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Highlights:

A method is proposed for extracting river networks from MSI images
Background homogenization and adaptive multi-scale region growth are adopted
The proposed method is sensitive to multiple scales of river networks

The strategy of "fast-growing and fine-screening" is used
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Abstract: River networks are important water carriers that provide a multitude of ecosystem services, including
freshwater for agriculture, drinking water for cities, and recreational activities. Accurate mapping of river
networks from remote-sensing images is important for the study of these systems. Unfortunately, the delineation
of river networks is challenging due to the spatial variability of the river channels, the complexity of the
surrounding landscape, and the multi-scale characteristics of the network. Here, we present an adaptive, multi-
scale region growth method (AMRGM) to delineate river networks from Sentinel-2A/B MSI images. The
method can handle the variability of river surroundings, multiple spatial scales, and the variable curvature of the
channels. The method includes four steps: (i) a water index (NDWTI) is used to enhance river bodies information;
(if) a bias-corrected fuzzy C-means (BCFCM) method mitigates the heterogeneity of the background; (iii) a
scale-enhancement algorithm based on the Hessian Matrix makes full use of scale and direction information, and
(iv) a regional growth criterion handles various river dimensions. Fast-growing and fine-screening strategies are
also included in the AMRGM. The method is applied to eight river networks to evaluate its accuracy and
reliability with various river morphologies and climate conditions. The AMRGM presents several advantages
for detecting multi-scale river branches compared to four commonly used river-detection methods (i.e., K-means
method, maximum likelihood method, Iterative Self-Organizing Data Analysis Technique Algorithm, and
Support Vector Machine). The mean overall accuracy (OA) and kappa coefficients (KC) of the AMRGM exceed
97% and 0.92 across the eight river networks. The most accurate river extractions are obtained for the Amazon
River, Mackenzie River, and the Ganges Delta, where the river scale and direction characteristics are most
distinct. Relatively high omission and commission errors are present in river networks displaying a complex and
heterogeneous zonation, such as the River Welland, UK, and the Zagya Zangbo River in the Tibet Plateau. The

complex geomorphic features of the River Welland reduce OA and KC to 93.8% and 0.86, respectively.

Keywords: Sentinel-2A/B MSI, AMRGM, Hessian Matrix, Fast-growing and fine-screening



58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

1. Introduction

Terrestrial rivers play an essential role in the global water cycle and provide water at the continental scale
for irrigation, hydroelectricity, and urban needs (Bookhagen and Burbank 2010; Vorosmarty et al. 2003). As sea
level rises and climate changes, river networks may dramatically change in morphology, affecting the delivery
of water, sediments, and biologically important compounds to the Earth's surface. Biological and physical
processes control the landscape surrounding rivers and the network morphology and multi-scale characteristics.
Comprehensive and precise mapping of river channels is critical to understand river evolution in a period of
climate change (Huang et al. 2018; Langat et al. 2019; Pekel et al. 2016; Vordsmarty et al. 2003). Although
river-recognition algorithms applied to satellite imagery have been indispensable tools for studying river
networks, accurate delineation of rivers remains challenging due to water turbidity, the presence of vegetation,
and the complexity of the landscape (Yang et al. 2015).

Open-source satellite images, such as images acquired by the Landsat series and Sentinel-2A/B, provide
excellent datasets for river mapping (Pekel et al. 2014; Zhou et al. 2017). Both the retrieval frequency and spatial
resolution meet the demand of observation spanning multiple scales. The delineation of small streams with a
dynamic morphology rather than wide, stable rivers is more important for studies and applications related to
climate change (Kuenzer et al. 2019; Pletterbauer et al. 2018). Sentinel-2A/B MSI images, with a relatively
short revisit cycle (~5 days at the equator), higher resolution (up to 10 m), and high signal-to-noise ratio can
facilitate the detailed delineation of global river networks (Du et al. 2016; Kaplan and Avdan 2017).

Several algorithms have been designed to extract river networks. They can be divided into four categories:
(1) Threshold segmentation based on water index (WI) images. W1, such as the Normalized Difference Water
Index (NDWI), or the Modification of Normalized Difference Water Index (MNDWI) (Acharya et al. 2018;
Jiang et al. 2014; McFeeters 1996; Xu 2007). These methods rely on waterbody extraction using water-sensitive
wavelengths (red, green, and NIR bands). Nones (2020) mapped the Vistula River's deposition and erosion using
the MNDWI and Landsat images. Despite its simplicity and efficiency when applied to large rivers, these
methods yield poor results in complex networks dissecting heterogeneous vegetated zones. (2) Spectrum samples
analysis classification. Supervised and unsupervised water classification are two classical methods for the

delineation of water bodies. Klemenjak et al. (2012) extracted river networks combining the Support Vector

5
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Machine (SVM) and the Maximum Likelihood classification (ML) algorithms. Jia et al. (2018) proposed a
spectrum matching method to distinguish water from non-water in Landsat-8 OLI images. Chen et al. (2020a)
used inequality constraints on hyperspectral data to identify urban water. These methods greatly depend upon
expert experience or reference samples and may not work well in small rivers with low contrast or in ungauged
watersheds. (3) Morphological feature extraction. Geometric indicators (e.g., curvature, edges measured at
multiple scales) are a perfect tool to delineate rivers. Passalacqua et al. (2010, 2012) extracted channel networks
through curvature analysis of geomorphic features, nonlinear multi-scale filtering, and geodesic optimization.
Yang et al. (2014) and Liu et al. (2015) applied the multi-scale Gaussian-Matched Filtering method and an
adaptive river extraction threshold. Isikdogan et al. (2017) developed a river analysis and mapping engine using
curvilinear structure to obtain water bodies and channel width. Rishikeshan and Ramesh (2018) adopted
mathematical morphological techniques based on water body edges. Morphological features are useful for river
extraction, but multiple dimensions and variable curvatures were seldom combined. (4) Neural network and
machine learning. Machine learning is a data-driven approach, which is popular for object identification. Jiang
et al. (2018) used a multilayer perceptron neural network to identify surface water in Landsat-8 OLI images.
Chen et al. (2020b) introduced extraction of spatiotemporal variations of water surfaces based on the Multi-
temporal remote sensing imagery and delineate (EMID) method to obtain river networks. The core methodology
of EMID is a random forest model based on water-occurrence frequency. River pixels omission and discontinuity
are usually present in the final results due to complex backgrounds and dendritic river patterns. Admittedly, the
aforementioned river extraction algorithms perform well in specific landscapes, especially for large rivers where
the presence of water is evident. The performance of these algorithms may be lower in river networks spanning
multiple scales, with various curvature, and dissecting a heterogeneous background. Previous studies have
introduced some geometric indicator analyses, such as Gaussian match filtering, mathematical morphological
analysis, curvature analysis, to enhance river network detection performance. However, few of them take into
consideration the above challenges in a holistic way.

To address the challenges in detecting river networks (i.e., heterogeneous backgrounds, multi-scale
morphology, and varying curvatures), we propose an adaptive multi-scale region growth method (AMRMG).

