
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 11, NOVEMBER 2020 4043
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Decentralized Event-Triggered Control of

Nonlinear Interconnected Systems
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Abstract—In this paper, we develop a decentralized
event-triggered control (ETC) strategy for a class of nonlin-
ear systems with uncertain interconnections. To begin with, we
show that the decentralized ETC policy for the whole system
can be represented by a group of optimal ETC laws of auxil-
iary subsystems. Then, under the framework of adaptive critic
learning, we construct the critic networks to solve the event-
triggered Hamilton–Jacobi–Bellman equations related to these
optimal ETC laws. The weight vectors used in the critic networks
are updated by using the gradient descent approach and the
experience replay (ER) technique together. With the aid of the
ER technique, we can conquer the difficulty arising in the per-
sistence of excitation condition. Meanwhile, by using classic
Lyapunov approaches, we prove that the estimated weight vec-
tors used in the critic networks are uniformly ultimately bounded.
Moreover, we demonstrate that the obtained decentralized ETC
can force the overall system to be asymptotically stable. Finally,
we present an interconnected nonlinear plant to validate the
proposed decentralized ETC scheme.

Index Terms—Adaptive critic learning (ACL), adaptive
dynamic programming (ADP), event-triggered control (ETC),
experience replay (ER), interconnected systems, reinforcement
learning (RL).

I. INTRODUCTION

ADAPTIVE critic learning (ACL), also known as adaptive
critic design, has been a powerful technique to solve

optimization problems [1]–[3]. The success of ACL in solv-
ing optimization problems mainly relies on an actor–critic
structure. In this structure, the actor performs a control
policy to systems or environments, and the critic evalu-
ates the cost caused by that control policy and provides
reward/punishment signals to the actor. A significant advantage
of the actor–critic structure is that, by employing actor–critic
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dual neural networks (NNs), it can be utilized to avoid
the well-known “curse of dimensionality.” In the computa-
tional intelligence community, the actor–critic structure is a
typical architecture used in adaptive dynamic programming
(ADP) [4] and reinforcement learning (RL) [5]. Because ADP
and RL have much in common with ACL (e.g., the same
implementation structure), they are generally considered as
synonyms for ACL. In this paper, we take ADP and RL
as the members of ACL family. Over the past few decades,
many kinds of ADP and RL have been introduced to han-
dle optimal control problems, such as goal representative
ADP [6], Hamiltonian-driven ADP [7], policy/value iteration
ADP [8]–[10], robust ADP [11], [12], online RL [13]–[15],
and off-policy RL [16]–[18]. Recently, based on the work of
Lin [19] building a relationship between the robust control and
the optimal control, ACL was successfully applied to solve
the robust control problems [20]–[22]. However, when imple-
menting these ACL algorithms, most of them required the
controlled systems to be persistently exciting. Unfortunately,
it is often intractable to verify the persistence of excitation
(PE) condition, especially for nonlinear systems.
To conquer the difficulty arising in the PE condition, the

experience replay (ER) technique was introduced [23]. The key
of the ER technique is to use historical and current state data
simultaneously. Owing to this feature, the ER technique is also
called concurrent learning [24]. The early studies on relax-
ing PE conditions with the ER technique/concurrent learning
included the works of Chowdhary [25] and Modares et al. [26].
Chowdhary [25] used concurrent learning to study the stabi-
lization problem of nonlinear continuous-time (CT) systems.
Modares et al. [26] employed the integral RL together
with the ER technique to study optimal control problems
of constrained nonlinear CT systems. The main difference
between [25] and [26] was that, in [26], the optimality was
taken into account. Recently, by using concurrent learning
and ADP together, Vamvoudakis et al. [27] extended the
work of [26] to design an optimal controller forcing con-
strained nonlinear systems to be asymptotically stable. Later,
Zhao et al. [28] applied the ER technique combined with ADP
to derive an optimal control of n-player nonzero-sum games. In
all aforementioned works, the PE condition was replaced with
an easy-checked rank condition. (Note: A similar rank con-
dition has been provided in Remark 5.) This is an advantage
of the ER technique/concurrent learning. Nevertheless, all the
above-mentioned ACL algorithms were implemented without
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considering constrained resources, such as limited computation
bandwidths and communication resources.
To take resource limitations into consideration, the event-

triggered control (ETC) methods were proposed [29], [30].
In an event-triggering mechanism (ETM), the control pol-
icy is updated only when the deviation between the current
state and the target state exceeds a prescribed threshold (note:
in this case, the triggering condition is violated). Owing to
this property, the ETC can decrease the computational load
and keep a low frequency of communication between con-
trolled systems and actuators [29]. Recently, applications of
ACL to optimal ETC and robust ETC have been extensively
reported. Vamvoudakis [31] proposed an optimal ETC law
for nonlinear CT systems via an actor–critic structure within
the framework of RL. By using a similar structure as [31],
Dong et al. [32] presented an optimal ETC of constrained-
input nonlinear CT systems. After that, Yang and He [33]
developed a robust ETC scheme for constrained-input non-
linear systems through single network ACL. The key feature
distinguishing [32] and [33] was whether the actor NN was
taken into account. Generally speaking, if considering the
action NN, it will increase the computational complexity as
well as the errors caused by function approximations. Differing
from Yang and He’s work, Zhang et al. [34] derived the robust
ETC via solving an event-triggered H∞ control problem. By
using ADP and concurrent learning together, they obtained
the solution of the event-triggered H∞ control problem with-
out requiring the PE condition. However, as stated in [33], one
had to judge the existence of the saddle point when solving
the H∞ control problems. This requirement is challenge-
able. To overcome the challenge, Zhang et al. [35] extended
their previous work [34] to develop a robust ETC for non-
linear CT systems through the combination of an indirect
method and ADP as well as the ER technique. More recently,
under the framework of RL, Narayanan and Jagannathan [36]
suggested a distributed approximate optimal ETC strategy
for affine-input CT nonlinear interconnected systems. Owing
to the use of σ -modification [37], they no longer needed
the PE condition when tuning the weight vectors used in
NN approximators. With a similar method utilized in [36],
Narayanan and Jagannathan [38] further studied the distributed
ETC problem of CT nonlinear interconnected systems. The
difference between [36] and [38] was that, in [38], the state
data generated from an intersampling time were reused, which
aimed at getting a better performance in approximating the
cost function than those regardless of these state data.
Motivated by the aforementioned literature, in this paper,

we present a decentralized ETC scheme for a class of CT
nonlinear interconnected systems. Initially, it is proved that
the decentralized ETC policy for the whole system is com-
posed of optimal ETC laws of auxiliary subsystems. Then,
under the framework of ACL, critic networks are used to
solve the event-triggered Hamilton–Jacobi–Bellman equations
(HJBEs) which are corresponding to these optimal ETC laws.
The weight vectors used in the critic networks are updated
via the combination of the gradient descent approach and the
ER technique. By using the ER technique, we can overcome
the difficulty arising in the PE condition. Meanwhile, based

on classic Lyapunov methods, the estimated weight vectors
used in the critic networks are demonstrated to be uniformly
ultimately bounded (UUB). In addition, with the obtained
decentralized ETC, the overall closed-loop system can be kept
asymptotically stable.
The novelties of this paper include the following three

aspects.
1) Though the present method shares similar spirits as [35],

a remarkable difference between this paper and [35] is
that, in our case, the augmented control [see ϑi defined
as in (7)] is tuned only in the ETM. (Note: In [35],
one part of the augmented control was updated in a
time-triggering mechanism, and the other part of the
augmented control was tuned in the ETM.) Therefore,
the present ETC approach has an advantage over [35]
in decreasing the computational load.

2) Unlike [36] and [38] employing σ -modification to
remove the PE condition, this paper applies the ER tech-
nique to convert the PE condition into an easy-checked
rank condition [see (41) in the following Remark 5].
Moreover, the decentralized ETC policy developed in
this paper can force the overall system to be asymptot-
ically stable rather than locally UUB in [36] and [38]
(see Theorem 1 later).

3) This paper extends our previous work [33] to obtain the
decentralized ETC of uncertain nonlinear interconnected
systems. It is always considered that developing ETC
schemes for nonlinear interconnected systems, in partic-
ular nonlinear systems with uncertain interconnections,
is much more difficult than those nonlinear plants
regardless of interconnections.

The rest of this paper is structured as follows. Section II pro-
vides the problem descriptions and preliminaries. Section III
develops the decentralized ETC of uncertain nonlinear
interconnected systems. Section IV analyzes the stability of the
closed-loop auxiliary systems with the obtained ETC policy.
Section V presents an experiment to validate the established
results. Finally, Section VI gives some concluding remarks.
Notation: R, N, Rmi , and Rni×mi represent the set of all real

numbers, the set of all positive numbers, the Euclidean space
of all real mi-vectors, and the space of all ni×mi real matrices,
respectively. T denotes the transposition. ! represents “equal-
ity relationship that is true by definition.” #i is a compact
set of Rni . For ξ = (ξ1, ξ2, . . . , ξni)

T ∈ Rni , its Euclidean
norm is written as ‖ξ‖ =

√∑ni
=1 |ξ |2. For A ∈ Rni×mi , its

Frobenius-norm is written as ‖A‖ =
√
tr(ATA) with tr(ATA)

denoting the trace of ATA. ∇V∗
i (xi) = ∂V∗

i (xi)/∂xi represents
the partial derivative of V∗

i (xi) with respect to xi ∈ Rni .

