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Highlights: 30 

• A method is proposed for extracting river networks from MSI images 31 

• Background homogenization and adaptive multi-scale region growth are adopted 32 

• The proposed method is sensitive to multiple scales of river networks  33 

• The strategy of "fast-growing and fine-screening" is used   34 
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Abstract: River networks are important water carriers that provide a multitude of ecosystem services, including 35 

freshwater for agriculture, drinking water for cities, and recreational activities. Accurate mapping of river 36 

networks from remote-sensing images is important for the study of these systems. Unfortunately, the delineation 37 

of river networks is challenging due to the spatial variability of the river channels, the complexity of the 38 

surrounding landscape, and the multi-scale characteristics of the network. Here, we present an adaptive, multi-39 

scale region growth method (AMRGM) to delineate river networks from Sentinel-2A/B MSI images. The 40 

method can handle the variability of river surroundings, multiple spatial scales, and the variable curvature of the 41 

channels. The method includes four steps: (i) a water index (NDWI) is used to enhance river bodies information; 42 

(ii) a bias-corrected fuzzy C-means (BCFCM) method mitigates the heterogeneity of the background; (iii) a 43 

scale-enhancement algorithm based on the Hessian Matrix makes full use of scale and direction information, and 44 

(iv) a regional growth criterion handles various river dimensions. Fast-growing and fine-screening strategies are 45 

also included in the AMRGM. The method is applied to eight river networks to evaluate its accuracy and 46 

reliability with various river morphologies and climate conditions. The AMRGM presents several advantages 47 

for detecting multi-scale river branches compared to four commonly used river-detection methods (i.e., K-means 48 

method, maximum likelihood method, Iterative Self-Organizing Data Analysis Technique Algorithm, and 49 

Support Vector Machine). The mean overall accuracy (OA) and kappa coefficients (KC) of the AMRGM exceed 50 

97% and 0.92 across the eight river networks. The most accurate river extractions are obtained for the Amazon 51 

River, Mackenzie River, and the Ganges Delta, where the river scale and direction characteristics are most 52 

distinct. Relatively high omission and commission errors are present in river networks displaying a complex and 53 

heterogeneous zonation, such as the River Welland, UK, and the Zagya Zangbo River in the Tibet Plateau. The 54 

complex geomorphic features of the River Welland reduce OA and KC to 93.8% and 0.86, respectively.  55 

 56 

Keywords：Sentinel-2A/B MSI, AMRGM, Hessian Matrix, Fast-growing and fine-screening  57 
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1. Introduction  58 

Terrestrial rivers play an essential role in the global water cycle and provide water at the continental scale 59 

for irrigation, hydroelectricity, and urban needs (Bookhagen and Burbank 2010; Vörösmarty et al. 2003). As sea 60 

level rises and climate changes, river networks may dramatically change in morphology, affecting the delivery 61 

of water, sediments, and biologically important compounds to the Earth's surface. Biological and physical 62 

processes control the landscape surrounding rivers and the network morphology and multi-scale characteristics. 63 

Comprehensive and precise mapping of river channels is critical to understand river evolution in a period of 64 

climate change (Huang et al. 2018; Langat et al. 2019; Pekel et al. 2016; Vörösmarty et al. 2003). Although 65 

river-recognition algorithms applied to satellite imagery have been indispensable tools for studying river 66 

networks, accurate delineation of rivers remains challenging due to water turbidity, the presence of vegetation, 67 

and the complexity of the landscape (Yang et al. 2015).  68 

Open-source satellite images, such as images acquired by the Landsat series and Sentinel-2A/B, provide 69 

excellent datasets for river mapping (Pekel et al. 2014; Zhou et al. 2017). Both the retrieval frequency and spatial 70 

resolution meet the demand of observation spanning multiple scales. The delineation of small streams with a 71 

dynamic morphology rather than wide, stable rivers is more important for studies and applications related to 72 

climate change (Kuenzer  et al. 2019; Pletterbauer et al. 2018). Sentinel-2A/B MSI images, with a relatively 73 

short revisit cycle (~5 days at the equator), higher resolution (up to 10 m), and high signal-to-noise ratio can 74 

facilitate the detailed delineation of global river networks (Du et al. 2016; Kaplan and Avdan 2017).   75 

Several algorithms have been designed to extract river networks. They can be divided into four categories: 76 

(1) Threshold segmentation based on water index (WI) images. WI, such as the Normalized Difference Water 77 

Index (NDWI), or the Modification of Normalized Difference Water Index (MNDWI) (Acharya et al. 2018; 78 

Jiang et al. 2014; McFeeters 1996; Xu 2007). These methods rely on waterbody extraction using water-sensitive 79 

wavelengths (red, green, and NIR bands). Nones (2020) mapped the Vistula River's deposition and erosion using 80 

the MNDWI and Landsat images. Despite its simplicity and efficiency when applied to large rivers, these 81 

methods yield poor results in complex networks dissecting heterogeneous vegetated zones. (2) Spectrum samples 82 

analysis classification. Supervised and unsupervised water classification are two classical methods for the 83 

delineation of water bodies. Klemenjak et al. (2012) extracted river networks combining the Support Vector 84 
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Machine (SVM) and the Maximum Likelihood classification (ML) algorithms. Jia et al. (2018) proposed a 85 

spectrum matching method to distinguish water from non-water in Landsat-8 OLI images. Chen et al. (2020a) 86 

used inequality constraints on hyperspectral data to identify urban water. These methods greatly depend upon 87 

expert experience or reference samples and may not work well in small rivers with low contrast or in ungauged 88 

watersheds. (3) Morphological feature extraction. Geometric indicators (e.g., curvature, edges measured at 89 

multiple scales) are a perfect tool to delineate rivers. Passalacqua et al. (2010, 2012) extracted channel networks 90 

through curvature analysis of geomorphic features, nonlinear multi-scale filtering, and geodesic optimization. 91 

Yang et al. (2014) and Liu et al. (2015) applied the multi-scale Gaussian-Matched Filtering method and an 92 

adaptive river extraction threshold. Isikdogan et al. (2017) developed a river analysis and mapping engine using 93 

curvilinear structure to obtain water bodies and channel width. Rishikeshan and Ramesh (2018) adopted 94 

mathematical morphological techniques based on water body edges. Morphological features are useful for river 95 

extraction, but multiple dimensions and variable curvatures were seldom combined. (4) Neural network and 96 

machine learning. Machine learning is a data-driven approach, which is popular for object identification. Jiang 97 

et al. (2018) used a multilayer perceptron neural network to identify surface water in Landsat-8 OLI images. 98 

Chen et al. (2020b) introduced extraction of spatiotemporal variations of water surfaces based on the Multi-99 

temporal remote sensing imagery and delineate (EMID) method to obtain river networks. The core methodology 100 

of EMID is a random forest model based on water-occurrence frequency. River pixels omission and discontinuity 101 

are usually present in the final results due to complex backgrounds and dendritic river patterns. Admittedly, the 102 

aforementioned river extraction algorithms perform well in specific landscapes, especially for large rivers where 103 

the presence of water is evident. The performance of these algorithms may be lower in river networks spanning 104 

multiple scales, with various curvature, and dissecting a heterogeneous background. Previous studies have 105 

introduced some geometric indicator analyses, such as Gaussian match filtering, mathematical morphological 106 

analysis, curvature analysis, to enhance river network detection performance. However, few of them take into 107 

consideration the above challenges in a holistic way. 108 

To address the challenges in detecting river networks (i.e., heterogeneous backgrounds, multi-scale 109 

morphology, and varying curvatures), we propose an adaptive multi-scale region growth method (AMRMG). 110 

