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Entropy-based Sampling Approaches
for Multi-Class Imbalanced Problems

Lusi Li*, Student Member, IEEE, Haibo He"”, Fellow, IEEE, and Jie Li"*, Member, IEEE

Abstract—In data mining, large differences between multi-class distributions regarded as class imbalance issues have been known to
hinder the classification performance. Unfortunately, existing sampling methods have shown their deficiencies such as causing the
problems of over-generation and over-lapping by oversampling techniques, or the excessive loss of significant information by
undersampling technigues. This paper presents three proposed sampling approaches for imbalanced leaming: the first one is the
entropy-based oversampling (EOS) approach; the second one is the entropy-based undersampling (EUS) approach; the third one is
the entropy-based hybrid sampling (EHS) approach combined by both oversampling and undersampling approaches. These three
approaches are based on a new class imbalance metric, termed entropy-based imbalance degree (EID), considering the differences of
information contents between classes instead of traditional imbalance-ratio. Specifically, to balance a data set after evaluating the
information influence degree of each instance, EOS generates new instances around difficult-to-learn instances and only remains the
informative ones. EUS removes easy-to-leam instances. While EHS can do both simultaneously. Finally, we use all the generated and
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remaining instances to train several classifiers. Extensive experiments over synthetic and real-world data sets demonstrate the

effectiveness of our approaches.

Index Terms—Imbalanced learning, oversampling, undersampling, hybrid sampling, entropy

1 INTRODUCTION

MBALANCED learning has attracted a great deal of interests

in the research community. Most of the well-known data
mining and machine learning techniques are proposed to
solve classification problems with respect to reasonably bal-
anced class distributions [1]. However, this assumption is not
always true for a skewed class distribution problem existing
in many real-world data sets, in which several classes (the
majorities) are over-represented by a large number of instan-
ces but some others (the minorities) are under-represented by
only a few. The solutions for the class-imbalance problem
using traditional learning techniques bias the dominant clas-
ses resulting in poor classification performance. For an
extremely multi-class imbalanced data set, imbalanced classi-
fication performance may be provided by traditional classi-
fiers with a near 100 percent accuracy for the majorities and
with close to 0 percent accuracy for the minorities. Hence, the
class-imbalance problem is considered as a significantimped-
iment to the success of precise classifiers.

To overcome this impediment, plenty of methods have
been designed recently to balance the distributions between
the majorities and the minorities [2], which can be divided
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into two major groups: the algorithm-level methods and the
data-level methods. For the former, they attempt to modify
existing classification algorithms to improve learming perfor-
mance. Among them, cost-sensitive methods specify the costs
for misclassifying minority instances, and kernel-based meth-
ods modify the kernels to improve the learning of minority
instances [3], [4]. For the latter, they aim to balance the skewed
class distribution before training classifiers. Oversampling
and undersampling techniques are commonly used to imbal-
anced learning [5].

To achieve a balance, oversampling methods create new
instances by replicating original instances (e.g., random over-
sampling (ROS) [1]), or generating synthetic instances (e.g.,
synthetic minority over-sampling technique (SMOTE) [6]). In
order to avoid creating error-prone decision data spaces for
the minorities (i.e., over-fitting) and redundant minority
instances (i.e., over-generation), newly added instances may
need to enlarge the original minority space with an appropri-
ate number and reduce the imbalance degree in data space [7],
[8], [9]. However, ROS cannot mitigate this kind of imbalance
and SMOTE easily leads to the generation of noisy and wrong
minority instances. Besides, most of oversampling techniques,
such as Safe-level-SMOTE [10], ADASYN [11], RAMO [12],
MWMOTE [13], borderline-SMOTE [14], AMDO [15], and
EDOS [16], are developed to solve two-class imbalance prob-
lem. If they are applied to handle multi-class imbalance prob-
lem, either class transformation or class decomposition
techniques are required to convert the multi-class problem
into a few two-class problems. In this case, some significant
information of original multi-class data may be lost (e.g., for
the correlated data in three classes, partial correlation informa-
tion will be lost in each two-class task). Therefore, the created
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instances based on the two-class tasks are unable to ade-
quately fit the whole distribution of original multi-class data.

On the other hand, undersampling methods remove a sub-
set of majority instances to balance a data set (e.g., random
undersampling (RUS) and resampling). The major advantage
of undersampling is that it can ensure the realness of all train-
ing instances. However, RUS randomly selects instances
from majority classes without considering if they are infor-
mative and representative [17], [18]. Resampling may raise
the problem of overlapping. Furthermore, bagging and
boosting are combined with sampling techniques to enhance
the learning of imbalanced data [19], [20], such as OverBagg
[21], RUSBoost [22], SMOTEBoost [23], EasyEnsemble (EE),
BalanceCascade (BC) [17], GIREnOS, and GIREnUs [24].
Additionally, SMOTE + Tomek links and SMOTE + ENN are
two approaches combined over- and under-sampling algo-
rithms [25]. These two methods are used to remove instances
from all the classes after oversampling minority instances.

In the literature, class-imbalance d egree is often measured
by imbalance-ratio (IR) due to its simplicity. IR refers to the
ratio of the number of instances from the most majority class
to that from the most minority class. However, it is not an
informative measure to describe the differences among
multi-classes, where there exist other classes and all the clas-
ses are needed to be considered. Thus, IR is not appropriate
to measure multi-class imbalance degree.

In order to overcome this drawback, we introduce a new
metric, termed entropy-based imbalance degree (EID). It has
been known that information entropy can reflect the positive
information content of a given data set. Thus we measure the
information content of each class and obtain the differences
among them, i.e., EID. In order to minimize EID to balance the
data set in information content, an entropy-based hybrid sam-
pling (EHS) approach is proposed, combining both entropy-
based oversampling (EOS) and entropy-based undersam-
pling (EUS) methods. For each original instance, we evaluate
its information influence degree and remove majority instan-
ces with less information using EUS. For each synthetic
minority instance, we measure if it will decrease the class
entropy and only retain the qualified instance using EOS.
This strategy can efficiently avoid over-fitting as well as over-
generation since the introduced instances are efficient
and informative to decrease the entropy until a balance is
achieved. Finally, we train classifiers with the new synthetic
data set. The main contributions are highlighted as follows:

1)  We propose a new class imbalance metric, termed
entropy-based imbalance degree. EID measures the
imbalance of class-wise information contents based
on their inter-class and intra-class distributions, pro-
viding a new view on the imbalance degree in imbal-
anced leaming.

2) Wedevelop three entropy-based sampling (i.e., over-
sampling, undersampling, and hybrid sampling)
approaches based on the proposed EID for multi-
class imbalanced learning: EOS oversamples the
minorities; EUS undersamples the majorities; EHS
jointly oversamples the minorities and undersam-
ples the majorities.

