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Abstract—In this letter, we propose a deep transfer coopera-
tive sensing (DTCS) approach in cognitive radio networks, where
multiple secondary users (SUs) cooperate to detect the presence
of signals from a primary user (PU) in a shared frequency band.
DTCS is a cooperative spectrum sensing (CSS) framework based
on unsupervised deep transfer learning. It operates on energy
vectors, whose each element is a sensing result by an energy
detector from individual SU. It learns the knowledge by com-
bining the sensing results from all SUs in one radio frequency
environment and transfers it to another one. This approach is
applicable for detecting the presence of arbitrary unknown sig-
nals, which enhances the generalization ability and robustness of
the framework. Simulation results demonstrate the effectiveness
of DTCS.

Index Terms—Cognitive radio, cooperative spectrum sensing,
unsupervised deep transfer learning, generalization, robustness.

I. INTRODUCTION

OGNITIVE radio (CR) has been a promising technol-
Cogy to enhance the utilization of limited spectrum in
wireless communications. Specifically, CR senses the radio
frequency (RF) environment and allows unlicensed/secondary
users (SUs) to opportunistically utilize the licensed spectrum,
which is owned by licensed/primary users (PUs). To maximize
spectrum utilization without interfering with the PUs’ usages,
SUs should have the ability of spectrum sensing (SS) to detect
the presence of primary signals from PUs [1].

Since the sensing performance of individual SU may
degrade due to the issues of shadowing, multipath fading,
and receiver uncertainty, cooperative spectrum sensing (CSS)
is presented to address this problem [2]. In CSS, SUs situ-
ated in different locations cooperate to achieve higher sensing
performance than individual SU does [3]. This cooperation is
completed by a fusion center, combining sensing information
and making decisions [4].

In practice, the SUs often have no prior knowledge of the
primary signals. Designing a blind sensing approach becomes
an urgent issue. Recently, deep learning (DL) has achieved
considerable success in identifying the underlying structures
of different objects on various complex tasks, such as computer
vision, speech recognition, and wireless communications [5].
Thus it has great potential in SS by exploring the latent
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structures of the primary signals [6]. Some DL-based signal
detectors have been proposed. For example, [7] designs the
DetectNet based on convolutional long short-term deep neural
networks and it can detect arbitrary types of primary signals
in the case of SS. For CSS, it employs the DetectNet for each
SU separately and then presents the SoftComninationNet for
the fusion center to make decisions. However, most of the
existing DL-based methods need a large amount of labeled
training data and are tested on the data with a similar dis-
tribution. That is to say, when the RF environment changes,
directly applying the trained model to detect the new pri-
mary signals may have poor performance. For example, PU
transmits different types of signals. The bigger the difference
between the original and new signals, the poorer the detection
performance will be. Moreover, manual annotation is often
expensive and time-consuming. Hence, deep transfer learn-
ing (DTL) can be adopted to reduce the annotation time and
cost by adapting label-rich signal data (i.e., source domain)
to related but different label-scarce signal data (i.e., target
domain). In [8], the authors propose a deep sensing method
with transfer learning for SS. Two cases are considered. One
case is an unsupervised transfer learning. The other case is
to fine-tune the framework with a small amount of labeled
target data.

Motivated by [8], in this letter, we propose a deep transfer
cooperative sensing (DTCS) method, which is a novel unsu-
pervised DTL-based CSS scheme for CR. We summarize the
contributions as follows:

o We propose DTCS, which is a CSS scheme and
applicable for detecting the presence of arbitrary
unknown signals from PU in the new communications
settings.

o« DTCS operates on energy vectors, whose each element
is a sensing result by an energy detector from individual
SU. It learns the knowledge by combining all sensing
results from a source domain and transfers it to a target
domain.

e The effectiveness of DTCS is demonstrated in simula-
tions. It can achieve better sensing performance compared
with several baseline detectors.