Specifically, we use a water index (NDWI) to enhance river bodies information; a bias-corrected fuzzy C-means
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(BCFCM) method mitigates the heterogeneity of the background; a scale-enhancement technique based on the
Hessian Matrix to make full use of scale and direction information, and a region growth criterion to smoothly
handle various river dimensions. Seldom river extraction algorithms have taken both river enhancement and
pixel direction into account; the AMRGM successfully combined both strategies. As shown in applications over
heterogeneous backgrounds with complex river networks, the AMRGM has proven its robustness, especially for
the detection of small river branches with low contrast in the images.
2. Study area and material
2.1 Test sites

The accuracy of river detection methods is limited by the variability of river morphology and the
heterogeneity of adjacent landscapes. Here, eight sites with complex river networks are chosen to assess the
performance of the proposed AMRGM (Fig. 1a, Table 1). River morphology and geographical location were
two important considerations in site selection. Testing sites include linear rivers interspersed among ponds, tidal
channels in coastal zones, anastomosing branches dissecting vegetated areas, and braided rivers flowing on bare
lands. Given that landscape traits are spatially varying, sites are chosen from a coastal zone, an inland area, a
rainforest, a delta, a desert, and a plateau. Many classifications have been proposed for river morphology
(Nardini et al. 2020; Rinaldi et al. 2016; Rosgen 1994); here, we use the classification system proposed by

Rinaldi et al. (2016):

Table 1. Test site characteristic and dataset from Sentinel 2A/2B MSI. Climate type refers to Koeppen Climate System.

Number  Test sites Background Climate Tile Date River type

1 Canada Ponds,shallow Subarctic 08WMA, 08WMB,08WNA 07/23/2018 Thread

2 America Salt marsh Humid subtropical 17RKN 12/23/2018  Wandering

3 Brazil Rainforest Tropical monsoon 22MEE 08/17/2019 Branching

4 England Salt marsh Oceanic 30UYD 05/07/2018 Thread

5 Guinea-Bissua Bare land  Tropical wet and dry 28PDT 02/24/2019  Thread, Creek
6 Bangladesh Mangrove Tropical wet 48PYS 01/14/2016 Wandering

03/24/2016

7 Vietnam  Mangrove forest Tropical wet and dry 45QYE 02/01/2019  Wandering
8 China Bare land Cold desert 46SBA 07/24/2018 Braided
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Mackenzie River in the Northwest Territories, Canada (Fig. 1b). The Mackenzie River basin has numerous
anastomosing channels, wetlands, and floodplain lakes fed by snowmelt (Abdul Aziz and Burn 2006). Its
width ranges from a minimum of 20 m to a maximum of 2.6 km.

The Suwannee River in Florida, USA (Fig. 1¢), is a black-water river debouching in a salt marsh coast with
river width ranging from 10 m to 230 m (Wright et al. 2005).

Amazon River in the State of Pard, Brazil (Fig. 1d), with many anastomosing branches covered with dense
tropical rainforest. Areas near the river are frequently flooded because of the rainforest climate (Hou et al.
2018). The width of the Amazon river network ranges from 10 m to 1.5 km at the widest point.

River Welland in the eastern part of England (Fig. 1¢). The Fenland Basin is crossed by several major gravel-
bed rivers that accrete due to tidal lag deposits (Briant et al. 2018; Plater et al. 1994). The width of the River
Welland ranges from 10 m to 190 m.

Geba River in Quinara Region, Guinea-Bissau (Fig. 1f), is characterized by a semi-arid climate with cold-
rainy and hot-dry seasons. The river network is complex with both large and narrow streams (Zuquete et al.
2017). The width of the Geba River is 5 km at its widest channel.

Ganges Delta in Bangladesh (Fig. 1g) has a complex network of distributary channels, forming a labyrinth
of creeks, swamps, lakes, and flood plains. Its maximum width exceeds 6 km (Fagherazzi 2008; Harvey et
al. 2005; Umitsu 1993).

Can Gio Mangrove forest southeast of Ho Chi Minh City, Vietnam (Fig. 1h). The Can Gio reserve is affected
by the tropical monsoon climate, has a high density of river channels intertwined with a thick mangrove

forest (Thanh-Nho et al. 2019). The channel width ranges from 10 m to ~1 km.

(8) Zagya Zangbo River in Tibet, China (Fig. 11). The Zagya Zangbo River discharges into the Siling Co lake,

and it is a classic braided river formed by glacier meltwater and precipitation (Mi et al. 2019). The width of
the Zagya Zangbo River is close to 1.3 km in its widest channel.

Typically, (i) sites in silty areas or along temperate salt marshes are characterized by single-thread, sinuous,

and meandering channels. These channels can be easily misclassified due to abundant suspended sediment and

the presence of hydrophyte vegetation; (i7) sites in tropical rainforests or subject to a subtropical monsoon climate

have a typical branching network with meanders. The spectral difference between the river and its background
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158  makes mapping relatively easy; and (iif) the Tibet plateau site has a classic braided river network, which
159  significantly increases the heterogeneity in the image, making channel delineation difficult. A detailed
160  description of the sites is presented in Table 1. The fluvial features of the River Welland, UK, are the most
161  difficult to delineate because of the complicated background and intricate drainage system (Fig. 1). As a result,

162  we choose this system to discuss our AMRGM's performance (Fig. 1e).
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164 Fig. 1. (a) Map of the study sites; (b) Macken21e River in the Northwest Territories, Canada; (c) Suwannee River in

165 Florida, USA; (d) Amazon River in the State of Para, Brazil; (e) River Welland in England; (f) Geba River in the

166 Quinara Region, Guinea-Bissau; (g) Ganges Delta in Bangladesh; (h) Can Gio Mangrove forest in Vietnam; (i) Zagya
167  Zangbo River in Tibet, China.
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2.2 Satellite dataset
The ESA Sentinel-2 satellites provide important datasets for terrestrial mapping. The Sentinel-2A/B MSI
images come in three resolutions: four bands at 10 m, six bands at 20 m, and three bands at 60 m from visible to

near-infrared wavelengths (https://sentinel.esa.int/web/sentinel/missions/sentinel-2). Instrument's radiometric

differences between Sentinel-2A/B and Landsat 8 OLI is < 1%, and the former is characterized by a higher
absolute geodetic accuracy (Drusch et al. 2012; Griffiths et al. 2019). Clear sky is necessary to acquire an optical
image of the Earth's surface since clouds or atmospheric haze can obscure the observed targets and decrease the
algorithm accuracy. Only the 10 m spatial resolution bands (Band 2: 490 nm, Band 3: 560 nm, Band 4: 665 nm,
and Band 8: 842 nm) are used to map river networks. The Top Of Atmosphere (TOA) reflectance product of
Sentinel-2 L1-C is used after radiometric calibration and orthographical correction; the atmospheric correction

is implemented in ENVI 5.5.

3. Adaptive Multi-Scale Region Growth Method (AMRGM)

Heterogeneous river backgrounds, multi-scale morphologies, and the variable curvature of the channels
significantly increase the difficulty in delineating river networks. To address these challenges, we adopt the
following targeted optimization which enhances the extraction robustness (Fig. 2). The optimization includes
four steps: (i) Water index (e.g. NDWI) is a simple but effective indicator for river extraction (Gao 1996;
McFeeters 1996; Watson et al. 2018). Note that a water index can only detect the wet channels (i.e. channels
filled with water) using the water spectral properties. However, the wet channels are only one of the
morphological units of a river. The active channels include areas that might be dry at the time of image
acquisition, as well as sediment bars and vegetated and non-vegetated islands (Hooshyar et al. 2015; Spada et al.
2018). (if) Previous applications have proven that the Bias-corrected Fuzzy C-means (BCFCM) can effectively
mitigate the ambiguity of heterogeneous backgrounds (Yang et al. 2015). Therefore, the BCFCM is applied to
the NDWI image to highlight river bodies. Initial seed points are directly generated from the BFCM image. (i)
Multi-scale linear features and extension direction can be well described by the second-order derivative in the
Hessian matrix (Frangi et al., 1998; Manniesing et al., 2006; Kerkeni et al., 2016). Hence, a scale-enhancement
based on the Hessian Matrix is adopted to make full use of scale and direction information. (iv) Finally, a region
growth criterion based on the multi-scale and direction information derived from step (iii) is adopted to segment

10
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195  rivers with various dimensions. Once scale boundary conditions are given, region growth is implemented. Here,
196  we propose a "fast-growing and fine-screening" strategy to accelerate the river network extraction and exclude

197  outliers among river candidate pixels. This strategy makes sure that seed points grow smoothly.