3) We generate new minority instances with informa-
tHion around difficult-to-learn instances, and remove
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original majority instances with negligible informa-
tion to achieve a balance between classes.

The rest of this paper is organized as follows: Section 2
reviews background on information entropy. In Section 3, we
give the definitions of the proposed metric EID to measure the
multi-class imbalance degree and develop three entropy-
based sampling approaches for imbalanced learning. Section 4
presents the experiments on synthetic and real-world data
sets. In Section 5, we provide the conclusion.

2 BACKGROUND

The entropy gives a measure of uncertainty about the actual
structure of a system [26]. It can be useful to characterize the
information content in diverse modes and applications of
various fields [27]. In information theory, the major goal for a
transmitter is to convey some messages to a receiver. The
“information content” of one message measures how much it
resolves the uncertainty for the receiver. Generally, the infor-
mation content can be considered as how much effective
information the message actually contains. While in this con-
text, the information entropy by definition is the expected
average information content contained in each message. That
is to say, the entropy can be viewed as how much effective
information the message expects to contain. Thus, there is a
positive relationship between information content and
entropy [28]. The larger the entropy, the more uncertainty,
the more possibilities, the more information content.

A discrete stochastic variable X is given with its all possi-
ble outcomes {z,2,...,2,} and probability mass function
P(X). The information content of an outcome specifying
X = z;is defined as follows:

1
I i =1 al=—/) ]-)
(z:) = log (p_) (

T

where p; is the probability of z; in X, and a is the base of the
logarithm, which is commonly assigned the values of 2, e,
or 10. The information entropy of a message is defined as
the expected average amount of information to be conveyed
about X

H(X) = E[I(X)] = E[-log.(P(X))]

= —ZPJ(Q?:‘) == pilog.p;,
= N

=1

where E is the expected value operator. It can be seen that
H(X) is positive. Its value reaches the maximum log,(n)
when X has consistent distribution, ie., p;=1/n (i=
1,...,n).Its value reaches the minimum 0 when X has certain
distribution, ie., P(X) = 1. In the case of p; = 0, the value of
0log,0 is taken to be 0. Above all, information entropy follows
the fundamental properties of information: 1) continuity, i.e.,
small change in p; only induces small change in the entropy
H(X); 2) symmetry, i.e., H(X) is the same if all outcomes are
re-ordered; 3) maximum, i.e.,

1 1
Hﬂ(plj"'jpn)SH‘R(;J"'JH)=EOQG(H)' ®3)

For equiprobable outcomes, H(X) increases with the num-
ber of outcomes
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loga(n) < log.(n+ 1)

1 @
Hn(pls T

.,n+1).

1
’ pn) < Hn+l (H_H )

4) non-negativity, i.e., H(X) > 0; 5) H(X) remains constant
when adding or removing an outcome with zero probability

Hﬂ(pli"' ‘ﬂ+1(pl! ":p‘n: ) (5)

Relative entropy, known as the Kullback-Leibler divergence
(KLD), is another useful measure of entropy of a data distri-
bution [29], [30], [31]. It is often used to evaluate the differ-
ence between two non-negative functions or probability
distributions. Assume P(X) is the real distribution of X,
and Q(X) is the approximate distribution of X. H(X) is the
expected average information content used to represent X
coinciding with P(X). If we represent X in terms of Q(X),
expected additional information content is required. It is
measured by KLD

»Pr) =

Dy (PlIQ) = 3 P(a;)log, P(z*g
=1l

(6)

where Dk (P||Q) > 0. It measures the difference between
P(X) and Q(X). The nearer Q(X) approximates to P(X), the
smaller Dgr (P||Q) is. When Q(X) = P(X), Dkr(P||Q) =0.
In addition, unlike H(X), it is asymmetric, i.e., D (P||Q) #
Dii(QIIP).

3 PROPOSED METHOD

For a given multi-class imbalanced dataset, the first priority is
to determine imbalance degree between the multi-majorities
and the multi-minorities. Most sampling approaches use
imbalance-ratio as the metric of class imbalance because of its
simplicity. However, it is not an informative measure for
multi-class problems. On one hand, it just describes class
imbalance based on the largest class and the smallest class
without considering other classes. On the other hand, the
multi-class imbalance may still exist even with a balance in
size. As stated in previous works [24], the number of represen-
tative (effective) minority instances, rather than that of overall
minority instances, decides the classification accuracy for
minority classes. Therefore, IR is inappropriate to be consid-
ered as the measure of class imbalance. In this section, we pro-
pose a novel metric to measure the class imbalance, termed
entropy-based imbalance degree, instead of imbalance-ratio.
In this case, we first measure the importance of instances and
classes [32], [33], and then present three entropy-based sam-
pling approaches: entropy-based oversampling approach,
entropy-based undersampling approach, and entropy-based
hybrid sampling approach.

3.1 EID: Entropy-Based Imbalance Degree

In information theory, entropy is defined to measure the
expected average amount of information contained within a
data set. Itis generally used as the metric of information con-
tent. When a data set has a more entropy, the instances of this
data set carry more “information” than that of another data
set with a lower entropy, i.e., this data set is more uncertain,
and vice verse. Therefore, entropy is a good representation of
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the amount of intra-class information. Moreover, KLD meas-
ures the difference between any two probability distribu-
tions. In this case, we introduce it to measure the difference
of two information content, and propose a new metric,
termed entropy-based imbalance degree instead of IR. Espe-
cially, the only way to eliminate the uncertainty from the out-
side is to introduce effective information. In this case, we
propose three methods to balance the information contents
among multi-classes.

The definitions of EID are as follows. The dataset D is com-
posed of N instances X = {z1,2,,...,zx5} with z; € RY,
where there are m classes C' = {ci, ¢3,. .., ¢y} with the corre-
sponding number of instances within each class {Ny, Ns,

Ny} (N = Ny + N3 + - - - + Ny). In this paper, we choose
a, the base of logarithm, to 2.

Definition 1 (Instance-Wise Statistic). For each instance, x;
€ec,(i=1,...,N and r=1,...,m), the density-based
instance-wise statistic of x;, denoted by \(xz;), is the inverse of
average distance between x; and its intra-class t; neighbors

15t 1 : )
A@J:{Ezﬁmﬁﬁﬁﬁm’lﬂl<%§k, @

0, if t; =0

where ¢; (0 <t; < k) is the number of nearest intra-class
neighbors in k nearest neighbors of z;; Q(x;) C KNN(x;),
where KNN(z;) is a set of instances including k nearest
neighbors of x; over the whole data set, and Q(z;) is a subset
of KNN(z;) including ¢; nearest intra-class neighbors of x;;
dist(zi,Q(xi);) measures the distance between z; and Ith
(I=1,2,...,t;) nearest intra-class neighbors. We notice that
when ¢; € [1, k] the denominator is the distance from z; to
Q(z;) without other class instances, and the mean value of
the opposite of the denominator is used to describe the den-
sity of z;, which could effectively reflect the distribution of ;.
Smaller value of the denominator comes the denser intra-
class distribution around z;. The more likely z; is a core
instance with a larger instance-wise statistic. ¢; = 0 indicates
the k nearest neighbors of z; all belong to other classes, and
then z; must be an outlier. Considering intra-class ¢; neigh-
bors of instances in their K NN benefits the evaluation of
intra-class and inter-class distributions.

