006, respectively. From 2006
to 2009, he was an Assistant Researcher at Tsinghua
University, China. Since 2009, he is an Assistant
Professor at China University of Petroleum, China.
Prof. Fan’s research interests include theories of
software engineering and software security.

Kuan-Ching Li is currently a Distinguished Pro-
fessor at Providence University, Taiwan, where he
also serves as the Director of the High Performance
Computing and Networking Lab. He is a recipient
of awards and funding support from several agen-
cies and industrial companies, as he also received
distinguished chair professorships from universities
in China and other countries. Professor Li published
more than 250 scientific papers and articles and is
co-author or co-editor of more than 20 books pub-
lished by Taylor & Francis, Springer, and McGraw-

Hill. Professor Li’s research interests include parallel and distributed comput-
ing, Big Data, and emerging technologies. He is a senior member of the IEEE
and a fellow of the IET.

Dafang Zhang is a professor in the college of com-
puter science and Electronic Engineering, Hunan
University, China. He received a Ph.D. degree in
applied mathematics from Hunan University in 1997.
Prof. Zhang was a visiting fellow in Regina univer-
sity, Canada during 2002-2003, and senior visiting
fellow in Michigan state university, USA in 2013.
He has published more than 230 journal/conference
papers and PI for more than 30 large scale scientific
projects. Prof. Zhang’s research interests include
dependable systems/networks, network security, net-

work measurement, hardware security and IP protection.

Jean-Luc Gaudiot received the Diplôme
d’Ingénieur from the École Supérieure d’Ingénieurs
en Electronique et Electrotechnique, Paris, France in
1976 and the M.S. and Ph.D. degrees in Computer
Science from UCLA in 1977 and 1982, respectively.
He is currently a Distinguished Professor in the
Department of Electrical Engineering and Computer
Science at UC Irvine. Prior to joining UCI in
2002, he was Professor of Electrical Engineering
at the University of Southern California since
1982. His research interests include multithreaded

architectures, fault-tolerant multiprocessors, and implementation of
reconfigurable architectures. He has published over 250 journal and
conference papers. His research has been sponsored by NSF, DoE, and
DARPA, as well as a number of industrial companies. He has served the
community in various positions and was the President of the IEEE Computer
Society in 2017.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 18,2020 at 22:24:18 UTC from IEEE Xplore. Restrictions apply.