II. SYSTEM MODEL

We consider a CR network, where a frequency channel is
shared by Ng, SUs and a single PU. For CSS, to detect the
presence of primary signals, each SU employs an energy detec-
tor (ED) to estimate the energy level at a sensing time period
T and sensing bandwidth w. Specifically, we consider the sam-
pling frequency as the Nyquist rate f; = 2w. Thus each SU
obtains K = 2w received signals at each time period. The
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k-th (k =1,...,K) received signal of SU; (i =1,..., Ng)
can be denoted by

oy | hi(k)z(k) + wi(k), if PU is present
(k) = {ws-(k), if PU is absent. (1

where h;(k) is the channel coefficient from PU to SU;; z(k)
is the signal data transmitted by PU; w;(k) is the noise at SU;.
The channel coefficient h;(k) is described by the fading and
path-loss components as follows:

hi(k) = ye; */* @)

where -y is the fading component; e; is the Euclidean distance
between PU and SUy;; ¢ is the path-loss component.

By the energy detector, the estimated energy level of SU;
can be obtained by

1 K
. E : . 2

We let d = (dy,...,dy,,)T be an energy vector of the
accumulated energy levels of all SUs in a single interval 7.

In this letter, we assume the PU can alternate between the
present and absent states. Each energy vector d can be consid-
ered as an input vector of our proposed DTCS method. Given
d, DTCS aims to predict the presence of the primary signals
from PU, which is denoted by y.

_ [ 1, if PU is present
y= {0 if PU is absent. “)

¥

III. RELATED WORK

In cooperative sensing, the SUs report the sensing results to
the fusion center for decision making [9]. The fusion center
has two fusion strategies for the sensing results: hard fusion
and soft fusion. For the hard fusion strategies, the SUs report
only one-bit decision information to the fusion center, which
represents whether the received energy level d; from the i-th
SU is greater than a particular threshold. For example, the OR
rule, the AND rule, and Maximum Ratio Combining (MRC)
rule are commonly used for CSS.

For the soft fusion strategies, the SUs report the entire sens-
ing results to the fusion center without performing the local
decisions. Machine learning (ML) technologies are widely
used soft fusion strategies, where the CSS problem can be
considered as a binary classification problem, and the energy
vectors are as the input. For example, the authors in [2]
propose several CSS algorithms, including Support Vector
Machine (SVM) and Multi-Layer Perceptron (MLP).

It is shown that soft fusion strategies perform better than
hard fusion strategies based on energy detection [10]. The ML
methods as the soft fusion strategies are trained and tested
under the same set of communications conditions. They may
not work well when wireless communications settings change.
To this end, the authors in [8] propose a sensing method with
Transfer Component Analysis (TCA) for SS. However, it only
considers the difference between domains and ignores the dif-
ferences between classes. Moreover, it is designed for SS and
not for CSS. Unlike them, our proposed method incorporates
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Fig. 1. The architecture of the proposed DTCS framework.

deep transfer learning to CSS by adapting the learned method
to the new communications settings. We attempt to improve
the generalization ability of the sensing model by reducing the
differences in terms of both domains and classes.

IV. DEEP TRANSFER COOPERATIVE SENSING

Motivated by [8], in this letter, we aim to enhance the gen-
eralization ability and robustness of the CSS scheme in the
absence of the knowledge of the CR network parameters, such
as the types of PU signals and the SNR A; at SU;. For CSS, we
are given a labeled source data set (Ds, Y;) = {(d_g, yg)}?il
with and an unlabeled target data set D; = {d] ;-‘;1,
dj and dg are the estimated energy vectors from source and
target domains, respectively; n, and n; are the numbers of
the energy vectors from source and target domains, respec-
tively. Our proposed DTCS framework aims to utilize a feature
extractor, a domain critic net, and a classifier to learn the
domain-invariant features and predict the labels of unknown
target data.

where

A. Framework of DTCS

Fig. 1 shows our proposed DTCS framework. Inspired
by the previous work [11], [12], DTCS is designed with
three components: a feature extractor with shared weights
6 extracts the source features F; and target features Fi; a
classifier is trained by the labeled F; and predicts labels for
F; a domain critic net aligns both domains by reducing the
differences in terms of domain and class.

We are given the extracted source features f; = F'(d;) and
target features f; = F'(d;) from the feature extractor F' with
shared weights 6.