Sjits i
Sentinel-2A/B MSI ptlislEs=is P
(O,Uminao-max) e
i TR — Hessian Matrix
Water Index ¥
River scale enhancement
and pixel direction
NDWI image N
Multi-scale region #
_ growth criterion iy
Bias-corrected N ﬁ)
Fuzzy C-means - b
h 4 e
e No
_ < O=Omin? —
BCFCM image min
Top 1% DN Quitlier removal lYes
Initial seed points Final image
198

199 Fig. 2. Procedure of the AMRGM, from river enhancement, seed points generation, multi-scale region growth, and

200 outlier removal.
201

202 3.1 Fluvial features enhancement and background homogenization

203 Band 3 (Green Band) and Band 8 (NIR band) are used to obtain the NDWI index (Eq. 1).
204 NDWI = Band3 - Band$8 )
Band3+ Band8
205 To enhance the difference between water bodies and surrounding landforms, we use background

206  homogenization that unifies the representation of features through a biased field correction. A basic formula (Eq.

207  2)is given as follows for image (/) and the spatial heterogeneous trait (5):
208 Iy =x,+p, ()
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where x; represents the pixel's ideal feature. Gradually varying environments can be generally regarded as a
piecewise-constant model, and site-specific local variability is represented as the region-based cluster center by
constant parameters {v;}{_; . The classic intensity-dependent fuzzy C-means (FCM) algorithm designs a

continuum of the degree of membership ranging from 0 to 1 for each pixel (Eq. 3):

c N
=Y > ul |l v [ 3)

i=1 k=1

where {u}?k is the membership of pixel x; belonging to the type vi. To regularize the FCM algorithm, a term

compensating the adjacent coherence is incorporated into the global objective function (Eq. 4):

c N c N
WA R WA N

i=1 k=1 R i=l k=1 x,eN,,

2
x, = (4)

where N, represents all the pixels in the neighborhood of xi, and Nk is the corresponding total number of pixels,
a controls the degree of neighborhood effect. The whole image domain achieves optimal partition by minimizing
the sum of weighted inter-class derivations (Ahmed et al. 2002). Adding Eq. 2 to Eq. 4, the bias-corrected fuzzy

C-means (BCFCM) object function is computed as Eq. 5:

argminJ=iiu£|]k -5 —vl.||2 +Niii”£( Z ||1,, - B —vi||2j (5)

i=1 k=1 R i=1 k=1 X.€N,,

We then iteratively calculate the membership u; in each pixel and simultaneously estimate the heterogeneous
property ;. The desired homogenized result is derived by subtracting the image / to £.

After applying the NDWTI algorithm to the Sentinel-2A MSI image, the brightness difference between the
target river and adjacent background becomes apparent compared to the original RGB image (Fig. 3a). The trace
of the river channels is visible, but small-scale creeks or tributaries are nearly imperceptible because of the low
contrast with respect to the background. Multi-modal heterogeneity appears in the histogram of the NDWI image,
with the left (-0.6) and right peaks (0.4) representing the dark background and the bright river network (Fig. 3b).
Brightness pixels between (-0.2) and (0.2) are difficult to be attributed to either river or landscape. Small-scale
rivers will be more apparent since the fluvial background is significantly smoothed using the BCFCM procedure.

As a result, two independent grey peaks at (-0.4) and (0.3) occur in the BCFCM image histogram (Fig. 3c—d).

12


javascript:;

232 Although the background's complexity is reduced after the background homogenization, simple threshold

233 segments cannot identify small scale rivers (Fig. 3c).
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234 Brightness

235 Fig. 3. Background homogenization: (a) NDWI image. (b) Histogram of the NDWI image. (c) BCFCM image. (d)
236  Histogram of the BCFCM image.

237  3.2. Multi-scale river enhancement and direction analysis

238 3.2.1 Hessian Matrix

239  The Hessian Matrix can be used to improve the multi-scale detection of river networks with a large range of
240  widths. The method is based on the convolution of the original image /o(x, y) with the 2D Gaussian kernel G
241  (x, y) (Eq. 6) (Malladi and Sethian 1995; Zhu et al. 2017).

242 Io (p) = Io (XJ Y) = ]0 (X7 Y) ® Go (X7 Y) (6)
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where o is the scale-kernel, /, is the intensity image corresponding to that scale kernel, and p represents the pixel
location (x, y), ® indicates the convolution operator. Gs (x, y) is calculated as Eq. 7:

x4y’

1 :
G, (x,y)= Py i (7

where 6€ {Opnin, - Omax > Omin, Omax is the minimum and maximum scale kernel, and ¢ is the core factor. Within

the scale-space, differentiation is defined as a convolution with derivatives of the Gaussian function (Eq. 8).

a”1+”2 I(.x, y) _ I ® 8!’!1+n2 Go_
ox" oy™ ox™oy™ (8)

where 7 is the order of the derivatives. Each pixel calculated with the Hessian Matrix using second-order

derivatives is sensitive to the local curvature variation of intensity (Eq. 9) (Frangi et al. 1998).

oI (x,y) 01 (x,y)

o’ Oyox
H,(p)=| , %)
01, (x,y) 0°1,(x,y)
Ox0Oy oy’

Hessian eigenvalues 4;, 12 along with the two associated eigenvectors (e; and e;), are obtained from the
symmetric matrix Hs(p). Two categories appear in the grey image, either bright linear features with a dark
background or dark linear features with a bright background. Nevertheless, eigenvalue 4; (i.e., minimum absolute
value) is nearly zero for both types, while A, (i.e., maximum absolute value) can distinguish dark features

(positive response) from bright features (negative response). A pixel with 4; & 0 and 4, < 0 belongs to a bright
river pixel bounded by a dark background (Kerkeni et al. 2016). Otherwise, pixels belong to dark pixels bounded

by a bright background.

3.2.2 Feature enhancement using the multi-scale local differential structure

The Hessian eigenvalues can geometrically interpret the curvatures of linear features. A bright linear river

is represented as the following (Eq. 10-12) (Manniesing et al. 2006):

R} st
[ =] e’ (-e) if 4,<0 (10)
0 otherwise

and

14
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R, = (11)
za

s=lul, =Jara: 12)

where S, y are weighting factors for controlling the inter-influence of Ry and S. Smoothed linear features from

R} 52
e 2% is multiplied by 1 — e 2'? to achieve the optimal filter response in both criteria (Eq. 10).

Following the scale-space theory (scale invariance and space invariance), each scale-enhancement is
normalized by Eq. 8. The maximum responses across the probed scale-space are deemed as the optimal scale-

matched. Lmax (Eq. 13) is the maximum river response when the feature reaches its optimal factor scale.

L .= max L_ (13)

max
Omin SO =0 max

Discrepancies between the river and adjacent background are smoothed using the BCFCM, and the local
multi-scale rivers are enhanced by the multi-scale local differential geometry (Fig. 4). River response (L)
gradually increases with the scale factor (o), and o = 7 is the maximum scale for the River Welland, UK, as all
river branches are enhanced at this scale (Fig. 4a—d). Adaptive multi-scale river enhancement response (L) is
depicted by color features in a multi-scale image.