Definition 2 (Class-Wise Statistic). For each class, the
entropy-based class-wise statistic of e, € C(r =1,2,...,m),
denoted by 6., is the expected average amount of density-based
information of c,

z

1 Alz;)
N2 yjlogay; sit.y;= J

>V &)’

where N. is the number of instances in class ¢,, and y; is a
percentage of overall density metric for «; in class ¢, which
can be viewed as the probability of z; in ¢,. It can be known
that for class ¢, the lower entropy is, the less uncertainty is,
the more density-based information content carries. Note
that 6, measures the expected intra-class density-based infor-
mation content.

91- = (8)

Definition 3 (Instance-Wise Difference Statistic). There
are two density-based information contents, 6, and ., where 6,
is real expected average information content of class ¢,, and .
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Fig. 1. Two data sets both have three classes (k = 5): Class 1 (with six instances), Class 2 (with 11 instances), and Class 3 (with 28 instances) with
the same IR = 6 : 28 = 0.21 and intra-class distributions but different EIDs. 5, n,, and n; represent the required average additional information con-

tents of the three classes, respectively.

is an approximate one of class c, with lack of instance x; and its
t; intra-class neighbors. For any instance in class ¢ (r =
1,2,...,m), the required average information content of class
¢, to measure it using 6, is given by

u(6,) = —0, logs O,. (9)

If we use . to represent the instance from 6,, the
required average information content is evaluated using the
following formula:

(Ial T -,-) = —0, '!092 19:;: (10)
v(;|6;, ;) measures the difference between 6, and ;.. How-
ever, v(z;|0,,9") # v(z; ¥, 6,), which are asymmetric. In fact,
u(z;|0,, ) > v(8,) is true with respect to Gibbs’ inequality
[34]. Moreover, u(;|6,,9;) = v(6;) when ¥} is real expected
average information content of ¢,, i.e., ¥, = 6,. Then the dif-
ference between v(z;|6,,9!) and v(6,) is given by:

8(6,/19;) = v(zil6r, 9;) — v(6,)

= —-9 EOgQ b (—9 EOQQG )
0r
= 91" Eog?ﬁ:
ie.,
-" Nf
5(6,]19°) = — 1 v loga Y og, —N%Zj 17 log2 ¥
||Vl =
N: T N— RZJ vi#L; ¥ 1092 YJ
(11
Az;) P )
sty = fv—'%: }}j_fﬁ_'?)\_
=1 (25) F=1#Li =)

where L; is the set of subscripts including z; and Q(x;).
5(6, ||t9‘) indicates the requu-ed additional information con-
tent using 19‘ to represent 6, in class c,. If 19‘ = 6,, i.e., these
two statistics are identical as well as z; and Q@(z;) does not
contain any information, §(6,|[?!) = 0. Additionally, it can be
easily known that §(6,|[9) # §(9[|6,), i.e., the calculation of
instance-wise difference statistic is asymmetric. §(6,|[) is
determined by both the entropy of 6, (u(6,)) and the expecta-
tion of ¥ in 6, (v(z;|6,,9?)). Thus, §(6,||??’) indicates the infor-
mation influence of z; and Q(z;) for ¢, ie, the more
informative z; and @Q(z;) is, the more the required additional
average information content is, the larger §(6,||%) is. We

apply softmax function to map the values of §(6,||9.) to [0,1].
Then the instance-wise difference statistic of x; € ¢, for the
entire data set, denoted by w(6,|[}), is as follows:

JRICHIES
TN eserlor)

Definition 4 (Class-Wise Difference Statistic). For each
class, ¢, € C(r =1,2,...,m), the class-wise difference statis-
tic of ¢, denoted by n,, is a required average additional infor-
mation content for all instances in ¢,

1 X .
N, = E; m('g'f'”ﬂ:)

It can be known that 5, is in [0,1], and measures the aver-
age information influence degree of c,. The less the number
of informative instances in ¢,, the more 7, the less informa-
tion content ¢, carries, the easier to learn ¢, it is.

(6, [19%) = a2

(13)

Definition 5 (Entropy-based Imbalance degree). For data
set D, entropy-based imbalance degree (EID) is the sum of abso-
lute differences between each and the mean class-wise difference
statistics

1> 1.3
EID==>3 [n, =& st.&==) m.

It can be shown that EID € [0,1], and EID = 0 when
class balance is achieved. Our goal is to minimize the imbal-
ance degree for new synthetic data set X, using sampling
techniques. Thus the objective function is given by:

(14)

{Xnew} e = argmin(EID).

Teeur

(15)

We illustrate the issues of respectively using EID and IR
as multi-class imbalance measures with two examples in
Fig. 1. In Figs. 1a and 1b, each data set has three classes, in
which the sizes of class 1 and 2 (minority classes) are less than
that of class 3 (majority class). It can be seen that the three
classes in two data sets have the same intra-class distributions
and different inter-class distributions, and IR between the
smallest class and the largest classis 6 : 28 =0.21. However, in
Fig. 1a, it is shown that there have clear boundaries among
the three classes and they can be discriminated with any sim-
ple classifier, i.e., the instances of all classes can well represent
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their distributions. In Fig. 1b, there are a lot of cross-cutting
among the three classes. EID in (b) are greater than that in
(a). The values of n are relative due to the relationships among
classes. The increases look small due to the use of logarithms
and mean values but make a great deal of sense. Thus there
would be less informative instances in the three classes, espe-
cially in class 2 with a relative larger increase of n. In a word,
IR, = IR;, while EID; = 6.7 EID,. IR cannot represent the
imbalance degree of data sets.

Algorithm 1.
Approach

EQOS: Entropy-Based Oversampling

Input: X : data set, with IV instances and m classes, consisting
of N, instances in class ¢,.
Output: S: qualified synthetic instances; R: classification
results.
1. Calculate the imbalance degree EID° using Eq. (16).
2. Obtain the minimum of additional information contents
¢ = min(n).
forr=1:m do
a. Calculate the difference between 7, and ¢ using
A= N — -
while A > 0 do
a. Sample an instance z; with the maximal w(6,[[) in
class ¢, and generate a new sample x, based on z; using
Eq. (17).
b. Add z, in ¢;: ¢, = {¢, Uz}, N, = N +1, and recalcu-
late A" for ¢,.
if A* < Athen
a. Update A = A", and add the qualified z, in 5.
else
b. Remove z, from ¢,, and reset A to previous values.
end if
end while
end for
3. Train classifier F' with new synthetic data set X’ = XU S,
and obtain the classification results R.