II. PROBLEM DESCRIPTIONS AND PRELIMINARIES

A. Problem Descriptions

Consider the nonlinear interconnected system consisting of
N subsystems given in the form

ẋi(t) = fi(xi(t))+ gi(xi(t))ui(t)+ ki(xi(t))di(x(t))

xi0 = xi(0), i = 1, 2, . . . ,N (1)
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where xi ∈ Rni and ui ∈ Rmi are the state and the control input
of ith subsystem, respectively, x = [xT1 , x

T
2 , . . . , x

T
N]

T ∈ Rn

(n = ∑N
i=1 ni) is the overall state, fi(xi) ∈ Rni , gi(xi) ∈ Rni×mi ,

and ki(xi) ∈ Rni×li are known locally Lipschitz functions
[note: gi(xi) (= ki(xi) if there exists mi = li], di(x) ∈ Rli

and xi0 ∈ Rni are, respectively, the uncertain interconnection
and the initial state of ith subsystem.
Two basic assumptions are imposed to facilitate later dis-

cussion. These assumptions were used in [19], [39], and [40].
Assumption 1: The ith subsystem given as in (1) is con-

trollable. fi(0) = 0, i = 1, 2, . . . ,N, that is, xi = 0 is the
equilibrium point of the ith subsystem if letting ui = 0 and
di(x) = 0. Furthermore, rank(gi(xi)) = mi(mi < ni) and
gTi (xi)ki(xi) = 0.
Remark 1: Admittedly, the condition gTi (xi)ki(xi) = 0 given

in Assumption 1 is a strict restriction, which excludes some
nonlinear interconnected systems. Nevertheless, if consider-
ing gTi (xi)ki(xi) (= 0, then, we will find that more restrictive
assumptions are required to be made, such as the bounded-
ness of the Moore–Penrose pseudoinverse of gi(xi) (see [41]).
Generally speaking, it is computationally expensive to calcu-
late the Moore–Penrose pseudoinverse of gi(xi) when it has
a large dimension. Therefore, for simplicity of discussion, we
present gTi (xi)ki(xi) = 0 in Assumption 1. Actually, this condi-
tion can be easily checked [see analyses of later interconnected
system (61) in Section V].
Assumption 2: The interconnection di(x) is bounded as

‖di(x)‖ ≤
N∑

s=1

bisαis(‖xs‖), i = 1, 2, . . . ,N (2)

where bis, s = 1, 2, . . . ,N, are non-negative constants and
αis(·), s = 1, 2, . . . ,N, are the class K functions [42].
Moreover, di(0) = 0 and αis(0) = 0, s = 1, 2, . . . ,N.

Let

αi(‖xi‖) = max{α1i(‖xi‖),α2i(‖xi‖), . . . ,αNi(‖xi‖)}. (3)

Then, we can further write (2) in the form

‖di(x)‖ ≤
N∑

s=1

cisαs(‖xs‖), i = 1, 2, . . . ,N (4)

where cis ≥ bisαis(‖xs‖)/αs(‖xs‖), s = 1, 2, . . . ,N, are the
non-negative constants.
This paper aims at finding a proper state-feedback decentral-

ized controller for interconnected system (1), which satisfies
Assumptions 1 and 2, such that the overall closed-loop
system is asymptotically stable. Because of the uncertain
interconnections, it is challengeable to design such a decen-
tralized controller. To overcome the challenge, we trans-
form the decentralized stabilization problem into a group of
optimal control problems of auxiliary subsystems related to
interconnected system (1).

B. HJBE Related to the ith Auxiliary Subsystem

The auxiliary system related to the ith subsystem can be
written in the form [note: in the subsequent discussion, we

call the following system (5) the ith auxiliary subsystem for
brevity]

ẋi = fi(xi)+ gi(xi)ui +
(
Ini − gi(xi)g

+
i (xi)

)
ki(xi)νi (5)

with g+i (xi) ∈ Rmi×ni representing the Moore–Penrose pseudo-
inverse of gi(xi) and νi ∈ Rli the auxiliary control.
Because rank(gi(xi)) = mi (see Assumption 1) and gi(xi) is

a real matrix, we find

g+i (xi) =
(
gTi (xi)gi(xi)

)−1
gTi (xi).

Thus, we can further see from Assumption 1 that

g+i (xi)ki(xi) =
(
gTi (xi)gi(xi)

)−1
gTi (xi)ki(xi) = 0. (6)

Let the augmented control ϑi ∈ Rmi+li and the augmented
control matrix Gi(xi) ∈ Rni×(mi+li) be separately defined as

ϑi =
[
uTi , ν

T
i

]T
and Gi(xi) =

[
gi(xi), ki(xi)

]
. (7)

Then, by using (6) and (7), we can find that the ith auxiliary
subsystem (5) becomes

ẋi = fi(xi)+ Gi(xi)ϑi. (8)

We introduce the cost function for the ith auxiliary subsys-
tem (8) as follows:

Vϑi
i (xi(t)) =

∫ ∞

t
()i(xi(τ ))+ ri(xi(τ ),ϑi(τ )))dτ (9)

where )i(xi) = πi(αi(‖xi‖))2, πi is an adjustable positive
parameter, αi(‖xi‖) is defined as (3), and

ri(xi,ϑi) = xTi Qixi + ϑT
i Riϑi (10)

where Qi ∈ Rni×ni is a symmetric positive-definite matrix and
Ri ∈ R(mi+li)×(mi+li) is the diagonal matrix defined as

Ri = diag
{
11, . . . , 1mi , ρ1, . . . , ρli

}

with 1q = 1(q = 1, 2, . . . ,mi) and ρq̄ = ρi > 0(q̄ =
1, 2, . . . , li). From the expression Ri, we can see that Ri =
R(1/2)

i R(1/2)
i .

According to [4] and [5], we can describe the optimal cost
function as

V∗
i (xi) = min

ϑi∈B(#i)
Vϑi
i (xi) (11)

with B(#i) representing the set of all admissible control laws
defined on #i. The time derivative of V∗

i (xi) in (11) satisfies
(
∇V∗

i (xi)
)T
(fi(xi)+ Gi(xi)ϑi)

+ )i(xi)+ xTi Qixi + ϑT
i Riϑi = 0.

Define the Hamiltonian with respect to V∗
i (xi) and ϑi as

H
(
xi,∇V∗

i (xi),ϑi
)
=

(
∇V∗

i (xi)
)T
(fi(xi)+ Gi(xi)ϑi)

+ )i(xi)+ xTi Qixi + ϑT
i Riϑi. (12)

Then, according to [4] and [5], V∗
i (xi) can be derived via

solving the HJBE

min
ϑi∈B(#i)

H
(
xi,∇V∗

i (xi),ϑi
)
= 0 (13)
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with V∗
i (0) = 0. Meanwhile, the corresponding augmented

optimal control can be written in the form

ϑ∗
i (xi) = arg min

ϑi∈B(#i)
H

(
xi,∇V∗

i (xi),ϑi
)

= −1
2
R−1

i GT
i (xi)∇V∗

i (xi). (14)

Based on the expressions ϑi and Gi(xi) given in (7), we can
see from (14) that

{
u∗
i (xi) = − 1

2g
T
i (xi)∇V∗

i (xi)
ν∗
i (xi) = − 1

2ρi
kTi (xi)∇V∗

i (xi)
(15)

where u∗
i (xi) and ν∗

i (xi) are the optimum values of ui(xi) and
νi(xi), respectively.
Inserting (14) into (13), we can rewrite the HJBE related to

the ith auxiliary subsystem in the form

(
∇V∗

i (xi)
)Tfi(xi)+ xTi Qixi −

∥∥∥∥
1
2
gTi (xi)∇V∗

i (xi)
∥∥∥∥
2

−
∥∥∥∥

1
2
√

ρi
kTi (xi)∇V∗

i (xi)

∥∥∥∥
2

+ )i(xi) = 0 (16)

with V∗
i (0) = 0.

According to [39], the decentralized controller for
interconnected system (1) can be derived through solving a
group of HJBEs described as (16). Nevertheless, in [39], the
decentralized controller was developed in a time-triggering
mechanism. The time-triggered control laws (i.e., the period-
ically updated control policies) often result in low efficiency
of using the communication resources between the con-
trolled systems and the actuators [30]. More importantly,
the time-triggered control policies often give rise to heavy
computational loads. To overcome the above-mentioned short-
comings, we will propose a decentralized ETC scheme for
interconnected system (1).

III. DECENTRALIZED ETC SCHEME

First, we propose the HJBE related to the ith auxiliary sub-
system in the ETM (i.e., the ith event-triggered HJBE). Then,
we establish a theorem to illustrate the relationship between
the decentralized ETC and the solutions of N event-triggered
HJBEs. Specifically, for deriving the decentralized ETC of
interconnected system (1), we need to solve N event-triggered
HJBEs. To this end, we finally present ACL together with the
ER technique to construct critic networks.

A. ith Event-Triggered HJBE

Let {tj}∞j=0 (Note: tj represents the jth triggering instant) be
the sequence of triggering instants, where tj < tj+1, j ∈ N. At
the triggering instant tj, the sampled state of the ith auxiliary
subsystem is written in the form

x̄i,j = xi
(
tj
)
, j ∈ N.