Three river-network cross sections on the processed images help to illustrate river-scale enhancement (Fig.
4). Lines 1, 2, and 3 represent three channels with different scales (Fig. 4a). Line 1 is a cross section of three
small rivers; Line 2 is a cross section of two mid-size rivers; and Line 3 is a cross section of a single, large river
with a sand bar at its center. In Line 1, scale o = 1 successfully outlines the small rivers and both banks of the
large rivers. So this scale is sufficient to enhance small scale rivers, and river response (L) across the three rivers
does not change when the scale increases. The small scale (¢ = 1) fails to enhance the middle-scale rivers because
the river response (L) has not reached the "true" boundaries (red dotted line) in the column of Line 2. Once line
2 reaches the optimal response scale (o = 3), it no longer changes for higher values of 6. Small scale factors (o
=1, 3) cannot fully capture the large rivers, which needs a larger scale (Column of Line 3). With o = 5, the
algorithm already fills most of the river bodies, but the river in the red circle of Fig. 4d needs a larger scale-
factor to avoid separation in two branches. When confronted with such a great range of scales, it is not practical

to use each scale in the algorithm because it increases the computational burden. Alternatively, a coarse
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water/land segmentation using the water index can be performed in advance to identify the large channels so that
they can be excluded in the following calculations.
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Fig. 4. Adaptive multi-scale local differential geometry enhances fluvial features in the River Welland, UK: (a—d)
results with factor scale 0 =1, 3, 5, and 7, used in enhancing water bodies. Line 1, 2, and 3 cross small, mid, and large
channels, respectively. Algorithm results in Line 1, 2, and 3 for each scale. The red dotted lines are river boundaries;

the river response L is normalized in [0, 1].

3.2.3 Analysis of river pixels direction

The eigenvectors e; and e> of the Hessian Matrix can delineate linear structures (Eq. 9); e; shows the
direction of a potential linear structure with a low second derivative; and e, represents the normal direction of a
potential linear structure with a high second derivative (Kerkeni et al. 2016). River direction can be calculated

in Eq. 14:
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Hessian matrix analysis not only improves the multi-scale river enhancement (L) but also provides pixel
direction (D) for river water (Eq. 10, Eq. 14). Pixel directions are parallel and cover the fluvial channels with
continuity and consistency (Fig. 5a—b). Pixel directions parallel the river centerline when the scale reaches its
optimal value (e.g., Subset 1 Fig. 5a); otherwise, pixel directions intersect each other (Subset 2 Fig. 5c). For
small-scale rivers, river scale-enhancement is weak, but pixel directions are parallel (Subset 3 Fig. 5d) and can
be used for small river identification. No linear features are found in Subset 2, resulting in non-parallel pixel
directions (Fig. 5¢). The combination of river scale response and pixel direction dramatically improves river

extraction accuracy, especially for the network of small streams with low water brightness.

Subset 1 |:| I:I

i
Subset 1
Subset 2

Subset 3

Subset 3

Fig. 5. River network direction information: (a) direction computed with the multi-scale algorithm using the local
differential structure, pixel directions are consistent at the confluence between river branches and the main trunk. Note
that only a fraction of pixel directions are displayed for clarity. (b), (c) and (d) represent the pixel directions in Subset

1, Subset 2, and Subset 3.

3.2.4 Multi-scale regional growth algorithm

Favorable seed points are required for proper network growth, and the largest 1% of DN pixels are used
here for this purpose. The seed points are mostly located in large scale rivers (Fig. 6a). A few seed points are
manually added in branches that are weakly connected to the main trunk. The network starts growing from the

seed points and expands from large scale to small scale branches with a fluid and fast process (Kerkeni et al.
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2016; Sekiguchi et al. 2005). Network growth from the seed points is performed iteratively. After each iteration
is executed, all the new pixels added to the network become seed points for the next round.

The use of pixel directions is indispensable to distinguish small and narrow river branches (Fig. 5c).
Leveraging on this idea, a regional growth criterion is adopted using the following convergence conditions: for

a seed point ("¢ ") and a river pixel ("p"), the pixel orientation correlation index, Qs (p, g) is defined as Eq. 15.

D, (p)-D,(q)

(15)
1D, ®)||D, @]
The pixel direction is parallel when Qs (p, ¢) = 1 and perpendicular when Qs (p, ¢) = 0. Pixel p conforms to Eq.

Q_ (p,q) =|

16.

p € Nn,(q) N Ls(p) > n(1— Q6 (p,q)) (16)

where pixel g is set as a river pixel. Nu(g) represents the n-neighborhood pixels. N4 and Ng are used here. 7 is a
threshold; a small # will bring overgrowth while a large # will underestimate neighboring pixels' extension. 7 is
selected as 0.8 in the River Welland site based on the scale-enhancement results (Fig. 4). A 4-neighbor (Ns4) and
8-neighbor (Ng) algorithm is used to obtain multiple-scale rivers (Appendix algorithm 1). The Ny aims to extract
large rivers using Eq. 16, while the Ns delineates small rivers following the Ny results.

The detailed process of the multi-scale region growth is described in Appendix algorithm 1. River scale-
enhancement (L) and pixel direction (D) are computed in the BCFCM image (/). A processing queue (S) is
implemented to store the seed points (B); the seed points are deleted when the growth terminates after each
iteration. The main river has a high response, whereas the small-scale rivers are easily overlooked when the pixel

response is less than n(1 — Q4 (p,q)). To address this problem, an additional growth condition Q4 (p, q) <

\/5/ o (pixel direction within 30°) is used to delineate the small and narrow streams (¢ = 1, 3). Two piecewise

growth processes are performed in rivers with different dimensions. The first process is used to delineate the
brightness of wide rivers, while the second one is sensitive to small-scale branches (Appendix algorithm 1). The
two processes significantly improve computational efficiency.

The step-wise progression of the multi-scale rivers growth algorithm is illustrated in Fig. 6 and encompasses
seed point generation, river pixel growth, and outlier removal. To help visualization, we keep the NDWI image

as the background and implement the AMRGM in the BCFCM image. Initial seed points are automatically
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generated in mid-size rivers, and we manually add some pixels at the top right corner (Fig. 6a). The network
grows from the seed points and quickly expands in the large rivers (c between 5 and 7, Fig. 6b—c). The small
branches of the River Welland are characterized by low NDWI and weak linearity (Fig. 3c), so they cannot be
easily captured by Eq. 16 until river growth termination. Considering pixel direction is less affected by the river's
brightness, the orientations correlation index (£2) is a better indicator for distinguishing the remaining small
branches (Appendix algorithm 1). A large number of small branches grow when ¢ = 3 (Fig. 6d), compared to o
=5 (Fig. 6¢). A scale ¢ = 3 nearly reaches the optimal result as few pixels are added from ¢ = 3 to o = 1 (Fig.
6e). Many subtle channels draining in the main stem also form: for example, the small branches at the top right
corner of the image. Excessive pixel growth inevitably occurs at both sides of the large-scale rivers following
the "fast-growing and fine-screening" strategy (Fig. 6e). As the AMRGM will extract all potential river pixels,
the excessive pixels need to be removed at the end of the growth (outlier removal).