Specifically, we use a water index (NDWI) to enhance river bodies information; a bias-corrected fuzzy C-means 111 
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(BCFCM) method mitigates the heterogeneity of the background; a scale-enhancement technique based on the 112 

Hessian Matrix to make full use of scale and direction information, and a region growth criterion to smoothly 113 

handle various river dimensions. Seldom river extraction algorithms have taken both river enhancement and 114 

pixel direction into account; the AMRGM successfully combined both strategies. As shown in applications over 115 

heterogeneous backgrounds with complex river networks, the AMRGM has proven its robustness, especially for 116 

the detection of small river branches with low contrast in the images.  117 

2. Study area and material 118 

2.1 Test sites 119 

The accuracy of river detection methods is limited by the variability of river morphology and the 120 

heterogeneity of adjacent landscapes. Here, eight sites with complex river networks are chosen to assess the 121 

performance of the proposed AMRGM (Fig. 1a, Table 1). River morphology and geographical location were 122 

two important considerations in site selection. Testing sites include linear rivers interspersed among ponds, tidal 123 

channels in coastal zones, anastomosing branches dissecting vegetated areas, and braided rivers flowing on bare 124 

lands. Given that landscape traits are spatially varying, sites are chosen from a coastal zone, an inland area, a 125 

rainforest, a delta, a desert, and a plateau. Many classifications have been proposed for river morphology 126 

(Nardini et al. 2020; Rinaldi et al. 2016; Rosgen 1994); here, we use the classification system proposed by 127 

Rinaldi et al. (2016): 128 

Table 1. Test site characteristic and dataset from Sentinel 2A/2B MSI.  Climate type refers to Koeppen Climate System. 129 
Number Test sites Background Climate Tile Date River type 

1 Canada Ponds,shallow Subarctic 08WMA, 08WMB,08WNA 07/23/2018 Thread 

2 America Salt marsh Humid subtropical 17RKN 12/23/2018 Wandering 

3 Brazil Rainforest Tropical monsoon 22MEE 08/17/2019 Branching 

4 England Salt marsh Oceanic 30UYD 05/07/2018 Thread 

5 Guinea-Bissua Bare land Tropical wet and dry 28PDT 02/24/2019 Thread, Creek 

6 Bangladesh Mangrove Tropical wet 48PYS 01/14/2016 

03/24/2016 

Wandering 

7 Vietnam  Mangrove forest Tropical wet and dry 45QYE 02/01/2019 Wandering 

8 China Bare land Cold desert 46SBA 07/24/2018 Braided 

 130 
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(1) Mackenzie River in the Northwest Territories, Canada (Fig. 1b). The Mackenzie River basin has numerous 131 

anastomosing channels, wetlands, and floodplain lakes fed by snowmelt (Abdul Aziz and Burn 2006). Its 132 

width ranges from a minimum of 20 m to a maximum of 2.6 km.  133 

(2) The Suwannee River in Florida, USA (Fig. 1c), is a black-water river debouching in a salt marsh coast with 134 

river width ranging from 10 m to 230 m (Wright et al. 2005).  135 

(3) Amazon River in the State of Pará, Brazil (Fig. 1d), with many anastomosing branches covered with dense 136 

tropical rainforest. Areas near the river are frequently flooded because of the rainforest climate (Hou et al. 137 

2018). The width of the Amazon river network ranges from 10 m to 1.5 km at the widest point. 138 

(4) River Welland in the eastern part of England (Fig. 1e). The Fenland Basin is crossed by several major gravel-139 

bed rivers that accrete due to tidal lag deposits (Briant et al. 2018; Plater et al. 1994). The width of the River 140 

Welland ranges from 10 m to 190 m. 141 

(5) Geba River in Quinara Region, Guinea-Bissau (Fig. 1f), is characterized by a semi-arid climate with cold-142 

rainy and hot-dry seasons. The river network is complex with both large and narrow streams (Zúquete et al. 143 

2017). The width of the Geba River is 5 km at its widest channel. 144 

(6) Ganges Delta in Bangladesh (Fig. 1g) has a complex network of distributary channels, forming a labyrinth 145 

of creeks, swamps, lakes, and flood plains. Its maximum width exceeds 6 km (Fagherazzi 2008; Harvey et 146 

al. 2005; Umitsu 1993).  147 

(7) Can Gio Mangrove forest southeast of Ho Chi Minh City, Vietnam (Fig. 1h). The Can Gio reserve is affected 148 

by the tropical monsoon climate, has a high density of river channels intertwined with a thick mangrove 149 

forest (Thanh-Nho et al. 2019). The channel width ranges from 10 m to ~1 km. 150 

(8) Zagya Zangbo River in Tibet, China (Fig. 1i). The Zagya Zangbo River discharges into the Siling Co lake, 151 

and it is a classic braided river formed by glacier meltwater and precipitation (Mi et al. 2019). The width of 152 

the Zagya Zangbo River is close to 1.3 km in its widest channel. 153 

Typically, (i) sites in silty areas or along temperate salt marshes are characterized by single-thread, sinuous, 154 

and meandering channels. These channels can be easily misclassified due to abundant suspended sediment and 155 

the presence of hydrophyte vegetation; (ii) sites in tropical rainforests or subject to a subtropical monsoon climate 156 

have a typical branching network with meanders. The spectral difference between the river and its background 157 

https://en.wikipedia.org/wiki/Swamp
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makes mapping relatively easy; and (iii) the Tibet plateau site has a classic braided river network, which 158 

significantly increases the heterogeneity in the image, making channel delineation difficult. A detailed 159 

description of the sites is presented in Table 1. The fluvial features of the River Welland, UK, are the most 160 

difficult to delineate because of the complicated background and intricate drainage system (Fig. 1). As a result, 161 

we choose this system to discuss our AMRGM's performance (Fig. 1e). 162 

 163 
Fig. 1. (a) Map of the study sites; (b) Mackenzie River in the Northwest Territories, Canada; (c) Suwannee River in 164 
Florida, USA; (d) Amazon River in the State of Pará, Brazil; (e) River Welland in England; (f) Geba River in the 165 
Quinara Region, Guinea-Bissau; (g) Ganges Delta in Bangladesh; (h) Can Gio Mangrove forest in Vietnam; (i) Zagya 166 
Zangbo River in Tibet, China.  167 
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2.2 Satellite dataset 168 

The ESA Sentinel-2 satellites provide important datasets for terrestrial mapping. The Sentinel-2A/B MSI 169 

images come in three resolutions: four bands at 10 m, six bands at 20 m, and three bands at 60 m from visible to 170 

near-infrared wavelengths (https://sentinel.esa.int/web/sentinel/missions/sentinel-2). Instrument's radiometric 171 

differences between Sentinel-2A/B and Landsat 8 OLI is < 1%, and the former is characterized by a higher 172 

absolute geodetic accuracy (Drusch et al. 2012; Griffiths et al. 2019). Clear sky is necessary to acquire an optical 173 

image of the Earth's surface since clouds or atmospheric haze can obscure the observed targets and decrease the 174 

algorithm accuracy. Only the 10 m spatial resolution bands (Band 2: 490 nm, Band 3: 560 nm, Band 4: 665 nm, 175 

and Band 8: 842 nm) are used to map river networks. The Top Of Atmosphere (TOA) reflectance product of 176 