3.2 EOS: Entropy-Based Oversampling Approach
Oversampling technique is effective for imbalanced learning,
which is devoted to balance skewed data distribution by gen-
erating new minority instances. As aforementioned above, a
large number of synthetic sample methods have been pro-
posed (e.g., SMOTE and AdaSyn). Motivated by the success
of these methods, we present an entropy-based oversam-
pling approach on basis of EID° metric. We first compute
instance-wise statistics A(z) for all instances in a data set and
class-wise statistics 6 for overall classes using A(z). Then
instance-wise difference statistics w@(6,||9,) for all instances
using 6 and class-wise difference statistics » for all classes
by w@(6||?¥,). By definitions, it can be known that insta-
nces and classes with less information and lower @(6,||9,)
and 7, are easier to learn, i.e., they are majority instances and
classes. Similarly, those with more information and larger
entropy are difficult to learn, i.e., they are minority instances
and classes.

We describe EOS detaily in Algorithm 1. The class with
the minimal additional information content ¢ is considered
as the maximum majority class. The other classes have to
generate new instances with effective information to balance
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data set on information contents using modified EID metric
as follows:
{Xnew} e = argmin(EID°)
Xm_-w
1 (16)
st. EID® =— - = min(n).
s m;(m ¢) ¢ = min(n)

For each class, we calculate mean value of the differences
between the minimum and each value of class-wise difference
statistics. It can be known that A = n — ¢ > 0. Then we use
modified SMOTE to generate new informative instances until
A <0, i.e., this class and the maximum majority class achieve
a balance. Finally, all classes form a balanced data set and
EID?° tends to 0. In EQS, for each synthetic instance x, in class
¢, we first sample an instance z; with the maximal w(6,|[9})
in class c,, and generate x, using the following formula:

Ty =12; + (T —T;) 0
s.t. r, = aIgmin(w(GrHlf)): an
TwEQ(z;)

where z,, is the instance with minimal @(8,||J,) of the k-near-
est neighbors of z; in class ¢,, the symbol “o” indicates ele-
ment-wise multiplication of two vectors, and « is a random
vector. Only the qualified instances, which could make A
decrease, are allowed to add into data set. In this case, we can
effectively avoid over-generation and generation of noisy and
wrong instances.

Algorithm 2. EUS: Entropy-Based Undersampling
Approach

Input: X : data set, with IV instances and m classes, consisting
of N, instances in class c;.
Output: U: removed data set; R: classification results.
1. Calculate the imbalance degree EID* using Eq. (18).
2. Obtain the maximum of additional information contents
¢ = max(n).
forr=1:m do
a. Calculate the difference between 75, and ¢ using
A= C = M-
while A > 0 do
a. Sample an instance z; with the minimal w(6,|[#) in
class ¢, add z; into U and remove z; from ¢;:
¢ ={e. — =z}, No=N.— 1.
b. Recalculate A for c,.
end while
end for
3. Train classifier F' with new synthetic data set X' = X — U,
and obtain the classification results R.

3.3 EUS: Entropy-Based Undersampling Approach
Unlike oversampling technique, undersampling technique
attempts to remove a subset of majority instances to form a
balanced data set. Since a great deal of useful information may
be lost, and the training for classifiers is hard on the subset of
data with these under-representative information, it is neces-
sary to implement detection and recognition of easy-to-learn
instances, remove them, and retain difficult-to-learn instances.
Entropy-based undersampling approach (EUS) method
is summarized in Algorithm 2. EUS can adaptively
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determine the easy-to-learn majority instances, ie., they
have lower informational influences (z(6,|[)), and throw
away them until solving the following equation:

{Xnew} e = arg min(EID")

oy (18)
st. BID" =—7% (¢—1,) ¢=max(y),

r=1

where EID" is the mean value of differences between the
maximum and each value of class-wise difference statistics.
We conduct EUS based on the minimum class, which corre-
sponds maximum class-wise difference statistic. It can be
known that a class with large information content needs to be
removed redundant informaton content to eliminate the
uncertainty. Using the same calculations as we used in first
three steps of EOS, for each class, we calculate A (A > 0),
remove easier-to-learn instances until A < 0. At this point, the
given data set isbalanced.

Algorithm 3. EHS: Entropy-Based Hybrid Sampling
Approach

Input: X : data set, with NV instances and m classes, consisting of
N, instances in class c,.
Output:S: qualified synthetic instances; U: removed data set; R:
classification results.
1. Calculate the imbalance degree EID using Eq. (14).
2. Obtain the mean value of additional information contents
g = % E:rl:l Ny
forr=1:m do
a. Calculate the difference between 75, and ¢ using
A=n —&
if A > 0then
while A > 0 do
a. Sample an instance z; with the maximal @ (6,||?) in
class ¢, and generate a new sample x, based on ;
using Eq. (17).
b. Add z; in ¢: ¢, = {¢; Uzg}, N, = N, + 1, and recal-
culate A* for c,.
if A* < Athen
a. Update A = A", and add the qualified z, in 5.
else
b. Remove z,; from ¢, and reset A to previous values.
end if
end while
else
while A < 0 do
a. Sample an instance z; with the minimal w(6;|[#) in
class ¢, add z; into U and remove z; from c;:
¢ ={¢—x}, Npo=N.—1
b. Recalculate A for ¢,.
end while
end if
end for
3. Train classifier F with new synthetic data set
X' = X US — U, and obtain the classification results R.

3.4 EHS: Entropy-Based Hybrid Sampling Approach
Hybrid sampling techniques combine the oversampling and
undersampling techniques, adding minority instances and
removing majority instances simultaneously in order to
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eliminate overfitting and prevent the loss of too much infor-
mation effectively. Especially for multi-class imbalanced
leamning, if we use the minimum or the maximum of required
information contents as measure of imbalance degree, they
can raise the problems of overfitting and overlapping using
single oversampling techniques as well as missing too much
valuable information using single und ersampling techniques.
Therefore, we propose an entropy-based hybrid sampling
approach based on EID metric.

EHS is described in detail in Algorithm 3. Unlike EOS and
EUS, EHS uses the mean value of differences between the
mean value and each value of class-wise difference statistics.
First, we obtain EID using Eq. (14). In this case, we can
use EOS to generate informative minority instances for
initial A > 0 until A <0, and use EUS to remove under-
representative majority instances for initial A < 0 until
A > 0. Entropy is going to be favoring whichever side has
mean entropy, and a balance is achieved by minimizing EID.
At this point, each class has similar information content, and
the new synthetic data set can be as input to train classifiers.