A sliding window (10 x 10 pixels) is used to screen pixel belonging to large or small scale streams in the
BCFCM image (Appendix algorithm 2). The most important step is splitting the extraction of pixels into small
or large rivers. If the maximum value within the sliding window (/max) €xceeds the threshold A (0.1), and pixel
response /,, is below the threshold 77 (0.3), the pixel is removed (outlier nearby a large-scale river). If the [max is
less than M, the pixel pertains to a small-scale river, and then a simple threshold 7> (-0.02) is directly adopted to

delete the extra pixels (Fig. 6f). Values in brackets represent the parameters used in the River Welland basin.
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Fig. 6. Process of region growth in the River Welland network: (a) Initial seed points (blue pixels) automatically
generated from the BCFCM image and with some few points added in small rivers. (b-e) River pixels (green pixels)

expanding from large-scale channels into small-scale streams. (f) Outlier removal result.
4. Implementation of the AMRGM

4.1 Extraction of the River Welland network

Since a comparison between the algorithm results and ground truth data is more meaningful at the same
spatial scale, we select the Sentinel-2A MSI color composite image as the base map for ground truth data to
evaluate the accuracy of the river extraction. Visual interpretation is widely adopted as a benchmark in various
RS classification/extraction applications. We therefore manually delineate the channels in the ground truth image.
All the river networks extracted with the AMRGM are “wet channels”, and might change in time with water
levels (Fig. 6). The misclassified and missing pixels are attributed to commission and omission errors. When the
water level is low, the edge of sand bars and river banks appear as bright linear features. Commission errors are
mainly distributed near these landforms because the algorithms identify them as river pixels due to the linear
texture and direction properties. On the other hand, omission errors mainly occur in a small creek along the trunk

because of excessive pixel removal (Appendix algorithm 2). Not all small branches are found by our algorithm
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(Fig. 7a). Most river pixels are captured during the multi-scale region growth procedure in Fig. 6e, but only a
few disconnected patches and non-identified channels are present in the final map after outliers removal (Fig.
7b). Several small streams are identified by the AMRGM but are not captured by the manual classification in
the color composite image. The river extraction is carried out at high tide to capture active channels that might
be dry at low tide. If we select an image taken at high tide, the river's background becomes blurry, decreasing

the accuracy of the AMRGM (See Fig. S1 of Supplementary Materials for details).

B River body [l Commission [ ] Omission
Fig. 7. Extraction of the network in the River Welland using the AMRGM: (a) Color composite image (R: Band 8,

G: Band 3; B: Band 2); (b) Accuracy analysis obtained after comparison with the ground truth image. Red pixels

represent commission errors, while green pixels are omission errors.
4.2 Performance of the AMRGM in seven sites

The AMRGM is then applied to seven new sites divided into two classes based on the basin area covered
by the remote sensing images. Small sites contain the Suwannee River, the Amazon River, the Can Gio
Mangrove, and the Zagya Zangbo River (Fig. 8); large sites include the Mackenzie River, the Geba River, the
Ganges Delta; all of them possess an area exceeding 800 km? in the remote sensing images (Fig. 9). Channel
extraction is carried out using five methods (AMRGM, SVM, ML, ISODATA, KM). Of all methods tested, the
AMRGM performs the best, followed by the SVM (Fig. 10); only the AMRGM and SVM extraction results are

displayed in Fig. 8-9.
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The middle and large-scale channels in the Suwannee River, Amazon River, and Can Gio Mangrove forest
are relatively linear (Fig. 8), whereas the low-order creeks in the Suwannee River are characterized by meanders
(Fig. 8al—a2). In Subset area 1 and Subset area 2 of the Suwannee River, the AMRGM easily captures the small
meandering creeks, while the SVM performs poorly (Fig. 8a3—a6). In the Amazon River (Fig. 8bl), the river
network is dendritic with sharp width transitions from the main channels to the tributaries (Fig. 8b2). Here,
several streams are not captured by the SVM (Subset area 1 and Subset area 2, Fig. 8b4 and b6). In contrast, the
AMRGM detects streams at all dimensions (Fig. 8b3 and b5). Similar results are also obtained in the Can Gio
Mangrove forest (Fig. 8c1), where the AMRGM delineates a large number of small-scale streams (Fig. 8¢3 and
¢5) that are missed by the SVM (Fig. 8c4 and c6). The Zagya Zangbo River in Tibet has a complex river network
with a high number of braided channels formed by sediment deposition and erosion; our method obtains better
results for this system compared to the SVM (Fig. 8d1—-d2). The river networks are more evident after the
background homogenization performed by the AMRGM (Fig. 8d3 and d5 vs. Fig. 8d4 and d6). In general, the
AMRGM performs well in large rivers (Fig. 10), where the water area has very distinct optical properties.
However, sometimes it fails at delineating small channels with a limited water surface.

In the large study sites, the small rivers cannot be recognized in the composite color image (Fig. 9). The
Mackenzie River site is characterized by linear streams with different dimensions and lakes scattered across
the landscape (Fig. 9al). The water bodies are clearly extracted with the AMRGM (Fig. 9a2) in Subset area 1
and Subset area 2 (Fig. 9a3 and a5). The SVM performs poorly in small streams and ponds because of the similar
spectral characteristics compared to the surrounding areas (Fig. 9a4 and a6).

The Geba River basin includes multiple river patterns, with small creeks and linear channels. The area
surrounding the channels is characterized by diverse land uses and vegetation, which complicate the river
networks' extraction (Fig. 9bl). Elongated streams also characterize the Geba River, and the AMRGM
successfully delineates its complex network (Fig. 9b2). In the subset regions, the AMRGM performs much better
than the SVM at the tip of small tributaries (Fig. 9b3-b6). In the Ganges delta site, the spectral difference
between river and background is not as apparent as for the other sites. The SVM recognizes the relatively wide

rivers (Fig. 9c4 and c6), but our method achieves a better result in small distributaries (Fig. 9¢2, c3, c5).
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Fig. 8. Comparison of river networks in small basins extracted with the AMRGM and SVM from remote sensing
images: (al) color composite image of the Suwannee River; (a2, a3, a5) Suwannee River network, Subset 1, and
Subset 2 river extraction using AMRGM; (a4, a6) Subset 1 and Subset 2 river extraction using SVM; (bl) color
composite image of the Amazon River; (b2, b3, bS) Amazon River network. Subset 1, and Subset 2 river extraction
using AMRGM, (b4, b6) Subset 1 and Subset 2 river extraction using SVM; (c1) color composite image of the Can
Gio Mangrove forest, (c2, c3, ¢5) Can Gio Mangrove forest networks, Subset 1, and Subset 2 river extraction using
AMRGM, (c4, c6) Subset 1 and Subset 2 river extraction using SVM; (d1) color composite image of the Zagya Zangbo
River, (d2, d3, d5) Zagya Zangbo network, Subset 1, and Subset 2 river extraction using AMRGM, (d4, d6) Subset 1

and Subset 2 river extraction using SVM.
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Fig. 9. Comparison of river networks in large basins extracted with the AMRGM and SVM from remote sensing
images: (al) color composite image of the Mackenzie River, (a2, a3, a5) Mackenzie River network, Subset 1 and
Subset 2river extraction using AMRGM, (a4, a6) Subset 1 and Subset 2 river extraction using SVM; (bl) color
composite image of the Geba River; (b2, b3, b5) Geba River network, Subset 1 and Subset 2 river extraction using
AMRGM, (b4, b6) Subset 1 and Subset 2 river extraction using SVM; (c1) color composite image of the Ganges Delta,
(c2, c3, c5) Ganges Delta network, Subset 1 and Subset 2 river extraction using AMRGM, (c4, c6) Subset 1 and Subset

2 river extraction using SVM.

4. 3 Quantitative analysis of five extraction methods

River networks delineated by the AMRGM are compared to the results of four additional methods: (i)
clustering method (K-means method, KM); (if) unsupervised classification (maximum likelihood method, ML);
(iii) Tterative Self-Organizing Data Analysis Technique Algorithm (ISODATA); and (iv) supervised
classification (Support Vector Machine, SVM). Four primary classification cases are considered: true positive
(TP), true negative (TN), false negative (FN), and false-positive (FP). Accordingly, the Kappa coefficient (k),
the overall accuracy (OA), the Commission Error (CE), and Omission Error (OE) are calculated to assess each
method (Fig. 10). The definition of each index is reported in Table 2.