Sentinel-2 L1-C is used after radiometric calibration and orthographical correction; the atmospheric correction 177 

is implemented in ENVI 5.5.  178 

3. Adaptive Multi-Scale Region Growth Method (AMRGM) 179 

Heterogeneous river backgrounds, multi-scale morphologies, and the variable curvature of the channels 180 

significantly increase the difficulty in delineating river networks. To address these challenges, we adopt the 181 

following targeted optimization which enhances the extraction robustness (Fig. 2). The optimization includes 182 

four steps: (i) Water index (e.g. NDWI) is a simple but effective indicator for river extraction (Gao 1996; 183 

McFeeters 1996; Watson et al. 2018). Note that a water index can only detect the wet channels (i.e. channels 184 

filled with water) using the water spectral properties. However, the wet channels are only one of the 185 

morphological units of a river. The active channels include areas that might be dry at the time of image 186 

acquisition, as well as sediment bars and vegetated and non-vegetated islands (Hooshyar et al. 2015; Spada et al. 187 

2018). (ii) Previous applications have proven that the Bias-corrected Fuzzy C-means (BCFCM) can effectively 188 

mitigate the ambiguity of heterogeneous backgrounds (Yang et al. 2015). Therefore, the BCFCM is applied to 189 

the NDWI image to highlight river bodies. Initial seed points are directly generated from the BFCM image. (iii) 190 

Multi-scale linear features and extension direction can be well described by the second-order derivative in the 191 

Hessian matrix (Frangi et al., 1998; Manniesing et al., 2006; Kerkeni et al., 2016). Hence, a scale-enhancement 192 

based on the Hessian Matrix is adopted to make full use of scale and direction information. (iv) Finally, a region 193 

growth criterion based on the multi-scale and direction information derived from step (iii) is adopted to segment 194 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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rivers with various dimensions. Once scale boundary conditions are given, region growth is implemented. Here, 195 

we propose a "fast-growing and fine-screening" strategy to accelerate the river network extraction and exclude  196 

outliers among river candidate pixels. This strategy makes sure that seed points grow smoothly.  197 

 198 
Fig. 2. Procedure of the AMRGM, from river enhancement, seed points generation, multi-scale region growth, and 199 
outlier removal. 200 

 201 

3.1 Fluvial features enhancement and background homogenization 202 

Band 3 (Green Band) and Band 8 (NIR band) are used to obtain the NDWI index (Eq. 1). 203 

                                                3 8
3 8

Band BandNDWI
Band Band

−
=

+
                                           (1) 204 

To enhance the difference between water bodies and surrounding landforms, we use background 205 

homogenization that unifies the representation of features through a biased field correction. A basic formula (Eq. 206 

2) is given as follows for image (I) and the spatial heterogeneous trait (β): 207 

                                                        k k kI x β= +                                                   (2) 208 
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where xk represents the pixel's ideal feature. Gradually varying environments can be generally regarded as a 209 

piecewise-constant model, and site-specific local variability is represented as the region-based cluster center by 210 

constant parameters  {𝑣𝑣𝑖𝑖}𝑖𝑖=1𝑐𝑐 . The classic intensity-dependent fuzzy C-means (FCM) algorithm designs a 211 

continuum of the degree of membership ranging from 0 to 1 for each pixel (Eq. 3): 212 

                                                     
2

1 1

c N
p
ik k i

i k
J u x v

= =

−∑∑=                                    (3) 213 

where {𝑢𝑢}𝑖𝑖𝑖𝑖
𝑝𝑝  is the membership of pixel xk belonging to the type vi. To regularize the FCM algorithm, a term 214 

compensating the adjacent coherence is incorporated into the global objective function (Eq. 4): 215 

                              
2 2

1 1 1 1 r w

c N c N
p p
ik k i ik r i

i k i k x NR

J u x v u x v
N
α

= = = = ∈

 
− + −  

 
∑∑ ∑∑ ∑=        (4) 216 

where Nw represents all the pixels in the neighborhood of xk, and NR is the corresponding total number of pixels, 217 

α controls the degree of neighborhood effect. The whole image domain achieves optimal partition by minimizing 218 

the sum of weighted inter-class derivations (Ahmed et al. 2002). Adding Eq. 2 to Eq. 4, the bias-corrected fuzzy 219 

C-means (BCFCM) object function is computed as Eq. 5: 220 

              2 2

1 1 1 1
arg min

r w

c N c N
p p

ik k k i ik r r i
i k i k NR

J u I v u I v
N
αβ β

= = = = ∈

 
− − + − − 

 
∑∑ ∑∑ ∑

x

=       (5) 221 

We then iteratively calculate the membership uik in each pixel and simultaneously estimate the heterogeneous 222 

property βi. The desired homogenized result is derived by subtracting the image I to β.  223 

After applying the NDWI algorithm to the Sentinel-2A MSI image, the brightness difference between the 224 

target river and adjacent background becomes apparent compared to the original RGB image (Fig. 3a). The trace 225 

of the river channels is visible, but small-scale creeks or tributaries are nearly imperceptible because of the low 226 

contrast with respect to the background. Multi-modal heterogeneity appears in the histogram of the NDWI image, 227 

with the left (-0.6) and right peaks (0.4) representing the dark background and the bright river network (Fig. 3b). 228 

Brightness pixels between (-0.2) and (0.2) are difficult to be attributed to either river or landscape. Small-scale 229 

rivers will be more apparent since the fluvial background is significantly smoothed using the BCFCM procedure. 230 

As a result, two independent grey peaks at (-0.4) and (0.3) occur in the BCFCM image histogram (Fig. 3c–d). 231 

javascript:;
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Although the background's complexity is reduced after the background homogenization, simple threshold 232 

segments cannot identify small scale rivers (Fig. 3c).  233 

  234 
Fig. 3. Background homogenization: (a) NDWI image. (b) Histogram of the NDWI image. (c) BCFCM image. (d) 235 
Histogram of the BCFCM image.  236 

3.2. Multi-scale river enhancement and direction analysis  237 

3.2.1 Hessian Matrix   238 

The Hessian Matrix can be used to improve the multi-scale detection of river networks with a large range of 239 
widths. The method is based on the convolution of the original image I0(x, y) with the 2D Gaussian kernel Gσ 240 
(x, y) (Eq. 6) (Malladi and Sethian 1995; Zhu et al. 2017). 241 

                                           0(p) (x, y) (x, y) (x, y)I I I Gσ σ σ= = ⊗                                      (6) 242 
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where σ is the scale-kernel, Iσ is the intensity image corresponding to that scale kernel, and p represents the pixel 243 

location (x, y),  indicates the convolution operator. Gσ (x, y) is calculated as Eq. 7:  244 

                                                    
2 2

22
2

1( , )
2

x y

G x y e σ
σ πσ

+
−

=                                          (7) 245 

where σ∈ {𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚, …𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚}, σmin, σmax is the minimum and maximum scale kernel, and σ is the core factor. Within 246 

the scale-space, differentiation is defined as a convolution with derivatives of the Gaussian function (Eq. 8). 247 

                                             
1 21 2

1 2 1 2
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GI x y I
x y x y

σ

σ

++  ∂∂
= ⊗ ∂ ∂ ∂ ∂ 

                         (8) 248 

where n is the order of the derivatives. Each pixel calculated with the Hessian Matrix using second-order 249 

derivatives is sensitive to the local curvature variation of intensity (Eq. 9) (Frangi et al. 1998).  250 
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                                       (9) 251 