In general, there exists a gap between the sampled state x̄i,j
and the current state xi(t). To describe the gap, we introduce
an error function as follows:

ei,j(t) = x̄i,j − xi(t), t ∈
[
tj, tj+1

)
. (17)

We can see from (17) when the event is triggered. To be spe-
cific, if the event is triggered at t = tj, then ei,j(tj) = 0. Based
on the sequence of sampled states {x̄i,j}∞j=0, we can derive the
sequence of ETC policies {ϑi(x̄i,j)}∞j=0. [Note: ϑi(x̄i,j) is exe-
cuted only at the triggering instant tj, j ∈ N.] Meanwhile, with
the aid of zero-order hold [29], the discrete-time control sig-
nals in the sequence {ϑi(x̄i,j)}∞j=0 will be converted into a CT
input signal µi(x̄i,j, t), that is

µi
(
x̄i,j, t

)
= ϑi

(
x̄i,j

)
= ϑi

(
xi(tj)

)
, t ∈

[
tj, tj+1

)
.

Applying the aforementioned ETM to ϑ∗
i (xi) in (14), we can

obtain the augmented optimal ETC law for the ith auxiliary
subsystem (8) and the associated cost function (9) as [for all
t ∈ [tj, tj+1)]

µ∗
i
(
x̄i,j, t

)
= ϑ∗

i
(
x̄i,j

)
= −1

2
R−1

i GT
i
(
x̄i,j

)
∇V∗

i
(
x̄i,j

)
(18)

where ∇V∗
i (x̄i,j) = (∂V∗

i (xi)/∂xi)|xi=x̄i,j .
Remark 2: In subsequent discussion, we ignore the time

variable t in µ∗
i (x̄i,j, t). That is, µ

∗
i (x̄i,j, t) is written as µ∗

i (x̄i,j)
for brevity.
Replacing ϑi in (13) with µ∗

i (x̄i,j) in (18), we derive the ith
event-triggered HJBE as follows [for all t ∈ [tj, tj+1)]:

(
∇V∗

i (xi)
)Tfi(xi) − 1

2

(
∇V∗

i (xi)
)Tgi(xi)gTi

(
x̄i,j

)
∇V∗

i
(
x̄i,j

)

− 1
2ρi

(
∇V∗

i (xi)
)Tki(xi)kTi

(
x̄i,j

)
∇V∗

i
(
x̄i,j

)

+ )i(xi)+ xTi Qixi +
∥∥∥∥
1
2
gTi

(
x̄i,j

)
∇V∗

i
(
x̄i,j

)∥∥∥∥
2

+
∥∥∥∥

1
2
√

ρi
kTi

(
x̄i,j

)
∇V∗

i
(
x̄i,j

)∥∥∥∥
2

= 0 (19)

with V∗
i (0) = 0.

B. Relationship Between the Decentralized ETC and the
Solutions of N Event-Triggered HJBEs

According to the expressions ϑi and Gi(xi) given in (7), we
can see that (18) implies [for every t ∈ [tj, tj+1)]

u∗
i
(
x̄i,j

)
= −1

2
gTi

(
x̄i,j

)
∇V∗

i
(
x̄i,j

)
. (20)

Before continuing discussion, we give the following necessary
assumption which was used in [31], [33], and [34].
Assumption 3: ϑ∗

i (xi) given in (14) satisfies the Lipschitz
condition on #i. Specifically, we can find a Lipschitz constant
Kϑ∗

i
> 0 such that, for all xi, x̄i,j ∈ #i
∥∥ϑ∗

i (xi) − ϑ∗
i
(
x̄i,j

)∥∥ ≤ Kϑ∗
i

∥∥xi − x̄i,j
∥∥ = Kϑ∗

i

∥∥ei,j
∥∥.

Remark 3: We can see from (18) and Remark 2 that
µ∗
i (x̄i,j) = ϑ∗

i (x̄i,j). Thus, from Assumption 3, we have
∥∥ϑ∗

i (xi) − µ∗
i
(
x̄i,j

)∥∥ ≤ Kϑ∗
i

∥∥ei,j
∥∥.

Moreover, by using (7) and the definition of the norm ‖ · ‖,
we find that Assumption 3 also implies

∥∥u∗
i (xi) − u∗

i
(
x̄i,j

)∥∥ ≤ Kϑ∗
i

∥∥ei,j
∥∥. (21)
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Theorem 1: Take N auxiliary subsystems presented as in (8)
and the corresponding cost functions described as in (9) into
account. Let Assumptions 1–3 be valid. Then, there exist N
positive constants π∗

i , i = 1, 2, . . . ,N, such that, for every
πi ≥ π∗

i , the optimal ETC laws u∗
i (x̄i,j), i = 1, 2, . . . ,N,

given as in (20) can force the interconnected system (1) to
be asymptotically stable as long as ν∗

i (xi), i = 1, 2, . . . ,N,
satisfy

∥∥ν∗
i (xi(t))

∥∥2 ≤ xTi (t)Qixi(t), t ≥ t0 (22)

where t0 ≥ 0 is the threshold, and the triggering condition is

∥∥ei,j
∥∥2 ≤ (1 − 2ρi)λmin(Qi)

2K2
ϑ∗
i

‖xi‖2 !
∥∥ei,T

∥∥2 (23)

with 0 < ρi < 1/2 being the adjustable parameter, λmin(Qi)

being the minimum eigenvalue of Qi, and ei,T being the
triggering threshold.
Proof: Choose the Lyapunov function candidate as

L(x) =
N∑

i=1

V∗
i (xi) (24)

with V∗
i (xi), i = 1, 2, . . . ,N, the optimal cost functions defined

as (11). We can see from (11) that V∗
i (xi) > 0 for every xi (= 0,

and V∗
i (xi) = 0 ⇔ xi = 0, i = 1, 2, . . . ,N. That is, V∗

i (xi),
i = 1, 2, . . . ,N, are the positive-definite functions [42]. We
thus obtain that L(x) is positive definite.
Taking the time derivative of L(x) in (24) and using the

solutions of N equations ẋi = fi(xi)+gi(xi)u∗
i (x̄i,j)+ki(xi)di(x),

i = 1, 2, . . . ,N, we have [Note: L̇(x) = dL(x(t))/dt]

L̇(x) =
N∑

i=1

{(
∇V∗

i (xi)
)T(

fi(xi)+ gi(xi)u∗
i
(
x̄i,j

))

+
(
∇V∗

i (xi)
)Tki(xi)di(x)

}
. (25)

According to (12)–(15), it follows:






(
∇V∗

i (xi)
)Tfi(xi) = −πi(αi(‖xi‖))2 − xTi Qixi

+
∥∥u∗

i (xi)
∥∥2 + ρi

∥∥ν∗
i (xi)

∥∥2
(
∇V∗

i (xi)
)Tgi(xi) = −2

(
u∗
i (xi)

)T
(
∇V∗

i (xi)
)Tki(xi) = −2ρi

(
ν∗
i (xi)

)T
.

(26)

Inserting (26) into (25), we have

L̇(x) =
N∑

i=1





− πi(αi(‖xi‖))2 − xTi Qixi

+
∥∥u∗

i (xi)
∥∥2 − 2

(
u∗
i (xi)

)Tu∗
i
(
x̄i,j

)
︸ ︷︷ ︸

β1(xi,x̄i,j)

+ ρi
∥∥ν∗

i (xi)
∥∥2 −2ρi

(
ν∗
i (xi)

)Tdi(x)︸ ︷︷ ︸
β2(xi,x)





. (27)

Completing the squares with respect to u∗
i (xi) − u∗

i (x̄i,j) and
using (21), we find that β1(xi, x̄i,j) in (27) satisfies

β1
(
xi, x̄i,j

)
=

∥∥u∗
i (xi) − u∗

i
(
x̄i,j

)∥∥2 −
∥∥u∗

i
(
x̄i,j

)∥∥2

≤ K2
ϑ∗
i

∥∥ei,j
∥∥2 −

∥∥u∗
i
(
x̄i,j

)∥∥2 ≤ K2
ϑ∗
i

∥∥ei,j
∥∥2.

Applying Cauchy–Schwarz inequality [43, Th. 1.35] to
β2(xi, x) in (27) and using (4), we have

β2(xi, x) ≤ 2ρi
∥∥ν∗

i (xi)
∥∥‖di(x)‖

≤ 2ρi
∥∥ν∗

i (xi)
∥∥

N∑

s=1

cisαs(‖xs‖).

Thus, we can see from (27) that

L̇(x) ≤ −
N∑

i=1

2ρi
(
xTi Qixi −

∥∥ν∗
i (xi)

∥∥2
)

−
N∑

i=1

{
(1 − 2ρi)xTi Qixi − K2

ϑ∗
i

∥∥ei,j
∥∥2

}

−
N∑

i=1

ρi(1 − ρi)
∥∥ν∗

i (xi)
∥∥2

−
N∑

i=1

{

πi(αi(‖xi‖))2 + ρ2
i

∥∥ν∗
i (xi)

∥∥2

− 2ρi
∥∥ν∗

i (xi)
∥∥

N∑

s=1

cisαs(‖xs‖)
}

. (28)

For convenience, we denote





π̃ = diag{π1,π2, . . . ,πN}
1̃ = diag{11, 12, . . . , 1N} (1i = 1, i = 1, 2, . . . ,N)
z(x) =

[
−α1(‖x1‖),−α2(‖x2‖), . . . ,−αN(‖xN‖)
ρ1

∥∥ν∗
1 (x1)

∥∥, ρ2
∥∥ν∗

2 (x2)
∥∥, . . . , ρN

∥∥ν∗
N(xN)

∥∥]T
.