As shown in Algorithm 1, 2, and 3, the proposed EOS,
EUS, and EHS are based on different FIDs in terms of mini-
mum, maximum, and mean of required information con-
tents. Notice that the significance of our proposed methods
has two aspects. First, we use the instance-wise density dis-
tributions A(x) with the reciprocal of mean distances to
obtain the class-wise density distributions &,. In this case, we
measure the intra-class required information contents to rep-
resent instances and the required information contents to
represent classes. Second, the imbalance degree of a data set
is measured by the entropy-based metric of EIDs instead of
IR. It is proved that we balance the data set when EIDs tend
to 0. Based on EIDs, the learning methods in these problems
concentrate on difficult-to-learn instances and only allow to
add qualified instances to ensure that the new constructed
data set has a balanced distribution, improving classification
performance.

3.5 Time Complexity Analysis

The EHS is composed of three major steps: 1) obtaining EID of
a given data set; 2) initially reducing EID by generating new
synthetic and informative minority instances using EOS; 3)
further minimizing EID by removing majority instances with
less information using EUS. Their time complexities are
O(Nd(logy N + 1)), Ofadm (logsa +1)), and O(Bdm._(logsp+
1)), where N is the total number of original instances; d is the
number of attributes; m, is the number of majority classes;
m_ is the number of minority classes; « is sum of N and the
number of generated instances; 8 is the final number of instan-
ces after oversampling and undersamling; m = m + m-;
> N; a>p. The overall time complexity of EHS is
O(Ndm(logoN + 1)). EHS has a high time complexity, but it
yields significantly good results.

4 EXPERIMENTAL RESULTS

4.1 Performance Evaluation Metrics

Imbalanced learning attempts to improve the classification
performance for the minorities. As mentioned above, the
overall accuracy is not a good performance evaluation metric
since the majorities dominate the overall dataset. In this
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paper, we use four metrics, Precision, Recall, F-Measure [35],
and G-Mean [36], to evaluate the performance of classifiers.
The definitions of these metrics are as follows:

Precision = T;;-—PPP
Recall = %
P Moot = o
G — Mean = \/Recai.’,' X ﬂ\fTij}FRF”

where true positive (TP) is the number of minority instances
with correct classification; false positive (FP) is the number of
majority instances with wrong classification; true negative
(TN) is the number of majority instances which are classified
correctly; false negative (FN) is the number of minority
instances which are misclassified as the majorities.

4.2 Experimental Settings

To verify the effectiveness of the proposed EOS, EUS, and
EHS methods, we carry on extensive experiments on two 2D
data sets and 12 real-world data sets. 2D data sets named
Spiral and Irregular are shown in the original set of Figs. 2a
and 2b, which are chosen to take arbitrary-shaped and non-
Gaussian data distributions. Additionally, the statistics of real
data sets are summarized in Table 1, where first 8 data sets
(vehiclel, segment(, page-blocks0) abbreviated as page-bk0,
penbased, yeast, thyroid, shuttle, and ecoli ) come from KEEL
repository [37], and the other 4 data sets (msplice, letter,
waveform3 abbreviated as wavefm3, and landsat) are avail-
able from UCI repository [38]. The proportions of the majori-
ties and minorities are shown both for the binary-class and
multi-class data sets. IR is the traditional overall imbalanced
measure and EID is our proposed imbalanced degree. For
each data set, we perform 5-fold cross validation where the
original data set is randomly divided into 5 folds. Each fold is
used for testing once while the remaining 4 folds are trained.
In each fold, all classification methods are trained 10 times
and the results are averaged over 10 runs in order to eliminate
the randomness.

We select two common used base classifiers, including
AdaBoost and Multilayer perceptrons (MLP). The parameters
are described as follows: AdaBoost uses 100 boosting itera-
tions; MLP is trained to 100 epoches with a learning rate of 0.1
and 10 hidden layer neurons.

In detail, the performance of our proposed approaches
are compared with a number of state-of-the-art imbalanced
learning techniques. We summarize these 7 approaches as
follows: ADASYN, SMOTE, MWMOTE, SMOTE + Tomek
links (abbreviated as SMTL), SMOTE + ENN (abbreviated as
SMENN), EasyEnsemble (abbreviated as EASY), and Balance-
Cascade. All these methods are built with Tensorflow 0.8, and
implemented on an Intel i7-6700 CPU and a single Nvidia
TITAN Xp GPU with Python 2.7. The euclidean distance is
used to measure the distance between instances. In oversam-
pling techniques, all classes are oversampled until they have
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the same number of instances with the largest one. With
respect to the parameter settings, the number of nearest
neighbors is 5. The default parameter values are used for all
the other compared approaches [39].

4.3 2-D Data Sets

As shown in Figs. 2a and 2b, all the synthetic samples are
visualized with 2D scatter plots for comparing the perfor-
mance of different sampling algorithms (k =5 for all the
numbers of nearest neighbors). In Fig. 2a, the blue and orange
dots symbolize synthetic minority class samples, respectively
from class 1 and 2, corresponding to the cyan and pink dots
of original set. The green dots are synthetic majority class
samples from class 3 corresponding to the purple dots of orig-
inal set. From the values of G-M, it can be seen that EHS has
achieved the best performance compared with other sam-
pling techniques. Fig. 2b show the results on Irregular data
set. The blue and red dots symbolize synthetic minority class
samples, respectively from class 1 and 4, corresponding to
the cyan and gray dots of original set. The orange and green
dots represent synthetic majority class samples, which corre-
spond to the pink and purple dots of original set, respectively
from class 2 and 3. The effectiveness of our proposed three
methods is measured by the G-M of AdaBoost classifier,
which is trained using the original data and is tested with the
synthetic data. The G-Ms of different sampling methods are
shown in the bottom left corner of plots. Our EHS method
also outperforms other compared methods.

4.4 Multidimensional Data Sets

In Table 1, two measures of class imbalance degree are pre-
sented over all the data sets: modified-imbalance-ratio (MIR)
and entropy-based imbalance degree. The MIR denotes the
ratio of the number of instances from multi-majority classes
to the number of instances from multi-minority classes,
which is more representative than IR by considering all the
classes. The EID defined in this paper are different in EOS,
EUS, and EHS. Table 1 shows the EID of EHS. While MIR still
cannot reflect the class imbalance degrees of imbalanced data
sets, EID is a new view to measure the class imbalance from
information content. For example, the shuttle data set (853) is
far more imbalanced than the penbased data set according to
MIR, while the penbased data set (0.211) is more imbalanced
than the shuttle data set (0.008) according to EID.

Tables 2, 3, 4, and 5 summarize the average performance
results respectively in precision, recall, F-measure, and G-
mean of 7 compared sampling methods and our 3 methods
using two base classifiers for MLP and AdaBoost over all data
sets. These four tables show the average values and correspon-
ding standard deviations. The best results are highlighted in
bold. From these tables, it can be seen that our proposed meth-
ods, especially EHS, acquire better performance than the
others.