Hessian eigenvalues λ1, λ2 along with the two associated eigenvectors (e1 and e2), are obtained from the 252 

symmetric matrix Hσ(p). Two categories appear in the grey image, either bright linear features with a dark 253 

background or dark linear features with a bright background. Nevertheless, eigenvalue λ1 (i.e., minimum absolute 254 

value) is nearly zero for both types, while λ2 (i.e., maximum absolute value) can distinguish dark features 255 

(positive response) from bright features (negative response). A pixel with λ1 ≈ 0 and λ2 < 0 belongs to a bright 256 

river pixel bounded by a dark background (Kerkeni et al. 2016). Otherwise, pixels belong to dark pixels bounded 257 

by a bright background. 258 

3.2.2 Feature enhancement using the multi-scale local differential structure  259 

The Hessian eigenvalues can geometrically interpret the curvatures of linear features. A bright linear river 260 

is represented as the following (Eq. 10–12) (Manniesing et al. 2006): 261 

                                                

2 2

2 22 2
2e (1 e )  if   0

0                            otherwise

bR S

L β γ
σ

λ
− −

 − <= 


            (10) 262 

and  263 
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1

2
bR

λ
λ

=                                                     (11) 264 

                                                      2 2

1 2+
F

S H λ λ= =                                            (12) 265 

where β, γ are weighting factors for controlling the inter-influence of Rb and S. Smoothed linear features from 266 

𝑒𝑒−
𝑅𝑅𝑏𝑏
2

2𝛽𝛽2 is multiplied by 1 − 𝑒𝑒−
𝑆𝑆2

2𝛾𝛾2 to achieve the optimal filter response in both criteria (Eq. 10).  267 

Following the scale-space theory (scale invariance and space invariance), each scale-enhancement is 268 

normalized by Eq. 8. The maximum responses across the probed scale-space are deemed as the optimal scale-269 

matched. Lmax (Eq. 13) is the maximum river response when the feature reaches its optimal factor scale. 270 

                                              
min max

max maxL Lσσ σ σ≤ ≤
=                                                (13) 271 

Discrepancies between the river and adjacent background are smoothed using the BCFCM, and the local 272 

multi-scale rivers are enhanced by the multi-scale local differential geometry (Fig. 4). River response (L) 273 

gradually increases with the scale factor (σ), and σ = 7 is the maximum scale for the River Welland, UK, as all 274 

river branches are enhanced at this scale (Fig. 4a–d). Adaptive multi-scale river enhancement response (L) is 275 

depicted by color features in a multi-scale image. 276 

Three river-network cross sections on the processed images help to illustrate river-scale enhancement (Fig. 277 

4). Lines 1, 2, and 3 represent three channels with different scales (Fig. 4a). Line 1 is a cross section of three 278 

small rivers; Line 2 is a cross section of two mid-size rivers; and Line 3 is a cross section of a single, large river 279 

with a sand bar at its center. In Line 1, scale σ = 1 successfully outlines the small rivers and both banks of the 280 

large rivers. So this scale is sufficient to enhance small scale rivers, and river response (L) across the three rivers 281 

does not change when the scale increases. The small scale (σ = 1) fails to enhance the middle-scale rivers because 282 

the river response (L) has not reached the "true" boundaries (red dotted line) in the column of Line 2. Once line 283 

2 reaches the optimal response scale (σ = 3), it no longer changes for higher values of σ. Small scale factors (σ 284 

= 1, 3) cannot fully capture the large rivers, which needs a larger scale (Column of Line 3). With σ = 5, the 285 

algorithm already fills most of the river bodies, but the river in the red circle of Fig. 4d needs a larger scale-286 

factor to avoid separation in two branches. When confronted with such a great range of scales, it is not practical 287 

to use each scale in the algorithm because it increases the computational burden. Alternatively, a coarse 288 
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water/land segmentation using the water index can be performed in advance to identify the large channels so that 289 

they can be excluded in the following calculations.  290 

 291 
Fig. 4. Adaptive multi-scale local differential geometry enhances fluvial features in the River Welland, UK: (a–d) 292 
results with factor scale σ = 1, 3, 5, and 7, used in enhancing water bodies. Line 1, 2, and 3 cross small, mid, and large 293 
channels, respectively. Algorithm results in Line 1, 2, and 3 for each scale. The red dotted lines are river boundaries; 294 
the river response L is normalized in [0, 1].  295 

3.2.3 Analysis of river pixels direction 296 

The eigenvectors e1 and e2 of the Hessian Matrix can delineate linear structures (Eq. 9); e1 shows the 297 

direction of a potential linear structure with a low second derivative; and e2 represents the normal direction of a 298 

potential linear structure with a high second derivative (Kerkeni et al. 2016). River direction can be calculated 299 

in Eq. 14:  300 
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                                       (14) 301 

Hessian matrix analysis not only improves the multi-scale river enhancement (L) but also provides pixel 302 

direction (D) for river water (Eq. 10, Eq. 14). Pixel directions are parallel and cover the fluvial channels with 303 

continuity and consistency (Fig. 5a–b). Pixel directions parallel the river centerline when the scale reaches its 304 

optimal value (e.g., Subset 1 Fig. 5a); otherwise, pixel directions intersect each other (Subset 2 Fig. 5c). For 305 

small-scale rivers, river scale-enhancement is weak, but pixel directions are parallel (Subset 3 Fig. 5d) and can 306 

be used for small river identification. No linear features are found in Subset 2, resulting in non-parallel pixel 307 

directions (Fig. 5c). The combination of river scale response and pixel direction dramatically improves river 308 

extraction accuracy, especially for the network of small streams with low water brightness. 309 

 310 
Fig. 5. River network direction information: (a) direction computed with the multi-scale algorithm using the local 311 
differential structure, pixel directions are consistent at the confluence between river branches and the main trunk. Note 312 
that only a fraction of pixel directions are displayed for clarity. (b), (c) and (d) represent the pixel directions in Subset 313 
1, Subset 2, and Subset 3.  314 

3.2.4 Multi-scale regional growth algorithm 315 

Favorable seed points are required for proper network growth, and the largest 1% of DN pixels are used 316 

here for this purpose. The seed points are mostly located in large scale rivers (Fig. 6a). A few seed points are 317 

manually added in branches that are weakly connected to the main trunk. The network starts growing from the 318 

seed points and expands from large scale to small scale branches with a fluid and fast process (Kerkeni et al. 319 
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2016; Sekiguchi et al. 2005). Network growth from the seed points is performed iteratively. After each iteration 320 

is executed, all the new pixels added to the network become seed points for the next round.  321 

The use of pixel directions is indispensable to distinguish small and narrow river branches (Fig. 5c). 322 

Leveraging on this idea, a regional growth criterion is adopted using the following convergence conditions: for 323 

a seed point (''q'') and a river pixel (''p''), the pixel orientation correlation index, Ωσ (p, q) is defined as Eq. 15.  324 

            
(p) (q)

(p,q)
(p) (q)

D D
D D

σ σ
σ

σ σ

⋅
Ω =                                    (15) 325 

The pixel direction is parallel when Ωσ (p, q) = 1 and perpendicular when Ωσ (p, q) = 0. Pixel p conforms to Eq. 326 

16. 327 

                                     p ∈ 𝑁𝑁𝑛𝑛(𝑞𝑞) ∩ 𝐿𝐿σ(𝑝𝑝) > 𝜂𝜂(1 − Ωσ (p, q))                        (16) 328 

where pixel q is set as a river pixel. Nn(q) represents the n-neighborhood pixels. N4 and N8 are used here. η is a 329 

threshold; a small η will bring overgrowth while a large η will underestimate neighboring pixels' extension. η is 330 

selected as 0.8 in the River Welland site based on the scale-enhancement results (Fig. 4). A 4-neighbor (N4) and 331 