Then, based on conditions (22) and (23) as well as the fact
that λmin(Qi)‖xi‖2 ≤ xTi Qixi, we further find that (28) implies
(for all t ≥ t0)

L̇(x) ≤ −1
2

N∑

i=1

(1 − 2ρi)λmin(Qi)‖xi‖2 − zT(x)Bz(x) (29)

where

B =
[
π̃ CT

C 1̃

]
and C =





c11 c12 · · · c1N
c21 c22 · · · c2N
...

...
. . .

...

cN1 cN2 · · · cNN




. (30)

Because πi, i = 1, 2, . . . ,N, lie along the principal diagonal
of the symmetric matrix B in (30), we can make B positive
definite through selecting sufficiently large πi, i = 1, 2, . . . ,N.
Hence, there exist π∗

i > 0, i = 1, 2, . . . ,N, such that πi ≥ π∗
i ,

i = 1, 2, . . . ,N, guarantee −zT(x)Bz(x) < 0. In this situation,
we thus find that (29) yields

L̇(x) ≤ −1
2

N∑

i=1

(1 − 2ρi)λmin(Qi)‖xi‖2, t ≥ t0. (31)
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Taking the integration on both sides of (31) with respect to t
from t0 to ∞ and noticing that L(x(∞)) = 0, we have

1
2

N∑

i=1

(1 − 2ρi)λmin(Qi)

∫ ∞

t0
‖xi(t)‖2dt ≤ L(x(t0)).

Then, after performing some computations, we obtain
∫ ∞

t0
‖xi(t)‖2dt ≤ 2L(x(t0))

(1 − 2ρi)λmin(Qi)
(32)

where i = 1, 2, . . . ,N. Noting that the right-hand side of (32)
is finite and using the Barbalat’s lemma [37], we derive

lim
t→∞

‖xi(t)‖ = 0, i = 1, 2, . . . ,N.

This proves that the interconnected system (1) is asymp-
totically stable with the N optimal ETC laws u∗

i (x̄i,j), i =
1, 2, . . . ,N.

Remark 4: Two notes on Theorem 1 are provided as
follows.
1) Observing the expression ν∗

i (xi) in (15), we can find
that ν∗

i (xi) has a strong connection with ∇V∗
i (xi).

Unfortunately, we often cannot obtain ∇V∗
i (xi) ana-

lytically because of the intrinsic nonlinearity of the
HJBE (16). Thus, the closed-form expression ν∗

i (xi) is
generally unavailable. In this case, we resort to checking
the validity of (22) via simulations (see Section V).

2) The triggering instant tj, j ∈ N, can be derived
through (23). Thus, the minimal intersampling time
(/tj)min !

(
tj+1 − tj

)
min, j ∈ N, is available. If

(/tj)min = 0, that is, the sampling system suffers
from Zeno behavior [44], then the N optimal ETC
laws u∗

i (x̄i,j), i = 1, 2, . . . ,N, have to be redesigned.
Fortunately, fi(xi), gi(xi), and ki(xi) satisfying the
Lipschitz property can guarantee that (/tj)min > 0,
j ∈ N (note: here we omit the proof, because similar
proofs have been presented in [34] and [45]). Moreover,
we can see from the simulation results provided in
Section V that (/tj)min > 0, j ∈ N.

Theorem 1 provides a promising way to find the decentral-
ized ETC of interconnected system (1). That is, for deriving
the decentralized ETC policy, we just need to obtain the N
optimal ETC laws u∗

i (x̄i,j), i = 1, 2, . . . ,N. Because all these
optimal ETC laws together constitute the decentralized ETC
policy. However, as shown in (20), u∗

i (x̄i,j) is closely connected
to ∇V∗

x̄i,j , which is the solution of (19). Therefore, in order to
obtain the decentralized ETC of interconnected system (1), we
need to solve N event-triggered HJBEs described as (19).

C. Solving N Event-Triggered HJBEs Using ACL and the ER
Technique Together

According to the approximation theory developed in [46],
we can use a critic network to represent V∗

i (xi) over #i as

V∗
i (xi) = ωT

ciσci(xi)+ εci(xi)

with ωci ∈ RNci being the unknown ideal weight vector and
σci(xi) = [σci1(xi), σci2(xi), . . . , σciNci

(xi)]T ∈ RNci being the
vector activation function [Note: σci2(xi) is continuously dif-
ferentiable over #i with σci2(0) = 0, 2 = 1, 2, . . . ,Nci .

Meanwhile, for every xi (= 0, σci1(xi), σci2(xi), . . . , σciNci
(xi)

are linearly independent], Nci ∈ Z+ being the number of
neurons, and εci(xi) ∈ R being the function reconstruction
error.
The derivative of V∗

i (xi) at the sampled state x̄i,j is

∇V∗
i
(
x̄i,j

)
= ∇σT

ci

(
x̄i,j

)
ωci + ∇εci

(
x̄i,j

)
(33)

with ∇σci(x̄i,j) = (∂σci(xi)/∂xi)|xi=x̄i,j and ∇εci(x̄i,j) =
(∂εci(xi)/∂xi)|xi=x̄i,j .

Inserting (33) into (18), we have [for all t ∈ [tj, tj+1)]

µ∗
i
(
x̄i,j

)
= −1

2
R−1

i GT
i
(
x̄i,j

)
∇σT

ci

(
x̄i,j

)
ωci + εµ∗

i

(
x̄i,j

)
(34)

where εµ∗
i
(x̄i,j) = −(1/2)R−1

i GT
i (x̄i,j)∇εci(x̄i,j).

Owing to the unavailability of ωci , we cannot implement the
ETC law µ∗

i (x̄i,j) in (34). To tackle this problem, we replace
ωci with ω̂ci in the critic network (Note: ω̂ci is the current
estimated value of ωci .) Then, we can obtain the approximate
cost function as

V̂i(xi) = ω̂T
ciσci(xi).

Similar to (33), we have

∇V̂i
(
x̄i,j

)
= ∇σT

ci

(
x̄i,j

)
ω̂ci . (35)

Replacing ∇V∗
i (x̄i,j) in (18) with ∇V̂i(x̄i,j) in (35), we can

obtain the estimated value of µ∗
i (x̄i,j) as

µ̂i
(
x̄i,j

)
= −1

2
R−1

i GT
i
(
x̄i,j

)
∇σT

ci

(
x̄i,j

)
ω̂ci , t ∈

[
tj, tj+1

)
. (36)

Let V∗
i (xi) and ϑi(xi) in (12) be replaced with V̂i(xi) and

µ̂i(x̄i,j), respectively. Then, the approximate Hamiltonian can
be written in the form

Ĥ
(
xi,∇V̂i(xi), µ̂i

(
x̄i,j

))
= ω̂T

ci∇σci(xi)
(
fi(xi)+ Gi(xi)µ̂i

(
x̄i,j

))

+ )i(xi)+ xTi Qixi + µ̂T
i
(
x̄i,j

)
Riµ̂i

(
x̄i,j

)
.

Because µ∗
i (x̄i,j) is the discretized value of µ∗

i (xi) at the
triggering instant tj, we can see from (13) that

H
(
xi,∇V∗

i (xi), µ
∗
i
(
x̄i,j

))
= 0.

Thus, the approximation error of Hamiltonian can be defined
as follows:

eci = Ĥ
(
xi,∇V̂i(xi), µ̂i

(
x̄i,j

))
− H

(
xi,∇V∗

i (xi), µ
∗
i
(
x̄i,j

))

= ω̂T
ciφi + )i(xi)+ xTi Qixi + µ̂T

i
(
x̄i,j

)
Riµ̂i

(
x̄i,j

)
(37)

where φi = ∇σci(xi)(fi(xi)+ Gi(xi)µ̂i(x̄i,j)).
To make eci sufficiently small, we tend to find an appropriate

weight vector ω̂ci to minimize the target function

E
(
eci , eci,p

)
= 1

2
eTcieci +

1
2

Nci∑

p=1

eTci,peci,p (38)

where eci is defined as (37), p ∈ {1, 2, . . . ,Nci} is the index
of historical data x(tp), tp ∈ [tj, tj+1), and eci,p is the recorded
approximation error of Hamiltonian formulated as

eci,p = ω̂T
ciφi,p + )i

(
xi

(
tp

))

+ xTi
(
tp

)
Qixi

(
tp

)
+ µ̂T

i
(
x̄i,j

)
Riµ̂i

(
x̄i,j

)
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where

φi,p = ∇σci
(
xi

(
tp

))(
fi
(
xi

(
tp

))
+ Gi

(
xi

(
tp

))
µ̂i

(
x̄i,j

))
. (39)

Applying the gradient descent approach to E(eci , eci,p)
in (38) and employing the normalization terms (1+ φT

i φi)
−2

and (1 + φT
i,pφi,p)

−2, we can find that the weight update law
used in the critic network is formulated as [note: t, tp ∈
[tj, tj+1)]

˙̂ωci = − θciφi
(
1+ φT

i φi
)2 eci −

Nci∑

p=1

θciφi,p
(
1+ φT

i,pφi,p

)2 eci,p (40)

where θci is an adjustable positive parameter and φi,p is defined
as (39).
Remark 5: As for (40), we present two following notes.
1) If neglecting the summation term in (40), a prosing noise

must be provided to make φi/
(
1+ φT

i φi
)
satisfy the

PE condition (see [31]–[33]). Nevertheless, it is often
hard to find the appropriate prosing noise. To avoid
this difficulty, we add the recorded approximation error
of the Hamiltonian [i.e., the summation term in (38)]
to the target function. As analyzed in [47, Remark 4],
the summation term in (40) indeed can relax the PE
condition.