In terms of precision, Table 2 shows that our proposed
approaches achieve the best performance for all 12 data sets.
From Table 3, our proposed methods outperform the others
for 11 out of 12 data sets in terms of recall. We can see that the
proposed three methods perform better for 10 out of 12 data
sets in terms of F-measure in Table 4. For G-mean metric,
they achieve the best performance for 11 out of 12 data sets in
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Fig. 2. Scatter plots of the original data set and synthetic data of (a) Spiral data set and (b) Irregular data set generated by ADASYN, SMOTE, MWOTE,
SMTL, SMENN, ESAY, BC, EOS, EUS, and EHS. In (a), the green dots from class 3 represent synthetic majority class samples corresponding to the
purple dots in original set, the blue and orange dots, respectively, from dass 1 and 2 represent synthetic minority class samples corresponding to the
cyan and pink dots in original set. In (b), the blue and red dots, respectively, from class 1 and 4 represent synthetic minority class samples corresponding
to the cyan and gray dots in original set; the orange and green dots from class 2 and 3 represent synthetic majority class samples corresponding to the
pink and purple dots in original set. The values of G-M are shown in bottom left comer of plots. The bold G-Ms are the best performances.

Table 5. We also notice that different methods have different
standard deviations. In order to further demonstrate the
effectiveness of our proposed three methods, Welch's ¢-test is
performed to evaluate whether EOS, EUS, and EHS can sig-
nificantly outperform the other methods. The Welch's ¢-test
takes both mean values and standard deviations into account
unlike Student’s ¢-test, which defines the statistic ¢ if two sam-
ples have the same size n as follows:

=Ko (19)

NG
where Y_land Sf are first sample mean and variance, respec-
tively; X, and S7 are second sample mean and variance,

respectively. The statistic ¢ follows the ¢-distribution. The
Welch Satterthwaite equation is used to estimate the degree
of freedom v associated with this variance

(S +8)*(n—1)

2
ST+ 58 0)

v

We summarize the t-test of Precision, Recall, F-Measure,
and G-Mean between our proposed three methods and all
the methods with a significant level at 0.05 in Table 6. In
each row, each of our proposed method is compared with
the remaining methods, and the amounts of win-tie-lose are
presented over 12 data sets.
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TABLE 1
Statistics of Experimental Data Sets

Datasets #Instances #Features #Classes

% majorities % minorities MIR EID

846 18 2
2308 19 2
5472 10 2
1100 16 10
1484 8 10
720 21
2175 9
336 7
3175 240
5000 16
5000 21
2000 36

vehiclel
segment(
page-bk0
penbased
yeast
thyroid
shuttle
ecoli
msplice
letter
wavefm3
landsat

]
WG WU W

74.36
85.75
89.79
66.1

95.86
97.36
99.88
91.37
51.91
49.02
67.06
66.40

25.64
14.25
10.21
33.90
4.14
2.64
0.12
8.63
48.09
50.98
3294
33.60

2.90
6.02
8.79
1.95
23.15
36.94
853
10.59
1.08
0.96
2.04
1.98

0.112
0.014
0.051
0.211
0.114
0.149
0.008
0.146
0.019
0.208
0.003
0.040

TABLE 2
Averages of Precision by Different Methods on 12 Data Sets Using MLP and Adaboost

Datasets ~ADASYN SMOTE MWMOTE SMTL

SMENN

Easy BC EOS EUS EHS

vehiclel 0.601 £0.17
segment( 0.995 +0.00
page-bk0 0.956 +0.02
penbased 0.756 +0.12
yeast 0.514 +£0.10
thyroid  0.944 +£0.04
shuttle  0.995+0.03
ecoli 0.709 & 0.16
msplice  0.932+0.01
letter 0.556 +0.19
wavefm3 0.851 + 0.01
landsat  0.718 £ 0.09

0.706 £0.11 0.746 £0.04 0.717 £0.11
0.954 £0.10 0.995 £ 0.00
0.954 +£0.02 0.954 + 0.02
0.763 £0.12 0.751 £ 0.10
0.536 £ 0.07 0.538 £ 0.07
0.920 £ 0.06 0.917 £ 0.07
0.993 +0.01 0.994 £ 0.01
0.647 £0.15 0.646 £ 0.17
0.941 £0.01 0.940 £0.01
0.552+0.21 0.566 £ 0.19
0.848 £0.01 0.853 £0.01

0.954 + 0.01

0.501 £ 0.10
0.918 £ 0.07
0.990 £ 0.01
0.644 +0.17
0.938 £ 0.01
0.571 £ 0.14
0.851 £ 0.01

0.702 £0.12
0.993 £ 0.00 0.992 £0.00
0.957 £0.01
0.778 £ 0.09 0.751 £0.11
0.517 £0.07
0.919 + 0.06
0.991 £ 0.01
0.649 £ 0.16
0.940 £ 0.01
0.574 +0.14
0.853 £ 0.01
0.721 £ 0.07 0.737 £0.07 0.744 £ 0.06 0.732+£0.05 0.667 £0.18 0.808+0.03 0.853 £0.03 0.855+0.04 0.872+ 0.03

0.734 £ 0.07 0.796 £ 0.04
0.946 £ 0.11 0.990 £ 0.00
0.947 +£0.02 0.947 +0.03
0.819 £ 0.11 0.921 +0.00
0.383 £0.09 0.499 £ 0.06
0.931 £0.04 0.957 £ 0.00
0.869 £0.04 0.958 +£0.03
0.658 +0.15 0.695+0.19
0.934 £0.01 0.950 £0.00
0.574 £ 0.17 0.741 £0.01
0.854 £ 0.01 0.816 £0.02

0.821 £ 0.05
0.995 £ 0.01
0.963 + 0.02
0.948 £+ 0.01
0.542 + 0.06
0.972 £ 0.01
0.994 +0.02
0.903 £ 0.12
0.952 £ 0.01
0.862 £ 0.02
0.856 £ 0.02

0.796 £0.03 0.839 + 0.08
0.990 £0.01 0.998 + 0.00
0965 +0.00 0.978 £0.01
0937 +0.01 0.953 +0.02
0.547 +0.02 0.592 +0.07
0.978 +0.01 0.983 +0.01
0.996 + 0.01 0.994 +0.01
0.867 £0.17 0.889 £ 0.16
0955+ 0.01 0.964 £ 0.01
0.860 = 0.01 0.855+ 0.01
0.842+0.02 0.881 £ 0.02

TABLE 3
Averages of Recall by Different Methods on 12 Data Sets Using MLP and Adaboost