Firstly, we train a classifier C, using the labeled source
samples by the supervised loss function:

Lodow) = — Y UGUHE@E)H  ©)
$ =1

where L is a cross-entropy loss function; f(d?) represents the
feature extracted from the feature extractor. The parameters 6
of Cy can be learned by minimizing the softmax cross entropy
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Algorithm 1 Deep Transfer Cooperative Sensing

Input: Source data (Ds, Y;), target data Dy, the minibatch
size m, training step of classifier T, training step of domain
critic A, learning rate ¢.

Output: The presence of target data Y;.

1: Initialize feature extractor, classifier, and domain critic

with random parameters 6y, 0, 64, and 6.

fs = F(ds), fo — F(dr), Yo — Cy(f)
Sample zf as the random representations between pairs
of f; and f;

2: repeat

3 Sample minibatch {(d¢,y%)}™, from (Ds, Ys)
4 Sample minibatch {d}}7* ; from D;

5: for t=1,2,...,T do

6: 05 — 05 — d’vgs L

T: end for

8

9:

10: Sample zf as the random representations between
pairs of f¥ and f¥ (k= {0,1})

11: for a=1,2,..., A do

12: B — 04 —|—¢ng.£d

13: O — 0.+ Vg L

14: end for

15: O — 0f —qngj[-ﬂs +Lg+ L
16: until 8, 84, 6., and Sf converge
17: Return Y; = Cy(F(Dy))

L. Then we can use the trained Cy to obtain the predicted
labels of the target samples by Y: = Cy(fe(dt)).

In the domain critic, with f; and f;, the improved
Wasserstein distance [13] (IWD) is used to measure the
difference in terms of domain by

Ld(ds,dn)— > hd(fS)—— > ha(fi)
d eDyg thDt
— Aa(Il 7z ha(zp)ll2 — 1) ©6)

where hg is a function that maps the feature f to a real
number with parameter f4; Ay is a balancing coefficient;
(Il vz ha(z)ll2 — 1)2 is a gradient penalty for 8, to void
the issues of gradient vanishing or exploding in the training
procedure. The IWD between domains can be estimated by
maximizing the domain loss L.

With (f;, Y,) and (f;, Yt) similarly, the IWD can also
be utilized to measure the differences between classes by
maximizing the class loss L.

-ﬂc(ds,dt,)—Z{ k Z hk(fs)__ Z hk(ft,

k=0 s dseDk t, thDk
k ki k
— Xl W k(262 — )%} M

where k is the label; h¥ is a function that maps the feature f*
to a real number with parameter 6%; 6, = {62, 61}.

The overall objective of our proposed DTCS method is as
follows:

511151{.{,'5 + max Li+ max Lc} (8)
fiUs
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B. Training of DTCS

We show the detailed training procedure of DTCS in
Algorithm 1. We can achieve the overall objective by the
standard back-propagation training approach with a two-step
iteration. Firstly, the classifier is trained by minimizing L.
Secondly, the trained classifier is applied to predict the labels
of target data. Moreover, the domain critic aligns the two
domains by maximizing L4 and L.. We update the feature
extractor by the combination of the above three losses. With
each iteration of DTCS, the errors introduced from wrongly
predicted target labels can be alleviated. For the testing pro-
cedure, the trained feature extractor can learn the features
of target test data and the trained classifier can predict the
corresponding labels.

In addition, the computational complexity of DTCS with
respect to the number of SUs Ny, is O(Ngy). The reason is
that the number of SUs corresponds to the number of nodes in
the input layer. Therefore, if we assume the numbers of nodes
in the hidden layers are fixed for a pre-selected architecture,
then the number of SUs will only affect the size of the weight
matrix from the input layer to the first hidden layer of the
neural network structure. Hence, the computational complexity
of the DTCS is linearly correlated with the number of SUs.

V. SIMULATIONS
A. Setup

Sensing robustness in the unsupervised learning fashion was
shown to be a challenging problem [8]. Given labeled source
PU signals in one RF environment, we evaluate the generaliza-
tion ability and robustness of our proposed DTCS method on
the unlabeled target PU signals in the new RF environment. In
this letter, we generate 4 kinds of digitally modulated signals
in additive white Gaussian noise (AWGN) with different noise
power spectral densities (PSDs) as positive samples and the
corresponding AWGN as negative samples. For the simulation
parameters, we have K = 2wt = 2 + (SMHz) + (10pus) = 100;
the PU activate probability 0.5; the PU transmission power
0.1 mW; the QPSK signal data experience the fading compo-
nent v = 2 and the path-loss exponent £ = 3 under the noise
PSDs 6, = —150dBm/Hz; the Gaussian signal data experience
v =1 and ¢ = 4 under §; = —153dBm/Hz; PAM4 sig-
nals experience v = 2 and € = 3 under §, = —150dBm/Hz;
16-PSK signals experience v = 1 and € = 4 under 416 =
—153dBm/Hz. In the simulations, we vary the number of SUs
Ngy, the number of training samples ng, and the type of PU
signals to examine our proposed DTCS method.