2) To implement (40), we need to impose a requirement
as follows. That is, the number of recorded state data is
large enough, which guarantees

rank
[
σci(xi(t1)), . . . , σci

(
xi

(
tNci

))]
= Nci . (41)

According to [47, Lemma 3], (41) can keep the set
{φi,p/(1+φT

i,pφi,p)}
Nci
1 linearly independent. We can see

from [47, Remark 4] that the linear independence of the
set {φi,p/(1+φT

i,pφi,p)}
Nci
1 plays a crucial role in relaxing

the PE condition.
Define the weight estimation error as ω̃ci = ωci − ω̂ci . Then,

we can see from (40) that the dynamics of ω̃ci satisfies

˙̃ωci = −θci



ϕiϕ
T
i +

Nci∑

p=1

ϕi,pϕ
T
i,p



ω̃ci +
θciϕi

1+ φT
i φi

εHi

+
Nci∑

p=1

θciϕi,p

1+ φT
i,pφi,p

εHi,p , t, tp ∈
[
tj, tj+1

)
(42)

where ϕi = φi/(1+ φT
i φi), ϕi,p = φi,p/(1+ φT

i,pφi,p), εHi , and
εHi,p are the residual errors arising in approximating the cost
function with the critic network and formulated as [48]

εHi = −∇εTci(xi)
(
fi(xi)+ Gi(xi)µ̂i

(
x̄i,j

))

εHi,p = −∇εTci
(
xi

(
tp

))(
fi
(
xi

(
tp

))
+ Gi

(
xi

(
tp

))
µ̂i

(
x̄i,j

))
.

Combining the closed-loop system

ẋi = fi(xi)+ Gi(xi)µ̂i
(
x̄i,j

)

with the dynamics of ω̃ci in (42), we can obtain an augmented
hybrid system. That is, letting yi = [xTi , x̄

T
i,j, ω̃

T
ci ]

T, we have
the following.

1) Continuous Dynamics:

ẏi(t) =




fi(xi) − 1

2
6

(
xi, x̄i,j

)
∇σT

ci

(
x̄i,j

)
ω̂ci

0
−θci7

(
ϕi,ϕi,p

)
ω̃ci + ϒ

(
ϕi,ϕi,p

)



 (43)

for all t ∈ [tj, tj+1), j ∈ N, where

6
(
xi, x̄i,j

)
= Gi(xi)R−1

i GT
i
(
x̄i,j

)

7
(
ϕi,ϕi,p

)
= ϕiϕ

T
i +

Nci∑

p=1

ϕi,pϕ
T
i,p

ϒ
(
ϕi,ϕi,p

)
= θciϕi

1+ φT
i φi

εHi +
Nci∑

p=1

θciϕi,p

1+ φT
i,pφi,p

εHi,p . (44)

2) Discrete Dynamics:

yi(t) = yi
(
t−

)
+




0

xi(t) − x̄i,j
0



 t = tj+1, j ∈ N (45)

with yi(t−) = limη→0− yi(t + η), η ∈ (tj − tj+1, 0).

IV. STABILITY ANALYSIS

In this section, we analyze the stability of closed-loop auxil-
iary subsystems (43) and (45). Before continuing, we provide
two following assumptions. Similar assumptions can be found
in [39], [40], and [49].
Assumption 4: For every xi ∈ #i, ∇σci(xi) is bounded as

‖∇σci(xi)‖ ≤ bσci
with bσci

being the known positive constant.
Moreover, for every xi ∈ #i, εµ∗

i
(xi) and εHi are separately

bounded as ‖εµ∗
i
(xi)‖ ≤ bεµ∗

i
and ‖εHi‖ ≤ bεHi

with bεµ∗
i
and

bεHi
being the known positive constants.

Assumption 5: For every xi ∈ Rni , Gi(xi) given in (7) is
bounded as ‖Gi(xi)‖ ≤ bGi with bGi the known positive
constant.
Theorem 2: Take the ith auxiliary subsystem (8) and the

corresponding event-triggered HJBE (19) into consideration.
Suppose that Assumptions 1–5 are valid and take the ith aug-
mented ETC given as (36). Meanwhile, let the initial control
for the ith auxiliary subsystem (8) be admissible and let the
critic network weight be updated via (40). Then, the ith closed-
loop auxiliary subsystem (8) is stable in the sense of uniform
ultimate boundedness and the weight estimation error ω̃ci is
UUB as long as the triggering condition is proposed as

∥∥ei,j
∥∥2 ≤ (1 − 2γi)λmin(Qi)

2K2
ϑ∗
i

‖xi‖2 !
∥∥ēi,T

∥∥2 (46)

where 0 < γi < 1/2 and ēi,T is the triggering threshold, and
provided that the following inequality is valid:

θciλmin
(
7

(
ϕi,ϕi,p

))
− 2b2Gi

b2σci

∥∥∥R−1
i

∥∥∥
2
> 0 (47)

with λmin(7(ϕi,ϕi,p)) denoting the minimum eigenvalue of
7(ϕi,ϕi,p) defined as (44).

Proof: Choose the Lyapunov function candidate as

L(t) = V∗
i
(
x̄i,j

)
︸ ︷︷ ︸

L1(t)

+V∗
i (xi(t))︸ ︷︷ ︸
L2(t)

+ (1/2)ω̃T
ci ω̃ci︸ ︷︷ ︸

L3(t)

. (48)
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As stated in Section III-C, the ith closed-loop auxiliary sub-
system contains two parts: 1) the continuous dynamics (43)
and 2) the discrete dynamics (45). Hence, we will study the
stability of the ith closed-loop auxiliary subsystem from the
following two cases.
Case I: Let t ∈ [tj, tj+1), j ∈ N. Then, L̇1(t) =

dV∗
i (x̄i,j)/dt = 0. Differentiating L2(t) along the solution of

ẋi = fi(xi)+ Gi(xi)µ̂i(x̄i,j), we have

L̇2(t) =
(
∇V∗

i (xi)
)T(

fi(xi)+ Gi(xi)µ̂i
(
x̄i,j

))

=
(
∇V∗

i (xi)
)T(

fi(xi)+ Gi(xi)ϑ∗
i (xi)

)

+
(
∇V∗

i (xi)
)TGi(xi)

(
µ̂i

(
x̄i,j

)
− ϑ∗

i (xi)
)
. (49)

According to (12)–(14), we find





(
∇V∗

i (xi)
)T(

fi(xi)+ Gi(xi)ϑ∗
i (xi)

)

= −)i(xi) − xTi Qixi −
(
ϑ∗
i (xi)

)TRiϑ
∗
i (xi)(

∇V∗
i (xi)

)TGi(xi) = −2
(
ϑ∗
i (xi)

)TRi.

Thus, we can rewrite (49) as

L̇2(t) = −)i(xi) − xTi Qixi −
∥∥∥∥R

1
2
i µ̂i

(
x̄i,j

)∥∥∥∥
2

+
∥∥∥∥R

1
2
i

(
ϑ∗
i (xi) − µ̂i

(
x̄i,j

))∥∥∥∥
2

︸ ︷︷ ︸
;

. (50)

Owing to 0 < ρi < 1/2 in (23), we can conclude ‖R1/2
i ‖ ≤

1. Then, using the Young’s inequality [50, Ch. 2.7] and
Assumptions 3–5 as well as (34) and (36), we can see that
; ∈ R in (50) satisfies

; ≤
∥∥ϑ∗

i (xi) − µ̂i
(
x̄i,j

)∥∥2

=
∥∥(

ϑ∗
i (xi) − µ∗

i
(
x̄i,j

))
+

(
µ∗
i
(
x̄i,j

)
− µ̂i

(
x̄i,j

))∥∥2

≤ 2
∥∥µ∗

i
(
x̄i,j

)
− µ̂i

(
x̄i,j

)∥∥2 + 2
∥∥ϑ∗

i (xi) − µ∗
i
(
x̄i,j

)∥∥2

≤ 2
∥∥∥−(1/2)R−1

i GT
i
(
x̄i,j

)
∇σT

ci

(
x̄i,j

)
ω̃ci + εµ∗

i

(
x̄i,j

)∥∥∥
2

+ 2K2
ϑ∗
i

∥∥ei,j
∥∥2

≤ b2Gi
b2σci

∥∥∥R−1
i

∥∥∥
2∥∥ω̃ci

∥∥2 + 2K2
ϑ∗
i

∥∥ei,j
∥∥2 + 4b2εµ∗

i
. (51)

Combining (50) with (51) and observing that )i(xi) and
‖R1/2

i µ̂i(x̄i,j)‖2 are non-negative real-valued functions, we
obtain

L̇2(t) ≤ −λmin(Qi)‖xi‖2 + b2Gi
b2σci

∥∥∥R−1
i

∥∥∥
2∥∥ω̃ci

∥∥2

+ 2K2
ϑ∗
i

∥∥ei,j
∥∥2 + 4b2εµ∗

i
. (52)

Taking the time derivative of L3(t) and using (42), we have

L̇3(t) = −θci ω̃
T
ci



ϕiϕ
T
i +

Nci∑

p=1

ϕi,pϕ
T
i,p



ω̃ci

+ θci ω̃
T
ciϕi

1+ φT
i φi

εHi +
Nci∑

p=1

θci ω̃
T
ciϕi,p

1+ φT
i,pφi,p

εHi,p . (53)

Applying Young’s inequality [50, Ch. 2.7] to the second term
in the right-hand side of (53), we get