8-neighbor (N8) algorithm is used to obtain multiple-scale rivers (Appendix algorithm 1). The N4 aims to extract 332 

large rivers using Eq. 16, while the N8 delineates small rivers following the N4 results. 333 

The detailed process of the multi-scale region growth is described in Appendix algorithm 1. River scale-334 

enhancement (L) and pixel direction (D) are computed in the BCFCM image (I). A processing queue (S) is 335 

implemented to store the seed points (B); the seed points are deleted when the growth terminates after each 336 

iteration. The main river has a high response, whereas the small-scale rivers are easily overlooked when the pixel 337 

response is less than 𝜂𝜂(1 −Ωσ (p, q)). To address this problem, an additional growth condition Ωσ (𝑝𝑝, 𝑞𝑞) ≤338 

√3
2�  (pixel direction within 30°) is used to delineate the small and narrow streams (σ = 1, 3). Two piecewise 339 

growth processes are performed in rivers with different dimensions. The first process is used to delineate the 340 

brightness of wide rivers, while the second one is sensitive to small-scale branches (Appendix algorithm 1). The 341 

two processes significantly improve computational efficiency.  342 

The step-wise progression of the multi-scale rivers growth algorithm is illustrated in Fig. 6 and encompasses 343 

seed point generation, river pixel growth, and outlier removal. To help visualization, we keep the NDWI image 344 

as the background and implement the AMRGM in the BCFCM image. Initial seed points are automatically 345 
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generated in mid-size rivers, and we manually add some pixels at the top right corner (Fig. 6a). The network 346 

grows from the seed points and quickly expands in the large rivers (σ between 5 and 7, Fig. 6b–c). The small 347 

branches of the River Welland are characterized by low NDWI and weak linearity (Fig. 3c), so they cannot be 348 

easily captured by Eq. 16 until river growth termination. Considering pixel direction is less affected by the river's 349 

brightness, the orientations correlation index (Ω) is a better indicator for distinguishing the remaining small 350 

branches (Appendix algorithm 1). A large number of small branches grow when σ = 3 (Fig. 6d), compared to σ 351 

= 5 (Fig. 6c). A scale σ = 3 nearly reaches the optimal result as few pixels are added from σ = 3 to σ = 1 (Fig. 352 

6e). Many subtle channels draining in the main stem also form: for example, the small branches at the top right 353 

corner of the image. Excessive pixel growth inevitably occurs at both sides of the large-scale rivers following 354 

the "fast-growing and fine-screening" strategy (Fig. 6e). As the AMRGM will extract all potential river pixels, 355 

the excessive pixels need to be removed at the end of the growth (outlier removal).  356 

A sliding window (10 × 10 pixels) is used to screen pixel belonging to large or small scale streams in the 357 

BCFCM image (Appendix algorithm 2). The most important step is splitting the extraction of pixels into small 358 

or large rivers. If the maximum value within the sliding window (Imax) exceeds the threshold M (0.1), and pixel 359 

response Ip is below the threshold T1 (0.3), the pixel is removed (outlier nearby a large-scale river). If the Imax is 360 

less than M, the pixel pertains to a small-scale river, and then a simple threshold T2 (-0.02) is directly adopted to 361 

delete the extra pixels (Fig. 6f). Values in brackets represent the parameters used in the River Welland basin.  362 
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 363 
Fig. 6. Process of region growth in the River Welland network: (a) Initial seed points (blue pixels) automatically 364 
generated from the BCFCM image and with some few points added in small rivers. (b-e) River pixels (green pixels) 365 
expanding from large-scale channels into small-scale streams. (f) Outlier removal result.   366 

4. Implementation of the AMRGM  367 

4.1 Extraction of the River Welland network 368 

Since a comparison between the algorithm results and ground truth data is more meaningful at the same 369 

spatial scale, we select the Sentinel-2A MSI color composite image as the base map for ground truth data to 370 

evaluate the accuracy of the river extraction. Visual interpretation is widely adopted as a benchmark in various 371 

RS classification/extraction applications. We therefore manually delineate the channels in the ground truth image. 372 

All the river networks extracted with the AMRGM are “wet channels”, and might change in time with water 373 

levels (Fig. 6). The misclassified and missing pixels are attributed to commission and omission errors. When the 374 

water level is low, the edge of sand bars and river banks appear as bright linear features. Commission errors are 375 

mainly distributed near these landforms because the algorithms identify them as river pixels due to the linear 376 

texture and direction properties. On the other hand, omission errors mainly occur in a small creek along the trunk 377 

because of excessive pixel removal (Appendix algorithm 2). Not all small branches are found by our algorithm 378 
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(Fig. 7a). Most river pixels are captured during the multi-scale region growth procedure in Fig. 6e, but only a 379 

few disconnected patches and non-identified channels are present in the final map after outliers removal (Fig. 380 

7b). Several small streams are identified by the AMRGM but are not captured by the manual classification in 381 

the color composite image. The river extraction is carried out at high tide to capture active channels that might 382 

be dry at low tide. If we select an image taken at high tide, the river's background becomes blurry, decreasing 383 

the accuracy of the AMRGM (See Fig. S1 of Supplementary Materials for details). 384 

 385 
Fig. 7.  Extraction of the network in the River Welland using the AMRGM: (a) Color composite image (R: Band 8, 386 
G: Band 3; B: Band 2); (b) Accuracy analysis obtained after comparison with the ground truth image. Red pixels 387 
represent commission errors, while green pixels are omission errors.  388 

4.2 Performance of the AMRGM in seven sites 389 

The AMRGM is then applied to seven new sites divided into two classes based on the basin area covered 390 

by the remote sensing images. Small sites contain the Suwannee River, the Amazon River, the Can Gio 391 

Mangrove, and the Zagya Zangbo River (Fig. 8); large sites include the Mackenzie River, the Geba River, the 392 

Ganges Delta; all of them possess an area exceeding 800 km2 in the remote sensing images (Fig. 9). Channel 393 

extraction is carried out using five methods (AMRGM, SVM, ML, ISODATA, KM). Of all methods tested, the 394 

AMRGM performs the best, followed by the SVM (Fig. 10); only the AMRGM and SVM extraction results are 395 

displayed in Fig. 8–9. 396 
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The middle and large-scale channels in the Suwannee River, Amazon River, and Can Gio Mangrove forest 397 

are relatively linear (Fig. 8), whereas the low-order creeks in the Suwannee River are characterized by meanders 398 

(Fig. 8a1–a2). In Subset area 1 and Subset area 2 of the Suwannee River, the AMRGM easily captures the small 399 

meandering creeks, while the SVM performs poorly (Fig. 8a3–a6). In the Amazon River (Fig. 8b1), the river 400 

network is dendritic with sharp width transitions from the main channels to the tributaries (Fig. 8b2). Here, 401 

several streams are not captured by the SVM (Subset area 1 and Subset area 2, Fig. 8b4 and b6). In contrast, the 402 

AMRGM detects streams at all dimensions (Fig. 8b3 and b5). Similar results are also obtained in the Can Gio 403 

Mangrove forest (Fig. 8c1), where the AMRGM delineates a large number of small-scale streams (Fig. 8c3 and 404 

c5) that are missed by the SVM (Fig. 8c4 and c6). The Zagya Zangbo River in Tibet has a complex river network 405 

with a high number of braided channels formed by sediment deposition and erosion; our method obtains better 406 

results for this system compared to the SVM (Fig. 8d1–d2). The river networks are more evident after the 407 

background homogenization performed by the AMRGM (Fig. 8d3 and d5 vs. Fig. 8d4 and d6). In general, the 408 

