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Abstract

Multi-user augmented reality (AR), where multiple co-located

users view a common set of virtual objects, is becoming increas-

ingly popular. For example, Google Just a Line allows multiple

users to draw virtual graffiti in the same physical space. Multi-user

AR requires network communications in order to coordinate the

positions of the virtual objects on each user’s display, yet there

is currently little understanding of how such apps communicate.

In this work, we address this key gap in knowledge by showing

that the communicated data directly impacts the latency and posi-

tioning of the virtual objects rendered on the users’ displays. We

develop solutions to these problems that we find along three facets:

(1) efficient communication strategies that trade off communica-

tion latency for spatial consistency of the virtual objects; (2) a new

metric that enables mobile AR devices to update their virtual ob-

jects as they move around and observe more of the scene; and (3)

a tool to automatically quantify how much the virtual objects’ po-

sitions inadvertently change in time and space. Our evaluation is

performed on Android smartphones running open-source AR. The

results show that our system, SPAR, can decrease the latency by

up to 55%, while decreasing the spatial inconsistency by up to 60%,

compared to baseline methods.

CCS Concepts

•Human-centered computing→ Ubiquitous and mobile comput-

ing; • Networks; • Information systems→Multimedia infor-

mation systems;
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1 Introduction

Augmented Reality (AR) applications have recently exploded

in popularity among smartphone users. In AR, a user’s field-of-

view (FoV) is overlaid with virtual objects, which should remain

fixed with respect to the real world in order to provide a seamless

transition between the real world and the virtual objects. As AR

becomes more popular, a natural question is: can we share the vir-

tual objects with other users? Based on the off-the-shelf AR apps

currently available, the answer is łyesž. For example, Pokemon Go

released the Buddy Adventures feature in December 2019, which

allows multiple users to view their virtual creatures together in the

same real world space. Other multi-user AR applications currently

available include Just a Line, where multiple users can collabora-

tively draw virtual graffiti, and Minecraft, where users can build

structures together from virtual blocks.

Yet despite their emerging popularity, little is known about the

network communications of multi-user AR apps. The fact that these

apps involve multiple users clearly indicates that some form of net-

work communication is required. However, it is currently unknown

how these apps communicate, what they are communicating, and

how the data communications impact user experience. This work

seeks to address this key gap in knowledge, and propose solutions

to the problems that we find in this space.

Through our measurements of off-the-shelf multi-user AR apps

(detailed in Sec. 2), we find that users experience multiple seconds

of latency between one user placing a virtual object to it appearing

on another user’s display. Moreover, the virtual objects can appear

at different locations, with respect to the real world, on each user’s

display. These two problems ś latency and spatial inconsistency

ś are key factors in AR user experience [13, 29, 51], and we find

that they depend on the communicated information between the

AR devices. Thus the goal of this work is to optimize the network
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the spatial inconsistency as the resolver gets closer to the virtual

object. One drawback of SPAR-Small is that it has high latency

in the large environments it was not designed for (see Fig. 10).

In large environments (scenarios 2 and 3), SPAR-Large has lower

spatial inconsistency than the All baseline when the virtual object

first appears (Fig. 12a), and compared to the ARCore baseline when

close to a virtual object (Fig. 12b). Hence SPAR-Small and SPAR-Large

work well for the respective environments they were designed for.

Examples from scenario 2 are shown in Fig. 13.

(a) Host (b) SPAR-Small (c) SPAR-Large

Figure 13: Screenshots of the virtual object seen by the re-

solver under different adaptive AR communication strate-

gies.

Surprisingly, the All baseline does not have the lowest spatial

inconsistency, despite communicating full information about the

environment. This is because the abundance of information some-

times results in coordinate system alignment far from the virtual

object, leading to poor alignment near the virtual object and thus

spatial inconsistencies. ARCore performs worse in the larger sce-

narios 2 and 3 when a resolver is close to the virtual object (Fig. 12b).

Note that we do not record ARCore’s initial spatial inconsistency

because the resolver is too far away from the virtual object to mea-

sure clearly (SPAR does not have this issue because it can produce

detailed logs for analysis).