θci ω̃
T
ciϕiεHi

1+ φT
i φi

≤ θci

1+ φT
i φi

(
1
2
ω̃T
ciϕiϕ

T
i ω̃ci +

1
2
εTHi

εHi

)

≤ θci
2

ω̃T
ciϕiϕ

T
i ω̃ci +

θci
2

εTHi
εHi . (54)

Similarly, the third term in the right-hand side of (53) satisfies

Nci∑

p=1

θci ω̃
T
ciϕi,p

1+ φT
i,pφi,p

εHi,p ≤ θci
2

Nci∑

p=1

ω̃T
ciϕi,pϕ

T
i,pω̃ci

+ θci
2

Nci∑

p=1

εTHi,p
εHi,p . (55)

Using (53)–(55) and making some calculations, we obtain

L̇3(t) ≤ −θci
2

λmin
(
7

(
ϕi,ϕi,p

))∥∥ω̃ci

∥∥2+ θci
(
Nci + 1

)

2
b2εHi (56)

with 7(ϕi,ϕi,p) defined as (44).
Combining (52) with (56), we find that the time derivative

of L(t) in (48) yields

L̇(t) ≤ −2γiλmin(Qi)‖xi‖2 − (1 − 2γi)λmin(Qi)‖xi‖2

+ 2K2
ϑ∗
i

∥∥ei,j
∥∥2 − 1

2

(
θciλmin

(
7

(
ϕi,ϕi,p

))

− 2b2Gi
b2σci

∥∥∥R−1
i

∥∥∥
2
)∥∥ω̃ci

∥∥2

+ 4b2εµ∗
i
+ θci

2

(
Nci + 1

)
b2εHi . (57)

Thus, with (46) and (47) held, we can see from (57) that
L̇(t) < 0 only if we can make xi /∈ #xi or ω̃ci /∈ #ω̃ci

, where
#xi and #ω̃ci

are given as

#xi =





xi : ‖xi‖ ≤

√√√√2b2εµ∗
i
+

(
θci/4

)(
Nci + 1

)
b2εHi

γiλmin(Qi)






#ω̃ci
=





ω̃ci :

∥∥ω̃ci

∥∥ ≤

√√√√ 8b2εµ∗
i
+ θci

(
Nci + 1

)
b2εHi

θciλmin
(
7

(
ϕi,ϕi,p

))
− a0






with a0 = 2b2Gi
b2σci ‖R

−1
i ‖2.

According to the Lyapunov extension theorem [51], this
proves that xi and ω̃ci are UUB. The ultimate bounds of xi and
ω̃ci are the same as the bounds of #xi and #ω̃ci

, respectively.
Case II: Let t = tj+1, j ∈ N. Then, we consider the

difference of Lyapunov function candidate given in (48), i.e.,

/L
(
tj+1

)
= V∗

i
(
x̄i,j+1

)
− V∗

i
(
x̄i,j

)
+ /<i (58)

where

/<i = V∗
i
(
xi

(
tj+1

))
− V∗

i

(
xi

(
t−j+1

))

+ 1
2
ω̃T
ci

(
tj+1

)
ω̃ci

(
tj+1

)
− 1

2
ω̃T
ci

(
t−j+1

)
ω̃ci

(
t−j+1

)

with xi(t
−
j+1) = limη→0− xi(tj+1 + η), ω̃ci(t

−
j+1) =

limη→0− ω̃ci(tj+1 + η), and η ∈ (tj − tj+1, 0).
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According to case I, if xi /∈ #xi or ω̃ci /∈ #ω̃ci
, then

L̇(t) < 0 for all t ∈ [tj, tj+1). Therefore, L(t) in (48) is
strictly monotonically decreasing over the interval [tj, tj+1).
Owing to tj+1 > tj+1 + η, for all η ∈ (tj − tj+1, 0), we
thus have

L
(
tj+1

)
< L

(
tj+1 + η

)
, η ∈

(
tj − tj+1, 0

)
. (59)

Letting η → 0− in (59) and using the property of the limit
[43, Ch. 4], we obtain

L
(
tj+1

)
≤ lim

η→0−
L
(
tj+1 + η

)
= L

(
t−j+1

)
. (60)

Then, we can see from (60) that

V∗
i
(
xi

(
tj+1

))
+ (1/2)ω̃T

ci

(
tj+1

)
ω̃ci

(
tj+1

)

≤ V∗
i

(
xi

(
t−j+1

))
+ (1/2)ω̃T

ci

(
t−j+1

)
ω̃ci

(
t−j+1

)
.

This verifies that /<i ≤ 0. On the other hand, based on the
conclusion that xi(t) is UUB in case I, we can derive

V∗
i
(
x̄i,j+1

)
≤ V∗

i
(
x̄i,j

)
.

Accordingly, if xi /∈ #xi or ω̃ci /∈ #ω̃ci
, then /L(tj+1) defined

as (58) satisfies /L(tj+1) < 0. This proves that xi and ω̃ci
are UUB by using the Lyapunov extension theorem [51]. The
ultimate bounds of xi and ω̃ci are the same as the bounds of
#xi and #ω̃ci

, respectively.

V. EXPERIMENTAL STUDY

We study the CT nonlinear interconnected system described
by the following equations:

ẋ1 =
[ −x11 + x12
−0.5(x11 + x12)+ 0.5x211x12

]
+

[
0

sin(x11)

]
u1

+
[
1
0

]
(x11 + x22) sin2(=1x12) cos(0.5x21)

ẋ2 =
[

0.5x22
−x21 − 0.5x22 + 0.5x21 cos2(x22)

]
+

[
0
x21

]
u2

+
[
1
0

](
0.5(x12 + x22) cos

(
=2ex

2
21

))
(61)

where x1 = [x11, x12]T ∈ R2 and x2 = [x21, x22]T ∈ R2 are
the state vectors of subsystems 1 and 2, respectively, u1 ∈
R and u2 ∈ R are the control inputs of subsystems 1 and
2, respectively, and =1 ∈ R and =2 ∈ R are the unknown
parameters. To simplify discussion, we randomly choose =i ∈
[ − 1, 1], i = 1, 2. From expression (61), it can be seen that
gTi (xi)ki(xi) = 0 and rank(gi(xi)) < 2, i = 1, 2. Meanwhile,
the equilibrium points of subsystems 1 and 2 are both zero,
i.e., xi = 0, i = 1, 2. Thus, Assumption 1 holds. Moreover,
we can see from (61) that

d1(x) = (x11 + x22) sin2(=1x12) cos(0.5x21)

d2(x) = 0.5(x12 + x22) cos
(
=2ex

2
21

)
.

To satisfy Assumption 2 [or rather, the inequality (4)], we
choose α1(‖x1‖) = ‖x1‖, α2(‖x2‖) = ‖x2‖, and let the rele-
vant parameters be presented as follows: c11 = 1, c12 = 1,
c21 = 0.5, and c22 = 0.5. The initial state of interconnected
system (61) is x0 = [0.5,−0.5, 1,−1]T.

Fig. 1. Convergence of the weight vector ω̂c1 = [ω̂c11 , ω̂c12 , ω̂c13 ]
T.

Fig. 2. Convergence of the weight vector ω̂c2 = [ω̂c21 , ω̂c22 , ω̂c23 ]
T.

Based on (5), (7), and (8), we can derive the auxil-
iary subsystems 1 and 2 for interconnected system (61).
According to Theorem 1, for obtaining the decentralized
ETC of interconnected system (61), we have to solve
the event-triggered HJBEs associated with the auxiliary
subsystems 1 and 2 [such as (19)]. We let ρ1 = 0.3 and
ρ2 = 0.3. Meanwhile, we set π1 = 3 and π2 = 3 to make
the matrix B in (30) positive definite. Let Q1 = Q2 = I2,
and I2 is the identity matrix with rank(I2) = 2. Then, we can
see from (9) and (10) that the cost functions for auxiliary
subsystems 1 and 2 are, respectively, given in the form (note:
ϑT
i = [uTi , ν

T
i ], i = 1, 2)

Vϑ1
1 (x1) =

∫ ∞

t

(
4‖x1‖2 + uT1u1 + 0.3νT1 ν1

)
ds

Vϑ2
2 (x2) =

∫ ∞

t

(
4‖x2‖2 + uT2u2 + 0.3νT2 ν2

)
ds.

The vector activation functions used in the critic networks are
selected as follows (note: Nc1 = 3 and Nc2 = 3):

σc1(x1) =
[
x211, x

2
12, x11x12

]T

σc2(x2) =
[
x221, x

2
22, x21x22

]T
.
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(a)

(b)

Fig. 3. (a) ETC u1(x̄1,j). (b) Auxiliary ETC ν1(x̄1,j) [Note: u1(x̄1,j) and
ν1(x̄1,j) together constitute the augmented ETC µ1(x̄1,j) or ϑ1(x̄1,j)].

(a)

(b)

Fig. 4. (a) ETC u2(x̄2,j). (b) Auxiliary ETC ν2(x̄2,j) [Note: u2(x̄2,j) and
ν2(x̄2,j) together constitute the augmented ETC µ2(x̄2,j) or ϑ2(x̄2,j)].

Associated with σc1(x1) and σc2(x2), the weight vectors uti-
lized in the critic networks are, respectively, denoted as
ω̂c1 = [ω̂c11, ω̂c12 , ω̂c13 ]

T and ω̂c2 = [ω̂c21, ω̂c22 , ω̂c23 ]
T. The

relevant parameters in the weight tuning rule (40) and the event
triggering condition (46) are designed as follows: θci = 0.75,
γi = 0.3, and Kϑ∗

i
= 3.5, i = 1, 2.