AMRGM performs well in large rivers (Fig. 10), where the water area has very distinct optical properties. 409 

However, sometimes it fails at delineating small channels with a limited water surface. 410 

In the large study sites, the small rivers cannot be recognized in the composite color image (Fig. 9). The 411 

Mackenzie River site is characterized by linear streams with different dimensions and lakes scattered across 412 

the landscape (Fig. 9a1). The water bodies are clearly extracted with the AMRGM (Fig. 9a2) in Subset area 1 413 

and Subset area 2 (Fig. 9a3 and a5). The SVM performs poorly in small streams and ponds because of the similar 414 

spectral characteristics compared to the surrounding areas (Fig. 9a4 and a6).  415 

The Geba River basin includes multiple river patterns, with small creeks and linear channels. The area 416 

surrounding the channels is characterized by diverse land uses and vegetation, which complicate the river 417 

networks' extraction (Fig. 9b1). Elongated streams also characterize the Geba River, and the AMRGM 418 

successfully delineates its complex network (Fig. 9b2). In the subset regions, the AMRGM performs much better 419 

than the SVM at the tip of small tributaries (Fig. 9b3–b6). In the Ganges delta site, the spectral difference 420 

between river and background is not as apparent as for the other sites. The SVM recognizes the relatively wide 421 

rivers (Fig. 9c4 and c6), but our method achieves a better result in small distributaries (Fig. 9c2, c3, c5).  422 

javascript:;


23 
 

 423 
Fig. 8. Comparison of river networks in small basins extracted with the AMRGM and SVM from remote sensing 424 
images: (a1) color composite image of the Suwannee River; (a2, a3, a5) Suwannee River network,  Subset 1, and 425 
Subset 2 river extraction using AMRGM; (a4, a6) Subset 1 and Subset 2 river extraction using SVM; (b1) color 426 
composite image of the Amazon River; (b2, b3, b5) Amazon River network. Subset 1, and Subset 2 river extraction 427 
using AMRGM, (b4, b6) Subset 1 and Subset 2 river extraction using SVM; (c1) color composite image of the Can 428 
Gio Mangrove forest, (c2, c3, c5) Can Gio Mangrove forest networks, Subset 1, and Subset 2 river extraction using 429 
AMRGM, (c4, c6) Subset 1 and Subset 2 river extraction using SVM; (d1) color composite image of the Zagya Zangbo 430 
River, (d2, d3, d5) Zagya Zangbo network, Subset 1, and Subset 2 river extraction using AMRGM, (d4, d6) Subset 1 431 
and Subset 2 river extraction using SVM. 432 
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Fig. 9. Comparison of river networks in large basins extracted with the AMRGM and SVM from remote sensing 434 
images: (a1) color composite image of the Mackenzie River, (a2, a3, a5) Mackenzie River network, Subset 1 and  435 
Subset 2river extraction using AMRGM, (a4, a6) Subset 1 and Subset 2 river extraction using SVM; (b1) color 436 
composite image of the Geba River; (b2, b3, b5) Geba River network, Subset 1 and Subset 2 river extraction using 437 
AMRGM, (b4, b6) Subset 1 and Subset 2 river extraction using SVM; (c1) color composite image of the Ganges Delta, 438 
(c2, c3, c5) Ganges Delta network, Subset 1 and Subset 2 river extraction using AMRGM, (c4, c6) Subset 1 and Subset 439 
2 river extraction using SVM. 440 

4. 3 Quantitative analysis of five extraction methods  441 

River networks delineated by the AMRGM are compared to the results of four additional methods: (i) 442 

clustering method (K-means method, KM); (ii) unsupervised classification (maximum likelihood method, ML); 443 

(iii) Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA); and (iv) supervised 444 

classification (Support Vector Machine, SVM). Four primary classification cases are considered: true positive 445 

(TP), true negative (TN), false negative (FN), and false-positive (FP). Accordingly, the Kappa coefficient (k), 446 

the overall accuracy (OA), the Commission Error (CE), and Omission Error (OE) are calculated to assess each 447 

method (Fig. 10).  The definition of each index is reported in Table 2. 448 

Table 2. A quantitative index used in the assessment.  449 
Quantitative Index Formula Indication 
Kappa coefficient (k)  k = (p0 - pc)/(1 - pc) Agreement between two images  
Overall accuracy (OA) OA = (TP+TN)/N Correctly classified pixel ratio 
Commission Error (CE) CE = FP/(FP+TP) Pixels misclassified as the target feature class 
Omission Error (OE) OE = FN/(TP+FN) Pixels misclassified as the non-target feature class 

Note: p0 = (TP+TN)/N, pc = ((TP+FN)×(TP+FP)+(TN+FP)×(TN+FN))/(N×N), (TP) true positive, (TN) true 450 
negative, (FN) false negative, and (FP) false positive.  451 
 452 

A method for the global delineation of small scale rivers needs to be flexible and applicable to a wide range 453 

of fluvial landforms. To better assess the method's accuracy, only middle scale and small scale rivers (σ < 7) are 454 

chosen here in the quantitative evaluation (Pletterbauer et al. 2018). The AMRGM achieves the highest OA, KC 455 

as well as the lowest CE and OE in the eight sites. Excluding the River Welland, the AMRGM OA and KC 456 

exceed 95% and 0.91, respectively, and the mean OA and KC are about 97% and 0.92. The maximum scores are 457 

present in regions where the rivers are spectrally well separated from the background, such as in the Amazon 458 

River (OA = 99.3%, KC = 0.96) and in the Ganges Delta (OA = 98%, KC = 0.91). OA for the River Welland 459 

decreases to 93.8%, and the KC is 0.86 (Fig. 7). Among the four traditional methods, the supervised method 460 

SVM is better than the unsupervised methods ML (mean OA = 93% for SVM). The KM method is sensitive to 461 
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pixel noise, so it performs poorly in rivers with complex terrain. KM's OA also reaches 97% in the Amazon 462 

River and the Ganges delta, but it is only 67% and 61% in the Zagya Zangbo and Welland Rivers. The AMRGM 463 

performance is very high in sites with elongated rivers, particularly when streams have different dimensions 464 

(e.g., in the Suwannee River, in the Ganges delta, and the Can Gio Mangrove forest). Traditional methods fail 465 

to recognize small creeks and only extract middle and large-scale rivers (Fig. 8–9). The Suwannee River and the 466 

Zagya Zangbo River are the two most complex sites due to the high drainage density, but our method achieves 467 

better results than supervised or unsupervised methods. More extraction results with the different methods are 468 

displayed in the supplementary materials (See Fig. S2 of Supplementary Materials for details). 469 

 470 
Fig. 10. Overall performance of AMRGM compared to four other methods: SVM, ML, ISODATA, and KM. (a)-(d) 471 

overall accuracy, Kappa coefficient, commission, and omission errors for the eight sites. The orange line represents 472 
the median, and the green dotted line is the mean value. 473 
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5. Discussion  474 