Table 2. A quantitative index used in the assessment.

Quantitative Index Formula Indication

Kappa coefficient (k) k=(po-pJ)/(1-p)  Agreement between two images

Overall accuracy (OA) OA = (TP+TN)/N Correctly classified pixel ratio

Commission Error (CE) CE = FP/(FP+TP) Pixels misclassified as the target feature class
Omission Error (OE) OE = FN/(TP+FN) Pixels misclassified as the non-target feature class

Note: po = (TP+TN)/N, pe = ((TP+EN)x(TP+FP)+(TN+FP)x(TN+FN))/(NxN), (TP) true positive, (TN) true
negative, (FN) false negative, and (FP) false positive.

A method for the global delineation of small scale rivers needs to be flexible and applicable to a wide range
of fluvial landforms. To better assess the method's accuracy, only middle scale and small scale rivers (o < 7) are
chosen here in the quantitative evaluation (Pletterbauer et al. 2018). The AMRGM achieves the highest OA, KC
as well as the lowest CE and OE in the eight sites. Excluding the River Welland, the AMRGM OA and KC
exceed 95% and 0.91, respectively, and the mean OA and KC are about 97% and 0.92. The maximum scores are
present in regions where the rivers are spectrally well separated from the background, such as in the Amazon
River (OA = 99.3%, KC = 0.96) and in the Ganges Delta (OA = 98%, KC = 0.91). OA for the River Welland
decreases to 93.8%, and the KC is 0.86 (Fig. 7). Among the four traditional methods, the supervised method

SVM is better than the unsupervised methods ML (mean OA = 93% for SVM). The KM method is sensitive to
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pixel noise, so it performs poorly in rivers with complex terrain. KM's OA also reaches 97% in the Amazon
River and the Ganges delta, but it is only 67% and 61% in the Zagya Zangbo and Welland Rivers. The AMRGM
performance is very high in sites with elongated rivers, particularly when streams have different dimensions
(e.g., in the Suwannee River, in the Ganges delta, and the Can Gio Mangrove forest). Traditional methods fail
to recognize small creeks and only extract middle and large-scale rivers (Fig. 8-9). The Suwannee River and the
Zagya Zangbo River are the two most complex sites due to the high drainage density, but our method achieves
better results than supervised or unsupervised methods. More extraction results with the different methods are

displayed in the supplementary materials (See Fig. S2 of Supplementary Materials for details).
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Fig. 10. Overall performance of AMRGM compared to four other methods: SVM, ML, ISODATA, and KM. (a)-(d)
overall accuracy, Kappa coefficient, commission, and omission errors for the eight sites. The orange line represents

the median, and the green dotted line is the mean value.
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5. Discussion

5.1 AMRGM thresholds selection and river pixel changes at different scales

The AMRGM requires the selection of several thresholds to carry out background enhancement, multi-
scale region growth, and outlier removal. It is difficult to choose identical thresholds for all eight sites. If the
threshold parameters are appointed at a large scale, relevant small streams cannot to be detected. The BCFCM

image is then used for network growth and outlier removal. River pixel orientation correlation s is the same

among all sites (Q; (p,q) < \/§/ 2)- Consequently, a fixed threshold can generate a good result for river networks

with prominent water characteristics, such as the Amazon River (Brazil), and the Suwannee River (USA). In
contrast, thresholds need to be fine-tuned to avoid the omission of small rivers in networks with subtle contrast
with respect to the background, such as the River Welland area (UK). Through a "trial-and-error" strategy, we

can select a series of appropriate thresholds using an iterative process to suppress noise and improve extraction

accuracy.
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Fig. 11. Percent increase in identified river pixels as a function of change in scale o.

In the network growth process (see Fig. 6), the number of river pixels increases faster when ¢ = 3 (Fig. 11). In

large-scale rivers such as the Amazon River and Ganges Delta, the percent of identified river pixels is low; in
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rivers with complex geometry, the river pixel change ratio is relatively high for large o scales (e.g., the Zagya
Zangbo and Suwannee Rivers). Once the pixel direction is used to identify small rivers, a large pixel ratio occurs
from o = 4 to o = 3. The Change ratio peaks at ¢ = 3, and the maximum value is reached in the Suwannee River
(48.4%). Excessive detection of water bodies mainly occur near the river banks, which can be flooded by

changing water levels. River pixel ratio changes quickly in small rivers where only pixel directions are used.

5.2 River extraction uncertainty using the AMRGM on Sentinel-2A/2B images

The AMRGM is appropriate for extracting small scale rivers with low spectral features because it combines
river-scale enhancement and pixels direction. However, scale effects in remote sensing imagery and dry
channels may cause uncertainties in river extraction. Many secondary channels can be observed in high-
resolution remote sensing images (HR), but they are seldom visible in 10 m resolution images. Note that of the
eight sites studied here, only two sites, i.e., the River Welland (UK) and the Suwannee River in Florida (USA),
have HR images which were acquired within one month from the Sentinel-2 MSI image (Fig. 12). As expected,
there are some morphological differences between the visual delineation of river networks from HR images
(rivers-HR) and those visually interpreted from Sentinel-2A/B MSI images (river-MSI) (Fig. 12al-a2, b1-b2).
The AMRGM cannot discern small channels (< 5 m) because of the mixed pixels in river-MSI images. In Figure
12 we compare the network morphology extracted from rivers-HR and river-MSI images. Many small river
branches can be manually extracted in the HR image of the River Welland, while the AMRMG just delineates
larger streams with high brightness (~10 m) (Fig. 12a6-1-a6-2, a8-1-a8-2, a9-1-a9-2). A similar approximation
also occurs in the Suwannee River because of the different resolution of the remote sensing images (Fig. 12b7-
1-b7-2, b9-1-b9-2, b11-1-11-2). The difference in total channel area between rivers-HR and rivers-MSlI is 7.47
km? (9.6 km? vs. 17.07 km?) for the River Welland and 8.08 km? (9.496 km? vs. 1.421 km?) for the Suwannee
River. The difference in the length of the main stem is 15.6 km (45.7 km vs. 30.1 km) and 5.97 km (25.38 km
vs. 19.41 km) respectively; whereas 98 km (45 km vs. 143 km) and 36 km (65 km vs. 29 km) of small tributaries
cannot be distinguished from MSI images. These errors are mainly caused by different resolution of the images

and by mixed pixels that prevent the identification of the streams.
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Fig. 12. Comparison between river delineation from Sentinel-2A MSI images using the AMRGM and HR images:
(al) AMRGM delineation from a 10 m MSI image of the River Welland (UK); (a2) Visual interpretation froma | m
HR image (rivers-HR); (a3) AMRGM delineation overlapped to rivers-HR. The grey thin lines are rivers-HR that
were not extracted by the AMRGM; (a4-1-all-1) zoom-in of the MSI image; (a4-2—-all-2) zoom-in of the
corresponding HR images with the un-extracted channels. (b1) AMRGM delineation from a 10 m MSI image of the
Suwannee River (USA); (b2) Visual interpretations from a 1 m HR image (rivers-HR); (b3) AMRGM delineation
overlapped to rivers-HR. (b4-1-b11-1) zoom-in of the MSI image; (b4-2—b11-2) zoom-in of the corresponding HR

images with the un-extracted channels.

In the River Welland, few small streams (width < 6) can be delineated in the MSI images (2), but
many are present in the high resolution image (140) (Fig. 13a). Fewer streams with a width of 6—
10 m are also extracted by the AMRGM (7 versus 39). However, there is not a significant
difference in the number of streams larger than 10m (Fig. 13a). Similar results are also obtained

in the Suwannee River (Fig. 13b).