Datasets ~ADASYN SMOTE MWMOTE SMTL

SMENN

Easy BC EOS EUS EHS

vehiclel 0.611 +0.14
segment) 0.994 + 0.00
page-bk0 0.943 +0.02
penbased 0.732 +£0.13
yeast 0.464 +0.10
thyroid  0.891 +0.07
shuttle 0.996 +0.00
ecoli 0.567 + 0.12
msplice  0.935 £ 0.01
letter 0.537 £ 0.15
wavefm3 0.849 + 0.01
landsat  0.620 £ 0.13

0.766 = 0.04 0.755 + 0.05
0.974 £ 0.06 0.995 + 0.00
0.953 +0.02 0.954 +0.02
0.746 £0.14 0.726 £ 0.14
0.468 £0.11 0462 +0.10
0.950 £0.03 0.948 £ 0.03
0.994 £0.04 0.993 £ 0.00
0.583 +0.14 0.585+0.14
0.940 £0.01 0.939 £ 0.01
0.542 4£0.11 0.548 +0.13
0.847 £0.01 0.851 £0.01
0.621 £0.14 0.676 £0.07

0.442 £ 012
0.948 £+ 0.03
0.991 +£0.01
0.567 £ 0.14
0.938 £ 0.10
0.557 £ 0.11
0.850 £ 0.01
0.635 £ 0.13

0.745+0.06 0.746 £0.07
0.993 £ 0.00 0.992 £0.00
0.953 £0.02 0.957 £0.01
0.764 £0.12 0.733 £0.13
0445+0.11
0.949 + 0.03
0.992 + 0.01
0.579 + 0.13
0.939 + 0.01
0.555 + 0.18
0.852 + 0.01
0.664 £ 0.08

0.657 £0.11 0.777 £ 0.05
0.959 £ 0.07 0.990 + 0.00
0.920 £ 0.04 0.911 £0.09
0.798 £ 0.12 0.808 £ 0.00
0.336 £0.05 0.451 £0.04
0.958 £0.08 0.950 +0.01
0.969 £0.02 0.947 £ 0.05
0.394 £0.10 0.577 £0.12
0.932+£0.01 0.949 £0.00
0.550+£0.19 0.735 £0.01
0.854 £ 0.01 0.815£0.01
0.578 £ 0.15 0.766 £0.10

0.793 £ 0.06
0.993 + 0.00
0.959 +0.03
0.895 £+ 0.05
0.476 + 0.08
0.972 +0.02
0.996 + 0.04
0.702 £ 0.03
0.956 £ 0.01
0.853 £ 0.02
0.870 £ 0.02
0.827 £ 0.04

0.810 £0.05 0.836 + 0.09
0.991 £0.00 0.991 + 0.00
0.964 +£0.02 0.972 +0.03
0.868 + 0.09 0.933 +0.03
0468 £0.01 0472 £0.07
0.957 £ 0.03 0.959 +0.02
0995+ 0.02 0.998 +0.01
0.669 + 0.05 0.715 + 0.06
0.961 + 0.04 0.949 + 0.01
0.861 £0.01 0.880 + 0.01
0.852+0.01 0.879 + 0.02
0.835+ 0.04 0.814 £ 0.02

The results show that both oversampling and undersam-
pling techniques in those imbalanced learning methods
exhibit their specific advantages. For some data sets, EUS
could be more effective than EOS such as in page-bk0, yeast,
and landsat, and less effective than EOS such as in vechiclel,
segment(, ecoli, and wavefm3. The EHS, on average, outper-
forms the other methods.

In a word, the experimental results on synthetic and real-
world data sets not only show the superiority of our pro-
posed three methods over other compared methods, but
also show the superiority of EHS over EOS and EUS. In