We perform the experimental study through the MATLAB
(R2016b) software package and illustrate the simulation
results in Figs. 1–10. Figs. 1 and 2 describe the conver-
gence of weight vectors ω̂c1 and ω̂c2 used in approximating
the cost functions related to auxiliary subsystems 1 and 2.
As displayed in Figs. 1 and 2, ω̂c1 converges to ω̂final

c1 =
[0.8421, 3.709,−0.4656]T after 30 s, and ω̂c2 converges to
ω̂final
c2 = [1.172, 3.056,−0.6525]T after 43 s. Fig. 3(a) and (b)

shows the ETC u1(x̄1,j) and the auxiliary ETC ν1(x̄1,j) for

(a)

(b)

Fig. 5. (a) Norms of event-triggering condition e1,j and event-triggering
threshold ē1,T (i.e., ‖e1,j‖ and ‖ē1,T‖). (b) Intersampling time Ts.

(a)

(b)

Fig. 6. (a) Norms of event-triggering condition e2,j and event-triggering
threshold ē2,T (i.e., ‖e2,j‖ and ‖ē2,T‖). (b) Intersampling time T ′

s.

subsystem 1. Fig. 4(a) and (b) depicts the ETC u2(x̄2,j) and
the auxiliary ETC ν2(x̄2,j) for subsystem 2. According to (7)
and (18), ui(x̄i,j) and νi(x̄i,j) together constitute the augmented
ETC µi(x̄i,j) or ϑi(x̄i,j), where i = 1, 2, j ∈ N. Fig. 5(a)
describes the norms of event-triggering condition ei,j and
event-triggering threshold ēi,T given in (46) when considering
subsystem 1 (i.e., ‖e1,j‖ and ‖ē1,T‖). Meanwhile, Fig. 5(b)
shows the intersampling time Ts, where Ts = tj+1 − tj, j ∈ N.
(Note: During the last 10 s, the intersampling time Ts turns
out to be constant, i.e., Ts = 0.3 s. This is because the
weight vector of the critic network has been convergent. In
other words, the update of the critic network ended before the
last 10 s.) Similarly, Fig. 6(a) presents the norms of event-
triggering condition ei,j and event-triggering threshold ēi,T
given in (46) when considering subsystem 2 (i.e., ‖e2,j‖ and
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Fig. 7. Verifying the validity of (22) when considering subsystem 1.

Fig. 8. Verifying the validity of (22) when considering subsystem 2.

‖ē2,T‖). Meanwhile, Fig. 6(b) illustrates the intersampling time
T ′
s. (Note: T

′
s shares the similar definition as Ts. Because of

the above-mentioned reason, T ′
s also turns out to be constant

during the last 7 s). We can see from Figs. 5(b) and 6(b) that
min{Ts,T ′

s} = 0.2 s. Thus, the Zeno behavior is excluded. On
the other hand, we can observe from Fig. 5(b) [or Fig. 6(b)]
that there are actually 139 (or 181) state samples. In other
words, it is only necessary to use 139 (or 181) state samples
to implement the present ETC strategy. However, for imple-
menting the corresponding time-triggering control scheme, we
need 400 (or 500) state samples. Thus, we can reduce the
controller updates up to 65.25% (or 63.8%), which indicates
that the present ETC strategy can remarkably decrease the
computational burden.
To check the validity of (22), we present Figs. 7 and 8 for

subsystems 1 and 2, respectively. It can be seen from Fig. 7
that (22) holds when t ≥ 32 s. Meanwhile, we can see from
Fig. 8 that (22) holds when t ≥ 44 s. Thus, we can choose
t0 = max{32, 44} = 44 s in Theorem 1 to make (22) valid.

Fig. 9. States x11(t) and x12(t) of subsystem 1 in (61).

Fig. 10. States x21(t) and x22(t) of subsystem 2 in (61).

Let the aforementioned weight vectors ω̂final
c1 and ω̂final

c2 be sepa-
rately inserted into (36). Then, we can derive the approximate
optimal ETC laws for auxiliary subsystems 1 and 2, which
together constitute the decentralized ETC for interconnected
system (61). With the obtained decentralized ETC, the closed-
loop system (61) is forced to be asymptotically stable (see
Figs. 9 and 10).

VI. CONCLUSION

We have presented a decentralized ETC strategy for a class
of uncertain nonlinear interconnected systems via ACL com-
bined with the ER technique. Rather than directly develop the
decentralized ETC policy, we resort to obtaining a group of
optimal ETC laws of auxiliary subsystems. It has been demon-
strated that these optimal ETC laws together constitute the
decentralized ETC policy. Owing to the ER technique, we can
avoid the difficulty arising in the PE condition when deriving
the optimal ETC laws of auxiliary subsystems.
It is worth mentioning here that a limitation in implement-

ing the decentralized ETC scheme is that prior knowledge
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of the interconnected system (1) must be known. In general,
prior information of plants is unavailable in engineering indus-
tries. Recently, ACL together with the ER technique has been
used to design optimal controllers for nonlinear systems with
totally unknown dynamics [52], [53]. Therefore, in our con-
secutive study, we will work on developing the decentralized
ETC scheme for nonlinear interconnected systems subject to
completely unknown dynamics.

REFERENCES

[1] D. Liu, H. Javaherian, O. Kovalenko, and T. Huang, “Adaptive critic
learning techniques for engine torque and air–fuel ratio control,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 988–993,
Aug. 2008.

[2] A. Heydari and S. N. Balakrishnan, “Finite-horizon control-constrained
nonlinear optimal control using single network adaptive critics,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 145–157, Jan. 2013.

[3] Z. Wang, L. Liu, Y. Wu, and H. Zhang, “Optimal fault-tolerant control
for discrete-time nonlinear strict-feedback systems based on adaptive
critic design,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6,
pp. 2179–2191, Jun. 2018.

[4] D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic
Programming With Applications in Optimal Control. Cham, Switzerland:
Springer, 2017.

[5] D. Vrabie, K. G. Vamvoudakis, and F. L. Lewis, Optimal Adaptive
Control and Differential Games by Reinforcement Learning Principles.
London, U.K.: IET, 2013.

[6] X. Zhong and H. He, “GrHDP solution for optimal consensus control
of multiagent discrete-time systems,” IEEE Trans. Syst., Man, Cybern.,
Syst., to be published. doi: 10.1109/TSMC.2018.2814018.

[7] Y. Yang, D. Wunsch, and Y. Yin, “Hamiltonian-driven adaptive dynamic
programming for continuous nonlinear dynamical systems,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 8, pp. 1929–1940, Aug. 2017.

[8] Q. Wei, D. Liu, Q. Lin, and R. Song, “Discrete-time optimal control
via local policy iteration adaptive dynamic programming,” IEEE Trans.
Cybern., vol. 47, no. 10, pp. 3367–3379, Oct. 2017.

[9] Q. Wei, F. L. Lewis, D. Liu, R. Song, and H. Lin, “Discrete-time local
value iteration adaptive dynamic programming: Convergence analysis,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 6, pp. 875–891,
Jun. 2018.

[10] H. Zhang, G. Xiao, Y. Liu, and L. Liu, “Value iteration-based H∞ con-
troller design for continuous-time nonlinear systems subject to input
constraints,” IEEE Trans. Syst., Man, Cybern., Syst., to be published.
doi: 10.1109/TSMC.2018.2853091.

[11] Y. Jiang and Z.-P. Jiang, Robust Adaptive Dynamic Programming.
Hoboken, NJ, USA: Wiley, 2017.

[12] W. Gao, Y. Jiang, Z.-P. Jiang, and T. Chai, “Output-feedback adap-
tive optimal control of interconnected systems based on robust adaptive
dynamic programming,” Automatica, vol. 72, pp. 37–45, Oct. 2016.

[13] Z. Wang, L. Liu, H. Zhang, and G. Xiao, “Fault-tolerant controller design
for a class of nonlinear MIMO discrete-time systems via online rein-
forcement learning algorithm,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 46, no. 5, pp. 611–622, May 2016.

[14] R. Kamalapurkar, J. A. Rosenfeld, and W. E. Dixon, “Efficient model-
based reinforcement learning for approximate online optimal control,”
Automatica, vol. 74, pp. 247–258, Dec. 2016.

[15] K. G. Vamvoudakis, H. Modares, B. Kiumarsi, and F. L. Lewis, “Game
theory-based control system algorithms with real-time reinforcement
learning: How to solve multiplayer games online,” IEEE Control Syst.,
vol. 37, no. 1, pp. 33–52, Feb. 2017.

[16] B. Luo, H.-N. Wu, and T. Huang, “Off-policy reinforcement learning
for H∞ control design,” IEEE Trans. Cybern., vol. 45, no. 1, pp. 65–76,
Jan. 2015.

[17] R. Song, F. L. Lewis, and Q. Wei, “Off-policy integral reinforcement
learning method to solve nonlinear continuous-time multiplayer nonzero-
sum games,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3,
pp. 704–713, Mar. 2017.

[18] J. Qin, M. Li, Y. Shi, Q. Ma, and W. X. Zheng, “Optimal synchroniza-
tion control of multiagent systems with input saturation via off-policy
reinforcement learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 1, pp. 85–96, Jan. 2019.

[19] F. Lin, Robust Control Design: An Optimal Control Approach.
Chichester, U.K.: Wiley, 2007.

[20] D. M. Adhyaru, I. Kar, and M. Gopal, “Bounded robust control of
nonlinear systems using neural network-based HJB solution,” Neural
Comput. Appl., vol. 20, no. 1, pp. 91–103, Feb. 2011.