Note that in the HR-images we delineate also channels that are not wet at the time of the image
acquisition, since the limited spectral information does not allow to compute the NDWI index.
Therefore, the number of channels in the HR-images can be higher because we detect all active
channels and not only wet channels. The number of wet channels can also change in time with
variations in water level. This is particularly true in tidal rivers, like the Welland and Suwanee. A
comparison between images taken at different times with different water levels also produces
discrepancies in the extracted channel network. However, we point out that the main difference
between the HR-river and the MSI-river networks concerns the low-order streams with a width
smaller than the Sentinel-2A/B resolution (Fig. 13). For channels larger than 10m the AMRGM
results are excellent with respect to the HR-images. We therefore conclude that the different

resolution of the images is the main cause of error in the extracted channel networks.
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Fig. 13. Number of streams in the HR images (Visual interpretation) and Sentinel-2 MSI images (AMRGM). (a)
River Welland. (b) Suwannee River. Some streams change width and may be counted more than once. In the HR

images all active channels are delineated while the AMRGM detects only wet channels.

5.3 Generalization and transferability of the AMRGM

The AMRGM was initially designed to extract multi-scale linear rivers, but it can similarly extract lakes
and ponds (Fig. 9a2). The boundaries of lakes and ponds are linear features, which are enhanced by the Hessian
matrix. With the AMRGM seed points grow fluidly along the lake's edges. Our method can also be used to detect
wadis in arid landscapes (Fig. 14). Wadis are typical in the northwestern part of the Arabian Peninsula, which
has a classic sub-tropical desert climate with a mean temperature of 30 °C in summer and 13 °C in winter (Liu
et al. 2016). Wadis are seasonal rivers, characterized by irregular, inconspicuous streams and weak spectral
features (Fig. 14a). Wadis networks show classical anisotropy features. Because of the desert climate, vegetation
is rarely present so that the NDWI can enhance the main stream of each wadi. After applying the river and
background enhancement, the wadis become apparent in the original color composite image. Thousands of
streams with subdue linear features and strong anisotropy are detected by the AMRGM (Fig. 14b). The results
of the extraction strongly depend on the surrounding background (Fig. 14c—e). The white background of Subset

1 allows an excellent delineation of the wadis (Fig. 14c). In Subset 2 and Subset 3, the wadis dissect hillsides,
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564  where tributary channels have irregular morphological features.
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Fig. 14. Wadis extraction in Jordan using the AMRGM: (a) color composite image taken on 02/17/2019 (32°14' N,
37°29'9" E). (b) Wadis extraction with AMRGM. (c), (d) and (e) represents the complex river networks in Subset 1,
Subset 2, and Subset 3 of (a).

Adaptive, multi-scale network growth is the core of the AMRGM, allowing its application to different
remote sensing datasets. To some extent, the AMRGM works better in large resolution images where obvious
river boundaries are present. We present an application of the method to Landsat images in Fig. 15, where we
display the historical changes of the Zagya Zangbo River from 1990 to 2019. Similar to the wadis in the Arabian
Peninsula, the Zagya Zangbo is a seasonal river influenced by glacier meltwater and precipitation (Gao et al.
2017; Yao et al. 2012). The discharge and turbidity of the Tibetan Plateau rivers in the cold season is lower than
in summer (Song et al. 2014). This study only selects summer images (in August, September, and October) to
monitor variations in Zagya Zangbo River's runoff. The turbidity of the Zagya Zangbo River has limited
influence on river extraction because of the background homogenization. The Zagya Zangbo River morphology
changes little between 1990 and 2000, but the braided streams underwent large-scale reorganization between
2004 and 2011, driven by an increase in seasonal runoff. As a result, more water was discharged by the river

into the Siling Lake, changing the lake's area, volume, and turbidity (Mi et al. 2019; Yan and Zheng 2015).
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581
582  Fig. 15. Historical maps of the Zagya Zangbo River (32°20'50" N, 90°43'08" E) derived from Landsat images from

583 1990 to 2019. All images have < 10% clouds and were downloaded from collection-1 USGS
584 (https://earthexplorer.usgs.gov/).
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5.4 Limits of the proposed method in specific landscapes

In this study, we have developed a framework to distinguish multi-scale river networks. Like most region
growth methods, the generation of initial seed points is an indispensable procedure for the delineation of the
network. For example, tidal flat channels along the Jiangsu coast of China (Zhang et al. 2020), can elucidate the
method's limit (Fig. 16a). The spectral difference between the tidal channels and the sandy flats is minimal; it is
therefore difficult to generate good seed points. As a result the AMRGM fails to delineate the tidal channels
accurately. The background homogenization can also be influenced by the surrounding environment. When we
apply the NDWI in mountain terrains, snow and ice cover may appear as bright features, and the AMRGM can
over classify the channel network. This limitation is evident in the Canadian watershed of Fig. 16b (see red
circles). To correctly delineate glacier runoff in the rivers, we must first mask snow areas using topographic
slope or the normalized difference snow index (NDSI). Finally, in rivers with dense vegetation, such as in the
Volga delta, Russia (red circles in Fig. 16¢), the network stops growing because the vegetation reduces the
brightness of some streams. The AMRGM is designed to extract bright river pixels, so it cannot identify pixels
with low contrast. In these situations, we could modify Eq. 10 to select dark pixels with a bright background.
However, rivers with these characteristics are relatively rare, and at this stage of algorithm development, we do

not feel the need to include this option in the AMRGM.
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Fig. 16. Examples of low performance of the AMRGM: (a) Tidal channels in the radial sand ridges of the Jiang Su
coast (02/03/2018). (b) Glacier rivers in snow-covered mountains, Canada (07/08/2019). (c) dense vegetation choking
the distributaries of the Volga delta in Russia (04/10/2016).

6. Conclusions

Rivers are sensitive to the effects of global warming and often experience changes in length, width, and
drainage density. Open-source moderate-resolution images (e.g., MSI images) provide an opportunity to map
river networks at a large scale. Still, accurate river extraction is challenging, especially for delineating river
networks with multi-scale morphologies, variable curvatures, and heterogeneous background. Here we propose
an algorithm called AMRGM (adaptive and multi-scale region growth method) to delineate multi-scale complex
river networks from MSI images.

In the proposed AMRGM, three targeted optimizations are adopted, including a bias-corrected fuzzy C-
means (BCFCM) to mitigate background heterogeneity, a scale enhancement based on the Hessian Matrix to
make full use of scale and direction information, and a region growth to handle various river sizes. The first two

procedures are used to enhance the whole river system, while the latter step is designed to extract multi-scale
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river networks. The core of the AMRGM is the multi-scale regional growth criterion, with the addition of river
pixel direction to distinguish small and narrow river branches.

A comparison with conventional supervised and unsupervised classification methods indicates that the
AMRGM yields superior results in eight test sites around the world. The extraction accuracy for these examples
is generally > 0.95, except for sites in England and on the Tibet Plateau, due to their distinctively complex
spectral features. Moreover, a time series of Landsat images in a Tibet Plateau river show that our method can
also be applied to other remote sensing datasets. During the process of extraction, relevant parameters are set
based on trial-and-error analysis for diverse river environments. In our method, thresholds are assigned after
analyzing the BCFCM image and are therefore site-specific. An adaptive threshold determination in the
AMRGM will be attempted in the future. Although the AMRGM is designed for extracting linear rivers through

a multi-scale strategy, it can also be applied to other linear features, such as roads, vegetation, or lake boundaries.
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627  Appendix

628 Table Al. Summary of acronyms used in the study.

Parameter Value

1 BCFCM image

B Binary image

F Outliers removal image

S Processing queue

O, Omax, Omin, Ostep Factor scale; maximum, minimum, and step scale
q Seed point

P River pixel

Q Orientation correlation index

Lnax Maximum pixel value in a sliding window

M Test sliding window in large or small scale river
T, T2 Outlier removal in a sliding window

629
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630 Algorithm 1: Multi-scale region growth. Pixel direction is only used for small rivers with low contrast.