In summary, SPAR-Small’s spatial inconsistency in small scenar-

ios ranges from 2-3 cm at a virtual object’s first appearance, which

is 20% better than the All baseline; while SPAR-Large achieves 6-9

cm spatial inconsistency in large scenarios, which is 11%-35% better

than ARCore when near a virtual object. SPAR’s accuracy in sce-

nario 1 and 2 is generally consistent with or improves over ARCore,

with most challenging scenario being scenario 3, where SPAR still

outperforms ARCore on average.

Failure rates: In our experiments, SPAR-Small failed to resolve

twice in scenario 2. Since we have 75 trials total across scenarios,

this gives a failure rate of 2.7%. The cause of failure may be be-

cause SPAR-Small too aggressively reduces the amount of AR data

transmitted, as it only save 10 keyframes and their associated point

cloud, making it hard to perform coordinate system alignment and

render a virtual object. The other baselines did not fail throughout

our experiments, so on the whole, despite SPAR-Small having lower

spatial inconsistency and good latency, SPAR-Large is preferable in

general for its more consistent performance.

7.3 Subsequent AR rendering
In this section, we isolate the impact of SPAR’s łUpdated AR Ren-

deringž module (Sec. 5.3). To validate our hypothesis that feature

geo distance correlates with spatial inconsistency (see Sec. 5.3), we

plot the spatial inconsistency versus feature geo distance in Fig. 14a

over 3 trials. Each point on Fig. 14a represents a specific pair of

matched keyframes; the y-axis records the spatial inconsistency

resulting from coordinate system alignment with that matched pair.

We can see that as the feature geo distance increases, spatial in-

consistency gets worse. This suggests that feature geo distance can

be used to select good keyframes for coordinate system alignment,

and thus improves the virtual object’s spatial inconsistency.

Since we use a feature geo distance threshold Tfeature = 3 m in

Alg. 1, in Fig. 14b we plot the average spatial inconsistency and

standard deviation when the feature geo distance is less than and

greater than the threshold. It includes 6 trials and 310 matched

keyframes, with 170 frames having geo distance less than 3 m, and

140 frames greater than 3 m. The average spatial inconsistency

for frames with feature geo distance greater than 3 m is nearly 40

cm, but applying the threshold filters out those frames and reduces

spatial inconsistency bymore than 50%. This reinforces ourmessage

that the feature geo distance can be an efficient way to filter out

keyframe matches that result in larger spatial inconsistency.

Finally, to illustrate how the feature geo distance metric impacts

AR rendering, in Fig. 14c we plot the time series of a particular

trial in scenario 2. We compared our łfeature geo distance filterž

approach (blue line) to a simple łno filterž baseline (red line) that

updates a virtual object’s position using the resolver’s most recent

keyframe. Since in scenario 2, a resolver is initially near the virtual

object, then moves away, then moves close again, the expectation is

that the feature geo distance of the most recent keyframe will follow

a similar pattern, first being low, then high, then low, Because the

baseline approach uses the most recent keyframe for matching,

this suggests that the virtual object’s spatial drift will get worse

and then better. Fig. 14c shows the baseline approach matches our

expectation, while our proposed approach achieves a better (lower)

spatial drift by intelligently selecting the right keyframes according

to the feature geo distance metric.

In summary, the feature geo distance metric provides a good

way to select which keyframe the resolver should use to update

the virtual object’s position, and can reduce spatial drift by 50% on

average compared to a baseline łno filterž approach of using the

most recent keyframe for coordinate system alignment.

7.4 Spatial Drift and Inconsistency Tool
In this section, we evaluate the final component of SPAR, the

spatial drift and inconsistency tool proposed in Sec. 5.4. We wish to

compare the drift/inconsistency values reported by the tool vs. the

human-observed values, in order to evaluate the tool’s accuracy.