The following baselines are compared with our proposed
DTCS methods: OR rule, AND rule, MRC, TCA, Support
Vector Machine (SVM), and MLP. We implement all our
experiments by TensorFlow. For TCA, we tune the param-
eters and report the average best results. MLP has two hidden
layers of 500 and 100 nodes. MLP is trained only by the
labeled source data and tested on the target data directly. For
DTCS, the feature extractor includes two hidden layers of 500
nodes and 100 nodes; the classifier is designed with one hid-
den layer of 100 nodes, relu activation function, and softmax
output function; the domain critic net has one hidden layer of
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Fig. 2. Sensing performance of the CSS scheme with Ny = 3 for two
transfer tasks.

100 nodes for domain alignment and one hidden layer of 100
nodes for class alignment. The minibatch size m is 128. The
training steps are 7 = A = 5. The learning rate is ¢ = 1074
Two metrics are used to measure the performance of all the
models: AUC and ROC curve. The ROC curve is the curve of
probability of false alarm Py, vs. probability of detection Pg.
We report the average AUC values of each transfer task over
five experiments.

B. Simulation Results

In Fig. 2, we show the sensing performance by DTCS, the
baselines, and the ED for each single SU on two transfer tasks:
QPSK — Gaussian and Gaussian — QPSK.

In this CSS scenario, Ng; = 3; the distances between PU
and 3 SUs (SU;, SUy, and SU3) are 500m, 750m, and 1000m,
respectively. We ran Monte-Carlo simulations with 2,000 real-
izations for source and target domains. Thus, source and target
data sets have the same size n; = ny = 2,000. Specifically,
Fig. 2(a) shows the ROC curves and average AUC values on
the transfer task QPSK — Gaussian, where we use QPSK
signals as the source domain and Gaussian signals as the tar-
get domain. Fig. 2(b) shows the results on the transfer task
Gaussian — QPSK. From the results, DTCS outperforms the
other compared methods. It improves the generalization ability
of CSS compared with MLP due to the transfer learning strat-
egy. MLP performs better than TCA, which demonstrates the
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Fig. 3. Sensing performance on the transfer task QPSK — Gaussian.

superiority of neural networks. In terms of traditional methods,
OR rule has a better performance than AND rule and the ED
of SU; closer to PU performs better than that of the other SUs.

In Fig. 3, we show the average AUC vs. the number of SUs
and the number of training samples in the source domain on
the transfer task QPSK — Gaussian.

The single PU and multiple SUs are randomly deployed in a
2000m x 2000m area. For Fig. 3(a), we fix ng = n; = 2,000.
Roughly speaking, it can be observed that the AUC value
increases as the number of SUs increases. It highlights the
benefits of the CSS scheme. DTCS shows better performance
than the other baselines in a large margin. For Fig. 3(b), we
fix Ngy = 12 and n; = 2,000. We can observe that the
AUC value increases as the number of training samples in
the source domain increases. Given larger amounts of labeled
source data, DTCS can have better generalization ability and
robustness by exploring the underlying structural information
across domains.