5.1 AMRGM thresholds selection and river pixel changes at different scales 475 

The AMRGM requires the selection of several thresholds to carry out background enhancement, multi-476 

scale region growth, and outlier removal. It is difficult to choose identical thresholds for all eight sites. If the 477 

threshold parameters are appointed at a large scale, relevant small streams cannot to be detected. The BCFCM 478 

image is then used for network growth and outlier removal. River pixel orientation correlation Ωσ is the same 479 

among all sites (Ωσ (𝑝𝑝,𝑞𝑞) ≤ √3
2� ). Consequently, a fixed threshold can generate a good result for river networks 480 

with prominent water characteristics, such as the Amazon River (Brazil), and the Suwannee River (USA). In 481 

contrast, thresholds need to be fine-tuned to avoid the omission of small rivers in networks with subtle contrast 482 

with respect to the background, such as the River Welland area (UK). Through a "trial-and-error" strategy, we 483 

can select a series of appropriate thresholds using an iterative process to suppress noise and improve extraction 484 

accuracy. 485 

 486 
Fig. 11. Percent increase in identified river pixels as a function of change in scale σ. 487 

 488 

In the network growth process (see Fig. 6), the number of river pixels increases faster when σ = 3 (Fig. 11). In 489 

large-scale rivers such as the Amazon River and Ganges Delta, the percent of identified river pixels is low; in 490 
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rivers with complex geometry, the river pixel change ratio is relatively high for large σ scales (e.g., the Zagya 491 

Zangbo and Suwannee Rivers). Once the pixel direction is used to identify small rivers, a large pixel ratio occurs 492 

from σ = 4 to σ = 3. The Change ratio peaks at σ = 3, and the maximum value is reached in the Suwannee River 493 

(48.4%). Excessive detection of water bodies mainly occur near the river banks, which can be flooded by  494 

changing water levels. River pixel ratio changes quickly in small rivers where only pixel directions are used. 495 

  496 

5.2 River extraction uncertainty using the AMRGM on Sentinel-2A/2B images 497 

The AMRGM is appropriate for extracting small scale rivers with low spectral features because it combines 498 

river-scale enhancement and pixels direction. However, scale effects in remote sensing imagery and dry  499 

channels may cause uncertainties in river extraction. Many secondary channels can be observed in high-500 

resolution remote sensing images (HR), but they are seldom visible in 10 m resolution images. Note that of the 501 

eight sites studied here, only two sites, i.e., the River Welland (UK) and the Suwannee River in Florida (USA), 502 

have HR images which were acquired within one month from the Sentinel-2 MSI image (Fig. 12). As expected, 503 

there are some morphological differences between the visual delineation of river networks from HR images 504 

(rivers-HR) and those visually interpreted from Sentinel-2A/B MSI images (river-MSI) (Fig. 12a1–a2, b1–b2). 505 

The AMRGM cannot discern small channels (< 5 m) because of the mixed pixels in river-MSI images. In Figure 506 

12 we compare the network morphology extracted from rivers-HR and river-MSI images. Many small river 507 

branches can be manually extracted in the HR image of the River Welland, while the AMRMG just delineates 508 

larger streams with high brightness (~10 m) (Fig. 12a6-1–a6-2, a8-1–a8-2, a9-1–a9-2). A similar approximation 509 

also occurs in the Suwannee River because of the different resolution of the remote sensing images (Fig. 12b7-510 

1–b7-2, b9-1–b9-2, b11-1–11-2). The difference in total channel area between rivers-HR and rivers-MSI is 7.47 511 

km2 (9.6 km2 vs. 17.07 km2) for the River Welland and 8.08 km2 (9.496 km2 vs. 1.421 km2) for the Suwannee 512 

River. The difference in the length of the main stem is 15.6 km (45.7 km vs. 30.1 km) and 5.97 km (25.38 km 513 

vs. 19.41 km) respectively; whereas 98 km (45 km vs. 143 km) and 36 km (65 km vs. 29 km) of small tributaries 514 

cannot be distinguished from MSI images. These errors are mainly caused by different resolution of the images 515 

and by mixed pixels that prevent the identification of the streams.  516 
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Fig. 12. Comparison between river delineation from Sentinel-2A MSI images using the AMRGM and HR images: 518 
(a1) AMRGM delineation from a 10 m MSI image of the River Welland (UK); (a2) Visual interpretation from a 1 m 519 
HR image (rivers-HR); (a3) AMRGM delineation overlapped to rivers-HR. The grey thin lines are rivers-HR that 520 
were not  extracted by the AMRGM; (a4-1–a11-1) zoom-in of the MSI image; (a4-2–a11-2) zoom-in of the 521 
corresponding HR images with the un-extracted channels. (b1) AMRGM delineation from a 10 m MSI image of the 522 
Suwannee River (USA); (b2) Visual interpretations from a 1 m HR image (rivers-HR); (b3) AMRGM delineation 523 
overlapped to rivers-HR. (b4-1–b11-1) zoom-in of the MSI image; (b4-2–b11-2) zoom-in of the corresponding HR 524 
images with the un-extracted channels.  525 

 526 

 527 

In the River Welland, few small streams (width < 6) can be delineated in the MSI images (2), but 528 

many are present in the high resolution image (140)  (Fig. 13a). Fewer streams with a width of 6–529 

10 m are also extracted by the AMRGM (7 versus 39). However, there is not a significant 530 

difference in the number of streams larger than 10m (Fig. 13a). Similar results are also obtained 531 

in the Suwannee River (Fig. 13b).  532 

Note that in the HR-images we delineate also channels that are not wet at the time of the image 533 

acquisition, since the limited spectral information does not allow to compute the NDWI index. 534 

Therefore, the number of channels in the HR-images can be higher because we detect all active 535 

channels and not only wet channels. The number of wet channels can also change in time with 536 

variations in water level. This is particularly true in tidal rivers, like the Welland and Suwanee. A 537 

comparison between images taken at different times with different water levels also produces 538 

discrepancies in the extracted channel network. However, we point out that the main difference 539 

between the HR-river and the MSI-river networks concerns the low-order streams with a width 540 

smaller than the Sentinel-2A/B resolution (Fig. 13). For channels larger than 10m the AMRGM 541 

results are excellent with respect to the HR-images. We therefore conclude that the different 542 

resolution of the images is the main cause of error in the extracted channel networks.      543 

 544 

 545 
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 546 

Fig. 13. Number of streams in the HR images (Visual interpretation) and Sentinel-2 MSI images (AMRGM). (a) 547 

River Welland. (b) Suwannee River. Some streams change width and may be counted more than once. In the HR 548 

images all active channels are delineated while the AMRGM detects only wet channels. 549 

  550 

5.3 Generalization and transferability of the AMRGM 551 

The AMRGM was initially designed to extract multi-scale linear rivers, but it can similarly extract lakes 552 

and ponds (Fig. 9a2). The boundaries of lakes and ponds are linear features, which are enhanced by the Hessian 553 

matrix. With the AMRGM seed points grow fluidly along the lake's edges. Our method can also be used to detect 554 

wadis in arid landscapes (Fig. 14). Wadis are typical in the northwestern part of the Arabian Peninsula, which 555 

has a classic sub-tropical desert climate with a mean temperature of 30 °C in summer and 13 °C in winter (Liu 556 

et al. 2016). Wadis are seasonal rivers, characterized by irregular, inconspicuous streams and weak spectral 557 

features (Fig. 14a). Wadis networks show classical anisotropy features. Because of the desert climate, vegetation 558 

is rarely present so that the NDWI can enhance the main stream of each wadi. After applying the river and 559 

background enhancement, the wadis become apparent in the original color composite image. Thousands of 560 

streams with subdue linear features and strong anisotropy are detected by the AMRGM (Fig. 14b). The results 561 

of the extraction strongly depend on the surrounding background (Fig. 14c–e). The white background of Subset 562 