Figs. 2a and 2b, EHS respectively achieves the highest G-
Mean values and performs better than EOS and EUS. Its
superiority lies in that EHS generates less minority class
samples than EOS to avoid overlapping and simultaneously
removes less majority class samples than EUS to avoid
information loss. In Tables 2 and 4, EHS achieves better per-
formance than EOS in 10 out of 12 and EUS in 11 out of 12.
In Tables 3 and 5, EHS performs better than EOS in 10 out
of 12 and EHS in 10 out of 12. Furthermore, Table 6 shows
that EHS outperforms EOS and EUS on average based on
the four performance evaluation metrics: Precision, Recall,
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TABLE 4
Averages of F-Measure by Different Methods on 12 Data Sets Using MLP and Adaboost
Datasets = ADASYN SMOTE MWMOTE SMTL SMENN Easy BC EOS EUS EHS
vehiclel 0.586 +0.17 0.724 £0.07 0.741 £0.05 0.725+0.08 0.712 £0.09 0.678 £0.10 0.783+0.05 0774 £0.06 0.790 £0.07 0.795 £ 0.04
segment0 0.992 £0.00 0.963+0.08 0.996 + 0.01 0.994+0.00 0.993 £0.00 0.953+0.09 0.990£0.00 0.993 £0.02 0.990 £0.00 0.995 £ 0.01
page-bk0 0.947 £0.02 0.953+£0.02 0952+ 0.02 0952+ 0.02 0.956 £0.01 0.928+0.03 0911 +0.03 0.955+0.00 0.963 £0.04 0.960 £0.03
penbased 0.716 £0.15 0.734 +0.12 0.710+0.16 0.758+0.13 0.718 £0.15 0.795+0.13 0.918 £0.01 0943 £0.03 0.931+£0.01 0.961 +0.01
yeast 0461 £0.10 0.465+0.09 0466 +0.09 0.439+0.11 0448 +0.09 0.397 £0.06 0.451 £0.04 0480 +0.01 0.496+0.03 0.616 £ 0.07
thyroid  0.911+0.07 0.932+0.05 0.931 £0.05 0.932+0.05 0.933+0.05 0.916 £0.09 0.950 £ 0.00 0.955+ 0.04 0.964 + 0.02 0.975 +0.01
shuttle 0.995 £+ 0.00 0.993 £0.00 0.994+£0.01 0.990+£0.01 0991 +£0.01 0.952+£0.01 0948 +0.03 0.994 +0.02 0993 +0.01 0.994 +0.01
ecoli 0.623 £ 0.13 0.600 £0.15 0.602 £0.16 0.591+£0.16 0.602+0.15 0.454+0.12 0.626 £0.15 0.776 £ 0.12 0.753 +0.15 0.772 £ 0.13
msplice 0936 £0.01 0.941 £0.01 0.939 £0.01 0.938 £0.01 0939+ 0.01 0.932+0.01 0.949 £0.01 0.951 £0.02 0961 £0.01 0.963 £ 0.02
letter 0524+ 012 0.522+0.13 0544 £0.12 0.542+0.11 0544+ 0.13 0.539+0.15 0.735+0.01 0.853+0.01 0.832+0.01 0.918 + 0.01
wavefm3 0.849 + 0.01 0.847+0.01 0.852 £0.01 0.850+0.01 0.852+0.01 0.853+0.01 0.815+0.01 0.898 +0.02 0.887 £0.02 0.875+0.01
landsat  0.629 £ 0.13 0.623 +£0.11 0.677 £0.09 0.645+0.12 0678 +£0.07 0.695+£0.15 0.767 £0.08 0.831 +£0.04 0942 +0.04 0.958 + 0.03
TABLE 5
Averages of G-Mean by Different Methods on 12 Data Sets Using MLP and Adaboost
Datasets ADASYN SMOTE MWMOTE SMTL SMENN Easy BC EOS EUS EHS
vehiclel 0.464 +0.17 0444 +£0.16 0581 £0.09 0531 +0.12 0443 £0.14 0.646 £0.12 0.737 £ 0.04 0793 £0.07 0.789 +0.05 0.798 + 0.03
segment0 0.993 £0.00 0.8304+0.10 0.994 4 0.00 0.995+0.00 0.994 £0.01 0.842+0.13 0.989+0.00 0.997 +£0.01 0.993 £0.01 0.996 & 0.00
page-bk0 0.907 £0.03 0.84540.07 0.8344+0.08 0.810+0.11 0.842 +£0.06 0.888+0.08 0.909+0.03 0.909 +£0.02 0.957 £0.02 0.947 £0.02
penbased 0.796 £0.10 0.811+0.11 0792+ 0.13 0.832+0.16 0.797 £0.19 0.873+0.09 0.892+0.00 0.967 £ 0.01 0.932+0.01 0.975 £0.02
yeast 0.605 £0.09 0.602+0.07 0.601 +0.07 0577 +0.09 0.586+0.08 0.484 £0.07 0.606 £0.04 0618 £0.01 0.624+0.04 0.672 £0.07
thyroid 0.786 +0.14 0.492+0.16 0.485+0.15 0.486+0.14 0497 +0.16 0.756 £0.13 0.869+0.03 0972+ 0.03 0.957 +£0.01 0.975 +0.02
shuttle 0992 +0.00 0.991 £0.01 0.996 £ 0.01 0984 +0.02 0986+ 0.01 0953 +0.03 0.940+0.00 0994 +£0.01 0990+0.02 0.994+0.01
ecoli 0399 +0.16 0.339 £0.16 0.348 £0.17 0344 +£0.16 0351 +0.16 0.271+0.08 0.427 £0.21 0.680 +0.16 0.691+0.13 0.634 +0.13
msplice 0949 £0.01 0.952 £0.01 0.951 £0.01 0.951+£0.01 0.952+0.01 0.950+0.01 0.962 £0.00 0.967 +0.01 0.964 +0.01 0.989 £ 0.01
letter 0.666 £ 0.16 0.665+0.16 0.681 £0.14 0.683 +0.15 0.686 £0.14 0.687 £0.13 0.709 £0.01 0.919 +0.02 0.883 +0.01 0.885+ 0.01
wavefm3 0.886 +0.01 0.884+0.01 0.887 £0.01 0.886+0.00 0.888 £ 0.01 0.889 +0.01 0.859 £0.00 0.887 £0.02 0.884 +£0.01 0.908 + 0.02
landsat  0.721 £ 0.11 0.717+0.12 0.766 £0.08 0.745+0.10 0773 £ 0.06 0.694+£0.15 0.837 £0.06 0.874+0.04 0.877 £0.05 0.881 + 0.03
TABLE 6
Summary of t-Tests of Precision, Recall, F-Measure, and G-Mean with Significance Level at 0.05
Methods ADASYN SMOTE MWMOTE SMTL SMENN  Easy BC EOS EUS EHS
Precision EOS 10-1-1 12-0-0 10-2-0 12-0-0 12-0-0 12-0-0  12-0-0 - 6-0-6 2-1-9
EUS 9-1-2 10-0-2 10-0-2 10-0-2 10-0-2 11-0-1  11-1-0  6-0-6 - 2-0-10
EHS 12-0-0 12-0-0 11-1-0 12-0-0 12-0-0 1200 1200 9-1-2 10-0-2 -
Recall EOS 10-1-1 12-0-0 11-0-1 11-1-0 12-0-0 12-0-0 12-00 - 7-0-5 5-0-7
EUS 10-0-2 11-1-0 11-0-1 11-0-1 10-11 10-0-2 1200 50-7 - 3-0-9
EHS 11-0-1 12-0-0 11-0-1 11-0-1 11-0-1 12-0-0  11-1-0  7-0-5 9-0-3 -
F-Measure EOS 11-0-1 12-0-0 10-1-1 11-0-1 11-0-1 12-0-0 11-0-1 - 6-0-6 3-1-8
EUS 10-0-2 11-1-0 10-0-2 11-0-1 10-11 1200 11-1-0 60-6 - 2-0-10
EHS 11-0-1 12-0-0 10-1-1 12-0-0 12-0-0 12-0-0 1200 813 10-0-2 -
G-Mean EOS 12-0-0 12-0-0 10-1-1 12-0-0 11-0-1 11-0-1  11-1-0 - 6-0-6 1-1-10
EUS 10-1-1 10-1-1 9-0-3 10-0-2 10-0-2 10-0-2 1200 6-0-6 - 40-8
EHS 12-0-0 12-0-0 11-1-0 12-0-0 12-0-0 1200 1200 10-1-1 8-0-4 -

The amount of win-tie-lose is given between our proposed three methods and all the methods over 12 data sets using MLP and Adaboost.

F-Measure, and G-Mean. Thus EHS has more superiority
than EOS and EUS.

the largest majority class. EOS oversamples the other classes
until their information contents achieve the largest one. Simi-
larly, EUS undersamples the other classes to balance the data
set based on the information content of the smallest minority

5 ConcLusioN class. EHS is based on the average information content of all

In this paper, we present three new entropy-based learning
approaches: EOS, EUS, and EHS, for multi-class imbalance
learning problems. For a given imbalanced data set, the pro-
posed methods use new entropy-based imbalance degrees to
measure the class imbalance instead of using traditional
imbalance-ratio. EOS is based on the information content of

the classes, and oversamples the minority classes as well as
undersamples the majority classes according to EID. The
new EID metrics consider the imbalance of class-wise infor-
mation contents and offer us a new view of the imbalance in
imbalanced learning. The effectiveness of our proposed three
methods are demonstrated according to the superior learning
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performance both on synthetic and real-world data sets. Fur-
thermore, since EHS can better preserve data structure than
EOS and EUS by generating less new minority samples as
well as removing less majority samples to balance data sets,
it has more superiority than EOS and EUS.

In the future, we would like to explore the theoretical
properties of our proposed imbalance measure and extend it
as well as our three imbalanced learning methods for other
classification problems such as image classification and trans-
fer learning.
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