In order to further verify the ability to detect the pres-
ence of arbitrary unknown signals, we evaluate DTCS on the
transfer tasks for different PU signals. We fix Ng,, = 12 and
ng = ng = 2,000. DTCS is tested on different transfer tasks
shown in Table I. DTCS achieves the best performance on all
transfer tasks. Note that the performance is different when we
interchange the source and target domains. We can observe
that some kinds of signals can make effective guidance in
transfer learning, such as Gaussian signals.
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TABLE I
SENSING PERFORMANCE (AUC) ON DIFFERENT TRANSFER TASKS

Transfer Task | OR AND MRC TCA SVM MLP DTCS
QPSK — Gaussian | 0905 0742 0911 0.850 0924 0947 0972
Gaussian — QPSK | 0921 0754 0924 0.861 0937 0956 0.983
PAM4 — Gaussian | 0.769 0556 0775 0587 0786 0780 0.827
Gaussian — PAM4 | 0923 0684 0904 0759 0.892 0935 0966
PAM4 — 16-PSK | 0.883 0.661 0.891 0735 0885 0897 0929
16-PSK — PAM4 | 0.885 0650 0877 0856 0893 088 0917

PAM4 — QPSK | 0858 0685 0861 0763 0858 0872 0901

QPSK — PAM4 | 0.897 0640 0902 0883 089% 0904 0956

Average | 0.880 0.672 0881 0787 0.884 0.897 0931
TABLE I

AVERAGE RUNNING TIME ON DIFFERENT TRANSFER TASKS

Time (s) | OR AND MRC TCA SVM MLP DTCS

Training - - - 2340 1.062 2186 2773

Test 0490 0498 0417 0121 0085 0.054 0.054

Sum 0490 0498 0417 2461 1.147 2240 2.827
TABLE III

SENSING PERFORMANCE (AUC) IN TERMS OF DIFFERENT & AND FIXED
7 = 1 ON THE TRANSFER TASK OF 16-PSK — 16-PSK

Parameters OR AND MRC TCA SVM MLP DTCS
e=4—¢=2| 0892 0694 0902 0859 0914 0916 0948
e=4—=g=4| 0883 0661 0878 0842 0.895 0901 0962
e=4—2¢=6| 0810 0653 0815 0826 0856 0923 0957
e=4—-£=8| 0598 0591 0643 0584 0525 0658 03819

TABLE IV

SENSING PERFORMANCE (AUC) IN TERMS OF DIFFERENT 7y AND FIXED
£ = 4 ON THE TRANSFER TASK OF 16-PSK — 16-PSK

Parameters OR AND MRC TCA SVM MLP DTCS
y=1—9y=1| 0883 0661 0878 0842 0895 0901 0962
y=1—y=2| 0884 0728 0.841 0834 0867 0.894 0955
y=1—y=3| 0895 0792 0912 0816 0853 0.887 0.946
y=1—9y=4|0913 079 0919 0672 0725 0873 0942

To compare the computational burden complexity of each
technique, we obtain the running time for each method during
the training and testing phases on the eight transfer tasks in
Table I. Table II shows the average running time in terms of
training, test, and the sum values averaged over five experi-
ments. OR, AND, and MRC methods directly work on the test
data set without training running time. From the sum values, it
can be observed that the traditional CSS methods (OR, AND,
and MRC) outperform the machine learning methods (TCA,
SVM, MLP, DTCS). However, in the test phase, it is worth
noting that machine learning methods perform better than the
traditional CSS methods, and DTCS performs the best. They
can directly apply the trained models to detect the presence of
signals. In practical cases, we can train the machine learning
models offline and perform the detection online.

To observe the performance in terms of different channel
parameters for a given modulation, we conduct the experi-
ments on the transfer task of 16-PSK — 16-PSK, where the
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source and target domains are 16-PSK signals with different
channel parameters. We also fix Ng = 12 and ng = ny =
2,000. Table III shows the sensing performance in terms of
different £ and fixed v = 1. Table IV shows the sensing
performance in terms of different v and fixed € = 4. From the
results of Tables III and IV, it can be noted that DTCS per-
forms better in the case where the source and target domains
have the similar parameters than that in the other cases. The
smaller differences between the source and target domains, the
better the trained models can perform on the target domains.

VI. CONCLUSION

In this letter, we proposed a novel deep transfer cooperative
sensing approach named DTCS. DTCS does not require any
labeled unknown signals and can transfer the knowledge of
known signals to detect the presence of the unknown signals in
an unsupervised fashion. By incorporating deep transfer learn-
ing into the CSS scheme, we enhance the generalization ability
and robustness of DTCS. From the simulations, the effective-
ness of DTCS has been demonstrated. In the future, we would
like to extend our proposed method to a more practical sce-
nario, where we can have different numbers of secondary users
in the CR network.
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