Data: BCFCM image /
Result: Binary image B
Initialization: o < o, ; processing queue S

begin

while o0 >0, do

compute river L_and D_by Eq. 10 and Eq. 14 from /
S«B

while S #J do
gpes

if o > 3 (For large-scale, middle-scale river)
for all p e N,(q)do
if p ¢ B and p satisfies Eq. 16 then
| append p to B and S
end if
end for
end if
if o <3 (For small-scale river)
for all p € N,(q) do

if p ¢ Band p satisfies Q_(p,q) > \/_% then

append p to B and §
end if
end for
end if
delete g from S
end while
O=0—0

step

end while
return B

631

632 Algorithm 2: Outlier removal.

Data: BCFCM image (/), Binary image (B)
Result: Outliers removal image (F)

begin

for all p e Bdo

if 7, >=Mand I, <7 then

max

delete pin B
end if
elseif 7, <7, then
delete p in B
end else
end for
F«3B

return F

633
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Fig. 1. Study area: (a) Map of the study sites; (b) Mackenzie River in the Northwest Territories, Canada; (c) Suwannee
River in Florida, USA; (d) Amazon River in the State of Para, Brazil; (¢) River Welland in England; (f) Geba River
in the Quinara Region, Guinea-Bissau; (g) Ganges Delta in Bangladesh; (h) Can Gio Mangrove forest in Vietnam; (i)
Zagya Zangbo River in Tibet, China.

Fig. 2. The procedure of the AMRGM, from river enhancement, seed points generation, multi-scale region growth,
and outlier removal.

Fig. 3. Background homogenization: (a) NDWI image. (b) Histogram of the NDWI image. (c¢) BCFCM image. (d)
Histogram of the BCFCM image.

Fig. 4. Adaptive multi-scale local differential geometry enhances fluvial features in the River Welland, UK: (a—d)
results with factor scale 0 =1, 3, 5, and 7, used in enhancing water bodies. Line 1, 2, and 3 cross small, mid, and
large channels, respectively. Algorithm results in Line 1, 2, and 3 for each scale. The red dotted lines are river
boundaries; the river response L is normalized in [0, 1].

Fig. 5. River network direction information: (a) direction computed with the multi-scale algorithm using the local
differential structure, pixel directions are consistent at the confluence between river branches and the main trunk. Note
that only a fraction of pixel directions are displayed for clarity. (b), (c) and (d) represent the pixel directions in Subset
1, Subset 2, and Subset 3.

Fig. 6. Process of region growth in the River Welland network: (a) Initial seed points (blue pixels) automatically
generated from the BCFCM image and with some few points added in small rivers. (b-e) River pixels (green pixels)
expanding from large scale channels to small scale channels. (f) Outlier removal result.

Fig. 7. Extraction of the network in the River Welland using the AMRGM: (a) Color composite image (R: Band 8,
G: Band 3; B: Band 2); (b) Accuracy analysis obtained by comparing with the ground truth image. Red pixels represent
commission errors, while green pixels are omission errors.

Fig. 8. Comparison of river networks extracted with the AMRGM and SVM from remote sensing images with small
basin areas: (al) color composite image of the Suwannee River; (a2, a3, a5) Suwannee River network, Subset 1, and
Subset 2 river extraction using AMRGM; (a4, a6) Subset 1 and Subset 2 river extraction using SVM; (bl) color
composite image of the Amazon River; (b2, b3, bS) Amazon River network. Subset 1, and Subset 2 river extraction
using AMRGM, (b4, b6) Subset 1 and Subset 2 river extraction using SVM; (c1) color composite image of the Can
Gio Mangrove forest, (c2, c3, ¢5) Can Gio Mangrove forest networks, Subset 1, and Subset 2 river extraction using
AMRGM, (c4, c6) Subset 1 and Subset 2 river extraction using SVM; (d1) color composite image of the Zagya Zangbo
River, (d2, d3, d5) Zagya Zangbo network, Subset 1, and Subset 2 river extraction using AMRGM, (d4, d6) Subset 1
and Subset 2 river extraction using SVM.

Fig. 9. Comparison of river networks extracted with the AMRGM and SVM from remote sensing images with a large
basin area: (al) color composite image of the Mackenzie River, (a2, a3, a5) Mackenzie River network, Subset 1 and
Subset 2river extraction using AMRGM, (a4, a6) Subset 1 and Subset 2 river extraction using SVM; (bl) color
composite image of the Geba River; (b2, b3, b5) Geba River network, Subset 1 and Subset 2 river extraction using

AMRGM, (b4, b6) Subset 1 and Subset 2 river extraction using SVM; (c1) color composite image of the Ganges Delta,
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(c2, c3, c5) Ganges Delta network, Subset 1 and Subset 2 river extraction using AMRGM, (c4, c6) Subset 1 and Subset
2 river extraction using SVM.

Fig. 10. The overall performance of AMRGM compared to four other methods: SVM, ML, ISODATA, and KM. (a)-
(d) overall accuracy, Kappa coefficient, commission, and omission errors for the eight sites. The orange line represents
the median, and the green dotted line is the mean value.

Fig. 11. Percent increase in identified river pixels as a function of change in scale o.

Fig. 12. River delineations from Sentinel-2A MSI images using the AMRGM and compared with HR images, over
River Welland (UK) and Suwannee River (USA): (al) The AMRGM delineations from a 10 m MSI image; (a2) Visual
interpretations from a 1 m HR image (rivers-HR); (a3) The AMRGM delineations and rivers-HR. The grey thin strips
are rivers-HR that unsuccessfully extracted by the AMRGM. Insets of (a4-1-al1-1) are zoom-in MSI images of these
un-extract river sections, whereas (a4-2—al 1-2) are zoom-in HR images. (b1) The AMRGM delineations froma 10 m
MSI image; (b2) Visual interpretations from a 1 m HR image (rivers-HR); (b3) The AMRGM delineations and rivers-
HR. The grey thin strips are rivers-HR that unsuccessfully extracted by the AMRGM. Insets of (b4-1-bl11-1) are
zoom-in MSI images of these un-extract river sections, whereas (b4-2—b11-2) are zoom-in HR images.

Fig. 13. River number in HR images (Visual interpretation) and Sentinel-2 MSI images (AMRGM). (a) River number
section of River Welland, England. (b) River number section of Suwannee River, USA. Note that “active channels”
are counted in HR-image as seldom river spectral exist in the HR-image from the Google Earth.

Fig. 14. Wadis extraction in Jordan using the AMRGM: (a) color composite image 02/17/2019 (32°14' N, 37°29'9"
E). (b) Wadis extraction with AMRGM. (c¢), (d) and (e) represents the complex river networks in Subset 1, Subset 2,
and Subset 3 of (a).

Fig. 15. Historical maps of the Zagya Zangbo River (32°20'50" N, 90°43'08" E) derived from Landsat image from
1990 to 2019. All images have < 10% clouds and were downloaded from collection-1 USGS
(https://earthexplorer.usgs.gov/).

Fig. 16. Examples of low performance of the AMRGM: (a) Tidal channels in the radial sand ridges of the Jiang Su
coast (02/03/2018). (b) Glacier rivers in snow-covered mountains, Canada (07/08/2019). (c) dense vegetation choking
the distributaries of the Volga delta in Russia (04/10/2016).
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