We first evaluate the tool’s performance qualitatively. We plot an

example time series of the tool’s output in Fig. 15b. This time series

shows that the virtual object moves by less than 3 cm every 1

second or so, which we qualitatively observe to be true during the

experiment. To understand these results, in Fig. 15c we plot the

trajectory of the resolver in space, with respect to the virtual object

(blue line, a from Fig. 8) and ArUco marker (red line, b from Fig. 8).

These trajectories are identical, except for an offset, as expected

since they are with respect to different reference points. However,

it is when this offset changes over time (c = a − b) that spatial drift

occurs. We can see this in Fig. 15b and Fig. 15d, where the circled

points correspond to varying offset and thus higher spatial drift.

To evaluate the tool’s performance quantitatively, we prepare

the following test setup. We place a real 1 cm × 1 cm grid paper
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uses the cloud), although privacy is a concern. In this case, com-

munication latency may increase, but computation latency may

decrease, requiring further evaluation of the tradeoffs.

9 Related Work

Mobile AR systems: Object detection and image recognition

for AR, on device or offloaded to the edge/cloud, has been investi-

gated [7, 12, 22, 26, 32ś34, 42, 49] in order to place virtual objects

in the real world. These works are orthogonal to ours as we assume

that the virtual objects’ locations is given (by object detection or

user input), and we focus on how AR users can coordinate this in-

formation with others. VisualPrint [27] uses visual fingerprints for

localization, whereas we use SLAM for localization as common in

commercial AR platforms.While MARVEL [11] studies 6-DoF based

AR systems, they assume the real world is pre-mapped, whereas we

assume that devices are placed in an unknown environment. Edge-

SLAM [5] considers offloading parts of SLAM to an edge server,

whereas SPAR does not require infrastructure support. GLEAM [40]

focuses on lighting rendering for virtual objects, which is com-

plementary to this work. Recent work [48] proposes geo-visual

techniques for fast localization in urban areas; however, their AR

system is single-user whereas we focus on multi-user scenarios.

Multi-user AR: CARS [50] shares results from object detec-

tion among multiple users, whereas this paper focuses on more

general 3D coordinate system alignment to share virtual objects

including those placed by object detection. CarMap [4] proposes

efficient map compression, without any virtual objects; in contrast,

SPAR uses knowledge of the virtual object positions when deciding

what to communicate. Several works [6, 43] present only prelimi-

nary measurements of multi-user AR. While industry multi-user

AR systems such as Google ARCore [20], Apple ARKit [8], and

Microsoft HoloLens [35] are close-sourced, we study communica-

tion and spacial inconsistency aspects of multi-user AR through an

open-source system [31].

Multi-agent SLAM: Some SLAM systems [3, 24] focus on co-

ordinate system alignment, while other work [14, 25] assumes ad-

vanced sensors such as 2D laser scanner or 3D LiDARs. In contrast,

this paper focuses on efficient SLAM-based communications on

commodity smartphones, which have a large potential user base.

Zou et al. [53] hardcodes transmitting the SLAM data up to every 5

frames, while CCM-SLAM [46] transmits SLAM information when-

ever it is updated. Instead, we select the appropriate keyframes and

their associated point clouds based on the locations of the virtual

objects. This is done on top of the default keyframe selection al-

ready performed by SLAM frameworks such as ORB-SLAM2 [38]

or VINS [41].

In terms of frameworks, we work with VINS-AR [31], which is an

Android version of VINS-Mono [41], both of which are single-user

SLAM and do not consider communication and consistency issues

of multi-user AR. Other open-source SLAM systems are either not

tested on Android [16, 46] or do not utilize IMU sensors [38].

10 Conclusions
In this paper, we investigated communication and computation

bottlenecks of multi-user AR applications. We found that off-the-

shelf AR apps suffer from high communication latency and incon-

sistent placement of the virtual objects across users and across time.

We proposed solutions for efficient data communications between

AR users to reduce latency while maintaining accurate positioning

of the virtual objects, as well as a quantitative method of estimating

these positioning changes.

Our implementation on an open-source Android AR platform

demonstrated the efficacy of the proposed solutions. Future work

includes extending our spatial inconsistency tool to other AR plat-

forms such as ARCore, as well as incorporating depth cameras.
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