[21] D. Wang, H. He, and D. Liu, “Improving the critic learning for event-
based nonlinear H∞ control design,” IEEE Trans. Cybern., vol. 47,
no. 10, pp. 3417–3428, Oct. 2017.

[22] C. Mu, D. Wang, C. Sun, and Q. Zong, “Robust adaptive critic control
design with network-based event-triggered formulation,” Nonlin. Dyn.,
vol. 90, no. 3, pp. 2023–2035, Nov. 2017.

[23] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral rein-
forcement learning and experience replay for adaptive optimal con-
trol of partially-unknown constrained-input continuous-time systems,”
Automatica, vol. 50, no. 1, pp. 193–202, Jan. 2014.

[24] R. Kamalapurkar, B. Reish, G. Chowdhary, and W. E. Dixon,
“Concurrent learning for parameter estimation using dynamic state-
derivative estimators,” IEEE Trans. Autom. Control, vol. 62, no. 7,
pp. 3594–3601, Jul. 2017.

[25] G. Chowdhary, “Concurrent learning for convergence in adaptive
control without persistency of excitation,” Ph.D. dissertation, Daniel
Guggenheim School Aerosp. Eng., Georgia Inst. Technol., Atlanta, GA,
USA, 2010.

[26] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Adaptive optimal
control of unknown constrained-input systems using policy iteration and
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10,
pp. 1513–1525, Oct. 2013.

[27] K. G. Vamvoudakis, M. F. Miranda, and J. P. Hespanha, “Asymptotically
stable adaptive-optimal control algorithm with saturating actuators and
relaxed persistence of excitation,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 27, no. 11, pp. 2386–2398, Nov. 2016.

[28] D. Zhao, Q. Zhang, D. Wang, and Y. Zhu, “Experience replay for optimal
control of nonzero-sum game systems with unknown dynamics,” IEEE
Trans. Cybern., vol. 46, no. 3, pp. 854–865, Mar. 2016.

[29] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction
to event-triggered and self-triggered control,” in Proc. 51st IEEE Annu.
Conf. Decis. Control, Dec. 2012, pp. 3270–3285.

[30] W. Liu and J. Huang, “Event-triggered global robust output regulation
for a class of nonlinear systems,” IEEE Trans. Autom. Control, vol. 62,
no. 11, pp. 5923–5930, Nov. 2017.

[31] K. G. Vamvoudakis, “Event-triggered optimal adaptive control algorithm
for continuous-time nonlinear systems,” IEEE/CAA J. Automatica Sinica,
vol. 1, no. 3, pp. 282–293, Jul. 2014.

[32] L. Dong, X. Zhong, C. Sun, and H. He, “Event-triggered adaptive
dynamic programming for continuous-time systems with control con-
straints,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 8,
pp. 1941–1952, Aug. 2017.

[33] X. Yang and H. He, “Event-triggered robust stabilization of non-
linear input-constrained systems using single network adaptive critic
designs,” IEEE Trans. Syst., Man, Cybern., Syst., to be published.
doi: 10.1109/TSMC.2018.2853089.

[34] Q. Zhang, D. Zhao, and Y. Zhu, “Event-triggered H∞ control for
continuous-time nonlinear system via concurrent learning,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 47, no. 7, pp. 1071–1081, Jul. 2017.

[35] Q. Zhang, D. Zhao, and D. Wang, “Event-based robust control for uncer-
tain nonlinear systems using adaptive dynamic programming,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 37–50, Jan. 2018.

[36] V. Narayanan and S. Jagannathan, “Event-triggered distributed approxi-
mate optimal state and output control of affine nonlinear interconnected
systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7,
pp. 2846–2856, Jul. 2018.

[37] P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River,
NJ, USA: Prentice-Hall, 1996.

[38] V. Narayanan and S. Jagannathan, “Event-triggered distributed control
of nonlinear interconnected systems using online reinforcement learning
with exploration,” IEEE Trans. Cybern., vol. 48, no. 9, pp. 2510–2519,
Sep. 2018.

[39] X. Yang and H. He, “Adaptive critic designs for optimal control of
uncertain nonlinear systems with unmatched interconnections,” Neural
Netw., vol. 105, pp. 142–153, Sep. 2018.

[40] B. Zhao, D. Wang, G. Shi, D. Liu, and Y. Li, “Decentralized
control for large-scale nonlinear systems with unknown mismatched
interconnections via policy iteration,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 48, no. 10, pp. 1725–1735, Oct. 2018.

[41] X. Yang, H. He, and X. Zhong, “Adaptive dynamic programming for
robust regulation and its application to power systems,” IEEE Trans.
Ind. Electron., vol. 65, no. 7, pp. 5722–5732, Jul. 2018.

[42] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 10,2021 at 18:54:45 UTC from IEEE Xplore.  Restrictions apply. 



YANG AND HE: ACL AND ER FOR DECENTRALIZED ETC OF NONLINEAR INTERCONNECTED SYSTEMS 4055

[43] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York, NY,
USA: McGraw-Hill, 1976.

[44] M. Heymann, F. Lin, G. Meyer, and S. Resmerita, “Analysis of Zeno
behaviors in a class of hybrid systems,” IEEE Trans. Autom. Control,
vol. 50, no. 3, pp. 376–383, Mar. 2005.

[45] X. Yang and H. He, “Adaptive critic designs for event-triggered robust
control of nonlinear systems with unknown dynamics,” IEEE Trans.
Cybern., to be published. doi: 10.1109/TCYB.2018.2823199.

[46] B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in adap-
tive function approximation and the functional-link net,” IEEE Trans.
Neural Netw., vol. 6, no. 6, pp. 1320–1329, Nov. 1995.

[47] X. Yang and H. He, “Self-learning robust optimal control for continuous-
time nonlinear systems with mismatched disturbances,” Neural Netw.,
vol. 99, pp. 19–30, Mar. 2018.

[48] K. G. Vamvoudakis and F. L. Lewis, “Online actor–critic algorithm
to solve the continuous-time infinite horizon optimal control problem,”
Automatica, vol. 46, no. 5, pp. 878–888, May 2010.

[49] D. Wang, C. Mu, H. He, and D. Liu, “Event-driven adaptive robust
control of nonlinear systems with uncertainties through NDP strategy,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 7, pp. 1358–1370,
Jul. 2017.

[50] D. S. Mitrinovic and P. M. Vasic, Analytic Inequalities. Berlin, Germany:
Springer, 1970.

[51] D. M. Dawson, C. T. Abdallah, and F. L. Lewis, Robot Manipulator
Control: Theory and Practice. Boca Raton, FL, USA: CRC Press, 2003.

[52] Z. Ni, N. Malla, and X. Zhong, “Prioritizing useful experience replay for
heuristic dynamic programming-based learning systems,” IEEE Trans.
Cybern., to be published. doi: 10.1109/TCYB.2018.2853582.

[53] B. Luo, Y. Yang, and D. Liu, “Adaptive Q-learning for data-based
optimal output regulation with experience replay,” IEEE Trans. Cybern.,
vol. 48, no. 12, pp. 3337–3348, Dec. 2018.

Xiong Yang (M’19) received the B.S. degree in
mathematics and applied mathematics from Central
China Normal University, Wuhan, China, in 2008,
the M.S. degree in pure mathematics from Shandong
University, Jinan, China, in 2011, and the Ph.D.
degree in control theory and control engineering
from the Institute of Automation, Chinese Academy
of Sciences, Beijing, China, in 2014.

From 2014 to 2016, he was an Assistant Professor
with the State Key Laboratory of Management
and Control for Complex Systems, Institute of

Automation, Chinese Academy of Sciences. From 2016 to 2018, he was
a Post-Doctoral Fellow with the Department of Electrical, Computer and
Biomedical Engineering, University of Rhode Island, Kingston, RI, USA.
He is currently an Associate Professor with the School of Electrical
and Information Engineering, Tianjin University, Tianjin, China. His cur-
rent research interests include adaptive dynamic programming, reinforce-
ment learning, event-triggered controls, and data-driven controls and their
applications.

Dr. Yang was a recipient of the Excellent Award of Presidential Scholarship
of the Chinese Academy of Sciences in 2014.

Haibo He (SM’11–F’18) received the B.S. and
M.S. degrees in electrical engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 1999 and 2002, respectively, and
the Ph.D. degree in electrical engineering from Ohio
University, Athens, OH, USA, in 2006.
He is currently the Robert Haas Endowed

Chair Professor with the Department of Electrical,
Computer, and Biomedical Engineering, University
of Rhode Island, Kingston, RI, USA. He has pub-
lished one sole-author research book entitled Self-

Adaptive Systems for Machine Intelligence (Wiley, 2011), edited one book
entitled Imbalanced Learning: Foundations, Algorithms, and Applications
(Wiley-IEEE, 2013), and six conference proceedings (Springer). He has
authored or coauthored over 300 peer-reviewed journal and conference papers.
Dr. He was a recipient of the IEEE International Conference on

Communications Best Paper Award in 2014, the IEEE CIS Outstanding Early
Career Award in 2014, the U.S. National Science Foundation CAREER Award
in 2011, and the Providence Business News Rising Star Innovator Award
in 2011. He was the General Chair of the IEEE Symposium Series on
Computational Intelligence in 2014. He is currently the Editor-in-Chief of the
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 10,2021 at 18:54:45 UTC from IEEE Xplore.  Restrictions apply. 