1 allows an excellent delineation of the wadis (Fig. 14c). In Subset 2 and Subset 3, the wadis dissect hillsides, 563 
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where tributary channels have irregular morphological features.  564 
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Fig. 14. Wadis extraction in Jordan using the AMRGM: (a) color composite image taken on 02/17/2019 (32°14′ N, 566 
37°29′9″ E). (b) Wadis extraction with AMRGM. (c), (d) and (e) represents the complex river networks in Subset 1, 567 
Subset 2, and Subset 3 of (a). 568 

Adaptive, multi-scale network growth is the core of the AMRGM, allowing its application to different 569 

remote sensing datasets. To some extent, the AMRGM works better in large resolution images where obvious 570 

river boundaries are present. We present an application of the method to Landsat images in Fig. 15, where we 571 

display the historical changes of the Zagya Zangbo River from 1990 to 2019. Similar to the wadis in the Arabian 572 

Peninsula, the Zagya Zangbo is a seasonal river influenced by glacier meltwater and precipitation (Gao et al. 573 

2017; Yao et al. 2012). The discharge and turbidity of the Tibetan Plateau rivers in the cold season is lower than 574 

in summer (Song et al. 2014). This study only selects summer images (in August, September, and October) to 575 

monitor variations in Zagya Zangbo River's runoff. The turbidity of the Zagya Zangbo River has limited 576 

influence on river extraction because of the background homogenization. The Zagya Zangbo River morphology 577 

changes little between 1990 and 2000, but the braided streams underwent large-scale reorganization between 578 

2004 and 2011, driven by an increase in seasonal runoff. As a result, more water was discharged by the river 579 

into the Siling Lake, changing the lake's area, volume, and turbidity (Mi et al. 2019; Yan and Zheng 2015).  580 
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 581 
Fig. 15. Historical maps of the Zagya Zangbo River (32°20′50″ N, 90°43′08″ E) derived from Landsat images from 582 
1990 to 2019. All images have < 10% clouds and were downloaded from collection-1 USGS 583 
(https://earthexplorer.usgs.gov/).  584 

https://earthexplorer.usgs.gov/
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5.4 Limits of the proposed method in specific landscapes  585 

In this study, we have developed a framework to distinguish multi-scale river networks. Like most region 586 

growth methods, the generation of initial seed points is an indispensable procedure for the delineation of the 587 

network. For example, tidal flat channels along the Jiangsu coast of China (Zhang et al. 2020), can elucidate the 588 

method's limit (Fig. 16a). The spectral difference between the tidal channels and the sandy flats is minimal; it is 589 

therefore difficult to generate good seed points. As a result the AMRGM fails to delineate the tidal channels 590 

accurately. The background homogenization can also be influenced by the surrounding environment. When we 591 

apply the NDWI in mountain terrains, snow and ice cover may appear as bright features, and the AMRGM can 592 

over classify the channel network. This limitation is evident in the Canadian watershed of Fig. 16b (see red 593 

circles). To correctly delineate glacier runoff in the rivers, we must first mask snow areas using topographic 594 

slope or the normalized difference snow index (NDSI). Finally, in rivers with dense vegetation, such as in the 595 

Volga delta, Russia (red circles in Fig. 16c), the network stops growing because the vegetation reduces the 596 

brightness of some streams. The AMRGM is designed to extract bright river pixels, so it cannot identify pixels 597 

with low contrast. In these situations, we could modify Eq. 10 to select dark pixels with a bright background. 598 

However, rivers with these characteristics are relatively rare, and at this stage of algorithm development, we do 599 

not feel the need to include this option in the AMRGM.  600 
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 601 
Fig. 16. Examples of low performance of the AMRGM: (a) Tidal channels in the radial sand ridges of the Jiang Su 602 
coast (02/03/2018). (b) Glacier rivers in snow-covered mountains, Canada (07/08/2019). (c) dense vegetation choking 603 
the distributaries of the Volga delta in Russia (04/10/2016). 604 

6. Conclusions 605 

Rivers are sensitive to the effects of global warming and often experience changes in length, width, and 606 

drainage density. Open-source moderate-resolution images (e.g., MSI images) provide an opportunity to map 607 

river networks at a large scale. Still, accurate river extraction is challenging, especially for delineating river 608 

networks with multi-scale morphologies, variable curvatures, and heterogeneous background. Here we propose 609 

an algorithm called AMRGM (adaptive and multi-scale region growth method) to delineate multi-scale complex 610 

river networks from MSI images.  611 

In the proposed AMRGM, three targeted optimizations are adopted, including a bias-corrected fuzzy C-612 

means (BCFCM) to mitigate background heterogeneity, a scale enhancement based on the Hessian Matrix to 613 

make full use of scale and direction information, and a region growth to handle various river sizes. The first two 614 

procedures are used to enhance the whole river system, while the latter step is designed to extract multi-scale 615 
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river networks. The core of the AMRGM is the multi-scale regional growth criterion, with the addition of river 616 

pixel direction to distinguish small and narrow river branches. 617 

A comparison with conventional supervised and unsupervised classification methods indicates that the 618 

AMRGM yields superior results in eight test sites around the world. The extraction accuracy for these examples 619 

is generally > 0.95, except for sites in England and on the Tibet Plateau, due to their distinctively complex 620 

spectral features. Moreover, a time series of Landsat images in a Tibet Plateau river show that our method can 621 

also be applied to other remote sensing datasets. During the process of extraction, relevant parameters are set 622 

based on trial-and-error analysis for diverse river environments. In our method, thresholds are assigned after 623 

analyzing the BCFCM image and are therefore site-specific. An adaptive threshold determination in the 624 

AMRGM will be attempted in the future. Although the AMRGM is designed for extracting linear rivers through 625 

a multi-scale strategy, it can also be applied to other linear features, such as roads, vegetation, or lake boundaries.   626 
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Appendix  627 

Table A1. Summary of acronyms used in the study.  628 

Parameter Value 

I BCFCM image 

B Binary image 

F Outliers removal image 

S Processing queue 

σ; σmax, σmin, σstep  Factor scale; maximum, minimum, and step scale  

q  Seed point 

P River pixel 

Ω Orientation correlation index 

Imax Maximum pixel value in a sliding window 

M Test sliding window in large or small scale river 

T1, T2 Outlier removal in a sliding window 

 629 
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Algorithm 1: Multi-scale region growth. Pixel direction is only used for small rivers with low contrast. 630 

Data: BCFCM image I 
Result: Binary image B  
Initialization: maxσ σ← ; processing queue S 
begin 
    while minσ σ≥ do 
         compute river Lσ and Dσ by Eq. 10 and Eq. 14 from I 
         S B←    
          while S ≠ ∅  do 
               q p S← ∈    
               if 3σ > (For large-scale, middle-scale river) 
                  for all 4 (q)p N∈ do 
                       if p B∉  and p satisfies Eq. 16 then 
                           append p to B and S 
                      end if 
                  end for 
               end if 
                if 3σ ≤ (For small-scale river) 
                   for all 8 (q)p N∈ do 

                        if p B∉ and p satisfies 3(p,q) 2σΩ > then 

                              append p to B and S 
                        end if 
                   end for 
               end if 
               delete q from S 
         end while 
         stepσ σ σ= −  
    end while 
return B 

 631 

Algorithm 2: Outlier removal.  632 

Data: BCFCM image (I), Binary image (B) 
Result:  Outliers removal image (F) 
begin 

   for all p B∈ do 
                if maxI M>= and 1pI T< then     
                    delete p in B 
                end if 
               else if 2pI T< then 
                    delete p in B 
                end else 
       end for 
       F B←  
 return F   

633 
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